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Abstract

This paper studies the role of envy in the over-exploitation of natural resources in
the context of a dynamic game. We abandon the standard assumption that agents
are atomistic. Instead, agents take into account strategic interactions. Envious agents
play a dynamic game among themselves, each knowing that, under certain conditions,
he can indirectly influence the level of consumption of others by affecting the stock
level of a private or a common-property resource. We show that, both in the case of
privately owned resources and in the case of common property resources, an open-loop
Nash equilibrium under envy can be Pareto optimal, under certain assumptions. In
contrast, in the case of Markov-perfect Nash equilibriums, the equilibrium outcome
when everyone is status-conscious is inferior to what would be obtained if nobody
were status-conscious. In particular, we show that in the case of a common-access
resource, there exists a Markov-perfect Nash equilibrium where an increase in status-
consciousness leads to a worsening of the common property problem. In a final section,
we introduce heterogeneity, and show that social welfare decreases as the degree of
heterogeneity in envy becomes more pronounced.
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1 Introduction

The assumption that preferences are independent across households is standard in the eco-

nomic literature, although it is not particularly appealing. Indeed, social scientists and

philosophers have long recognized that status seeking is an important characteristic of hu-

man behavior (see Aristotle (1941, Rhetoric, Book II, Chapter 10), Kant (1960, Chapter

6), Rawls (1971, Sections 80-82), Schoeck (1966)). In our discipline, Smith (1759) and

Veblen (1899) were among the first to stress the idea that the overall level of satisfaction

derived from consumption depends not only on the consumption level itself but also on how

it compares to the consumption of other members of society. Veblen (1899) argued that

conspicuous consumption stems from the desire to emulate. He defined emulation as “the

stimulus of an invidious comparison which prompts us to outdo those with whom we are

in the habit of classing ourselves.” He claimed that “with the exception of the instinct for

self-preservation, the propensity for emulation is probably the strongest and most alert and

persistent of economic motives proper.”

The Veblen effect was formalised by Duesenberry (1949) and Leibenstein (1950). The

subsequent literature has often referred to this type of interdependence as “catching up with

the Joneses” as in Abel (1990), “keeping up with the Joneses” as in Gali (1994), “status” as

in Fisher and Hof (2000), “jealousy” as in Dupor and Liu (2003), or “envy” as in Eaton and

Eswaran (2003).

There is a growing body of empirical evidence that confirms the importance of emula-

tion and envy. Clark and Oswald (1996), using a sample of 5,000 British workers, find that

workers’ reported satisfaction levels are inversely related to the wage rates of their peers, sup-

porting the hypothesis of positional externalities. Neumark and Postlewaite (1998) propose a

model of relative income to rationalize the striking rise in the employment of married women

in the U.S. during the past century. Using a sample of married sisters, they find that married

women are 16 to 25 percent more likely to work outside the home if their sisters’ husbands

earn more than their own husbands. Luttmer (2005) matches individual-level panel data on

well-being from the U.S. National Survey of Families and Households to census data on local

average earnings. After controlling for income and other own characteristics, he finds that

local average earnings have a significantly negative effect on self-reported happiness1.

1For discussions of the empirical evidence, see Oswald (1997), Easterlin (2001), Blanchflower and Oswald
(2004), Layard (2005). Beyond these studies, status concerns have been introduced to account for observed
departures from the neoclassical paradigm in the asset pricing literature (Abel (1990), Gali (1994) and
Campbell and Cochrane (1999)), the literature on labor market outcomes (Akerlof and Yellen (1990), the
consumption literature (van de Stadt et al. (1985), Kapteyn et al. (1997), Alvarez-Cuadrado and Sutthiphisal
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On the other hand, there is a vast literature on the over-exploitation of natural resources,

in which economists and other scientists have traditionally focused in the “common property”

characteristics of many resources. Gordon (1954) presents a lucid treatment of the economics

of common property resources. Hardin (1968) conveys the “tragedy of the commons” to the

scientific community. Smith (1968) focuses on the steady-state inefficiency while Plourde

(1971), Brown (1974) and Smith (1975) explicitly consider models that exhibit transitional

dynamics. Brown (1974) points out that a harvest tax, which must change over time as the

stock level evolves, should be introduced to correct for congestion externalities. Smith (1975)

reviews the debate on the cause of the extinction of many animal species in prehistoric time,

and assesses the role of “over-hunting” by primitive human societies. Kremer and Morcom

(2000) analyze multiplicity of equilibria in common property resources. Considering the

environment as an international common property, Withagen and van der Ploeg (1991),

Dockner and Long (1993), Copeland and Taylor (1995), de Zeeuw and Mäler (1998) show

that the environment is over-exploited and analyze the role of coordination and governmental

regulation.

There are a few papers that connect these two streams of literature. Ng and Wang (1993)

and Howarth (1996) discuss, in a static context, the impact of conspicuous consumption on

pollution generation and environmental quality. They argued that a corrective tax would

be required. Alvarez-Cuadrado and Long (2007) consider the impact of envy on resource

extraction in a model where all resource stocks are privately owned and property rights are

respected. They identify conditions under which there are dynamic distortions due to envy,

and discuss corrective taxes. They also give a set of sufficient conditions under which envy

does not generate distortions. In particular, they show that in the case of costless extraction,

if the degree of envy is constant along the symmetric consumption path, then there is no

need to introduce corrective taxes2. In their model, individuals are price takers, and do not

engage in any dynamic game.

The purpose of the present paper is to study the role of envy in the over-exploitation of

natural resources in the context of a dynamic game. We abandon the standard assumption

that agents are atomistic. Instead, we assume that agents take into account the fact that

there are strategic interactions. This is important because in many real world situations,

the agents that participate in a dynamic game may each have considerable impact on the

(2006)), the experimental literature (Solnick and Hemenway (1998), Johansson-Stenman et al. (2002) and
Alpizar et al. (2005)) and the real business cycle literature (Ravn et al. (2006)).

2This condition has been obtained by Fisher and Hof (2000), Liu and Turnovsky (2005) in the context
of the standard competitive one-sector growth model. Arrow and Dasgupta (2007) extend the result to a
competitive model with many capital goods.
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resource stocks. In some cases, “status-conscious agents” may be interpreted as nations

rather than individuals. Concern about their relative position in terms of GDP per head

may influence their over-exploitation of environmental assets.

In our formulation, envious agents play a dynamic game among themselves, each knowing

that, under certain cases, he can indirectly influence the level of consumption of others by

affecting the stock level of a private or common-property resource. We consider a differential

game, where, for each agent i, the actions he can choose are restricted to a strategy space

Si. If for all agents i = 1, 2, .., n,the strategy space is the set of open-loop strategies (i.e.

consumption ci at t is a function of t only), the equilibrium concept is “open-loop Nash

equilibrium.”3 In contrast, if the strategy space Si is the set of feedback strategies (i.e.

consumption ci at t is a function of the currently observed stock levels), the appropriate

equilibrium concept is “Markov-perfect Nash equilibrium.”4 We show that an open-loop

Nash equilibrium can be Pareto optimal, under the assumption of a constant degree of envy

ε ∈ (−1, 0). However, if we insists on Markov-perfect Nash equilibriums, the equilibrium
outcome when everyone is status-conscious is inferior to what would be obtained if nobody

were status-conscious. In particular, we show that in the case of a common-access resource,

there exists a Markov-perfect Nash equilibrium where higher status-consciousness leads to a

worsening of the common property problem.

In Section 2, in order to focus on the choice between current consumption and future

consumption, we assume that exploitation is effortless.We first consider the case where all

resource stocks are privately owned. In this case, we show that the social optimum can

be supported by an open-loop Nash equilibrium if the degree of envy is constant along the

45-degree line, but in general it cannot be supported by a Markov-perfect Nash equilibrium,

unless the utility function is additively separable in private consumption and reference con-

sumption. We next consider the case of a resource stock under common access. It turns out

that, even with envy and common-property exploitation, there exist sufficient conditions un-

der which an open-loop Nash equilibrium is socially optimal, and therefore there is no need

for intervention. This rather surprising result suggests that the concept of Markov-perfect

Nash equilibrium may be more appropriate.

In Section 3, we turn to the case where the exploitation of a resource involves a loss of

leisure time. Again, we show that, in aMarkov-perfect Nash equilibrium, status-consciousness

3The traditional formulation of the market outcome may be thought of as a limiting case of an open-loop
Nash equilibrium when the number of agents becomes large.

4For detailed explanation of these concepts, see for example, Dockner et al. (2000), Maskin and Ti-
role (2001). In the Appendix, we provide a simple example of a game with a symmetric open-loop Nash
equilibrium, and shows that such an equilibrium is not sub-game perfect.
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exacerbates the over-exploitation of the commons. Agents tend to behave more aggressively

if they are more concerned about their relative status. Consequently, the social welfare is

lower. In addition, the growth rate of the public asset is reduced due to higher extraction

rates. We also show that an exogenous technical progress in the resource-extraction sector

can reduce welfare, and the magnitude of this welfare-worsening effect is an increasing func-

tion of the status-seeking parameter. In a final section, we introduce heterogeneity, and show

that social welfare decreases if agents become more heterogeneous in terms of status-seeking,

but it increases if they become more heterogeneous in terms of appropriation costs.

