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ABSTRACT 

 

We propose a new perspective and a new method to detect accounting frauds out of sample. 

We show that a logistic regression that directly uses raw accounting data as regressors 

outperforms the traditional logistic regression that uses expert-identified financial ratios. 

Using the same raw data as inputs, ensemble learning, a state-of-the-art machine learning 

method, further outperforms the logistic regression model. The ensemble method also 

outperforms a support vector machine (SVM) with a financial kernel that maps the same raw 

accounting data into a broader set of ratios and changes in ratios. Overall, our results suggest 

that the existing fraud prediction models haven’t fully utilized the information from publicly 

available financial statement data. In addition, we show that it is possible to extract such 

useful information by adopting better fraud prediction models that rely on raw accounting 

data rather than financial ratios as model inputs.    
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1. Introduction 

 Accounting frauds are a worldwide problem. If not detected and prevented on a timely 

basis, frauds can cause significant harm to not only the stakeholders of fraudulent firms 

directly (e.g., Enron and WorldCom) but also the stakeholders of many non-fraudulent firms 

indirectly (Gleason, Jenkins, and Johnson [2008], Goldman, Peyer, and Stefanescu [2012], 

Hung, Wong, and Zhang [2015]).
1
 Unfortunately, accounting frauds are rare and therefore 

difficult to detect. For example, the frequency of detected accounting frauds among publicly 

traded U.S. firms is typically less than one percent. Even if a fraud is detected, it is usually 

too late (Dyck, Morse, and Zingales [2005]) and the real damages are already done by the 

time of the fraud’s disclosure. Hence, an important research question in academic research is 

to develop effective methods to detect corporate accounting frauds on a timely basis so that 

the extent of damages from such frauds can be minimized.  

 The objective of this study is to use a sample of publicly traded U.S. firms to develop 

a new accounting fraud prediction model using only publicly available financial data as 

inputs. While there are useful non-financial indicators of frauds (e.g., an executive’s personal 

behavior), we use only financial data as inputs for two reasons. First, fraud detection models 

based on publicly available financial data can be readily applied to any publicly traded firm at 

low costs. Second, most prior accounting fraud research relies on publicly available financial 

data (e.g., Green and Choi [1997], Summers and Sweeney [1998], and Beneish [1999], 

Cecchini, Aytug, Koehler, and Pathak [2010], Dechow, Ge, Larson, and Sloan [2011]). 

Hence, the performance of our methods can be readily compared with the performance of 

traditional fraud detection methods that also use financial data. 

 We depart from the existing fraud detection research in several important ways. First, 

we directly use raw accounting data from the financial statements to predict frauds. The 

                                                            
1 See Schiesel [2002] for an interesting account of how WorldCom’s accounting fraud affected the business 

strategies of AT&T (WorldCom’s main competitor). 



2 
 

extant accounting fraud detection literature typically uses financial ratios identified by 

accounting experts as inputs (see Dechow et al. [2011] for a review). Ratio analysis based on 

the DuPont model is an integral part of the traditional accounting valuation analysis. Hence, it 

is natural for accounting experts to use intuitive financial ratios such as change in ROA as 

fraud determinants. However, this traditional ratios-based fraud detection approach suffers 

from two important limitations. The first limitation is that the extant fraud detection models 

haven’t adopted a systematic framework to build fraud detection models and hence there is 

no guarantee that accounting experts have identified all relevant financial ratios useful for 

fraud prediction. The second limitation is that the conversion of raw accounting data into a 

limited number of financial ratios could result in a loss of useful information. To our best 

knowledge, we are the first study to examine whether raw accounting data are more useful 

than financial ratios for the purposes of fraud prediction.  

 Second, we use ensemble learning, one of the state-of-the-art paradigms in machine 

learning, to predict frauds. Most prior fraud detection research in accounting uses the logistic 

regression (see Dechow et al. [2011]). While ensemble learning has been successfully applied 

in many other fields (see Zhou [2012] for a review), we are the first study to apply the 

ensemble method to a setting with a severe class imbalance problem (i.e., the rarity of frauds). 

Hence, it is an empirical question whether the ensemble method can outperform the 

traditional fraud detection methods in our setting.  

 Third, our primary objective is to predict accounting frauds out of sample. While there 

is a fairly large accounting literature on fraud detection, the primary objective of most 

empirical studies is to explain frauds within sample and emphasize causal inferences. While 

related, predicting frauds out of sample is a fundamentally different task. Shmueli [2010] 

explains that the focus in explanatory modeling is on minimizing the bias resulting from 

model misspecification to obtain the most accurate representation of the underlying theory. In 
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contrast, predictive modeling seeks to minimize the combination of the bias and estimation 

variance which results from using a sample to estimate model parameters. Because of the bias 

and estimation variance tradeoff, a better specified fraud detection model with a lower bias 

doesn’t necessarily yield better fraud prediction out of sample.  

 To compare the out-of-sample performance of different fraud detection models, we 

adopt two distinctive performance evaluation metrics. First, we follow Larcker and 

Zakolyukina [2012] by using the area under the Receiver Operating Characteristics (ROC) 

curve or AUC as a performance evaluation metric. The AUC is equivalent to the probability 

that a randomly chosen fraud observation will be ranked higher by a classifier than a 

randomly chosen nonfraud observation (Fawcett [2006]).The AUC for random guesses is 

0.50 and therefore any reasonable fraud detection model must have an AUC higher than 0.50.  

 Because the frequency of accounting frauds sanctioned by the SEC’s AAERs is 

typically small, even the best performing fraud detection model from prior research (e.g., 

Cecchini et al. [2010]) would result in a large number of false positives that far exceed the 

number of true positives in a test period. Clearly, it is impractical to investigate all the 

predicted frauds given the limited resources available to fight fraud (Ernst & Young [2010]). 

Even if one wishes to investigate all the predicted fraud observations, the direct and indirect 

costs would be huge while the benefit would be small because the majority of the predicted 

fraud observations are false positives. Hence, there is a natural demand for investigating only 

a small number of observations with the highest predicted fraud probabilities. Accordingly, 

we also examine the out-of-sample performance of the different fraud detection models using 

an alternative performance evaluation metric commonly used for ranking problems, referred 

to as Normalized Discounted Cumulative Gain at the position k (NDCG@k). Intuitively, 

NDCG@k assesses the ability of a fraud detection model to identify true frauds by picking 

only 1% of the observations in a test year that have the highest predicted probability of fraud 
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(i.e., k=the number of top 1% observations). We select a cutoff of 1% because the average 

frequency of accounting frauds sanctioned by the SEC’s AAERs is typically less than 1% 

each year. 

 For the purposes of the out-of-sample performance evaluation comparison, we adopt 

two types of benchmark fraud detection models from the extant literature. The first type is the 

ratios-based logistic regression model commonly used in the accounting literature. Because 

Dechow et al. [2011] is the most recent comprehensive fraud detection study in the 

accounting literature, we adopt their logistic regression model based on 11 financial ratios 

commonly used in the extant literature as our first type of benchmark model (referred to as 

the basic Dechow et al. model).
2
 The second type of benchmark model is a fraud detection 

model developed by Cecchini et al. [2010] based on more advanced machine learning. Rather 

than using the financial ratios identified by accounting experts alone, Cecchini et al. [2010] 

develop a new fraud detection model based on support vector machines (SVM) with a 

financial kernel that maps raw accounting data into a broader set of ratios and changes in 

ratios. Cecchini et al. [2010] find that the SVM with a financial kernel outperforms the 

traditional fraud detection models in accounting, including the ratios-based logistic regression 

model in Dechow et al. [2011].  

 We perform all of our empirical analyses using the sample period 1991-2005.  Our 

sample starts in 1991 because there appear significant changes in both the determinants and 

detection of accounting frauds around 1990 and therefore it may not be appropriate to use the 

pre-1991 period to predict frauds after 1990. Our sample ends in 2005 because the SEC’s 

Accounting and Auditing Enforcement Releases (AAERs) available to us end in September 

2010 while there is an average of five-year gap between a fraud occurrence and the AAER 

publication date. Hence, a significant portion of the accounting frauds that occurred over 

                                                            
2 It is important to note that we don’t fully replicate Dechow et al.’s [2011] models which contain both financial 

ratios and non-financial variables. Hence, the results from this study are not directly comparable to those from 

Dechow et al. [2011]. 
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2006-2010 are likely still unreported by the AAERs as of the end of 2010. Following 

Cecchini et al. [2010] and Dechow et al. [2011], we use the last three years 2003-2005 as the 

out-of-sample test period. 

 To make the performance comparison fair across the different models, we start with a 

common set of raw accounting data items. Specifically, we follow Cecchini et al. [2010] by 

selecting 24 raw accounting data items from the financial statements for our fraud detection 

models. Cecchini et al. [2010] selected the 24 raw accounting data items after reviewing a 

comprehensive list of existing academic papers on fraud prediction. The set of raw 

accounting data items used in the basic Dechow et al. model significantly overlaps with but is 

not identical to the set of 24 raw accounting data items used by Cecchini et al. [2010]. In 

order to give the ratios-based logistic regression model a fair chance, we also estimate a 

modified Dechow et al. model based on 11 expert identified financial ratios from the basic 

Dechow et al. model plus three additional expert identified financial ratios derived from 

Cecchini et al.’s 24 raw accounting data items not used in the basic Dechow et al. model. As 

a result, the modified Dechow et al. model contains 14 financial ratios derived from 28 raw 

accounting data items. 

 We first report the performance results of the two types of benchmark models. Using 

the first performance evaluation metric AUC, we find that the out-of-sample performance of 

the two types of benchmark models is significantly better than the performance of random 

guesses. The average AUC is 0.638 for the basic Dechow et al. model, 0.654 for the modified 

Dechow et al. model, and 0.740 for the Cecchini et al. model. Consistent with Cecchini et al. 

[2010], Cecchini et al.’s model significantly outperforms both the basic and modified 

Dechow et al. models in terms of AUC in our sample. However, the performance of all the 

benchmark models fares poorly using the second performance evaluation metric NDCG@k. 

Specifically, the top 1% of the observations with the highest predicted fraud probability in the 
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test years 2003-2005 can only capture less than 3% of the true frauds in the population. In 

addition, less than 2% of the top 1% of the observations with the highest predicted fraud 

probability are true frauds for all the benchmark models. 

