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1 Introduction

Economic models often imply that certain variables are cointegrated. However, tests often fail to reject
the null hypothesis of no cointegration for these variables. One possible explanation of these test results
is that the error is unit root nonstationary due to a nonstationary measurement error in one variable.
A nonstationary error in one variable leads to a spurious regression when the true value of the variable
and the other variables are cointegrated. In the unit root literature, when the stochastic error of a
regression is unit root nonstationary, the regression is called a spurious regression. This is because the
standard t test tends to be spuriously significant even when the regressor is statistically independent of
the regressand in Ordinary Least Squares. Monte Carlo simulations have often been used to show that
the spurious regression phenomenon occurs with regressions involving unit root nonstationary variables
(see, e.g., Granger and Newbold (1974), Nelson and Kang (1981, 1983)). Asymptotic properties of
estimators and test statistics for regression coefficients of these spurious regressions have been studied
by Phillips (1986, 1998) and Durlauf and Phillips (1988) among others. For example, currency held
by the domestic economic agents for legitimate transactions is very hard to measure due to currency
held by foreign residents and black market transactions. Therefore, money may be measured with a
nonstationary error. As shown by Stock andWatson (1993) among others, if the money demand function
is stable in the long-run, we have a cointegrating regression when all variables are measured without
error. If the variables are measured with stationary measurement errors, we still have a cointegrating
regression. However, if money is measured with a nonstationary measurement error, we have a spurious
regression. We can still recover structural parameters under certain conditions for the nonstationary
measurement error.
This paper proposes a new approach to estimating structural parameters with spurious regressions.

Our approach is based on the Generalized Least Squares (GLS) solution of the spurious regression
problem analyzed by Ogaki and Choi (2001), who use an exact small sample analysis based on the
conditional probability version of the Gauss-Markov Theorem. We develop asymptotic theory for two
estimators motivated by the GLS correction: GLS corrected dynamic regression and FGLS corrected
dynamic regression estimators. These estimators will be shown to be consistent and asymptotically
normally distributed in spurious regressions.
We also develop a Hausman type test for the null hypothesis of cointegration against the alternative

hypothesis of no cointegration (or a spurious regression). We construct this test as we note that both
the dynamic OLS and GLS corrected dynamic regression estimators are consistent in cointegration
estimation while the dynamic OLS estimator is more efficient. On the other hand, when the regression
is spurious, only the GLS corrected dynamic regression estimator is consistent. Hence we could do a
cointegration test based on the specifications on the error. We show that under the null hypothesis of
cointegration, the test statistics has a usual χ2 limit distribution; while under the alternative hypothesis
of a spurious regression, the test statistic diverges. Dynamic OLS is often used in many applications
for cointegration. However, no test for cointegration has been developed for dynamic OLS. As in
Phillips and Ouliaris (1990), the popular Augmented Dickey-Fuller test for the null hypothesis of no
cointegration is designed to be applied for the residual from static OLS rather than the residual from
dynamic OLS. Because the OLS and dynamic OLS estimates are often substantially different, it is
desirable to have a test for cointegration applied to dynamic OLS. Another aspect of our Hausman
type test is that it is for the null hypothesis of cointegration. Ogaki and Park (1998) argued that it
is desirable to test the null hypothesis of cointegration rather than that of no cointegration in many
applications.
In the unit root literature, asymptotic theory and Monte Carlo simulations have been the main tools

to analyze econometric methods. The exact small sample analysis based on the Gauss-Markov Theorem
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has not been used in general. There seem at least two reasons for this. First, in the unit root literature,
most applications involve stochastic regressors, and the conditional expectation version of the Gauss-
Markov Theorem is necessary. The standard measure theory definition of the conditional expectation
assumes that the random vector’s unconditional expectation exists and is finite. As the textbook of
Judge et al. (1985) explains, this severely limits the usefulness of the conditional expectation version
of the Gauss-Markov Theorem, because it is not possible to prove the existence of the unconditional
expectation of the OLS estimator in most applications and simulations (due to the fact that the inverse
of X 0X is involved in the OLS estimator where X is the design matrix). Second, the strict exogeneity
assumption is usually violated in time series applications.
Ogaki and Choi (2001) propose to overcome the first difficulty by considering a definition of the