2 Exploitation of Natural Resources by Status-conscious
Agents

Assume there are n infinitely-lived individuals. Let ci(t) denote individual i’s consumption

rate at time t. Let Ci(t) denote the average consumption of his peers:

Ci(t) ≡
1

n− 1
X
j 6=i

cj(t)

Let U(ci, Ci) be individual i’s utility function. In what follows, we will drop the subscript i

when there is no confusion. The following notations will be adopted

Uc ≡
∂U(c, C)

∂c
, UC ≡

∂U(c, C)

∂C
, Ucc ≡

∂2U(c, C)

∂c2
, etc

An individual is said to be “envious” or “status-conscious” if UC < 0.

We make the following standard assumptions on the function U :

Assumption U1: The utility function U(ci, Ci) is twice continuously differentiable for

all (ci, Ci) > (0, 0). It is strictly increasing and concave in ci, and decreasing in Ci. Along

the 45-degree line where ci = Ci = q say, the function U is increasing and strictly concave

in q, i.e.,
d

dq
(U(q, q)) = Uc(q, q) + UC(q, q) > 0

d2

dq2
(U(q, q)) = Ucc(q, q) + 2UcC(q, q) + UCC(q, q) < 0

Assumption U2: Optimal consumption is strictly positive. This is ensured by assum-

ing

lim
c→0

Uc(c, C) =∞
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Definition D1: (Additive envy) A utility function displays additive envy if UC is

negative and independent of c.

Definition D2: (Mutiplicative envy) A utility function displays multiplicative envy

if UC is negative and dependent on c.

Definition D3: (Degree of envy) An individual’s degree of envy ε(q) at a symmetric-

consumption point (ci, Ci) = (q, q) is his marginal rate of substitution between his own

consumption level and the average consumption level of his reference group, evaluated at the

same value ci = Ci = q :

ε(q) ≡ UC(q, q)

Uc(q, q)

If ε is independent of q, we say that the degree of envy is constant.

Remark: Assumption U1 implies that

−1 < ε(q) ≤ 0

i.e., in a graph where C is measured along the horizontal axis, and c along the vertical axis,

indifference curves have a positive slope smaller than unity when they cross the 45 degree

line. For example, if my ε = −0.8, whenever the average consumption of my peer group
increases by 1 unit, I will feel worse off unless my consumption goes up by 0.8 or more.

Example 1: (additive envy)

U(c, C) = cσ + γCσ where − 1 < γ ≤ 0 and 0 < σ < 1

In this example, ε(q) = γ. If γ = 0, there is no envy. The restriction −1 < γ is imposed

so that, starting from a point of equal consumption levels, if each individual’s consumption

increases by the same amount, everyone will feel better off.

Example 2:(multiplicative envy)

U(c, C) =
1

1− σ
c1−σ+αC−α where 0 < α < σ < 1

This function may be re-written as

U =
1

1− σ
c1−σ

³ c

C

´α
where c/C is relative consumption. In this example, ε(q) = −α/(1− σ+α) ≥ −1. If α = 0,
there is no envy.
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Example 3: (non-constant envy)

U(c, C) = cγC−γ + ln(a+ c) where a ≥ 0 and 0 < γ < 1

In this example, if γ = 0, there is no envy. If γ > 0 and a > 0, then ε(q) increases with q

0 > ε(q) = − γq−1

(γq−1 + (a+ q)−1)
> −1 and ε0(q) > 0

.

2.1 Model 1: Privately-owned Resource Stocks

Consider first the case where there are n identical individuals and n identical stocks of a

homogenous natural resource. Individual i owns and exploits the stock xi. Property rights

are respected. The only interaction among individuals is that each observes the levels of

consumption of the other n−1 individuals, which affect his utility through envy. The utility
function U(c, C) satisfies Assumptions U1 and U2.

The welfare of individual i is

Wi =

Z ∞

0

e−ρtU(ci(t), Ci(t))dt, ρ > 0.

Each individual maximizes his welfare, taking as given the consumption strategy of other

individuals, and subject to the equation of motion of the stock

ẋi(t) = G(xi(t))− ci(t)

with the initial condition xi(0) = xi0 > 0 and the constraint xi(t) ≥ 0. The natural growth
function G(xi) is assumed to be strictly concave, with G(0) = 0.

We distinguish two types of strategy. An individual i is said to have an open-loop strategy

if he is committed to a time path of consumption, ci(.) which he announces from the outset.

We denote an open-loop strategy by φi. In contrast, a feedback strategy is a consumption

rule: it expresses an individual’s consumption level at time t as a function of the observed

stock levels at time t. We denote feedback strategies by

ci =Mi(x1, x2, ..., xn)

where Mi is a function that maps the state-space R+n to the space of consumption [0,∞).
An open-loop Nash equilibrium is a strategy profile (φ1, φ2, ..., φn) such that for all i,

the (open-loop) strategy φi is individual i’s best reply to the strategies of other individuals.
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This means that each individual i takes the entire time paths of consumption of other

individuals as given, and φi is the solution (i.e, the optimal consumption path) of his dynamic

optimization problem.

A feedback Nash equilibrium is a strategy profile (M1,M2, ...,Mn) such that for all i,

the feedback strategy Mi is individual i’s best reply to the feedback strategies of other

individuals. This means that while each individual i takes other rules Mj as given, he does

not take the entire time paths of consumption of other individuals as given: he knows that

any change in the stock levels would generally induce changes in consumption levels, and

that each individual can at least influence the future level of his stock.

A feedback Nash equilibrium is said to be a Markov-perfect Nash equilibrium if the rules

(M1,M2, ...,Mn) are independent of the initial stock levels (x1(0), x2(0), ..., xn(0)).The con-

cept of Markov-perfect Nash equilibrium is more attractive than open-loop Nash equilibrium,

because it corresponds to the concept of subgame perfect Nash equilibrium in discrete-time

games. (See, for example, Maskin and Tirole, 2001.)

We wish to compare the outcome under both types of Nash equilibrium (open-loop, and

Markov-perfect) with the outcome under a benevolent social planner. We assume that the

social planner treats all individuals equally, and maximizes the welfare of the representa-

tive individual, taking into account that each individual’s utility depends both on his own

consumption, ci, and on the average level of consumption of other individuals, Ci.

We can prove the following propositions.

Proposition 2.1: Assume that resource stocks are privately owned and property rights

are respected. The outcome under the social planner can be supported as an open-loop

Nash equilibrium if and only if the utility function U(c, C) exhibits a constant degree of

envy, where −1 < ε ≤ 0.
Proof: See the Appendix.

Discussion: Proposition 2.1 indicates that, under the assumption of a constant degree

of envy, and if all individuals take the time paths of consumption of others as given, the

social optimum and the symmetric laissez-faire outcome coincide. There are no need for

government intervention, even if the economy consists of a finite collection of individuals.

In contrast, when individuals use feedback strategies, a constant degree of envy is not

sufficient to ensure that the social optimum can be supported by a Markov-perfect Nash equi-

librium even though resource stocks are privately owned and property rights are respected.

We need stronger restrictions. Our result is reported in Proposition 2.2 below.

Proposition 2.2: Assume that resource stocks are privately owned and property rights
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are respected. The socially optimal outcome can be supported as a Markov-perfect Nash

equilibrium if the following conditions hold simultaneously: (i) the utility function U(c, C)

exhibits a constant degree of envy ε at symmetric consumption points where −1 < ε ≤ 0,
(ii) U(c, C) is additively separable, and (iii) each Mi is a function of the stock xi only (Mi

is independent of xj where j 6= i)

Proof: See the Appendix.

Remark: The fact that each player uses (by construction) a policy function that is

dependent only on his stock level, and thus independent of the stock levels of others, plays a

crucial role in our proof of Proposition 2.2. It is important to note that, in general, it does

not seem possible to rule out the existence of other Markov-perfect Nash equilibriums where

each individual conditions his consumption on several stocks. For example, a conceivable

strategy is

ci = h(xi, xj)xi

where ∂h/∂xj 6= 0. In such cases, it is possible that the resulting Markov-perfect Nash

equilibrium (if it exists) does not coincide with the social optimum.

Proposition 2.2 relies heavily on the assumption that U(c, C) is additively separable. In

fact, if U(c, C) is not additively separable, in general the social optimum cannot be replicated

as a Markov-perfect Nash equilibrium. This is established as Proposition 2.3.

Proposition 2.3: If U(c, C) is not additively separable, in general the social optimum

cannot be replicated as a Markov-perfect Nash equilibrium.

Proof: See the Appendix.

The intuition behind Proposition 2.3 is as follows. The socially optimal consumption

rule requires that each person’s consumption depends only on the current level of the rep-

resentative stock. In contrast, under individual optimization, each person’s marginal utility

of consumption depends on the levels of consumption of his peers, which in turn depend on

their stocks. It follows each person’s consumption strategy depends on all the private stocks.

This creates strategic interdependence which tends to result in inferior outcomes.

2.2 Model 2: Exploitation of a Common-property Resource by
Envious Agents

Let us turn to the other polar case where there is just one stock of renewable resource,

to which all individuals have common access. We will show that when the equilibrium

concept is Markov-perfect Nash equilibrium, envy (status-consciousness) creates additional

distortion over and above the usual distortion associated with common access. On the other
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hand, when individuals use open-loop strategies, the symmetric open-loop Nash equilibrium

coincides with the outcome under the social planner, if certain assumptions hold.