 We find evidence that raw accounting data are more useful than expert identified 

financial ratios in predicting frauds out of sample. Specifically, a simple logistic regression 

that directly uses the 24 raw accounting data items as regressors outperform both the basic 

and modified Dechow et al. models by a significant margin in terms of AUC (0.747 versus 

0.638 and 0.654 respectively or an increase of 15-17%). Furthermore, the AUC performance 

of our simple logistic regression based on the 24 raw accounting data items is on par with that 

of Cecchini et al.’s more advanced and complex SVM-FK method based on the same 24 raw 

accounting data. These results suggest that the financial ratios identified by accounting 

experts and used in the traditional ratios-based logistic regression models have not fully 

utilized the information from the raw accounting data. However, using the second 

performance evaluation metric NDCG@k, we find no evidence of significant difference in 

the performance of the logistic regression model based on the 24 raw accounting data items 

versus the two types of benchmark models. 

 More importantly, we find that the ensemble method using the 24 raw accounting data 

items has an average AUC of approximately 82%, significantly higher than the average AUC 

of all the benchmark models as well as the logistic regression model using the 24 raw 

accounting data items The ensemble method outperforms the next best model, the logistic 

regression model using the same 24 raw accounting data items, by more than 9% in AUC 

(0.822 versus 0.747), and outperforms the basic Dechow et al. model by more than 28% 

(0.822 versus 0.638). More significantly, we find that the ensemble method significantly 

outperforms all the other fraud detection models in terms of NDCG@k. Specifically, we find 

that the top 1% of the observations with the highest predicted fraud probability from the 
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ensemble model captures 28.09% of the true frauds in the population. In addition, 18.59% of 

the top 1% of the observations with the highest predicted fraud probability from the ensemble 

model are true frauds. These results are impressive considering the fact that less than 1% of 

the firms in the population are true frauds. While still far from perfect, our empirical results 

from NDCG@k suggest that our ensemble method based on raw accounting data is 

significantly better in out-of-sample performance relative to the best fraud detection models 

available in the extant literature. 

 We contribute to the existing fraud detection literature in several important ways. 

First, we are the first to propose using raw accounting data rather than ratios to predict 

accounting frauds. The promising results from this study raise the possibility that we can 

further improve the performance of future fraud prediction models by using hundreds of 

additional readily available raw accounting data items from the financial statements.  Second, 

we are the first study to demonstrate the usefulness of ensemble learning, a state-of-the-art 

machine learning method, in fraud prediction, a challenging task due to severe class 

imbalance. Third, we are the first to introduce a new performance evaluation metric for 

ranking problems, NDCG@k, to the setting of fraud prediction. Considering the significant 

costs of investigating a larger number of false positive fraud observations, NDCG@k 

provides a valuable alternative benchmark to rank fraud prediction models. Finally, our 

results also have important implications for the ongoing research that compares the 

usefulness of text data versus quantitative data to predict accounting frauds (e.g., Larcker and 

Zakolyukina [2012]). A typical benchmark model used in this line of research is Dechow et al. 

[2011]. Our results raise the bar for this line of text mining research because we show that 

Dechow et al.’s ratios-based logistic regression model significantly understates the value of 

financial data in fraud prediction. 
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 The rest of the paper is organized as follows. Section two provides an introduction to 

the ensemble method. Section three discusses the out-of-sample performance evaluation 

metrics. Section four introduces the accounting fraud sample and explains the selection of the 

24 raw accounting data items. Section five reports the out-of-sample performance of the basic 

and modified Dechow et al. models. Section six reports the out-of-sample performance of 

Cecchini et al.’s SVM-FK method. Section seven discusses the logistic regression results of 

fraud prediction using raw accounting data items. Section eight analyzes its out-of-sample 

performance of the ensemble method. Section nine concludes. 

 

2. An Introduction to Ensemble Learning    

 Ensemble learning, one of the main paradigms in machine learning, has achieved 

great success in many real-word applications in recent years (see pages 17-19 in Zhou [2012] 

for a review of applications of ensemble methods). Different from conventional machine 

learning methods (e.g., SVM methods) which usually generate one single estimator, 

ensemble method combines the predictions of a set of base estimators (e.g., decision trees) in 

order to improve the generalizability or robustness over any single estimator. Previous studies 

(Zhou [2012]) show that ensembles can usually outperform any single base estimator. 

However, due to the class imbalance problem, conventional ensemble methods usually need 

to be combined with a sampling technique in order to balance the class distribution of 

training data by either adding examples to the minority class (over-sampling) or removing 

examples from the majority class (under-sampling) (Liu and Zhou [2013]). There have been 

various methods for combining ensemble methods and data sampling techniques for class 

imbalance learning (Liu and Zhou [2013]). In this study we employ one variation of 

ensemble learning called RUSBoost (Seiffert, Khoshgoftaar, Van Hulse, and Napolitano 

[2010]). RUSBoost seeks to take advantage of both the efficient under-sampling technique 
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(Liu, Wu, and Zhou [2009]) and the most influential ensemble algorithm called AdaBoost 

(Freund and Schapire [1997]). A review by Galar, Fernandez, Barrenechea, Bustince, and 

Herrera [2012] find RUSBoost (Seiffert et al. [2010]) to demonstrate the best performance 

and are also more computationally efficient due to its simplicity. The superiority of 

RUSBoost is further confirmed by Khoshgoftaar, Van Hulse, and Napolitano [2011].  

 In the following, we first introduce the AdaBoost algorithm, and then describe how it 

is combined with an under-sampling technique in our empirical implementation of RUSBoost. 

The AdaBoost algorithm is one of the most important ensemble methods due to its solid 

theoretical foundation, strong predictive power, and great simplicity (Wu et al. [2008[). Its 

basic idea is to train a sequence of weak classifiers (i.e., models that are only slightly better 

than random guesses, e.g., small decision trees) on repeatedly weighted samples. Specifically, 

in each iteration, the weights of the incorrectly classified observations will be increased, 

while the weights of correctly classified observations will be decreased. In this way, the weak 

classifier in each iteration will be forced to concentrate on the observations that are difficult 

to predict in the previous iterations. Finally, a strong classifier can be produced by taking the 

weighted average of all week classifiers, where the weight is based on a weak classifier’s 

classification error rate on the training sample. The weak classifiers with lower classification 

error rates will receive higher weights.  

 RUSBoost is a variant of AdaBoost that combines the Random Under-Sampling 

(RUS) for class imbalance learning (Seiffert et al. [2010]). It works in the same manner as 

AdaBoost except that RUS is performed in each iteration to address the imbalance of fraud 

and nonfraud firms. Specifically, when training the weak classifier in each iteration, the RUS 

algorithm uses the full sample of fraud firms in the training period and a randomly generated 
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subsample of nonfraud firms in the same training period.
3
 The estimation of RUSBoost 

requires the selection of the ratio between the number of under-sampled majority class 

observations (i.e., nonfraud) and the number of minority class observations (i.e., fraud). In 

this paper, we construct two versions of RUSBoost by setting this ratio equal to 1:1 and 2:1. 

That is, when the ratio is set to 1:1, we simply sample the same number of fraud observations 

and non-fraud observations. When the ratio is set to 2:1, we sample non-fraud observations 

twice as many as fraud observations. 

 

3. Performance Evaluation  

3.1. OUT-OF-SAMPLE PERFORMANCE EVALUATION 

 Most existing fraud detection papers in accounting don’t evaluate the out-of-sample 

performance of their models. However, the in-sample prediction error is a very optimistic 

estimate of performance in an out-of-sample data set. Hence, it is necessary to assess the out-

of-sample prediction error of a fraud detection model in performance evaluation. A common 

approach to evaluating the out-of-sample performance of a classification model is to perform 

an n-fold cross validation (Efron and Tibshirani [1994], Witten and Frank [2005], Hastie, 

Tibshirani, and Friedman [2003]) as follows: (1) split the data into n roughly equal samples 

(folds), where n is typically set at 10; (2) estimate the fraud detection model using only n-1 

folds, leaving one fold out for out-of-sample performance evaluation; and (3) the out-of-

sample performance of the model is evaluated using the left-out fold. These steps are 

repeated n times, one for each of the above n samples.  

 Our fraud data are inter-temporal in nature and hence performing the standard n-fold 

cross validation as suggested above is less appropriate because such a cross-validation would 

                                                            
3 We fix the seed of the random number generator to zero to ensure the replicability of our reported results. This 

is a commonly used method for reproducing the experimental results in computer science. For more details, 

please refer to http://www.mathworks.com/help/matlab/math/generate-random-numbers-that-are-

repeatable.html. 
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destroy the inter-temporal nature of our fraud data. Therefore, we follow Cecchini et al. 

[2010] and Dechow et al. [2011] by using the last three years of our sample period 2003-2005 

as the out-of-sample test period and a window of at least 11 years to train and validate our 

fraud detection models.
4
 Specifically, we use 1991-2001 as the training period for test year 

2003, 1991-2002 as the training period for test year 2004, and 1991-2003 as the training 

period for test year 2005. To minimize the look-ahead bias, we leave a gap of two years 

between the training period end and a test year because on average it takes approximately two 

years for the discovery and disclosure of a fraud (Dyck et al. [2005]). To our best knowledge, 

all of the prior published fraud detection models don’t impose the two-year gap requirement. 

  

3.2. OUT-OF-SAMPLE PERFORMANCE EVALUATION METRIC ONE: AUC 

 Since our fraud prediction task can be cast as a binary classification problem (fraud 

versus nonfraud), we can measure the fraud detection performance using the evaluation 

metrics for classification problems. One standard classification performance metric is 

accuracy, defined as 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
, where TP (True Positive) is the number of fraud firm-years 

that are correctly classified as frauds; FN (False Negative) is the number of fraud firm-years 

that are misclassified as non-frauds; TN (True Negative) is the number of non-fraud firm-

years that are correctly classified as non-frauds; and FP (False Positive) is the number of non-

fraud firm-years that are misclassified as frauds. Unfortunately, this standard classification 

performance metric is not appropriate in our scenario due to the imbalanced nature of our 

fraud versus nonfraud data (recall the fraud percentage in our sample is less than 1% each 

year). For example, one naïve strategy of classifying all firm-years as non-frauds in our 

sample would lead to an extremely high accuracy of more than 99% based on the standard 

classification performance metric. However, fraud prediction models with such a high 

                                                            
4 Inferences for our ensemble learning method are similar if the test period is extended to a longer five-year 

period 2001-2005 (untabulated). 
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performance are of little value in our scenario because our main concern is to accurately 

detect as many fraud firm-years as possible without misclassifying too many non-fraud firm-

years. That is, we care about both the true negative rate (i.e., specificity defined below) and 

the true positive rate (i.e., sensitivity defined below).  

 To properly gauge the performance of a fraud detection model, one could use 

balanced accuracy (BAC) as an alternative performance evaluation metric (He and Ma 

[2013]), which is defined as the average of the fraud detection accuracy within fraud 

observations and the nonfraud detection accuracy within non-fraud observations. 