conditional expectation based on the conditional probability measure. The conditional expectation
based on the conditional probability measure can be defined even when the unconditional expectation
does not exist as in Billingsley (1986). The Law of Iterated Expectations may not be satisfied when
this definition is employed, but this does not cause problems for our particular application for spurious
regressions. The second difficulty can be dealt with by adding leads and lags of the first difference of
the stochastic regressors, leading to dynamic regressions proposed by Phillips and Loretan (1991) and
Stock and Watson (1993) among others. Ogaki and Choi’s analysis shows that the idea of endogeneity
correction by the dynamic regressions can also be used for spurious regressions. The GLS corrected
dynamic regression estimator is basically an estimator obtained from the first differenced version of a
dynamic OLS regression. It is surprising that the endogeneity correction of dynamic regression works
even when all variables in the regression are stationary because of first differencing.
Using the conditional probability version of the Gauss-Markov Theorem, Ogaki and Choi (2001)

study the exact small sample properties of spurious regressions. For the case of a classic spurious
regression of a random walk onto a random walk that is independent of the regressand, they find that
only the spherical variance assumption is violated. Therefore, they propose a GLS correction for the
spurious regression. This solution is essentially the same as the well known solution of taking the first
difference of all variables in this case, but the solution can also be used for the case with endogeneity,
as long as the dynamic regression technique solves the endogeneity problem.
However, the stringent assumptions such as known covariance matrices employed by Ogaki and Choi

(2001) for the exact small sample analysis are not satisfied in applications. For this reason, in order to
apply the GLS correction, it is necessary to relax some of their assumptions. Because the exact small
sample properties cannot be analyzed when these assumptions are relaxed, we use asymptotic theory
to analyze large sample properties of estimators and test statistics based on the GLS correction. The
GLS corrected dynamic regression estimator is basically an estimator obtained from the first differenced
version of a dynamic OLS regression. These methods are applied to revisit the widely known issues in
macroeconomics: estimation of parameters in the money demand function, the long-run implications of
the consumption-leisure choice, output convergence, and purchasing power parity (PPP).
The rest of the paper is organized as follows. Section 2 presents asymptotic theory. Section 3 gives

empirical results. Section 4 contains concluding remarks.

2 The econometric model

We consider the following data generating process for observations {xt, yt},

yt = βxt + gt + et (1)

∆xt = vt (2)
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where gt is generated by finite number of leads and lags of ∆xt,

gt = C(L−1)∆xt +D(L)∆xt.

In our following analysis, to simplify notation, we usually take gt = α∆xt = αvt.
Suppose that β in (1) is the structural parameter of interest. The inference procedure about β differs

according to different assumptions on the error term et in (1). When et is stationary, the regression is
a cointegration regression; when et is a unit root nonstationary process, the regression is spurious. The
latter case is motivated by our empirical studies in Macroeconomic modeling and it is the main interest
in this project.

Assumption 1 Let both vt and ut be zero mean stationary processes with E|vt|γ <∞, E|ut|γ <∞ for
some γ > 2. Also assume that vt and ut are statistically independent, and they are both strong mixing
with size −γ/(γ − 2). Finally, et is assumed to be generated as ∆et = ut.

Assumption 2 Let both vt and ut be specified as in Assumption 1, and assume that et = ut.

The conditions on vt and ut ensure the invariance principles: for r ∈ [0, 1], n−1/2
P[nr]

t=1 vt →d σ1V (r),
n−1/2

P[nr]
t=1 ut →d σ2U(r) where V (r) and U(r) are independent standard Brownian motions and σ21

and σ22 are long run variances of the sequences {vt} and {ut} respectively. The functional central limit
theorem holds for weaker assumptions than assumed here (de Jong and Davidson (2000)), but the
conditions assumed above are general enough to include many stationary Gaussian or non-Gaussian
ARMA processes that are commonly assumed in empirical modeling.
In the next two sections, we will summarize the asymptotic properties of different estimation proce-

dures under these two assumptions. Under assumption 1, the regression is spurious and in this situation,
OLS is not consistent while both GLS correction and feasible GLS correction will give consistent and
asymptotically equivalent estimators. Under assumption 2, GLS corrected estimator is not efficient as
it is
√
n convergent, but the FGLS corrected estimator is n convergent and asymptotically equivalent to

the OLS estimator. Hence FGLS corrected estimator is robust with respect to the error specifications
given in assumption 1 and assumption 2. It is asymptotically equivalent to GLS corrected estimator in
spurious regressions and it is asymptotically equivalent to OLS estimator in cointegration regressions.