2.2.1 Common Property Resource: Comparing the social optimum and the
open-loop Nash equilibrium under envy

Let us begin with the social planner’s problem. The social planner chooses c(t) to maximizeZ ∞

0

e−ρtnU(c, c)dt

subject to the transition equation

ẋ = G(x)− nc, with x(0) = x0 > 0

and x(t) ≥ 0.
Let ψ be the shadow price of the resource stock, and H be the Hamiltonian function for

the social planner’s problem.

H = nU(c, c) + ψ (G(x)− nc)

We use the superscript ∗ to denote the social optimum for the model where there is only

one resource stock.The socially optimal path satisfies

Uc(c
∗, c∗) + UC(c

∗, c∗) = ψ > 0

ψ̇

ψ
= ρ−G0(x∗) (1)

ẋ∗ = G(x∗)− nc∗

lim
t→∞

e−ρtψ(t)x∗(t) = 0, lim
t→∞

e−ρtψ(t) ≥ 0 and lim
t→∞

x∗(t) ≥ 0.

Now let us turn to the open-loop Nash equilibrium. Can the socially optimal path of per

capita consumption c∗(t) be the same as the symmetric open-loop Nash equilibrium con-

sumption?

The answer to this question is stated as Proposition 2.4:

Proposition 2.4: Under common access, the socially optimal path of per capita con-

sumption c∗(t) coincides with the symmetric open-loop Nash equilibrium consumption if and

only if the utility function U(c, C) exhibits a constant degree of envy ε, where −1 < ε ≤ 0.
Proof:
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We must show that the socially optimal consumption path satisfies the necessary con-

ditions of the optimization problem of individual i. Recall that in an open-loop game,

individual i takes as given the time path Ci(t) of per-capita consumption of his peer group,

and chooses the time path ci(t) to maximize

Wi =

Z ∞

0

e−ρtU(ci, Ci)dt

subject to

ẋ = G(x)− (n− 1)Ci − ci

Let ψi(t) be shadow price that individual i attaches to the common stock x(t). The Hamil-

tonian for individual i’s optimization problem is

Hi = U(ci, Ci) + ψi [G(x)− (n− 1)Ci − ci]

Let the superscript ol in col and xol denote the outcome under the open-loop Nash equilib-

rium.The necessary conditions are

Uc(c
ol
i , C

ol
i ) = ψi > 0

ψ̇i

ψi

= ρ−G0(xol) (2)

ẋol = G(xol)− (n− 1)Col
i − coli

lim
t→∞

e−ρtψi(t)x
ol(t) = 0, lim

t→∞
e−ρtψi(t) ≥ 0 and lim

t→∞
xol(t) ≥ 0.

We noe derive necessary and sufficient conditions for xol(t) = x∗(t) and col(t) = c∗(t).

For x∗(t) to coincide with xol(t), conditions (1) and (2) require that there exists a positive

constant η such that ψ = ηψi for all t. This implies

Uc(c
∗(t), c∗(t)) + UC(c

∗(t), c∗(t)) = ηUc(c
∗(t), c∗(t))

for all t. Dividing both sides by Uc(c
∗, c∗) we get

1 +
UC(c

∗(t), c∗(t))

Uc(c∗(t), c∗(t))
= η > 0

This holds iff

1 + ε(c∗(t)) = η > 0

i.e., ε is independent of c∗(t) and−1 < ε ≤ 0. All other necessary conditions of the individual
optimization problems are satisfied when xol(t) = x∗(t) and col(t) = c∗(t).
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Remark: The result that, in a symmetric open-loop Nash equilibrium, status-consciousness

does not matter if and only if the utility function U(c, C) exhibits a constant degree of envy

extends the result of Proposition 2.1 to the case of a common-property resource. We now

proceed to show that it is not true that the social optimum can be supported by a Markov-

perfect Nash equilibrium.

2.2.2 Common Property Resource: Comparing the social optimum and the
Markov-perfect Nash equilibrium under envy

We now show by an example that (i) the social optimum cannot be supported by a Markov-

perfect Nash equilibrium, and (ii) the higher is the degree of envy, the greater is the deviation

of the Markov-perfect equilibrium from the social optimum.

To make our point as transparent as possible, we will consider an example where the

equilibrium strategies can be explicitly calculated.

We take the utility function

U(c, C) =
1

1− σ
c1−σ+αC−α where 0 < α < σ < 1

The resource stock x(t) evolves according to the transition equation

ẋ(t) = Ax(t)γ − δx(t)−
nX
i=1

ci(t) with x(0) = x0 > 0

where A > 0, γ > 0 and δ ≥ 0. In what follows we assume σ = γ. This assumption enables

us to obtain closed-form solutions to the social planner’s problem and to the game among

the individuals.

Consider first the social planner’s optimization problem. It can be shown that the

solution can be expressed as an optimal control in feedback form:

ci = c(x) = β∗x

where

β∗ ≡ ρ+ δ(1− σ)

nσ

The resource stock will converge to a steady state bx∗, where
bx∗ = ∙A

b

¸1/(1−σ)
with b ≡ ρ+ δ

σ

and the welfare level of the representative individual is

W (x0) =

∙
ρ+ δ(1− σ)

nσ

¸1−σ µ
1

1− σ

¶"
A

bρ
+
(x0)

1−σ − (A/b)
ρ+ b(1− σ)

#
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Notice that the degree of envy has no impact on the socially optimal consumption path.

The socially optimal time path of the resource stock is

x∗(t) =

∙
A

b
+ (x1−σ0 − A

b
)e−b(1−σ)t

¸1−σ
and the socially optimal path of consumption is

c∗(t) = β∗x(t) = β∗
∙
A

b
+ (x1−σ0 − A

b
)e−b(1−σ)t

¸1−σ
We now show there exists a Markov-perfect Nash equilibrium where each agent j uses a

feedback strategy of the form

cj(t) = βOAx(t)

where βOA is a positive constant. (The supercript OA indicates that we are dealing with an

open-access resource stock.)

Suppose individual i thinks that all k 6= i use the same strategy ck(t) = βx(t), for some

β > 0.The optimization problem of individual j can then be formulated as follows. Find a

time path βi(t) to maximixeZ ∞

0

e−ρt
1

1− σ
[βi(t)xi(t)]

1−σ+α £βx(t)¤−α dt
subject to

ẋ(t) = Ax(t)σ − δx(t)− (n− 1)βx(t)− βi(t)xi(t)

It can be shown that, provided that 1 > n(1− σ + α), there is a symmetric Markov-perfect

Nash equilibrium, where all individuals use the linear extraction strategy, with

βOA = Kβ∗, K > 1

K ≡ nσ

(1− σ)
£

1
1−θ+α − n

¤ , K 0(α) > 0

Proposition 2.5: (i) The social optimum cannot be supported by a Markov-perfect Nash

equilibrium, and (ii) the higher is the degree of envy, the greater is the deviation of the

Markov-perfect equilibrium from the social optimum.

Proof: See the Appendix..
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3 A Model with Effort Costs and Amenities

We now modify our model to allow for effort costs and enjoyment of amenity services.

We assume there is only one resource stock. All n agents have access to this stock. Let

Ei(t) denote agent i’s extraction rate from a common-property resource. We assume that

the consumption rate ci(t) is a fraction of the extraction rate Ei(t). Specifically, Ei(t) =

(1+θi)ci(t). Here θi is a non-negative number that represents agent i’s “wastage rate”, which

may be interpreted as reflecting his degree of inefficiency in transforming the extracted

resource into the consumption good, or perhaps, in a different context, as the bribes or

penalties that he must pay to third parties in his illicit resource-appropriation process.

Let X(t) denote the stock level of the common-property resource. We assume that the

rate of growth of X is given by the differential equation

Ẋ(t) = AX(t)−
nX
i=1

Ei(t)

where A ≥ 0 is a constant.
We define zi(t) to be agent i’s relative consumption level:

zi(t) ≡
ci(t)

Ci(t)

The net-utility function of agent i is denoted by V (zi, ci,X,Ei) where

V = U(zi, ci,X)− κiEi

The variable X appears in the utility function, because the stock X provides a flow of

amenities (e.g. recreational uses) that each agent values. The non-negative parameter κi
represents the “effort cost” of extracting the resource. This parameter may represent (a)

a technological coefficient between effort and harvest level, so that a fall in κi represents a

technological progress in resource extraction, or (b) the difficulty with which the agent hides

his illegal activities. Note that we have introduced two separate parameters, θi and κi, that

represent different types of cost of appropriation: κi is the “effort cost” which is measured

in utility units, while θi is the “wastage cost”, which acts like an income tax.

We assume that each agent’s gross-utility function U(zi, ci,X) is non-decreasing in rel-

ative consumption, zi, and increasing in absolute consumption, ci, and in the amenities

provided by the stock, X:
∂U

∂zi
≥ 0, ∂U

∂ci
> 0,

∂U

∂X
> 0

14



We assume that, for any given Ci, the individual’s utility is strictly increasing and strictly

concave in his own consumption level, ci. Strict concavity is assumed so that the second

order condition for individual maximization is satisfied. To proceed further, we make the

following specific assumptions:

Assumption A.1: The gross-utility function takes the form

U(zi, ci,X) = D(zi)F (ci,X)

where F (ci,X) is homogeneous of degree one5, strictly-quasi-concave, and increasing in

(ci, X), and D(zi) is positive and non-decreasing in zi.