Specifically,  𝐵𝐴𝐶 =
1

2
∗ (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) , where 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 and 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
. Larcker and Zakolyukina [2012] note two important limitations of 

BAC as a performance evaluation metric. First, BAC is constructed based on a specific 

predicted fraud probability threshold of a classifier, usually automatically determined by the 

classifier to maximize the BAC. In other words, by setting a different threshold of the 

classifier, one would obtain a different BAC value. In the absence of any knowledge on the 

costs of misclassifying false positives versus the costs of misclassifying false negatives, one 

couldn’t determine the optimal predicted fraud probability threshold for the purposes of 

classifying frauds and nonfrauds. Second, measures such as Sensitivity are very sensitive to 

the relative frequency of positive and negative instances in the sample (i.e., data imbalance).  

 To avoid these two limitations, we follow Larcker and Zakolyukina [2012] by using 

the area under the Receiver Operating Characteristics (ROC) curve as our out-of-sample 

performance evaluation metric. A ROC curve is a two-dimensional depiction of a classifier’s 

performance by combining the True Positive Rate (i.e., Sensitivity) and the False Positive 

Rate (i.e., 1-Specificity) in one graph (Fawcett [2006]). The BAC defined above represents 

only one point in the ROC curve.  
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 It is possible to reduce the performance of a fraud detection model to a single scalar 

by computing the area under the ROC curve (AUC). Since the AUC is a portion of the area of 

the unit square, its value will always lie between 0 and 1.0. Because a random guess produces 

the diagonal line between (0, 0) and (1, 1), which has an area of 0.5, no realistic classifier 

should have an AUC less than 0.5. As discussed in Fawcett [2006], the AUC is equivalent to 

the probability that a randomly chosen positive instance (i.e., a true fraud) will be ranked 

higher by a classifier than a randomly chosen negative instance (i.e., a nonfraud). 

 

3.3. OUT-OF-SAMPLE PERFORMANCE EVALUATION METRIC TWO: NDCG@K 

 Our fraud detection task can also be thought of as a ranking problem by limiting our 

out-of-sample performance evaluation to only a small number (i.e., k as defined below) of 

firm years with the highest probability of fraud predicted by a fraud detection model. In this 

scenario, the performance of a fraud detection model can be measured by the following 

performance evaluation metric for ranking problems: Normalized Discounted Cumulative 

Gain at the position k (NDCG@k). NDCDG@k is a widely used metric for evaluating 

ranking algorithms such as web search engine algorithms and recommendation algorithms 

(Järvelin and Kekäläinen [2002]) and has been proved to be effective theoretically (Wang, 

Wang, Li, He, Chen, and Liu [2013]).  

 Formally, the Discounted Cumulative Gain at the position k (DCG@k) is defined as 

follows: 𝐷𝐶𝐺@𝑘 = ∑ (2𝑟𝑒𝑙𝑖 − 1) / 𝑙𝑜𝑔2 (𝑖 + 1)𝑘
𝑖=1 , where 𝑟𝑒𝑙𝑖  equals 1 if the i-th 

observation in the ranking list is a true fraud, and 0 otherwise. The value k represents the k 

number of firm years in a test period that have the highest probability of fraud predicted by a 

fraud detection model (referred to as the ranking list). In our subsequent empirical analyses, 

we select a k so that the number of firm years in the ranking list represents 1% of all the firm 
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years in a test year. We select a cutoff of 1% because the average frequency of accounting 

frauds sanctioned by the SEC’s AAERs is typically less than 1% each year.  

 The definition of DCG@k has two assumptions: (1) a true fraud observation is scored 

higher (i.e., (2𝑟𝑒𝑙𝑖 − 1) = 1) than a nonfraud observation (i.e., (2𝑟𝑒𝑙𝑖 − 1) = 0); and (2) a 

true fraud observation is scored higher if it is ranked higher in the ranking list. That is, a 

higher ranked observation (i.e., with a smaller i) will be weighted more highly by the position 

discount, i.e., the denominator 𝑙𝑜𝑔2 (𝑖 + 1).  

 NDCG@k is DCG@k normalized by the ideal DCG@k, i.e., NDCG@k =
DCG@k

ideal DCG@k
 , 

where the ideal DCG@k is the DCG@k value when all the true frauds are ranked at the top 

of the ranking list. Hence, the value of NDCG@k is bounded between 0 and 1.0, and a higher 

value represents better ranking performance of a fraud detection model. 

 Relative to the first performance evaluation metric AUC, NDCG@k avoids the 

significant direct and indirect costs of investigating a large number of predicted frauds, the 

majority of which are likely false positives due to the severe data imbalance of true frauds. 

Because the average frequency of accounting frauds sanctioned by the SEC’s AAERs is 

typically less than 1%, even the best performing fraud detection model from prior research 

(e.g., Cecchini et al. [2010]) would result in a large number of false positives. For example, 

Table 7 of Cecchini et al. [2010] reports that their SVM with a financial kernel correctly 

classifies 80% of the fraud observations and 90.6% of the non-fraud observations in the out-

of-sample test period, the best among the competing models considered in their study. 

However, applying Cecchini et al.’s model to our test period 2003-2005 would result in too 

many false positives. Because only 118 (0.67%) of the 17,716 firm years are true frauds in 

our test period 2003-2005, Cecchini et al.’s method would mislabel 1,654 ((1-

90.6%)*(17,716-118)) non-fraud observations as frauds, significantly bigger than the number 

of true frauds in the test period. Clearly, it is impractical to investigate all the predicted frauds 
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due to limited resources. Even if one wishes to investigate all the predicted fraud 

observations, the direct and indirect costs of investigating so many predicted frauds would be 

prohibitively large while the benefit would be small because the majority of the predicted 

fraud observations are false positives. NDCG@k avoids this problem by limiting its 

investigation to no more than k number of firm years in the test period (i.e., top 1% or 177 

predicted frauds in our setting). 

 

  

4. The Data 

4.1. THE FRAUD SAMPLE 

 Our initial accounting fraud sample comes from the SEC’s Accounting and Auditing 

Enforcement Releases (AAERs) over the period between May 17
th

, 1982 and September 1
st
, 

2010.
5
 Following Dechow et al. (2011), we exclude firms in the insurance and banking 

industry (i.e. SIC 6000-6999).  The AAERs cover accounting frauds that occurred during the 

fiscal years 1971-2008. However, there are only 13 fraud firm-years before 1979. Table 1 

shows the distribution of the frauds by year over the fiscal years 1979-2008. There are a total 

of 785 fraud firm years, but the frequency of frauds is very low, typically less than 1% per 

year. The fraud percentage is abnormally low in the last three years 2006-2008, largely due to 

the fact that our sample of AAERs ends in 2010 but it typically takes five years from the 

fraud occurrence to the AAER publication date. Hence, we exclude the last three years 2006-

2008 from our sample. 

 We also exclude the years before 1991 because there is a significant shift in U.S. 

firms’ fraud behavior. First, the SEC changed its enforcement around 1990. In their review of 

the history and evolution of the SEC enforcement program, Atkins and Bondi [2008] suggest 

                                                            
5 We thank Dechow et al. [2011] for allowing us access to their hand collected AAER fraud data. 
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that the SEC’s enforcement program shifted from a remedial purpose to a punitive purpose in 

nature in the 1990s.  Prior to 1990, the SEC’s statutory purpose was to provide remedial relief 

for aggrieved investors and to deter future violations.  Since mid-1980s through late 1980s, 

the Congress passed a series of laws that expanded the SEC’s powers and provided the SEC 

with new penalty authority.  These laws include the Insider Trading Sanctions Act of 1984, 

the Insider Trading and Securities Fraud Enforcement Act of 1988, and the Securities and 

Enforcement Remedies and Penny Stock Reform Act of 1990.  As a result of these laws, the 

SEC gained three significant new sets of powers: (1) the ability to seek civil monetary 

penalties against persons and entities that may have violated federal securities laws; (2) the 

authority to bar directors and officers of public companies from serving in those capacities if 

they have violated federal antifraud provisions; and (3) the authority to issue administrative 

cease-and-desist orders, temporary restraining orders, and orders for disgorgement of ill-

gotten profits to violators of federal securities laws (Atkins and Bondi [2008]).  The SEC 

started to seek or impose more punitive actions, such as civil monetary penalties to a broad 

range of conduct in 1990. 

 Second, the use of stock options as a form of executive compensation rose 

dramatically during the 1990s, as did other forms of pay-for-performance plans such as 

restricted stock and bonus plans tied to performance (Murphy [1999], Erickson, Hanlon, and 

Maydew [2006]). Consequently, we observe more frequent citations of insider trading as a 

possible motive of accounting frauds in the AAERs published in the 1990s than in the 1980s 

(Beasley et al. [1999] and [2010]).
6
  

  Third, an analysis of the accounting frauds included in the AAERs in the 1980s and 

1990s by Beasley, Carcello, and Hermanson [1999] and Beasley, Carcello, Hermanson, and 

Neal [2010] respectively reveals subtle changes in the nature of the accounting frauds over 

                                                            
6 However, there is mixed evidence from the extant academic literature on the effect of managerial equity 

compensation on accounting frauds (e.g., Johnson, Ryan, and Tian [2009], Erickson, Hanlon, and Maydew 

[2006], Armstrong, Jagolinzer and Larcker [2010]).   
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time. The two most common techniques used to fraudulently misstate financial statement 

information involved overstating revenues and assets in both time periods. However, 

misstatements through the understatement of expenses/liabilities became a more frequently 

used fraud technique in the 1990s (an increase from 18% to 31%).   

  

4.2. THE RAW ACCOUNTING DATA 

 A key feature of our fraud detection models is to use raw accounting data directly 

from the financial statements. While there are a lot of raw accounting data items from a 

company’s financial statements, we limit our empirical analyses to only 24 raw data items so 

that we can compare the performance between our fraud detection models and the traditional 

fraud detection methods whose fraud determinants are also derived from the same or a similar 

set of raw accounting data. Specifically, we follow Cecchini et al. [2010], one of the most 

recent and comprehensive studies on fraud detection, in the selection of the raw accounting 

data items. After reviewing a comprehensive list of existing academic papers, including 

Beneish [1999], Dechow et al. [2011], Summers and Sweeney [1998], and Green and Choi 

[1997], Cecchini et al. [2010, Table 3] identified an initial list of 40 raw accounting data 

items used by prior fraud detection research to construct the regression variables. Cecchini et 

al. retained a final list of 23 raw accounting data items after imposing the requirement that no 

raw variable has more than 25% of its values missing. Following the same sample selection 

procedures, we obtain a final list of 24 raw accounting data items during our sample period 

1991-2005. Table 2 shows the list of the 40 raw accounting data items from Cecchini et al. 

[2010] in column (1) and our final list of 24 raw accounting data items in column (2). 