2.1 Regressions with I(1) error

In this section, we consider the situation when the error term is I(1), i.e., ∆et = ut. The estima-
tion methods we consider are dynamic OLS, GLS corrected dynamic regression estimator, and FGLS
corrected dynamic regression estimator.

2.1.1 The dynamic OLS spurious estimation

Consider the OLS estimation of the regression

yt = βxt + αvt + et. (3)

This is a spurious regression since for any value of β, the error term is always I(1). The OLS estimator
β̂n has the following limiting distribution

β̂n − β → σ2
R 1
0
V (r)U(r)dr

σ1
R 1
0
V (r)2dr

≡ ξ (4)
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which can be written as a mixture of normal distributions centered at zero (Phillips, 1989). As discussed
in Phillips (1986), in spurious regressions the noise is as strong as the signal, hence uncertainty about
β persists in the limiting distributions.

2.1.2 GLS corrected dynamic regression estimation

When we think of the problem with spurious regressions, it is the persistence in the error. In this
problem, the error can be written as

et = ρet−1 + ut,

where ρ = 1. Then we can filter all the variables by taking full difference, and use OLS to estimate

∆yt = β∆xt + α∆vt + ut. (5)

This procedure can be viewed as a GLS corrected estimation. Note that in regression (3), the
estimator of β and α are asymptotically independent, hence we don’t have to include vt in the regression
if we are only interested in β. But here we need to include the differences of the leads and lags (which
are I(-1)) that are correlated with vt to produce a consistent estimate for β.
Define θ = (β, α)0, and let θ̃ denote the GLS corrected estimator, then we can show that

√
n(θ̃n − θ)→d (σ

2
vQ)

−1N(0, σ2vσ
2
uQ) = N

µ
0,
σ2u
σ2v

Q−1
¶

(6)

with

Q =

·
1 1− ψv

1− ψv 2(1− ψv)

¸
, (7)

where σ2v = E(v2t ), σ
2
u = E(u2t ), and ψv is the first order autocorrelation coefficient of sequence {vt}.

We can see that β can be consistently estimated (jointly with α) and the estimator is asymptotically
normal.

2.1.3 The Cochrane-Orcutt feasible GLS corrected dynamic regression estimation

To use GLS to estimate a regression with serial correlation in empirical work, usually a Cochrane-
Orcutt feasible GLS procedure is adopted. This procedure also works for spurious regressions and this
has been shown by Blough (1992) and Phillips and Hodgson (1994). They show that this procedure
gives asymptotically equivalent estimator as in the differenced regression. Below we give the results in
our framework.
Let the residual from OLS regression (3) denoted by R̂t, i.e.

R̂t = yt − β̂nxt − α̂nvt.

To conduct the Cochrane-Orcutt GLS estimation, first we run an AR(1) regression of R̂t,

R̂t = ρR̂t−1 + error. (8)

It can be shown that
ρ̂n − 1 = op(1) and n(ρ̂n − 1) = Op(1).

Next, consider the following Cochrane-Orcutt transformation of the data:

ỹt = yt − ρ̂nyt−1, x̃t = xt − ρ̂nxt−1, ṽt = vt − ρ̂nvt−1. (9)
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Now consider OLS estimation in the regression

ỹt = β̃x̃t + α̃ṽt + error = z0tθ + error. (10)

The OLS estimator of θ in (10) is

θ̃n =

"
nX
t=1

ztz
0
t

#−1 " nX
t=1

ztỹt

#
. (11)

The limiting distribution for θ̃ can be shown to be the same as in (6):

√
n(θ̃n − θ)→d (σ

2
vQ)

−1N(0, σ2vσ
2
uQ) = N

µ
0,
σ2u
σ2v

Q−1
¶
, (12)

If in regression (3) vt is not included, we still have the same limiting distribution based on the residual
from the OLS estimation.
In Appendix B, we describe some extensions of the model. We show that if a constant is included in

the data generating process, the GLS or FGLS corrected estimation give results that are asymptotically
equivalent as given in (6).

2.2 Regressions with I(0) error

In this section, we will consider the following problem. When the error term in (1) is I(0) instead
of I(1), so that the regression is a cointegration rather than a spurious regression, while we apply the
same procedure as under the spurious assumption, how the estimator behaves asymptotically.