Without loss of generality, we set D(1) = 1. If D0(.) > 0, we say that the agents are

envious (concerned about relative consumption), while if D0(.) = 0 identically, we say that

the agents are non-envious.

For given zi, the marginal rate of substitution of consumption ci for X is

MRSciX ≡
Fci

FX

It is useful to define the ratio of consumption to amenity services by βi = ci/X. Since

F (ci,X) is homogeneous of degree 1, we obtain

F (ci,X) = XF (βi, 1) ≡ Xf(βi)

Under Assumption A1, it follows that f 0(βi) = Fc > 0, f 00(βi) < 0, r(βi) ≡ f(βi)−βif 0(βi) =
FX > 0 and r0(βi) = −βif 00(βi) > 0.Hence

MRSciX ≡
Fci

FX
=

f 0(βi)

f(βi)− βif
0(βi)

≡ ω(βi)

Clearly the marginal rate of substitution is diminishing in βi :

ω0(βi) =
f(βi)f

00(βi)

[f(βi)− βif
0(βi)]

2 < 0

Assumption A.2: The function f satisfies the following Inada conditions:

lim
β→0

f 0(β) =∞, lim
β→∞

f 0(β) = 0

Our analysis at a general level does not rely on a specific functional form for F nor D,

however at places it will be convenient to specialize in the following Cobb-Douglas case:

U(zi, ci, X) = zλi c
μ
iX

1−μ where λ > 0 and 0 < μ < 1 and λ+ μ < 1

Here, the parameter λ is an indicator of the strength of the status-consciousness.
5The assumption of homogeneity of degree one in (ci,X) is borrowed from Long and Sorger (2006). It

greatly simplifies the analysis.
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3.1 The Cooperative Equilibrium

It is useful to begin with the following benchmark scenario. All agents are identical, and

they cooperate by agreeing on a common rate of resource extraction: Ei(t) = E(t). It follows

that ci(t) = c(t) and zi(t) = 1. It is as if there were a social planner seeking to solve the

following optimization problem. Choose c(t) to maximizeZ ∞

0

e−ρt [D(1)F (c,X)− κ(1 + θ)c] dt (3)

subject to

Ẋ = AX − n(1 + θ)c, X(0) = X0 > 0

lim
t→∞

X(t) ≥ 0

To ensure convergence of the integral, we will assume:

Assumption A.3: The rate of discount exceeds the natural growth rate of the stock:

ρ > A.

Using the definition β = c/X, the social planner’s problem reduces to finding the time

path of the control variable β(t) that maximizes the welfare of the representative agent:

W coop =

Z ∞

0

e−ρt [f(β)− κ(1 + θ)β]Xdt

subject to

Ẋ = X [A− n(1 + θ)β] , X(0) = X0 > 0

and

lim
t→∞

X(t) ≥ 0

Let ψ denote the shadow price of the stock X. The Hamiltonian function is

H = [f(β)− κ(1 + θ)β]X + ψX [A− n(1 + θ)β]

The necessary conditions include

∂H

∂β
= X {f 0(β)− κ(1 + θ)− nψ(1 + θ)} = 0

ψ̇ = (ρ−A)ψ − [f(β)− (1 + θ)(κ+ nψ)β]

and the transversality condition is

lim
t→∞

ψ(t)e−ρt ≥ 0, lim
t→∞

X(t) ≥ 0, lim
t→∞

ψ(t)e−ρtX(t) = 0 (4)
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Let us consider a candidate solution where β(t) = β (a constant). This yields a corre-

sponding constant ψ where

f 0(β) = (1 + θ)(κ+ nψ) (5)

or

ψ =
1

n

∙
f 0(β)

(1 + θ)
− κ

¸
(6)

which implies that ψ̇ = 0, hence

(ρ−A)ψ = f(β)− (1 + θ)(κ+ nψ)β (7)

Using (5) and (7),

(ρ−A)ψ = f(β)− βf 0(β) > 0 (8)

Substituting (6) into (8), we get the following equation which determines the optimal β,

say β
∗ ∙

f 0(β)

(1 + θ)
− κ

¸
=

n
£
f(β)− βf 0(β)

¤
ρ−A

(9)

Proposition 3.1: Under Assumptions A1, A2 and A3, the cooperative solution consists

of following the consumption strategy c = β
∗
X, where β

∗
is the unique positive solution of

equation (9).

Proof: See Appendix

Remark 1: Condition (9) has a straightforward interpretation. Given any β, consider a

small decrease in per-capita extraction, say dE at time zero. This will lead to a small decrease

in consumption by dc = dE/(1 + θ). The marginal utility loss from reduced consumption

(net of reduced extraction cost κ) is thus
£
f 0(β)(1 + θ)−1 − κ

¤
dE. On the other hand, the

impact effect on the stock is an increase by ndE, which leads to a stream of gain in marginal

utility of amenities:Z ∞

0

e−ρt
©£
f(β)− βf 0(β)

¤
(ndE)eAt

ª
dt =

n
£
f(β)− βf 0(β)

¤
ρ−A

dE

At the optimal β
∗
, the marginal utility loss from reduced consumption must equal the mar-

ginal utility gain from increased amenity services.

Remark 2: In the Cobb-Douglas case, if κ = 0, one can obtain an explicit solution:

β
∗
=

μ(ρ−A)

n(1− μ)(1 + θ)

and thus the growth rate of the public asset is

g = A− μ(ρ−A)

1− μ

17



which can be negative or positive.

Proposition 3.2: The welfare of the representative agent under cooperation is

W coop = ψ
∗
X0

where

ψ
∗
=
1

n

"
f 0(β

∗
)

(1 + θ)
− κ

#
An increase in κ or in θ will reduce both β

∗
and welfare.

3.2 Non-cooperative resource extraction by envious agents

In this section, we study a differential game involving n identical players. Consider individual

i. She faces n−1 rival rent-seekers. Suppose she thinks that each rival j adopts a consumption
strategy of the form

cj(t) =Mj(X(t)) where M 0
j(X) > 0

That is, at any moment of time, individual j’s consumption depends only on the currently

observed stock level X(t).

Then

Ci(t) =
1

n− 1
X
j 6=i

Mj(X(t)) ≡M(X(t))

The optimization problem for individual i is then to choose a time path of consumption

ci(t) ≥ 0 that maximizes her life-time utilityZ ∞

0

e−ρt
½
U

µ
ci(t)

M(X(t))
, ci(t),X(t)

¶
− κ(1 + θ)ci

¾
dt

subject to

Ẋ(t) = AX(t)− (n− 1)(1 + θ)M(X(t))− (1 + θ)ci(t)

and

lim
t→∞

X(t) ≥ 0

3.2.1 Markov-perfect Nash equilibrium: the case of identical agents

In this subsection, we prove that under certain conditions, when agents are identical, the

game described above has a symmetric Markov-perfect Nash equilibrium, in which all players

adopt the same linear strategy

cj(t) = βX(t)
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where β is a positive constant.

Suppose player i knows that all other players use the strategy cj(t) = βX(t).The opti-

mization problem of agent i is to choose a time path of ci ≥ 0 that maximizesZ ∞

0

e−ρt
½
D

µ
ci
βX

¶
F (ci, X)− κ(1 + θ)ci

¾
dt

subject to

Ẋ = AX − (n− 1)(1 + θ)βX − (1 + θ)ci

lim
t→∞

X(t) ≥ 0

We may interpret A− (n−1)(1+θ)β as player i’s net rate of return on holding the asset.

Let ψi be the co-state variable. The Hamiltonian is

Hi = D

µ
ci
βX

¶
F (ci,X)− κ(1 + θ)ci + ψi [AX − (n− 1)(1 + θ)βX − (1 + θ)ci]

The optimality conditions are

∂Hi

∂ci
= D0

µ
ci
βX

¶µ
1

βX

¶
F (ci, X) +D

µ
ci
βX

¶
Fci (ci, X)− (κ+ ψi)(1 + θ) = 0 (10)

ψ̇i = ψi [ρ−A+ (n− 1)(1 + θ)β] +D0
µ

ci
βX

¶µ
ci
β

¶
X−2F −DFX (11)

Ẋ =
∂Hi

∂ψi

= AX − (n− 1)(1 + θ)βX − (1 + θ)ci (12)

lim
t→∞

e−ρtψi(t) ≥ 0 and lim
t→∞

e−ρtψi(t)X(t) = 0 (13)

Let us try a symmetric equilibrium, with

ci(t)

X(t)
=

cj(t)

X(t)
= β (14)

We must verify that the optimality conditions (10) to (13) are satisfied when the strategies

described by equation (14) are used, for some suitable constant β > 0.