 As noted in the Introduction, we use Dechow et al.’s [2011] ratios-based logistic 

regression model as a benchmark for our subsequent out-of-sample performance analysis. 

Because the primary focus of our study is to use data from the readily available financial 
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statements to predict accounting frauds, we don’t exactly replicate Dechow et al.’s models in 

Table 7 that use both financial and non-financial data. Specifically, we begin with the initial 

larger list of candidate regression variables identified by Dechow et al.’s [2011] Table 3. 

Dechow et al. [2011, Table 3] suggest three types of fraud determinants: (a) nine accruals 

quality related variables which can be calculated using the accounting numbers in the annual 

financial statements such as balance sheets and income statements; (b) two nonfinancial 

variables and four off-balance-sheet variables, which can be calculated using annual report 

disclosures; and (c) eight market-related variables which can be computed using either the 

annual report disclosures or stock price data or both. We exclude all the nonfinancial 

variables and off-balance-sheet variables. We include all the variables under the category of 

“Accruals quality related variables” except for the four discretionary accrual measures (i.e., 

modified jones discretionary accruals, performance-matched discretionary accruals, mean-

adjusted absolute value of DD residuals, and studentized DD residuals) because we wish to 

use variables that can be easily calculated from the financial statements.
7
 We include all five 

variables under the category of “Performance variables” except for Deferred tax expense 

because variable Income Taxes, Deferred required to calculate this ratio has more than 25% 

of its values missing in our sample period. Dechow et al. didn’t include this variable either in 

their subsequent regression analyses (see their Tables 7 and 9). We keep only Actual issuance 

and Book-to-market under the category “Market-related incentives” because the raw 

accounting data for both variables are readily available in Compustat. In addition, Dechow et 

al. [2011] include Actual issuance in their basic model 1 of Table 7 and Book-to-market in 

their out-of-sample prediction model in Table 9. Accordingly, our partial replication of 

Dechow et al.’s fraud detection model, referred to as the basic Dechow et al. model, contains 

11 financial ratios from Dechow et al.’s Table 3.  

                                                            
7 It is important to note that Dechow et al. [2011] didn’t include these four discretionary accrual measures in 

their subsequent regression models either. 
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 The last column of Table 2 displays the 23 raw accounting data items required to 

compute the 11 financial ratios used by the basic Dechow et al. model. While there is a 

significant overlap in the raw accounting data items between our replication of Cecchini et 

al.’s [2010] model in column (2) and the basic Dechow et al. model in column (3), there are a 

few key differences.
8
 First, Dechow et al.’s raw variable list in column (3) contains three raw 

accounting data items (i.e., Accounts Payable, Trade, Sale of Common and Preferred Stock, 

and Long-Term Debt Issuance) excluded from Cecchini et al.’s raw data list in column (2). 

These three raw accounting data items are used to construct two financial ratios (Change in 

cash margin and Actual issuance) used in the the basic Dechow et al. model. Second, 

Dechow et al.’s raw variable list in column (3) excludes five raw accounting data items 

included in Cecchini et al.’s list in column (2): Net Income (Loss), Interest and Related 

Expense, Total, Income Taxes, Total, Retained Earnings, Depreciation and Amortization. 

These raw accounting data items are used by Cecchini et al. to construct three financial ratios, 

Depreciation index in Beneish [1999], Retained earnings over total assets and EBIT in 

Summers and Sweeney [1998]. Finally, Cecchini et al. include Net Income (Loss) as a 

normalizing factor because Cecchini et al. use ratios and year-over-year changes in ratios.  

 Because of the differences in the list of raw accounting data between the basic 

Dechow et al. model in column (3) and Cecchini et al.’s model in column (2), we also 

augment the basic Dechow et al. model with three additional financial ratios noted above (i.e., 

Depreciation Index, Retained earnings over total assets and EBIT). As a result, this modified 

Dechow et al. model uses 28 raw accounting data, including the list of the entire 24 raw 

accounting data items from Cecchini et al.’s model in column (2). 

   

                                                            
8 Dechow et al. [2011] use Property, Plant, and Equipment, Net while Cecchini et al. [2010] use Property, Plant, 

and Equipment, Gross. We don’t believe this is a significant difference and therefore treat these two items as 

equivalent.  
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5. The Out-of-Sample Performance of the Basic and Modified Dechow et al. 

Models 

 We start with the estimation of the basic Dechow et al. model (11 regression variables) 

in Panel A of Table 3, using the sample firm years over the training period 1991-2001 for test 

year 2003 (column 1), 1991-2002 for test year 2004 (column 2), and 1991-2003 for test year 

2005 (column 3). Five of the 11 regression coefficients are significant and in the predicted 

directions in at least one column. The other regression variables are insignificant.
9
  

 Panel B of Table 3 reports the regression results of the modified Dechow et al. model 

by adding three additional regression variables to the basic Dechow et al. model: 

Depreciation index, Retained earnings over total assets, and EBIT (14 regression variables). 

The inferences for the coefficients on the first eleven regression variables are qualitatively 

similar to those in Panel A of Table 3 except that the coefficient on Change in inventory loses 

significance. However, the coefficient on the newly added regression variable Depreciation 

index is significant and as predicted.  

 Table 4 reports the out-of-sample performance evaluation of the basic Dechow et al. 

model and the modified Dechow et al. model for the test period 2003-2005 using the 

evaluation metrics of both AUC and NDCG@k. Consistent with Dechow et al. (2011), the 

average AUC for the three test years is 0.638 for the basic Dechow et al. model and 0.654 for 

the modified Dechow et al. model, much higher than 0.50, the AUC of random guesses. The 

difference in the average AUCs for the two Dechow et al. models is also marginally 

significant (two-tailed p value=0.080). However, the average NDCG@ks are extremely low 

for both models (0.018 and 0.014 respectively). For example, the average value of sensitivity 

                                                            
9 We include two accrual proxies (WC accruals and RSST accruals) in the same logit regression. Hence, the 

coefficients on these two variables could be hard to interpret due to potential multicollinearity. However, our 

primary objective is to predict frauds out of sample and hence multicollinearity is not a concern (Makridakis, 

Wheelwright and Hyndman [1998]). The out-of-sample performance is similar if we exclude one of the two 

proxies in the logit model. 
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(defined in Table 4) for the basic Dechow et al. model is 2.72%, meaning that only 2.72% of 

all the true frauds in the population is captured in the top 1% observations with the highest 

predicted fraud probabilities. Similarly, the average value of precision (defined in Table 4) 

for the basic Dechow et al. model is 1.68%, meaning that only 1.68% of the top 1% 

observations with the highest predicted fraud probabilities are true frauds. 

 

6. Replication of Cecchini et al. [2010] 

 Cecchini et al. [2010] developed an innovative SVM method based on a financial 

kernel that maps raw accounting data into a list of predefined ratios that is broader than the 

ratio list used by prior fraud detection literature in accounting, hereafter referred to as SVM-

FK.
10

 Cecchini et al. [2010, Table 7] show that their SVM-FK significantly outperforms 

several representative fraud detection models in accounting, including Dechow et al. [2011].  

 In this section, we replicate Cecchini et al.’s SVM-FK method using our sample data. 

Our replication improves upon Cecchini et al. [2010] by avoiding two look-ahead biases. 

First, to address the class imbalance issue, SVM-FK employs the cost-sensitive SVM by 

adjusting the model parameter 𝐶+1: 𝐶−1 (i.e., the ratio of the cost of misclassifying frauds 

and non-frauds). When searching for the optimal parameter 𝐶+1: 𝐶−1  that maximizes the 

value of AUC, Cecchini et al. [2010] directly perform the search using the test sample rather 

than a holdout validation sample and therefore Cecchini et al.’s implementation procedures 

are subject to a look-ahead bias, which is directly acknowledged on page 1156 of their paper. 

We avoid this limitation by performing the grid search in a holdout validation sample. 

                                                            
10 Specifically, the SVM-FK method maps a firm’s raw accounting data in two consecutive years (referred to as 

year 1 and year 2 respectively) into the following six types of predefined ratios, representing both intra-year 

ratios and year-over-year changes in ratios: 𝜙(𝑢) = (
𝑢1,𝑖

𝑢1,𝑗
,

𝑢1,𝑗

𝑢1,𝑖
,

𝑢2,𝑖

𝑢2,𝑗
,

𝑢2,𝑗

𝑢2,𝑖
,

𝑢1,𝑖𝑢2,𝑗

𝑢1,𝑗𝑢2,𝑖
,

𝑢1,𝑗𝑢2,𝑖

𝑢1,𝑖𝑢2,𝑗
) , 𝑖, 𝑗 = 1, … , 𝑛, 𝑖 < 𝑗 , 

where 𝑢1,𝑖 is raw accounting data item i in year 1 and n represents the total number of raw accounting items. 

Since we have a total of 24 raw accounting data items (i.e., n=24), the above transformation function would 

result in a total of 1,656 ratios. Following Cecchini et al. [2010], we also add year as a control variable. We 

thank Mark Cecchini for sharing with us the final data set used in Cecchini et al. [2010]. 
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Specifically, we train the SVM-FK model using 1991-1999 and validate the model using 

2000-2001 for the test years 2003-2005. We use two years instead of one year for validation 

because of the low frequency of frauds in a typical year.
11

 After determining the optimal 

parameter 𝐶+1: 𝐶−1 that maximizes the value of AUC in the validation period, we use the 

combined training and validation period 1991-2001 to retrain the model before performing 

the out-of-sample fraud prediction. 

 Second, we differ from Cecchini et al. [2010] by using all firm years in a test period 

to perform the out-of-sample performance evaluation. Cecchini et al. [2010] perform the 

model training, model validation and out-of-sample model evaluation only after obtaining a 

set of fraud firm-years and all matched nonfraud firm years within the same industry year. 

Because SVM-FK models are extremely time consuming to train and validate for large data 

sets, it is appropriate to use a smaller matched sample of frauds and nonfrauds in the training 

period for the purposes of model training and validation. However, it is problematic to use 

only the matched fraud and nonfraud firm years in the test period to evaluate the out-of-

sample performance of the SVM-FK model because such a procedure is subject to the look-

ahead bias and therefore couldn’t be implemented in real time. Specifically, because it takes 

two years on average for the detection and disclosure of an accounting fraud (Dyck et al. 