2.2.1 The dynamic OLS estimation

Under assumption 2, the DGP of yt is

yt = βxt + αvt + ut. (13)

Clearly, this is a cointegration regression, and the limiting distribution of the OLS estimator of β can
be written as

n(β̂n − β)→d

σ2
R 1
0
V (r)dU(r)

σ1
R 1
0
V (r)2dr

. (14)

2.2.2 GLS corrected dynamic regression estimation

Now, if we take a full difference as we did in the I(1) case, the regression becomes

∆yt = β∆xt + α∆vt + ut − ut−1 = z0tθ + ut − ut−1.

Note that we lose efficiency in this transformation as the estimator β̃ is now
√
n convergent rather

than n convergent as in the cointegration. With some minor revision of equation (6), we get results for
the limiting distribution of the estimator in this case:

√
n(θ̃n − θ)→d N

µ
0,
2σ2u(1− ψu)

σ2v
Q−1

¶
, (15)

where ψu is the first order autocorrelation coefficient of sequence {ut}.
Therefore, the GLS correction or differencing is not efficient if the variables are actually cointegrated.
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2.2.3 The Cochrane-Orcutt feasible GLS corrected dynamic regression estimation

Instead of taking full difference, if we estimate the autoregression coefficient in the error and use this
estimator to filter all sequences, we will obtain an estimator that is asymptotically equivalent to the OLS
estimator. Intuitively, in the case that the error is serially uncorrelated, then the AR(1) coefficient ρ̂n
will converge to zero, hence the transformed regression will be asymptotically equivalent to the original
regression. Or, if the error is stationary and serially correlated, then the AR(1) coefficient will be less
than unit, and as has been shown in Park and Phillips (1988), the GLS estimator and OLS estimator
in a cointegration regression are asymptotically equivalent.
First run OLS estimation of

yt = β̂nxt + α̂nvt + ût = z0tθ̂n + ût.

Then run an AR(1) regression of ût,

ût = ρ̂nût−1 + error.

Write
ût = yt − z0tθ + z0t(θ − θ̂n) = ut + z0t(θ − θ̂n).

Now, consider the Cochrane-Orcutt transformation (9) and estimate

ỹt = β̃nx̃t + α̃ṽt + error. (16)

The limiting distribution of β̃n can be shown to be

n(β̃n − β)→d

(1− ψu)
2σ1σ2

R 1
0
V (r)dU(r)

(1− ψu)
2σ22

R 1
0
V (r)2dr

=
σ2
R 1
0
V (r)dU(r)

σ1
R 1
0
V (r)2dr

. (17)

which is exactly the same as the limit of the OLS estimator given in (14). In summary, the feasible
GLS is not only valid in spurious regression, but also harmless to the estimator in the limit when the
regression is actually a cointegration.

2.3 Simulations

From above analysis, we note that the FGLS corrected estimator is a robust procedure with respect
to error specifications: it is asymptotically equivalent to the GLS corrected estimator in spurious re-
gressions and it is asymptotically equivalent to the OLS estimator in cointegration regressions. In this
section, we use simulations to study its finite sample performances compared to the other two esti-
mators. In the simulation, we generate vt and �t from independent standard normal distribution and
let ut = �t + 0.5�t. The parameters are set to be β = 2, α = 0.5. Figure 1 shows the finite sample
distribution when the error term is unit root nonstationary. The left figure plots the distribution of the
GLS corrected estimator and the right figure plots that of the FGLS corrected estimator. We can see
that although the FGLS corrected estimator is consistent, it has larger variance even when the sample
is relatively large. Figure 2 shows the finite sample distribution when the error term is I(0). The left
figure plots the distribution of the OLS estimator and the right figure plots that of the FGLS corrected
estimator. These two estimators both converge very fast and the difference between them is almost
invisible.
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Figure 1: Distributions of GLS and FGLS estimators when the error is I(1)
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2.4 Hausman-type cointegration test

In this section, we construct a Hausman-type cointegration test based on the difference of two esti-
mators: an OLS estimator (β̂n) and a GLS corrected estimator (β̃n) corresponding to ρ = 1. This
is equivalent to compare estimators in a level regression and in a differenced regression. We let the
error be I(0) under the null and the error be I(1) under the alternative. Our discussions above show
that under the null, both OLS and GLS corrected are consistent but OLS estimator is more efficient;
while under the alternative, which corresponds to a spurious regression, only GLS corrected estimator
is consistent. The DGP under the null is

yt = βxt + αvt + ut, (18)

and under the alternative the error is unit root nonstationary as given in assumption 1.
Let qn denote the difference between these two estimators

√
nqn =

√
n(β̃n − β̂n).