Using symmetry, equation (10) becomes

D0 (1)

µ
1

β

¶
f(β) +D (1) f 0 (β)− κ(1 + θ)− (1 + θ)ψi(t) = 0 (15)
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This equation implies that ψi(t) is a constant, i.e. ψ̇i = 0 along the equilibrium play. Hence

we must have

ψi [ρ−A+ (n− 1)(1 + θ)β] =

−D0 (1) f(β) +D(1) [f (β)− f 0 (β)β] (16)

These two equations are satisfied iff there exists some bβ > 0 which satisfies the following

condition"
D0(1)f(β) 1

β
+D(1)f 0 (β)

1 + θ
− κ

#
[(ρ−A) + (n− 1)(1 + θ)β] +D0 (1) f (β) =

D(1) [f (β)− f 0 (β)β] (17)

Proposition 3.3: A Markov-perfect Nash equilibrium, where all players play a linear

feedback strategy of the form c = βX, exists iff the equation (17) has a solution bβ > 0.

Example: The Cobb-Douglas Case

U = zλi c
μ
iX

1−μ

Eq (17) becomes∙
λβμ−1 + μβμ−1

1 + θ
− κ

¸
[(ρ−A) + (n− 1)(1 + θ)β] =

−λβμ + (1− μ)βμ

i.e. ∙
λ+ μ

1 + θ
− κβ1−μ

¸
=

(1− λ− μ)

(ρ−A) 1
β
+ (n− 1)(1 + θ)

(18)

The LHS of equation (18) is decreasing in β. As β varies from zero to infinity, the LHS falls

from (λ+μ)/(1+θ) to minus infinity if κ > 0. The RHS is increasing in β, varying from zero

to (1−λ−μ)/ [(n− 1)(1 + θ)] as β varies from zero to infinity. It follows that if κ > 0, there

exists a unique positive bβ that equates the LHS with the RHS. Furthermore, an increase in
κ will lower the curve representing the RHS, resulting in a smaller value of bβ. An increase
in λ will shift the curve representing the RHS down, and shift the curve representing the

LHS up, resulting in a higher value of bβ. (If κ = 0 then a positive bβ exists if and only if
n(λ+ μ) < 1.)

Do these results apply to the general case? The answer is yes, provided the equation (17)

has a unique solution bβ > 0. Without loss of generality, we set D(1) = 1 and treat D0(1)
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as a parameter: the higher is D0(1), the higher is the degree of status-consciousness of the

players. To simplify notation, denote the status consciousness parameter by λ ≡ D0(1).

Proposition 3.4: (The general case) Assume bβ is unique. Then
(a) A higher degree of status-consciousness will result in a higher equilibrium rate of

extraction and a lower public asset growth rate.

(b) An increase in κ or A will reduce the equilibrium rate of extraction, bβ and thus

increase the growth rate of the public asset.

Proof : An increase in D0(1) will shift upwards the curve representing the LHS of (17).

Hence the intersection point bβ must move to the right. Similarly, an increase in κ or A shift
downwards the curve representing the LHS of (17), thus moving bβ to the left. The growth
rate of the public asset in the Markov-perfect equilibrium (MPE) is

Ẋ

X
= gMPE = A− n(1 + θ)bβ

It follows that an increase in κ or A will increase the growth rate of the public asset.

Proposition 3.5: (comparing the cooperative solution with the non-cooperative equi-

librium) The cooperative rate of extraction, β
∗
, is lower than the non-cooperative rate of

extraction bβ.
Proof : Re-write eq (9) as follows∙

f 0(β)

(1 + θ)
− κ

¸µ
ρ−A

n

¶
= f(β)− βf 0(β) (19)

and compare with"
λf(β) 1

β
+ f 0 (β)

1 + θ
− κ

#
[ρ−A+ (n− 1)(1 + θ)β] + λf (β) = f(β)− βf 0(β) (20)

We first prove that when λ = 0, bβ must exceed β∗. Both equations have the same right-hand
side, which is an increasing function of β; as β varies from 0 to infinity, f(β)− βf 0(β) rises

continuously. The left-hand side of equation (19) is downward sloping, and is positive for all

β < βH where by definition f 0(βH) = (1 + θ)κ. For all β < βH , the value of the LHS of eq

(20) is greater than that of equation (19). It follows that bβ exceeds β∗. Now, if λ > 0, this

will make bβ even greater.
Proposition 3.6: (comparing welfare levels) The cooperative solution yields a higher

welfare level than that of the Markov perfect equilibrium.

Proof: See the Appendix
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Remark: Since bβ > β
∗
as shown in Proposition 3.5, we must have ψ0(bβ) < 0, which

indicates the welfare in the MPE case is decreasing in β, i.e. bβ always lies to the right of
β
∗
(Fig 1 illustrates this situation).

Combining Propositions 3.5 and 3.6, it is interesting to note that the cooperative equi-

librium has both higher welfare level and greater resource growth rate. Let’s explore some

intuition behind these results. In the cooperative equilibrium or the social planner’s problem,

the agents know ex ante that their consumption levels will be equal thus the envy parameter

λ doesn’t play a role in the equilibrium. In the MPE case, however, the agents will observe

the resource stock at the beginning of each period and make her own decision about the

extraction rate, each trying not to be behind, even though they know that in the symmetric

equilibrium their consumption levels will be equal ex post. The "positional externalities"

imposed by the status-consciousness can only be eliminated by cooperation.

We have shown in Proposition 3.2 that a fall in κ leads a a higher welfare in the co-

operative equilibrium. We now show that, in contrast, in the case of a non-cooperative

equilibrium, a fall in κ can decrease the non-cooperative welfare, i.e., technological progress

in resource extraction can be welfare-worsening when agents are non-cooperative. Further-

more, the absolute magnitude of the negative impact of technological progress on welfare

is an increasing function of the degree of status-consciousness. The next proposition is a

formalization of this result.

Proposition 3.7: A technological progress in resource extraction can reduce welfare

in the non-cooperative case. This fall in welfare is an increasing function of the degree of

status-consciousness.

Proof: See the Appendix.

Remark: This result represents the situation that a small increase in κ may be welfare-

improving because the benefits from resouce stock preserving outweight the utility loss from

less extraction and consumption (see the case in Figure 2, β̂ reduces to β̂
0

but the welfare

is higher than before). However, it won’t happen in the cooperative equilibrium since the

cooperative equilibrium extraction rate β
∗
is always the welfare-maximizing extraction rate.

3.2.2 Heterogeneous agents

So far we have focused on the case of homogeneous players. This sub-section examines the

effects of heterogeneity among agents on the properties of Markov-perfect Nash equilibria.

To simplify the analysis, we focus on the case where there are only two groups of players.

More specifically, let us assume that there are n1 ≥ 2 players described by the parame-
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ters (ρ1, θ1, κ1) with the utility function D1 and f1, and n2 ≥ 2 players described by the

parameters (ρ2, θ2, κ2) with the utility function D2 and f2. The total number of players is

n = n1 + n2. We assume that assumptions A1-A3 hold for both group of players, and the

agents in each group compare their consumption with other members in the same group

only.

Analysis Note that the transition equations for each group are now different, i.e., for agent

i in group 1:

Ẋ = AX − (n1 − 1)(1 + θ1)β1X − (1 + θ1)ci1 − n2(1 + θ2)β2X

For agent i in group 2:

Ẋ = AX − (n2 − 1)(1 + θ2)β2X − (1 + θ2)ci2 − n1(1 + θ1)β1X

The Hamiltonians become

Hi1 = D1

µ
ci1
β1X

¶
F1(ci1,X)− κ1(1 + θ1)ci1 + (21)

ψi1 [AX − (n1 − 1)(1 + θ1)β1X − (1 + θ1)ci1 − n2(1 + θ2)β2X]

Hi2 = D2

µ
ci2
β2X

¶
F2(ci2,X)− κ2(1 + θ2)ci2 + (22)

ψi2 [AX − (n2 − 1)(1 + θ2)β2X − (1 + θ2)ci2 − n1(1 + θ1)β1X]

We can show that there exist two symmetric linear solutions for these two groups:

ci1(t)

X(t)
= β1,

ci2(t)

X(t)
= β2 where β1 and β2 are constants (23)

The growth rate of the public asset is therefore given by

g = A− n1(1 + θ1)β1 − n2(1 + θ2)β2 (24)

For the Cobb-Douglas case with κ1 = κ2 = 0 the solutions are:

β̂1 =
1

1 + θ1

(λ1 + μ1)[ρ1 − n2 (ρ1 − ρ2) (λ2 + μ2)−A]

1− n1 (λ1 + μ1)− n2 (λ2 + μ2)
(25)

β̂2 =
1

1 + θ2

(λ2 + μ2)[ρ2 − n1 (ρ2 − ρ1) (λ1 + μ1)−A]

1− n1 (λ1 + μ1)− n2 (λ2 + μ2)
(26)
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(Note that if θ1 = θ2, λ1+ μ1 = λ2+ μ2 < 1/n and n1 = n2 = n/2, then β̂1 > β̂2 if and only

if ρ1 > ρ2, i.e., the more impatient group extracts the resource stock at a faster rate.)

We are especially interested in the effect of heterogeneity in the status-conscious para-

meter λ on the equilibrium outcome. For example, if we assume there is a mean-preserving

spread of λ among agents, i.e., λ1 = λ+ η
n1
, λ2 = λ− η

n2
with η > 0, how are the growth rate

of public assets and welfare affected by an increase in η? The following proposition provides

an answer for the Cobb-Douglas case.

Proposition 3. 8 In the Cobb-Douglas case,

(a) A mean-preserving spread in the distribution of the status-conscious parameter λ

leads to an increase of the public asset growth rate iff ρ2 > ρ1, i.e., iff the members of the

group with stronger status-consciousness are more patient.