[2005]), a relevant decision maker (e.g., a regulator or investor) typically doesn’t know 

whether the financial statements of a company in an industry year are fraudulent or not in the 

year of the company’s financial statement release and therefore could not match a fraud firm 

year to the nonfraud firm years in the same industry year. Instead, the decision maker 

requires a fraud prediction model to identify the predicted frauds from the entire population 

of firms in a test period rather than a hypothetical matched sample of fraud firms and 

nonfraud firms in the test period. Hence, a more appropriate out-of-sample performance 

                                                            
11 The logistic regression and the ensemble method don’t require a similar grid search because there are no 

parameters to tune. 
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evaluation approach is to evaluate SVM-FK’s out-of-sample performance using the entire 

population of firm years in the test period. For this reason, our replication of Cecchini et al. 

[2010] follows Cecchini et al. by using a matched sample of frauds and nonfrauds for training 

and validation but uses the entire population of firm years in the test period 2003-2005 when 

assessing the SVM-FK model’s out-of-sample performance. 

 These distinctions appear to be critical in assessing the out-of-sample performance 

evaluation of the SVM-FK model. Specifically, untabulated results show that the sample of 

matched fraud and nonfraud firms constitutes only 16.50% (2,924/17,716) of the population 

of fraud and nonfraud firms in the test period 2003-2005. 118 (0.67%) of the 17,716 

observations in the test period 2003-2005 are true frauds. In contrast, for the matched sample 

of frauds and nonfrauds based on industry and year in the test period 2003-2005, 98 (3.35%) 

of the 2,924 observations are true frauds. Untabulated results show that the average AUC for 

the SVM-FK model is 0.80 using a matched sample of fraud and nonfraud observations in the 

test period 2003-2005 but drops significantly using the full population of firm years in 2003-

2005. Specifically, as shown in Table 4, the average AUC after correcting the two look-ahead 

biases is only 0.740. Nevertheless, the performance of the SVM-FK model is still 

significantly better than the performance of both the basic and modified Dechow et al. 

methods. Using the NDCG@k as an alternative evaluation criterion, we find that the average 

value of NDCG@k for our replication of Cecchini et al.’s SVM-FK method is only 0.017, 

comparable to those from the two Dechow et al. models. For the top 1% predicted frauds by 

the SVM-FK model in the test period 2003-2005, the average values of sensitivity and 

precision are always below 2%. Overall, we conclude that Cecchini et al.’s SVM-FK model 

performs better than the basic and modified Dechow et al. models in terms of AUC but 

performs similarly to the basic and modified Dechow et al. models in terms of NDCG@k.  
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7. Predicting Frauds Using the Logit Model Based on Raw Accounting Data 

 We next examine whether it is possible to improve the out-of-sample performance of 

the logistic regression model using raw accounting data directly as fraud determinants. Table 

5 shows the logistic regression results of fraud prediction using Cecchini et al.’s [2010] 24 

raw accounting data items. To minimize the effect of scale differences across different raw 

data items, it is common in the data mining literature to normalize the raw data items (Han, 

Kamber, and Pei [2006]).
12

 In this study we normalize each firm year observation’s input 

vector (i.e., the list of raw data items) such that the normalized vector has a unit length, i.e., 

x′ =
x

||x||
, where the division are element-wise. For example, a vector of (1, 2) is normalized 

to (
1

√5
,

2

√5
). Six of the 24 raw accounting data items are significant in at least one of the three 

regressions, involving three asset accounts, one liability account, and two expense accounts. 

These six raw data items are used in the computation of the following six financial ratios in 

Table 3: WC accruals, RSST accruals, %Soft assets, Change in cash margin, Actual issuance, 

and Depreciation Index. It is interesting to note that the coefficients on WC accruals, RSST 

accruals, and Change in cash margin are insignificant in Table 3, suggesting direct evidence 

that converting the raw accounting data into financial ratios would result in loss of useful 

information for the purposes of fraud prediction. 

 As shown in Table 4, the average AUC for the logistic regression model based on the 

24 raw accounting data items is 0.747, significantly higher than the average AUC for both the 

basic and modified Dechow et al. models (the p values for the differences are 0.057 and 

0.074, respectively), but no different from the average AUC for the more computationally 

intensive SVM-FK model. However, the mean value of NDCG@k for the logistic regression 

based on the 24 raw data items is similar to the mean values of NDCG@k for the two 

                                                            
12 See also http://en.wikipedia.org/wiki/Feature_scaling for an intuitive introduction to the scaling of features 

(i.e., raw data items in our case). 

http://en.wikipedia.org/wiki/Feature_scaling
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Dechow et al. methods and the SVM-FK model. Given that the 24 raw data items are a subset 

of the 28 raw data items used in the modified Dechow et al. model, the better out-of-sample 

AUC performance of the logistic model based on the 24 raw data items relative to the 

modified Dechow et al. model suggests that the financial ratios identified by accounting 

experts have not fully extracted the useful information from the raw accounting data for the 

purposes of fraud prediction. 

 

8. Predicting Frauds Using Ensemble Learning 

8.1. THE OUT-OF-SAMPLE PERFORMANCE RESULTS 

 Limiting to the same 24 raw accounting data items, we next examine whether it is 

possible to further improve the out-of-sample fraud prediction performance by using the more 

advanced data mining method, ensemble learning, rather than the logistic regression 

method.
13

 Table 4 reports the out-of-sample performance of the two variations of the 

RUSBoost ensemble learning (denoted as RUSBoost (2:1) and RUSBoost (1:1)) over the test 

period 2003-2005 based on the same 24 raw accounting data items. The average AUCs for 

the two ensemble method variations are almost identical (approximately 0.82), consistent 

with prior research that one advantage of ensemble methods is that they are not sensitive to 

model parameters as other methods (e.g., SVM). More importantly, the average AUCs for 

both ensemble method variations are significantly larger than the average AUC for the 

logistic regression based on the 24 raw accounting data items (0.747). Using NDCG@k as an 

alternative evaluation criterion, we find that the values of NDCG@k for the two ensemble 

method variations are significantly larger than the values of NDCG@k for the logistic 

regression based on the 24 raw accounting data items. For the top 1% predicted frauds in the 

test period 2003-2005, the average values of sensitivity and precision for the best ensemble 

                                                            
13 In untabulated analyses we also tried the SVM method based on raw accounting data items and found no 

evidence that it outperforms our ensemble method discussed below. 



26 
 

model RUSBoost(2:1) are 28.09% and 18.59%, respectively. In contrast, the corresponding 

values for the logit model based on the 24 raw accounting data items are only 2.14% and 

1.69%, respectively. Considering the fact that both the ensemble method and the logistic 

regression start with the same 24 raw accounting data items, our results suggest that the 

ensemble method is more powerful in predicting frauds out of sample than the logistic 

regression typically used in accounting.   

 The results in Table 4 also show that the performance of the ensemble method is 

significantly better than the performance of Cecchini et al.’s [2010] SVM-FK model using 

both performance evaluation metrics. The average AUC for the ensemble models (around 

0.82) is significantly higher than the average AUC of the SVM-FK model (0.740). Likewise, 

the average value of NDCG@k for the best ensemble model (0.329) is significantly higher 

than the average value of NDCG@k for the SVM-FK model (0.017). 

 

8.2. UNCOVERING THE BLACK BOX BEHIND THE PERFORMANCE OF THE 

ENSEMBLE METHOD 

 One well-known disadvantage of many machine learning methods (e.g., Neural 

Network) is the lack of transparency with regard to the inner working of such models. While 

individual decision trees can be interpreted easily by simply visualizing the tree structure, 

ensemble methods comprise hundreds of trees and thus cannot be easily interpreted by visual 

inspection of the individual trees. Fortunately, some techniques have been proposed to help 

shed light on the significant performance drivers of ensemble models by estimating the 

importance of features (i.e., raw data items in our setting) in fraud prediction (Tuv, Borisov, 

Runger, and Torkkola [2009]). In this paper, we use the “predictorImportance” function 

implemented in MATLAB to estimate the feature importance of the 24 raw accounting items 
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used in our best ensemble model RUSBoost (2:1).
14

 Specifically, individual decision trees 

intrinsically perform feature selection by selecting appropriate split points. This information 

can be used to measure the importance of each feature: the change of impurity (a measure of 

the quality of the split) due to the split on a feature indicates its importance (Breiman, 

Friedman, Stone, and Olshen [1984]). This notion of importance can be extended to decision 

tree ensembles by simply averaging the feature importance of each tree. 

 Panel A of Table 6 reports the descriptive statistics on the importance of 24 raw data 

items for our RUSBoost (2:1) model for each of the three test years as well as the average of 

the three years combined. The 24 raw data items are sorted from high to low based on the 

average feature importance over the three test years in Table 6. Figure 1 also visualizes the 

feature importance for the three test years. The top 10 most important features (or raw data 

items) that contribute to RUSBoost (2:1) model’s superior performance are listed below 

starting with the most important: (1) Cash and Short-Term Investments; (2) Assets, Total; (3) 

Common Shares Outstanding; (4) Price Close, Annual, Fiscal; (5) Property, Plant and 

Equipment, Total; (6) Depreciation and Amortization; (7) Inventories, Total; (8) Cost of 

Goods Sold; (9) Receivables, Total; and (10) Debt in Current Liabilities, Total.  

 To benchmark the performance of the RUSBoost (2:1) model, Panel B of Table 6 also 

lists the specific financial statement accounts affected by the misstatements reported by the 

AAERs over the same period 2003-2005. We directly obtained the data used in Panel B, 

including the ten individual account categories, from Dechow et al. [2011], who in turn 

collected this data from the AAERs. We can draw the following conclusions from the top ten 

lists of both panels. First, there is a significant overlap of the two top ten lists as shown in the 

last column of Panel B. This evidence suggests that our ensemble method has been relatively 

effective in identifying the specific accounts affected by the misstatements. Second, while the 

                                                            
14  For a more detailed description of the function “predictorImportance”, please refer to 

http://www.mathworks.com/help/stats/compactclassificationensemble.predictorimportance.html. 

http://www.mathworks.com/help/stats/compactclassificationensemble.predictorimportance.html
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account “rev” in Panel B is the most frequently affected account by misstatements, the same 

account “Sales/Turnover (Net)” in Panel A is only ranked #17 in terms of feature importance. 

However, “Sales/Turnover (Net)” is also closely related to “Receivables, Total” and we wish 

to note that the RUSBoost (2:1) model ranked “Receivables, Total” #9 in terms of feature 

importance in Panel A. Third, “Common Shares Outstanding” and “Price Close, Annual, 

Fiscal” are not part of the ten individual account categories in Panel B but they are ranked #3 

and #4, respectively, in terms of feature importance in Panel A. We suspect that “Common 

Shares Outstanding” is useful in predicting accounting frauds simply because misstatement 

firms often issue common equity during the misstatement period. Similarly, “Price Close, 

Annual, Fiscal” provides valuable information about the likelihood of frauds because of 

informed trading during the misstatement period by both company employees and other 

related stakeholders. We leave to future research to confirm the validity of these two 

conjectures.  