(b) If the status-conscious parameter λ is the only source of heterogeneity, a mean-

preserving spread in the distribution of λ across agents leads to an decrease of the social

welfare.

Proof: See the Appendix.

Simulation results: the joint effects of λ and θ on social welfare In this section the

joint effects of λ and θ on social welfare are given by simulation. Again, suppose θ1 = θ+ ε
n1
,

θ2 = θ− ε
n2
and λ1 = λ+ η

n1
, λ2 = λ− η

n2
. Substituting them into the social welfare function

in we can express social welfare as a function of ε and η. The plot of social welfare is given

in Fig. 3 (assuming X0 = 1, ρ = 0.2, A = 0.1, λ = 0.2, n1 = 10, n2 = 10, μ = 0.2, θ = 0.1).

The saddle-shape diagram allows us to confirm our findings that a mean-preserving spread

in the distribution of λ across agents leads to a decrease of social welfare, while a mean-

preserving spread in the appropriation cost θ will increase the social welfare, ceteris paribus.

4 Concluding remarks

This paper explores the effect of status-consciousness on resource exploitation in a dynamic

setting. The agents in the economy are concerned with both their absolute level of con-

sumption and the relative consumption level within their groups. We show that if agents

use open-loop strategies, there are cases under which status-consciousness does not create

any distortion, and thus no corrective action is required. If agents use feedback strategies,

the social optimum cannot be supported by the Markov-perfect Nash equilibrium, except in

the case where resource stocks are privately owned and agents have additively separable util-
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ity functions that display a constant envy. Generally, in a Markov-perfect equilibrium, the

status-consciousness parameter indeed plays an important role. A higher degree of status-

consciousness leads to more aggressive extraction efforts, therefore the social welfare and the

growth rate of the public resource are lower. This effect has not been explored in the exist-

ing literature on dynamic resource exploitation. We have therefore shown that “positional

externalities” worsen the “tragedy of the commons” problem.

Our model with costly extraction can be interpreted as a rent-seeking model with detection-

avoidance costs.We introduce two types of cost within the rent-seeking process, a "wastage-

cost" θ and an "effort-cost" κ. We show that an increase in κ will reduce the equilibrium rate

of extraction and increase the growth rate of the public asset. Thus if the policy maker’s

primary objective is to protect the public asset from over-extraction, imposing a higher

effort-cost (stricter policing of money-laundering) is preferred. We also show that a techno-

logical progress, i.e., a smaller κ, can worsen welfare in a Markov-perfect Nash equilibrium.

The magnitude of this welfare-worsening effect is an increasing function of the degree of

status-consciousness. In the analysis for heterogeneous agents, we show that an increase in

the degree of heterogeneity in the status-conscious parameter λ will reduce social welfare

while an increase in the degree of heterogeneity in wastage cost θ will increase social welfare.
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APPENDICES

Appendix 1

Example of a symmetric open-loop Nash equilibrium

The following discrete-time example illustrates the non-subgame-perfect property of open-

loop Nash equilibria. Two players share a cake which has been cut into 6 identical pieces.

They have three days to play the game. Each day, there is diminishing marginal utility of

consumption: if ci(t) > 0 is the quantity consumed on day t, the utility is:

ui(t) =
p
ci(t)

There is no discounting.Each day t, after observing the number of pieces of cake that remain,

denoted by s(t), the players simultaneously click each a button on his computer screen, among

three possible buttons, marked 0, 1, 2, (i.e., the control variable for player i, denoted by bi(t),

can take on one of the three values, 0 , 1, 2). If the sum of what they select on that day does

not exceed s(t), i.e. b1(t) + b2(t) ≤ s(t) then each gets what he has selected and consumes it

(we assume he cannot store it). His utility for that day is thenp
bi(t)
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If b1(t) + b2(t) > s(t), then each player will get zero, and his utility is 0.

The transition equation is

s(t+ 1) = s(t)−min {b1(t) + b2(t), s(t)}

The following pair of open-loop strategies is an open-loop Nash equilibrium: each player

chooses 1 (grabs one piece of cake) each day. Along the equilibrium play each will consume

one piece every day. His utility over the three days is

√
1 +
√
1 +
√
1 = 3

If player 2 uses this strategy (b2(t) = 1 for t = 1, 2, 3) and player 1 deviates, say, by choosing

b1(1) = b1(2) = 2 and b1(3) = 2 (or 1 or 0) then player 1’s payoff will be

√
2 +
√
2 +
√
0 = 2.8284 < 3

Now suppose both players have decided to play the open-loop Nash equilibrium strategies

(bi(t) = 1 for t = 1, 2, 3 for i = 1, 2).But suppose on the second day, player 1 observes that

there are only 3 pieces of cake left. Would he still want to continue with his original open-

loop strategy? If he does, (and assuming player 2 will play b2(t) = 1 for t = 2, 3), he will

expect to get √
1 +
√
1 +
√
0 = 2

If he chooses instead b2(2) = 2, and he will get a better payoff

√
1 +
√
2 +
√
0 = 2. 414 2

(assuming player 2 will play b2(t) = 1 for t = 2, 3).

This shows that the open-loop Nash equilibrium is, in general, not subgame perfect.

Appendix 2

Proof of Proposition 2.1

The social planner chooses the common consumption rate c(t) to maximizeZ ∞

0

e−ρtnU(c, c)dt

subject to n transition equations

ẋk = G(xk)− c, with xk(0) = x0 > 0, k = 1, 2, ..., n

31



and xk(t) ≥ 0.
We use the superscript p to denote the social planner’s optimal choice . Let ψp

k be

the shadow price of the resource stock, and H be the Hamiltonian function for the social

planner’s problem.

H = nU(c, c) +
nX
k

ψp
k (G(xk)− c)

The socially optimal path satisfies

nUc(c
p, cp) + nUC(c

p, cp) =
X
k

ψp
k > 0

ψ̇
p

k

ψp
k

= ρ−G0(xpk) (27)

ẋpk = G(xk)− cp

lim
t→∞

e−ρtψp
k(t)x

p
k(t) = 0, limt→∞

e−ρtψp
k(t) ≥ 0 and lim

t→∞
xpk(t) ≥ 0.

Because of symmetry, we write

ψp
k = ψp, and xpk = xp.

We now show that the socially optimal consumption path satisfies the necessary condi-

tions of the optimization problem of individual i, where i = 1, 2, ..., n. Individual i takes as

given the time path Ci(t) =
1

n−1
P

k 6=i c
p
k(t) = cp(t) of per-capita consumption of his peer

group, and chooses the time path ci(t) to maximize

Vi =

Z ∞

0

e−ρtU(ci(t), Ci(t))dt

subject to

ẋi(t) = G(xi(t))− ci(t)

ẋk(t) = G(xk(t))− cp(t) where k 6= i

Let πi(t) be shadow price that individual i attaches to his own stock xi(t). The Hamiltonian

for individual i’s optimization problem is

Hi = U(ci(t), Ci(t)) + πi(t) [G(xi(t))− ci(t)]

Let the superscript ol in col and xol denote the outcome under the open-loop Nash equilib-

rium.The necessary conditions are

Uc(c
ol
i , C

ol
i ) = πi > 0
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π̇i
πi
= ρ−G0(xoli ) (28)

ẋoli = G(xoli )− coli

lim
t→∞

e−ρtπi(t)x
ol
i (t) = 0, lim

t→∞
e−ρtπi(t) ≥ 0 and lim

t→∞
xoli (t) ≥ 0.

For xp(t) to coincide with xol(t), conditions (27) and (28) require that there exists a positive

constant κ such that ψp = ηπi for all t. This would imply

Uc(c
p(t), cp(t)) + UC(c

p(t), cp(t)) = ηUc(c
p(t), cp(t))

Dividing both sides by Uc(c
p, cp) we get

1 +
UC(c

p(t), cp(t))

Uc(cp(t), cp(t))
= η > 0

This holds iff

1 + ε(cp(t)) = η > 0

i.e., ε is independent of cp and −1 < ε ≤ 0. All other necessary conditions of the individual
optimization problems are satisfied when xoli (t) = xp(t) and coli (t) = cp(t).