 

9. Conclusion  

 Accounting frauds are rare and difficult to detect. Hence, an important research 

question in accounting research is to develop effective methods to detect corporate 

accounting frauds on a timely basis so that the extent of damages from such frauds can be 

minimized. The objective of this study is to develop a new out-of-sample fraud detection 

model based on a sample of publicly traded U.S. firms over the period 1991-2005. To 

preserve the inter-temporal nature of fraud prediction, we follow Cecchini et al. [2010] and 

Dechow et al. [2011] by using the last three years of our sample period 2003-2005 as the out-

of-sample test period and the years prior as the training period. To avoid potential look-ahead 

bias we also require a minimum gap of two years between the training period end and a test 
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year because on average it takes approximately two years for the discovery and disclosure of 

a fraud (Dyck et al. [2005]).  

 Following prior research, we use only readily available financial data as inputs in 

fraud prediction, but we depart from prior fraud research in accounting in several important 

ways. First, we directly use raw accounting data from the financial statements to predict 

frauds. In contrast, the extant accounting fraud detection research typically uses financial 

ratios identified by accounting experts to predict frauds. Second, we use ensemble learning, 

one of the state-of-the-art paradigms in machine learning, in fraud prediction rather than the 

commonly used logit regression. Third, we predict frauds out of sample rather than explain 

fraud determinants within sample. 

 While there are a lot of raw accounting data items from the financial statements, we 

limit our empirical analyses to only 24 raw data items from Cecchini et al. [2010] in order to 

compare the performance between our fraud detection models and the traditional fraud 

detection methods whose fraud determinants are also derived from the same or a similar set 

of raw accounting data.   

 We adopt two types of benchmark fraud prediction models. First, we use a logistic 

fraud prediction model based on 11 financial ratios from Dechow et al. [2011], referred to as 

the basic Dechow et al. model. While the raw accounting data items required for the 11 

financial ratios substantially overlap with the 24 raw data items from Cecchini et al. [2010], 

the basic Dechow et al. model requires three raw accounting data items excluded from the 24 

raw data items. On the other hand, five of the 24 raw data items are not used by the basic 

Dechow et al. model. Accordingly, we also estimate a modified Dechow et al. model based 

on 11 financial ratios from the basic model and three additional ratios derived from the 24 

raw data items excluded from the basic model. As a result, the modified Dechow et al. model 

contains 14 financial ratios derived from 28 raw accounting data items, including the 24 raw 
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data items from Cecchini et al. [2010]. Our second type of benchmark model is the fraud 

detection model developed by Cecchini et al. based on support vector machines with a 

financial kernel (SVM-FK) that maps the 24 raw accounting data into a broader set of 

financial ratios and changes in financial ratios. 

 We find that the out-of-sample performance of the basic and modified Dechow et al. 

models is similar and significantly better than the performance of random guesses. Consistent 

with Cecchini et al. [2010], we find that the SVM-FK method outperforms both the basic and 

modified Dechow et al. models. However, a logistic regression based on the 24 raw 

accounting data items outperform both the basic and modified Dechow et al. models by a 

significant margin and perform similarly to Cecchini et al.’s more advanced SVM-FK model. 

This evidence suggests that the financial ratios identified by accounting experts and used in 

the basic and modified Dechow et al. methods have not fully utilized the useful information 

from the raw accounting data. In addition, we show that the ensemble method based on the 

same 24 raw accounting data further outperforms the logistic regression model based on the 

same 24 raw accounting data by a significant margin. This evidence suggests that 

conditioning on using the same set of raw accounting data items, our ensemble learning 

method is more powerful than the logistic regression method in extracting valuable 

information from the raw data items for the purposes of fraud prediction out of sample. 

 Overall, our results suggest that the existing fraud prediction models haven’t fully 

utilized the information from the publicly available raw financial statement data. In addition, 

we show that it is possible to extract such useful information by adopting better fraud 

prediction models based on raw accounting data.  

 To benchmark with prior fraud detection research, we limit our analyses to 24 raw 

accounting data items, a small fraction of the raw accounting items from financial statements 

readily available from Compustat. Hence, there exists an exciting possibility that more 
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powerful fraud detection models can be developed by tapping this large volume of unused 

and low cost raw financial data items.  

 Our findings are also relevant to a growing accounting literature that attempts to 

harvest the text information from corporate filings for the purposes of predicting frauds or 

firm performance (e.g., Larcker and Zakolyukina [2012], Li [2010], Lo, Ramos, and Rogo 

[2015]). To demonstrate the usefulness of textual data, a common employed benchmark is a 

list of quantitative variables derived from raw financial data. One interesting question future 

researchers may explore is whether the usefulness of textual data continues to hold if the 

information from the readily available raw financial data is more efficiently extracted using 

advanced data mining techniques. 
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APPENDIX:  

Variable Definitions 

Financial Ratio Variable Predicted sign Calculation from raw 

accounting data items 

Accruals quality related variables 

WC accruals + [(ΔCurrent Assets, Total – ΔCash and Short-

Term Investments) – (ΔCurrent Liabilities, 

Total – ΔDebt in Current Liabilities, Total – 

ΔIncome Taxes Payable)]/Average Assets, 

Total 

RSST accruals + (ΔWC + ΔNCO + ΔFIN) / Average Assets, 

Total, where WC = (Current Assets, Total – 

Cash and Short-Term Investments) – 

(Current Liabilities, Total – Debt in Current 

Liabilities, Total); NCO = (Assets, Total – 

Current Assets, Total – Investment and 

Advances, Other) – (Liabilities, Total – 

Current Liabilities, Total – Long-term Debt, 

Total); FIN=(Short-Term Investments + 

Investment and Advances, Other) – (Long-

term Debt, Total + Debt in Current 

Liabilities, Total + Preferred/Preference 

Stock (Capital), Total) 

Change in receivables + ΔReceivables, Total / Average Assets, Total 

Change in inventory + ΔInventories, Total /Average Assets, Total 

% Soft assets + (Assets, Total – Property, Plant and 

Equipment, Total – Cash and Short-Term 

Investments) / Assets, Total 

Performance variables   

Change in cash sales – Percentage change in cash sales, where cash 

sales is measured as Sales/Turnover (Net) – 

ΔReceivables, Total 

Change in cash margin – Percentage change in cash margin, where 

cash margin is measured as 1 – [(Cost of 

Goods Sold – ΔInventories, Total + 

ΔAccount Payable, Trade) / (Sales/Turnover 

(Net) – ΔReceivables, Total)] 

Change in return on assets + (Income Before Extraordinary Items t / 

Average Assets, Total t) – (Income Before 

Extraordinary Items t-1 /Average Assets, 

Total t-1) 

Change in free cash flows – Δ [Income Before Extraordinary Items – 

RSST Accruals] / Average Assets, Total 

Market-related incentives   

Actual issuance + An indicator variable coded 1 if the firm 

issued securities during year t (i.e., an 

indicator variable coded 1 if Sale of 

Common and Preferred Stock > 0 or Long-

Term Debt Issuance > 0) 

   

Book-to-market – Common/Ordinary Equity, Total / (Common 

Shares Outstanding × Price Close, Annual, 

Fiscal) 
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APPENDIX (Continued): 

 

Financial Ratio Variable Predicted sign Calculation 

Additional financial ratios   

   

Depreciation Index + [Depreciation and Amortization t-1 / 

(Depreciation and Amortization t-1 + 

Property, Plant and Equipment, Total t-1)]/ 

[Depreciation and Amortization t / 

(Depreciation and Amortization t + 

Property, Plant and Equipment, Total t)] 

Retain earnings over total assets + Retained Earnings/ Assets, Total 

EBIT + (Net Income (Loss) + Interest and Related 

Expense, Total + Income Taxes, Total) / 

Assets, Total 
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TABLE 1 

Distribution of Fraud Firms by Year over 1979-2008 

Table 1 shows the yearly fraud percentages after merging AAERs announced in or prior to 2010 with 

COMPUSTAT fundamental data over the years 1979-2008. The bold numbers highlight that the fraud firm-

years in the years 2006–2008 are abnormally low due to the fact that frauds committed in 2006-2008 have not 

been fully reported by AAERs as of 2010, the ending date of our AAER sample.  

 

Year Number of fraud firms  Total number of firms Percentage 

1979 4 3,232 0.12% 

1980 9 3,212 0.28% 

1981 9 3,428 0.26% 

1982 16 3,297 0.49% 

1983 8 3,250 0.25% 

1984 10 3,109 0.32% 

1985 6 2,990 0.20% 

1986 12 2,976 0.40% 

1987 11 3,246 0.34% 

1988 18 4,246 0.42% 

1989 19 4,372 0.43% 

1990 15 4,388 0.34% 

1991 26 4,554 0.57% 

1992 24 4,826 0.50% 

1993 22 5,238 0.42% 

1994 20 5,542 0.36% 

1995 18 6,153 0.29% 

1996 29 6,662 0.44% 

1997 38 6,684 0.57% 

1998 52 6,613 0.79% 

1999 72 6,813 1.06% 

2000 80 6,774 1.18% 

2001 68 6,442 1.06% 

2002 65 6,155 1.06% 

2003 52 5,982 0.87% 

2004 39 5,928 0.66% 

2005 27 5,806 0.47% 

2006 11 5,838 0.19% 

2007 4 5,749 0.07% 

2008 1 5,515 0.02% 

Total 785 149,202 0.53% 
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TABLE 2 

List of Variables Selected in Replicating Dechow et al. [2011] and Cecchini et al. [2010] 

Table 2 column (1) lists the initial 40 raw data items selected by Cecchini et al. [2010] and column (2) lists the 

24 raw data items retained in our final analysis after deleting variables with more than 25% missing values. 

Column (3) shows the 23 raw data items used to calculate 11 financial ratios from Dechow et al. [2011].  

 

 (1) (2) (3) 

 

  

40 raw data Items 

from Cecchini et al. 

[2010] 

24 raw data items 

in our replication of 

Cecchini et al. 

[2010] 

11 financial ratios 

used in the basic 

Dechow et al. 