Proof of Proposition 2.2

Under (i) and (ii) of Proposition 2, the utility function is of the form U(c, C) = u(c) +

εu(C), where −1 < ε < 0. Since the social planner treats everyone equally, and the initial

stocks are identical, we can formulate the social planner’s problem as

max
c

Z ∞

0

e−ρt(1 + ε)u(c)dt

subject to

ẋ = G(x)− c, x(0) = x0

The optimal solution consists of the (socially optimal) policy function c = c(x), and an

associated value function W (x), such that the following Hamilton-Jacobi-Bellman (HJB)

equation holds:

ρW (x) = max
c
[(1 + ε)u(c) +W 0(x)(G(x)− c)]

Thus

u0(c) =
1

1 + ε
W 0(x)

i.e. the policy function is

c = h

µ
1

1 + ε
W 0(x)

¶
≡ bh(x)

where h(.) ≡ (u0)−1 (.).
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Substitute the policy function into the HJB equation to get

ρW (x) =
h
(1 + ε)u(bh(x)) +W 0(x)(G(x)− bh(x))i

Hence
ρ

1 + ε
W (x) = u(bh(x)) + 1

1 + ε
W 0(x)(G(x)− bh(x)) (29)

Now consider the game between two individuals. (The arguments that follow can be

generalized to the case where n > 2). Suppose individual i thinks that j uses the socially

optimal strategy

cj = h

µ
1

1 + ε
W 0(xj)

¶
≡ bh(xj)

Let Ji(xi, xj) be the value function for individual i. Then i’s HJB equation is

ρJi(xi, xj) = max
ci

½
u(ci) + εu

³bh(xj)´+ ∂Ji
∂xi

[G(xi)− ci] +
∂Ji
∂xj

h
G(xj)− bh(xj)i¾

We now claim that Ji(xi, xj) can be constructed as follows:

Ji(xi, xj) =
1

1 + ε
W (xi) +

ε

1 + ε
W (xj)

To verify our assertion, note that using this construction, individual i’s consumption choice

ci satisfies

u0(ci) =
∂Ji
∂xi
≡ 1

1 + ε
W 0(xi) i.e. ci = h

µ
1

1 + ε
W 0(xi)

¶
≡ bh(xi)

It remains to verify that

ρ

∙
1

1 + ε
W (xi) +

ε

1 + ε
W (xj)

¸
=

u
³bh(xi)´+ βu

³bh(xj)´+ W 0(xi)

1 + ε
(G(xi)− bh(xi)) + εW 0(xj)

1 + ε
(G(xj)− bh(xj))

Clearly, this equation is satisfied identically, in view of eq (29).

Proof of Proposition 2.3

To establish the proposition, we offer the following example.

Assume that U(c, C) = 1
1−σc

1−σ+αC−α where 0 < α < σ < 1, and the transition equation

is

ẋi(t) = G(xi)− ci(t) with xi(0) = xi0 > 0

where

G(xi) ≡ Axi(t)
σ − δxi(t)
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Here A > 0, 0 < δ < 1,δ ≥ 0, and xi0 = xj0 ≡ x0 for all i, j. The social planner, treating all

individuals equally, chooses a common time path c(t) to maximizeZ ∞

0

e−ρt
1

1− σ
c1−σ+αc−αdt

It can be verified that the socially optimal consumption rule is

ci = βsoxi ≡
ρ+ δ(1− σ)

σ
xi

where the superscript so in βso indicates that this is a socially optimal choice. The welfare

of the representative individual under the social planner is

W (x0) = (β
so)1−θ

µ
1

1− σ

¶"
A

bρ
+
(x0)

1−σ − (A/b)
ρ+ b(1− σ)

#
where

b ≡ ρ+ δ

σ

The stocks converge to the steady-state level bxso where
bxso ≡ µ A

δ + βso

¶ 1
1−σ

=

µ
σA

δ + ρ

¶ 1
1−σ

(30)

Now consider the differential game among n players, each exploiting his own resource

stock. We want to show that the socially optimal optimal consumption rule cannot support

a Markov-perfect Nash equilibrium. We prove this by establishing a contradiction. Suppose

that agent i believes that all other agents use the socially optimal strategy

cj = βsoxj ≡
ρ+ δ(1− σ)

σ
xj

He will then seek to maximizeZ ∞

0

e−ρt
1

1− σ
c1−σ+αi

"
1

n− 1
X
j 6=i

βsoxj

#−α
dt

Take the simple case where n = 2. Then player i’s HJB equation must satisfy

ρJi(xi, xj) = max
ci

½
1

1− σ
c1−σ+αi (βsoxj)

−α +
∂Ji
∂xi

[G(xi)− ci] +
∂Ji
∂xj

[G(xj)− βsoxj]

¾
Partial differentiation the HJB equation with respect to xi yields

[ρ−G0(xi)]
∂Ji
∂xi

= [G(xi)− ci]
∂2Ji
∂x2i

+ [G(xj)− βsoxj]
∂2Ji

∂xj∂xi
(31)
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On the other hand, individual i’s optimization with respect to ci gives

(1− σ + α)

1− σ
c−σ+αi (βsoxj)

−α =
∂Ji
∂xi

It follows that if the socially optimal optimal consumption rule can be supported as aMarkov-

perfect Nash equilibrium, the following equation must hold:

(1− σ + α)

1− σ
[βsoxi]

−σ+α (βsoxj)
−α =

∂Ji
∂xi

(32)

Differentiating both sides of (32) with respect to xi, we get

∂2Ji
∂x2i

=
(1− σ + α) (−σ + α) [βsoxi]

−σ+α (βsoxj)
−α x−1i

1− σ

Differentiating both sides of (32) with respect to xj, we get

∂2Ji
∂xj∂xi

=
−α (1− σ + α)

1− σ
[βsoxi]

−σ+α (βsoxj)
−α x−1j

Substituting these partial derivatives into equation (31), we get

[ρ−G0(xi)]
(1− σ + α)

1− σ
[βsoxi]

−σ+α (βsoxj)
−α =

[G(xi)− βsoxi]
(1− σ + α) (−σ + α) [βsoxi]

−σ+α (βsoxj)
−α x−1i

1− σ
+

[G(xj)− βsoxj]

∙
−α (1− σ + α)

1− σ
[βsoxi]

−σ+α (βsoxj)
−α x−1j

¸
(33)

This must hold for all xi and all xj. For the value xj = bxso, we obtain from (33) an

expression which must hold for all positive values of xi :

α

∙
Axσ−1i − δ − ρ+ δ(1− σ)

σ

¸
= 0

But this cannot be true for all xi > 0, unless α = 0. This contradiction proves that the so-

cially optimal consumption rule cannot be supported as a Markov-perfect Nash equilibrium,

when α 6= 0.
Proof of Proposition 2.5

The Hamiltonian for individual i’s optimization problem is

Hi =
1

1− σ
(βix)

1−σ+α ¡βOAx¢−α + ψi

¡
Axσ − δx− (n− 1)βOAx− βix

¢
The first order condition with respect to βi(t) is

(1− σ + α)

1− σ
(βi(t))

−σ+α (βOA)−αx(t)−σ = ψi(t) (34)
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Let us try a solution where βi(t) is a constant βi > 0. Then differentiating equation (34)

with respect to t yields
ψ̇i

ψi

= −σ ẋ
x

Hence
ψ̇i

ψi

= −σ
¡
Axσ−1 − δ − (n− 1)βOA − βi

¢
(35)

On the other hand, the adjoint equation is

ψ̇i

ψi

= (ρ− σAxσ−1 + δ + (n− 1)βOA − βi)−
1

ψi

x−σ (βi)
1−σ+α ¡βOA¢−α (36)

In a symmetric equilibrium, we must have βi = βOA. Equating the right-hand side of (35)

with that of (36) and eliminating ψ−1i x−σ by using (34), we can solve for βOA :

βOA =
1− σ + α

(1− σ) [1− n(1− σ + α)]
(ρ+ (1− σ)δ)

For βOA > 0, we require that n < 1/(1− σ + α).

Comparing βOA with the social optimal β∗,

βOA

β∗
=

(1− σ + α)nσ

(1− σ) [1− n(1− σ + α)]
=

nσ

(1− σ)
£

1
1−σ+α − n

¤
This ratio is equal to unity if n = 1 and α = 0. The ratio is increasing in α. Thus, the

higher is the degree of envy, the more excessive is the rate of exploitation.

Proof of Proposition 3.1

First, let us show that β
∗
is unique. As shown in Fig. 1, the left-hand side (LHS) of

equation (9) is decreasing in β, and as β varies from zero to infinity, the LHS varies from

infinity to −κ. The RHS is positive for all positive β, and increases as β increases. Thus the
curve that represents the LHS must intersect the curve that represents the RHS exactly at

one value, say β
∗
. At β

∗
, we have

f 0(β
∗
)

(1 + θ)
− κ > 0 (37)

(This is because the numerator of the right-hand side of (9) is positive for all β > 0, and the

denominator is positive because ρ > A).

At the constant ratio β
∗
of consumption to stock, the growth rate of the stock is

g ≡ Ẋ

X
= A− n(1 + θ)β

∗
< A < ρ
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(which may be positive or negative) and thus

X(t) = X0e
gt

Next, to show that the strategy c = β
∗
X is optimal, we can verify that all the necessary

and sufficient conditions are satisfied. The transversality condition (4) is met, because ψ(t) =

ψ
∗
> 0 by (6) and (37), and because

lim
t→∞

ψ(t)e−ρtX(t) = 0 = ψ
∗
X0 lim

t→∞
e−ρtegt = 0

Since the objective function (3) is concave in (c,X), and the constraints are linear, the

necessary conditions are also sufficient.

Proof of Proposition 3.2

Since X(t) = X0e
gt

W coop =

Z ∞

0

e−ρt
h
f(β

∗
)− κ(1 + θ)β

∗i
X0e

gtdt

W coop(X0) =
h
f(β

∗
)− κ(1 + θ)β

∗i
X0

1

ρ− g
= X0

f(β
∗
)− κ(1 + θ)β

∗

ρ−A+ n(1 + θ)β
∗

where, since ρ−A > 0, ρ− g > 0.