[2011] model 

    

Balance Sheet Items    

Cash and Short-Term Investments  Yes Yes Yes 

Receivables, Total Yes Yes Yes 

Receivables, Estimated Doubtful  Yes - - 

Inventories, Total  Yes Yes Yes 

Short-Term Investments, Total  Yes Yes Yes 

Current Assets, Total  Yes - Yes 

Property, Plant and Equipment, Total Yes Yes Yes 

Investment and Advances, Other Yes Yes Yes 

Assets, Total Yes Yes Yes 

    

Accounts Payable, Trade - - Yes 

Debt in Current Liabilities, Total Yes Yes Yes 

Income Taxes Payable  Yes Yes Yes 

Rental Commitments Minimum 1st Year Yes - - 

Current Liabilities, Total Yes Yes Yes 

Long-Term Debt, Total Yes Yes Yes 

Rental Commitments Minimum 2nd Year Yes - - 

Rental Commitments Minimum 3rd Year Yes - - 

Rental Commitments Minimum 4th Year Yes - - 

Rental Commitments Minimum 5th Year Yes - - 

Liabilities, Total Yes Yes Yes 

    

Common/Ordinary Equity, Total Yes Yes Yes 

Preferred/Preference Stock (Capital), Total Yes Yes Yes 

Retained Earnings  Yes Yes - 

    

Income Statement Items    

Sales/Turnover (Net)  Yes Yes Yes 

Cost of Goods Sold  Yes Yes Yes 

Depreciation and Amortization  Yes Yes - 

Depreciation Expense (Schedule VI) Yes - - 

Selling, General and Administrative Expense Yes - - 

Interest and Related Expense, Total Yes Yes - 

Interest and Related Income, Total Yes - - 

Income Taxes, Total Yes Yes - 

Income Taxes, Deferred Yes - - 

Income Before Extraordinary Items  Yes Yes Yes 

Net Income (Loss) Yes Yes - 

    

Cash Flow Statement Items    

Long-Term Debt Issuance  - - Yes 

Sale of Common and Preferred Stock  - - Yes 

Financing Activities Net Cash Flow Yes - - 
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TABLE 2 (Continued) 

 

 (1) (2) (3) 

 40 raw data Items 

from Cecchini et al. 

[2010] 

24 raw data items 

in our replication of 

Cecchini et al. 

[2010] 

11 financial ratios 

used in the basic 

Dechow et al. 

[2011] model 

    

Market Value Items    

Price Close, Annual, Fiscal Yes Yes Yes 

Price Close, Annual, Calendar Yes - - 

Common Shares Outstanding  Yes Yes Yes 

    

Other Disclosure Items    

Employees  Yes - - 

Order Backlog  Yes - - 

Pension Plans, Anticipated Long-Term Rate 

of Return on Plan Assets 

Yes - - 
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TABLE 3 

The Regression Results of the Basic Dechow et al. Model and the Modified Dechow et al. Model in the Training 

Periods. 

 

Panel A The basic Dechow et al. using 11 financial ratios. 

 

Panel A shows the logit regression results of the training fraud detection model based on 11 financial ratios from 

Dechow et al. [2011]. Training period in column (1) is year 1991- 2001 and the corresponding test period is year 

2003; in column (2), training and testing periods are year 1991- 2002 and year 2004, respectively; in column (3), 

training and test periods are 1991-2003 and year 2005, respectively. 

 

  (1) (2) (3) 

Training Period Predicted 1991-2001 1991-2002 1991-2003 

Test Period Sign 2003 2004 2005 

     

Variables  coefficient coefficient coefficient 

  (p-value) (p-value) (p-value) 

     

Constant  -7.306*** -7.214*** -7.266*** 

  (0.000) (0.000) (0.000) 

WC accruals + -0.074 -0.113 -0.187 

  (0.812) (0.678) (0.429) 

RSST accruals + 0.237 0.235 0.273 

  (0.307) (0.248) (0.133) 

Change in receivables + 1.767*** 1.764*** 1.771*** 

  (0.000) (0.000) (0.000) 

Change in inventory + 1.292** 1.076** 1.054** 

  (0.012) (0.025) (0.019) 

% Soft assets + 1.906*** 1.900*** 1.913*** 

  (0.000) (0.000) (0.000) 

Change in cash sales – 0.011 0.003 -0.001 

  (0.571) (0.901) (0.964) 

Change in cash margin – -0.011 -0.016 -0.016 

  (0.480) (0.260) (0.263) 

Change in return on assets + -0.227 -0.230 -0.196 

  (0.185) (0.152) (0.161) 

Change in free cash flows – -0.395** -0.330** -0.249** 

  (0.011) (0.015) (0.032) 

Actual issuance + 1.328*** 1.294*** 1.370*** 

  (0.000) (0.000) (0.000) 

Book-to-market – -0.049 -0.021 -0.011 

  (0.118) (0.479) (0.716) 

     

N  65082 71469 77586 

Pseudo R-sq  4.2% 3.9% 3.8% 

Robust p-value clustered by firm in parentheses.  P-values are based on two-tailed tests. *** p < 0.01, ** p < 

0.05, * p < 0.1 
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TABLE 3 (Continued) 

 

Panel B The modified Dechow et al. model using 14 financial ratios. 

 

Panel B shows logit regression results of the modified Dechow et al. model after adding three financial ratios to 

the basic Dechow et al. model.  

 

  (1) (2) (3) 

Training Period Predicted 1991-2001 1991-2002 1991-2003 

Test Period Sign 2003 2004 2005 

     

Variables  coefficient coefficient coefficient 

  (p-value) (p-value) (p-value) 

     

Constant  -7.503*** -7.340*** -7.355*** 

  (0.000) (0.000) (0.000) 

WC accruals + -0.144 -0.202 -0.285 

  (0.769) (0.625) (0.438) 

RSST accruals + -0.017 0.340 0.499 

  (0.966) (0.400) (0.176) 

Change in receivables + 1.736*** 1.795*** 1.796*** 

  (0.002) (0.000) (0.000) 

Change in inventory + 0.614 0.382 0.391 

  (0.322) (0.497) (0.455) 

% Soft assets + 2.183*** 2.138*** 2.114*** 

  (0.000) (0.000) (0.000) 

Change in cash sales – 0.025 0.012 0.007 

  (0.259) (0.599) (0.738) 

Change in cash margin – -0.013 -0.023 -0.023 

  (0.470) (0.188) (0.192) 

Change in return on assets + -0.234 -0.285 -0.262 

  (0.383) (0.258) (0.251) 

Change in free cash flows – -0.526* -0.161 0.040 

  (0.073) (0.574) (0.876) 

Actual issuance + 1.190*** 1.139*** 1.212*** 

  (0.000) (0.000) (0.000) 

Book-to-market – -0.107** -0.075* -0.069* 

  (0.023) (0.070) (0.071) 

Depreciation Index + 0.167** -7.340*** -7.355*** 

  (0.050) (0.000) (0.000) 

Retain earnings over total 

assets 
+ 0.176 -0.202 -0.285 

  (0.293) (0.625) (0.438) 

EBIT + -0.076 0.340 0.499 

  (0.847) (0.400) (0.176) 

     

N  59492 65104 70542 

Pseudo R-sq  4.6% 4.3% 4.3% 

Robust p-value clustered by firm in parentheses.  See the appendix for variable definitions. P-values are based 

on two-tailed tests. *** p < 0.01, ** p < 0.05, * p < 0.1 
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TABLE 4  

The Out-of-Sample Performance Evaluation Metrics 

 

Panel A. The results of the out-of-sample performance evaluation over the test period 2003-2005 

Panel A shows fraud detection models’ performance comparison using the following performance metrics averaged over the test period 2003–2005:  

 

1) Area under the Receiver Operating Characteristics (ROC) curve (AUC). AUC is the area under the Receiver Operating Characteristics (ROC) curve that combines the True 

Positive Rate (i.e., Sensitivity) and the False Positive Rate (i.e., 1 - Specificity) in one graph. The ROC curve is the standard technique for visualizing and selecting classifiers. 

 

2) Normalized Discounted Cumulative Gain at the Position k (NDCG@k). The Discounted Cumulative Gain at the position k (DCG@k) is defined as follows: 𝐷𝐶𝐺@𝑘 =

∑ (2𝑟𝑒𝑙𝑖 − 1) / 𝑙𝑜𝑔2 (𝑖 + 1)𝑘
𝑖=1 . NDCG@k is the DCG@k normalized by the ideal DCG@k, i.e., NDCG@k =

DCG@k

ideal DCG@k
 , where the ideal DCG@k is the DCG@k value when all 

the true frauds are ranked at the top of the ranking list. 

 

3) The values of Sensitivity by classifying the top 1% firms with the highest predicted fraud probabilities in a test year as frauds. Specifically, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP+FN
, where TP is 

the number of true frauds contained in the top 1% predicted frauds in a test year and FN is the number of true frauds that are misclassified as non-frauds in the bottom 99% of the 

observations in a test year. The sum of TP and FN is the number of total true frauds in a test year. 

 

4) The values of Precision by classifying the top 1% firms with the highest predicted fraud probabilities in a test year as frauds. Specifically, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
, where TP is the 

number of true frauds contained in the top 1% predicted frauds in a test year and FP is the number of false frauds that are misclassified as frauds in the top 1% predicted frauds in a 

test year. The sum of TP and FP is the number of top 1% firms in a test year. 

 

 

   Performance Metrics averaged over the test period 2003-2005 

   Metric one Metric two 

Input Variables  Method AUC NDCG@k Sensitivity  Precision 

11 Financial Ratios  1) Logit 0.638 0.018 2.72% 1.68% 

       

14 Financial Ratios  2) Logit 0.654 0.014 2.42% 1.30% 

       

24 Raw Accounting Data Items 

3) Logit 0.747 0.015 2.14% 1.69% 

4) SVM-FK 0.740 0.017 1.96% 1.85% 

5) RUSBoost(1:1) 0.822 0.271 22.15% 14.64% 

6) RUSBoost(2:1) 0.816 0.329 28.09% 18.59% 
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TABLE 4 (Continued) 

 

Panel B Paired t-test of AUC across the fraud detection models over the test period 2003-2005 

 

Panel B shows the p-values of the paired t-tests of AUC values among fraud detection models listed in Table 4 Panel A. 

 

 

Input Variables  Method 1) 2) 3) 4) 5) 

11 Financial Ratios  1) Logit      

14 Financial Ratios  2) Logit 0.080*     

24 Raw Accounting 

Data Items  

3) Logit 0.057* 0.074*    

4) SVM-FK 0.015** 0.023** 0.671   

5) RUSBoost(1:1) 0.022** 0.019** 0.074* 0.069*  

6) RUSBoost(2:1) 0.033** 0.032** 0.078* 0.101 0.513 

P-values are based on two-tailed tests. *** p < 0.01, ** p < 0.05, * p < 0.1 
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TABLE 4 (Continued) 

 

Panel C Paired t-tests of NDCG@k across fraud detection models over the test period 2003-2005 

 

Panel C shows the p-Values of paired t-tests of NDCG@k values among fraud detection models listed in Table 4 Panel A. 