Now, from (7) and (8),

(ρ−A)ψ = f(β)− βf 0(β) = f(β)− β(1 + θ)(κ+ nψ) (38)

we obtain ³
ρ−A+ n(1 + θ)β

∗´
ψ
∗
= f(β

∗
)− κ(1 + θ)β

∗

It follows that
f(β

∗
)− κ(1 + θ)β

∗

ρ−A+ n(1 + θ)β
∗ = ψ

∗
=
1

n

"
f 0(β

∗
)

(1 + θ)
− κ

#
(39)

where the last equality comes from (6). Therefore

W coop(X0) = ψ
∗
X0 (40)

Thus welfare (per person) is the product of the shadow price ψ
∗
and the stock X0.

An increase in κ or θ will shift down the curve representing the left-hand side (LHS) of

equation (9), so the intersection β
∗
is moved to the left. Direct computation shows that

∂β
∗

∂κ
=

(ρ−A)(1 + θ)h
ρ−A+ n(1 + θ)β

∗i
f 00(β

∗
)
< 0 (41)
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Thus

∂W coop

∂κ
=

∂ψ
∗

∂κ
X0 =

1

(1 + θ)n

"
f 00(β

∗
)
∂β

∗

∂κ
− (1 + θ)

#

=
1

n

"
−n(1 + θ)β

∗

ρ−A+ n(1 + θ)β
∗

#
< 0

A similar calculation shows that welfare falls if θ increases.

Proof of Proposition 3.6.

Recall from the cooperative solution that

W coop = ψ
∗
X0

ψ
∗
=

f(β
∗
)− κ(1 + θ)β

∗

ρ−A+ n(1 + θ)β
∗ =

1

(1 + θ)n

h
f 0(β

∗
)− κ(1 + θ)

i
The welfare of the representative agent in the Markov-perfect equilibrium is

WMPE =

Z ∞

0

e−ρt
h
f(bβ)− κ(1 + θ)bβiX0e

gtdt

=
h
f(bβ)− κ(1 + θ)bβiX0

1

ρ− g
= X0

f(bβ)− κ(1 + θ)bβ³
ρ−A+ n(1 + θ)bβ´

Now,

(ρ−A+ (1 + θ)(n− 1)bβ)bψ = f(bβ)− bβf 0(bβ)−G0(1)f(bβ)
= f(bβ)− bβ "f 0(β) +G0(1)

f(bβ)bβ
#

= f(bβ)− bβ(1 + θ)(κ+ bψ)
where the first equality comes from (16) and the third one comes from (15). Therefore

bψ = f(bβ)− κ(1 + θ)bβ
ρ−A+ n(1 + θ)bβ
WMPE = bψX0 (42)

Let’s denote

ψ = ψ(β) =
f(β)− κ(1 + θ)β

ρ−A+ n(1 + θ)β
(43)

We want to show that

ψ
∗
> bψ
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The cooperative equilibrium can be transformed to an equivalent problem:

Max
β

W coop = ψ(β)X0

Therefore, the first-order condition of the problem above must yield

ψ0(β) = 0

which gives

∂ψ(β)

∂β
=
[f 0(β)− κ(1 + θ)] [ρ−A+ n(1 + θ)β]− n(1 + θ) [f(β)− κ(1 + θ)β]

(ρ−A+ n(1 + θ)β)2
= 0

Rearrange terms in the numerator, we have∙
f 0(β)

(1 + θ)
− κ

¸
=

n [f(β)− βf 0(β)]

ρ−A
(44)

which is identical to (9) used to determine the cooperative equilibrium strategy β
∗
. The

second order condition is satisfied. This implies that the curve ψ(β) defined by (43) reaches

its maximum at β = β
∗
. Therefore the MPE solution bβ must yields a smaller ψ, hence a

lower welfare. Figure 2 depicts the curve ψ(β) .

Proof of Proposition 3.7.

By (15), and recall that D(1) = 1,

bψ = 1

1 + θ

"
D0(1)

f(bβ)bβ + f 0(bβ)− κ(1 + θ)

#
(45)

Thus, using (45) and (42),

dWMPE

dκ
= X0

dbψ
dκ
=

X0

1 + θ

("
D0(1)

Ãbβf 0(bβ)− f(bβ)bβ2
!
+ f 00(bβ)# dbβ

dκ
− (1 + θ)

)
(46)

Now, since the term inside the square brackets is negative, and dβ
dκ
is also negative, the

sign of the expression inside the curly brackets is ambiguous. Let us explore the special

Cobb-Douglas case.

Implicit differentiation of equation (18) shows that, if θ = 0,

dbβ
dκ
=

−β1−μ [ρ−A+ (n− 1)β]
1− n(λ+ μ) + (n− 1)κβ1−μ + κ(1− μ)β−μ [ρ−A+ (n− 1)β]

< 0
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We evaluate this derivative at κ = 0 :

∂bβ
∂κ

=
−bβ1−μ hρ−A+ (n− 1)bβi

1− n(λ+ μ)
< 0

Now, from (18), at κ = 0 = θ,

ρ−A+ (n− 1)bβ = (1− λ− μ)bβ
λ+ μ

So, at κ = 0
∂bβ
∂κ

= −bβ2−μ ∙ (1− λ− μ)

(λ+ μ) (1− n (λ+ μ))

¸
(47)

Substituting (47) into (46), we see that the effect of an increase in κ on the equilibrium

welfare level is positive if and only if

(1− μ)(1− μ− λ) > [1− n(μ+ λ)] (1 + θ)

For θ = 0, this inequality is equivalent to

n >
μ

μ+ λ
+ (1− μ)

Since the right-hand side is smaller than 2, it follows that the condition is satisfied if n ≥ 2.
We conclude that for the Cobb-Douglas case, with θ = 0, a marginal increase in κ from a

sufficiently small initial value κ0 will increase the Markov-perfect equilibrium welfare level.

The greater is λ, the greater is the magnitude of the increase in welfare, because

d

dλ

∙
(1− μ)(1− μ− λ)

[1− n(μ+ λ)]
− (1 + θ)

¸
> 0

.

Proof of Proposition 3.8.

(a) Substitute β̂1 and β̂2 into (24) and take derivative with respect to η will yield

∂g

∂η
=

ρ2 − ρ1
1− n1 (λ1 + μ1)− n2 (λ2 + μ2)

by definition, 1− n1 (λ1 + μ1)− n2 (λ2 + μ2) > 0, therefore
∂g
∂η

> 0 iff ρ2 > ρ1.

(b) The social welfare is the total sum of individual welfare and is given by

SW = n1W1 + n2W2 =
n1β

μ1
1 X0

ρ1 − g
+

n2β
μ2
2 X0

ρ2 − g

41



If λ1 = λ+ η
n1
, λ2 = λ− η

n2
and all other parameters are equal across two groups, we have

∂SW

∂η
= 0⇒

µ
nλ− η + nμ

n (1 + θ)

¶μ−1
=

µ
η + nλ+ nμ

n (1 + θ)

¶μ−1

⇒ η∗ = 0

∂2SW

∂η2
< 0 at η∗ = 0

.

Appendix 8

The effect of heterogeneity in θ on the public asset growth and welfare.

Proposition A.1: In the Cobb-Douglas case

(a) The growth rate of the public asset is not related to the production costs, θ1, θ2.

(b) If the appropriation cost θ is the only source of heterogeneity, a mean-preserving

spread in the distribution of this cost across agents leads to an increase of the social welfare.

Proof:

(a) Denote

B1 =
(λ1 + μ1) (ρ1 − n2 (ρ1 − ρ2) (λ2 + μ2)−A)

1− n1 (λ1 + μ1)− n2 (λ2 + μ2)

B2 =
(λ2 + μ2) (ρ2 − n1 (ρ2 − ρ1) (λ1 + μ1)−A)

1− n1 (λ1 + μ1)− n2 (λ2 + μ2)

Substitution yields

g = A− n1(1 + θ1)β̂1 − n2(1 + θ2)β̂2 = A− n1B1 − n2B2

where it is clear that g is not affected by θ1 and θ2.

(b) Let’s consider the social welfare under heterogeneity,

SW = n1W1 + n2W2 =
n1β

μ1
1 X0

ρ1 − g
+

n2β
μ2
2 X0

ρ2 − g

Suppose θ1 = θ + ε
n1
, θ2 = θ − ε

n2
,

Let’s assume that μ1 = μ2 = μ and denote f(ε) = (ρ2 − g)n1β
μ
1 + (ρ1 − g)n2β

μ
2 ,

We have,
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f 0(ε) = −(ρ2 − g)μβμ−11

(1 + θ1)2
B1 +

(ρ1 − g)μβμ−12

(1 + θ2)2
B2 = 0

⇒ ε∗ =
(θ + 1) (1− C)

1
n1
C + 1

n2

Where

C =

µ
Bμ
2

Bμ
1

g − ρ1
g − ρ2

¶ 1
μ+1

and

f 00(ε∗) =
(μ+ 1)

n1n2

µ
(ρ1 − g)Bμ

2n1

(1 + θ2)
μ+2 +

(ρ2 − g)Bμ
1n2

(1 + θ1)
μ+2

¶
> 0

If ρ1 = ρ2, λ1 = λ2

ε∗ =
(θ + 1) (1− 1)

1
n1
+ 1

n2

= 0

.
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Figure 1: The determination of the equilibrium extraction rate
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Figure 2: The effect of an increase in k on welfare and extraction rates
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Figure 3: The joint effect of heterogeneity in λ and θ on social welfare
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