 

 

Input Variables  Method 1) 2) 3) 4) 5) 

11 Financial Ratios  1) Logit      

14 Financial Ratios  2) Logit 0.412     

24 Raw Accounting 

Data Items 

3) Logit 0.808 0.947    

4) SVM-FK 0.974 0.898 0.855   

5) RUSBoost(1:1) 0.002*** 0.004*** 0.000*** 0.001***  

6) RUSBoost(2:1) 0.001*** 0.001*** 0.001*** 0.005*** 0.055* 

P-values are based on two-tailed tests. *** p < 0.01, ** p < 0.05, * p < 0.1 
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TABLE 5 

Results of the Logit Regression on 24 Raw Accounting Variables from Cecchini et al. [2010] 

 

Table 5 shows the logistic regression results of fraud prediction using Cecchini et al.’s [2010] 24 raw 

accounting data items. To minimize the effects of scale differences across different raw data items, we 

normalize an observation’s input vector such that the normalized vector has a unit length, i.e., 

x′ =
x

||x||
, where the division are element-wise. For example, a vector of (1,2) is normalized to (

1

√5
,

2

√5
). 

 

 (1) (2) (3) 

Training Sample 1991-2001 1991-2002 1991-2003 

Test Sample 2003 2004 2005 

    

Variables coefficient coefficient coefficient 

 (p-value) (p-value) (p-value) 

    

Constant -7.350*** -7.359*** -7.422*** 

 (0.000) (0.000) (0.000) 

Balance Sheet Items    

Cash and Short-Term Investments -1.985* -1.996* -1.904* 

 (0.073) (0.071) (0.093) 

Receivables, Total -1.230 -1.633 -1.703 

 (0.390) (0.250) (0.230) 

Inventories, Total 0.827 0.361 0.182 

 (0.507) (0.767) (0.881) 

Short-Term Investments, Total -1.629 -1.616 -1.534 

 (0.200) (0.183) (0.227) 

Property, Plant and Equipment, Total -4.025*** -3.795*** -3.635*** 

 (0.000) (0.000) (0.000) 

Investment and Advances, Other 0.061 0.252 0.522 

 (0.950) (0.777) (0.559) 

Assets, Total 5.630** 5.525** 4.663* 

 (0.045) (0.039) (0.076) 

Debt in Current Liabilities, Total -2.667 -2.689 -3.526* 

 (0.187) (0.174) (0.077) 

Income Taxes Payable 5.284 5.824 4.175 

 (0.393) (0.387) (0.570) 

Current Liabilities, Total 2.011 2.050 2.175 

 (0.254) (0.238) (0.215) 

Long-Term Debt, Total 1.053 1.051 0.951 

 (0.410) (0.394) (0.452) 

Liabilities, Total 1.150 1.453 2.478 

 (0.679) (0.585) (0.346) 

Common/Ordinary Equity, Total -0.678 -0.347 0.616 

 (0.812) (0.899) (0.819) 

Preferred/Preference Stock (Capital), 

Total 
-1.941 -1.865 -1.016 

 (0.650) (0.642) (0.793) 

Retained Earnings 0.519 0.268 0.092 

 (0.222) (0.500) (0.812) 
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TABLE 5 (Continued) 

 

 (1) (2) (3) 

Training Sample 1991-2001 1991-2002 1991-2003 

Test Sample 2003 2004 2005 

    

Variables coefficient coefficient coefficient 

 (p-value) (p-value) (p-value) 

    

Income Statement Items    

Sales/Turnover (Net) -0.017 0.316 0.309 

 (0.980) (0.609) (0.611) 

Cost of Goods Sold 1.518* 1.304* 1.460* 

 (0.070) (0.092) (0.055) 

Depreciation and Amortization 1.664 -0.426 -1.366 

 (0.707) (0.923) (0.761) 

Interest and Related Expense, Total -21.195** -23.771*** -22.604** 

 (0.021) (0.009) (0.011) 

Income Taxes, Total 4.373 4.544 4.465 

 (0.185) (0.150) (0.139) 

Income Before Extraordinary Items  -1.935 -1.467 -0.889 

 (0.125) (0.302) (0.545) 

Net Income (Loss) -0.045 -0.946 -1.387 

 (0.963) (0.431) (0.260) 

Market Value Items    

Common Shares Outstanding 0.803 0.445 0.409 

 (0.188) (0.469) (0.494) 

Price Close, Annual, Fiscal 0.680 0.518 0.375 

 (0.398) (0.529) (0.653) 

    

N 66301 72456 78438 

Pseudo R-sq 6.1% 6.3% 6.4% 

Robust p-value clustered by firm in parentheses. P-values are based on two-tailed tests. *** p < 0.01, 

** p < 0.05, * p < 0.1 

 



47 
 

Table 6. The importance of the 24 raw accounting data items used in the RUSBoost (2:1) model in fraud prediction 

 

Panel A shows the feature importance of the 24 raw data items used in the RUSBoost (2:1) model. The reported values are the estimates of feature importance computed using the 

“predictorImportance” function in MATLAB (multiplied by 100). Panel B shows the ten specific financial statement accounts affected by the misstatements identified by the AAERs over 

the period 2003-2005. There are 118 misstatement firm years in 2003-2005 involving 141 specific accounts. Note a single misstatement firm year could affect more than one specific 

account. The data used in Panel A is hand collected from the AAERs by Dechow et al. (2011).  

 

Panel A. The importance of the 24 raw data items in the RUSBoost (2:1) model 

 

Rank 24 Raw data items Test year 2003 Test year 2004 Test year 2005 
Average of 

2003-2005 
Related account categories from Panel B 

1 Cash and Short-Term Investments 0.010 0.009 0.008 0.009 asset 

2 Assets, Total 0.010 0.009 0.008 0.009 asset 

3 Common Shares Outstanding 0.010 0.009 0.008 0.009  

4 Price Close, Annual, Fiscal 0.009 0.008 0.008 0.008  

5 
Property, Plant and Equipment, 

Total 
0.009 0.008 0.007 0.008 asset 

6 Depreciation and Amortization 0.009 0.008 0.007 0.008  

7 Inventories, Total 0.009 0.008 0.007 0.008 Inv 

8 Cost of Goods Sold 0.009 0.008 0.007 0.008 cogs 

9 Receivables, Total 0.009 0.008 0.007 0.008 rec 

10 Debt in Current Liabilities, Total 0.009 0.008 0.007 0.008 liab 

11 Common/Ordinary Equity, Total 0.008 0.008 0.007 0.008 res 

12 Retained Earnings 0.008 0.007 0.007 0.008 res 
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13 Current Liabilities, Total 0.008 0.007 0.007 0.007 liab 

14 
Interest and Related Expense, 

Total 
0.007 0.006 0.006 0.006  

15 Long-Term Debt, Total 0.007 0.006 0.006 0.006 liab 

16 
Income Before Extraordinary 

Items  
0.007 0.006 0.005 0.006  

17 Sales/Turnover (Net) 0.007 0.006 0.005 0.006 rev 

18 Income Taxes, Total 0.006 0.006 0.005 0.006  

19 Liabilities, Total 0.006 0.005 0.005 0.006 liab 

20 Investment and Advances, Other 0.005 0.004 0.004 0.004 asset 

21 Income Taxes Payable 0.005 0.004 0.004 0.004 liab 

22 Net Income (Loss) 0.003 0.003 0.003 0.003  

23 Short-Term Investments, Total 0.003 0.003 0.002 0.003 mkt_sec 

24 
Preferred/Preference Stock 

(Capital), Total 
0.002 0.002 0.001 0.002  
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Panel B. The specific financial statement accounts affected by the detected accounting frauds over the test period 2003-2005 

 

Rank 

 

Account category from 

Dechow et al. (2011) 

Definition from Dechow et al. (2011) Frequency Related top-10 raw data items from Panel A 

1 rev Equals 1 if misstatement affected revenues, 0 otherwise 48  

2 rec Equals 1 if misstatement affected accounts receivable, 0 otherwise 25 Receivables, Total 

3 res Equals 1 if misstatement affected reserves accounts, 0 otherwise. Dechow et al. 

(2011) 

21  

4 asset Equals 1 if misstatement affected an asset account that could not be classified in 

a separate individual asset account in this table, 0 otherwise 

15 Cash and Short-Term Investments; Assets, 

Total; Property, Plant and Equipment, Total 

5 inv Equals 1 if misstatement affected inventory, 0 otherwise 13 Inventories, Total 

 

6 liab  Equals 1 if misstatement affected liabilities, 0 otherwise 7 Debt in Current Liabilities, Total 

 

7 pay Equals 1 if misstatement affected accounts payable, 0 otherwise 6  

8 cogs Equals 1 if misstatement affected cost of goods sold, 0 otherwise 6 Cost of Goods Sold 

9 mkt_sec Equals 1 if misstatement affected marketable securities, 0 otherwise 0  

10 debt Equals 1 if misstatement affected bad debts, 0 otherwise 

 

0  

Total    141  
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FIGURE 1 

A Graphical Representation of the Information in Panel A of Table 6 

 

 

0.000

0.002

0.004

0.006

0.008

0.010

0.012

C
as

h
 a

n
d

 S
h

o
rt

-T
er

m
…

A
ss

et
s,

 T
o

ta
l

C
o

m
m

o
n

 S
h

ar
es

 O
u

ts
ta

n
d

in
g

P
ri

ce
 C

lo
se

, A
n

n
u

al
, F

is
ca

l

P
ro

p
er

ty
, P

la
n

t 
an

d
…

D
ep

re
ci

at
io

n
 a

n
d

 A
m

o
rt

iz
at

io
n

In
ve

n
to

ri
es

, T
o

ta
l

C
o

st
 o

f 
G

o
o

d
s 

So
ld

R
ec

ei
va

b
le

s,
 T

o
ta

l

D
eb

t 
in

 C
u

rr
en

t 
Li

ab
ili

ti
es

,…

C
o

m
m

o
n

/O
rd

in
ar

y 
Eq

u
it

y,
…

R
et

ai
n

ed
 E

ar
n

in
gs

C
u

rr
en

t 
Li

ab
ili

ti
es

, T
o

ta
l

In
te

re
st

 a
n

d
 R

el
at

ed
…

Lo
n

g-
Te

rm
 D

eb
t,

 T
o

ta
l

Sa
le

s/
Tu

rn
o

ve
r 

(N
et

)

In
co

m
e 

Ta
xe

s,
 T

o
ta

l

Li
ab

ili
ti

es
, T

o
ta

l

In
ve

st
m

en
t 

an
d

 A
d

va
n

ce
s,

…

In
co

m
e 

Ta
xe

s 
P

ay
ab

le

N
et

 In
co

m
e 

(L
o

ss
)

Sh
o

rt
-T

er
m

 In
ve

st
m

en
ts

, T
o

ta
l

P
re

fe
rr

ed
/P

re
fe

re
n

ce
 S

to
ck

…

2003

2004

2005