Under the null hypothesis of cointegration, the limiting distribution of
√
nqn is dominated by the

GLS corrected estimator β̃, since
√
nβ̂n is op(1). In particular, we can write

√
nqn →p N(0, τ

2), τ2 =
4σ2u(1− ψu)

σ2v(1 + ψv)

which is derived from (15). To estimate τ , define

τ̂2n =
4σ̂2u(1− ψ̂u)

σ̂2v(1 + ψ̂v)
,

where σ̂ and ψ̂ denote the sample counterparts of the variance and autocorrelation coefficients. Under
the assumptions on series ut, vt, it is clear that τn is a consistent estimator for τ .
Define the test statistics hn = nq2n/τ̂

2
n, then under the null hypothesis,

hn =
nq2n
τ̂2n
→ [N(0, τ2)]2

τ2
∼ χ2(1). (19)

Hence hn has a limiting χ2(1) distribution under the null hypothesis. Next, under the alternative
of I(1) errors, the inconsistent OLS estimator dominates.

qn = β̃n − β̂n → ξ (20)

where ξ is bounded in probability.
So under the alternative, for the statistics defined in (19), qn = Op(1), τ̂

2
n still converges to τ , hence

hn diverges. In summary, the Hausman-type test statistics has a limiting χ2(1) distribution under
the null and diverges under the alternative. By a similar argument, the Hausman-type test statistics
has a limiting χ2(p) distribution under the null and diverges under the alternative when there are p
cointegrating vectors to estimate.
Note that in this test the null hypothesis is cointegration, while usually the null of a cointegration test

is that no cointegrating relationship presents. Both type of tests will be useful to empirical researchers.
For instance, if the results reject the null of no cointegration and also reject the null of cointegration,
we may need to seek alternative model specifications.
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3 Empirical applications

In this section we apply the GLS-type correction methods and the Hausman-type cointegration test to
analyze four macroeconomic issues: (i) long-run money demand in the U.S.; (ii) long-run implications
of the consumption-leisure choice; (iii) output convergence among industrial and developing countries;
(iv) Purchasing Power Parity (PPP) for traded and non-traded goods.

3.1 U.S. money demand

The long-run money demand function has often been estimated under the cointegrating restriction
among real balances, real income, and interest rate. The restriction is legitimate if the money demand
function is stable in the long-run and if all variables are measured without nonstationary error. Indeed
Stock and Watson (1993) found supportive evidence of stable long-run M1 demand by estimating
cointegrating vectors. However, if money is measured with a nonstationary measurement error, we have
a spurious regression and the estimation results based on a cointegration regression become questionable.
We apply our GLS correction methods to estimate long-run income and interest elasticities of M1
demand. To this end, regression equations are set up with real money balance (MP ) as regressand and
income (y) and interest (i) as regressors. Following Stock and Watson (1993), the annual time series
for M1 deflated by the net national product price deflator is used for M

P , real net national product for
y and the six month commercial paper rate in percentage for i. M

P and y are in logarithms while three
different regression equations are considered depending on the measures of interest. We have tried the
following three functional forms. Equation 1 has been studied by Stock and Watson (1993).

ln

µ
M

P

¶
t

= α+ β ln (yt) + γit + ut, (equation 1)

ln

µ
M

P

¶
t

= α+ β ln (yt) + γ ln(it) + ut, (equation 2)

ln

µ
M

P

¶
t

= α+ β ln (yt) + γ ln

·
1 + it
it

¸
+ ut. (equation 3)

It is worth noting that the liquidity trap is possible for the latter two functional forms. When the
data contain periods with very low nominal interest rates, the latter two functional forms may be more
appropriate.
Table 1 presents the point estimates for β (income elasticity of money demand) and γ based on

the three estimators under scrutiny: dynamic OLS, GLS corrected dynamic regression estimator, and
FGLS corrected dynamic regression estimator.1 Several features emerge from the table. First, all the
estimated coefficients have theoretically ‘correct’ signs: positive signs for income elasticities and negative
signs for γ for the first two functional forms and positive signs for γ for the first third functional form.
Second, GLS corrected regression estimates of the income elasticity are implausibly low for all three
functional forms for low values of k, and increase to more plausible values near one as k increases. The
fact that the results become more plausible as k increases suggests that the endogeneity correction of
dynamic regressions works in this application for moderately large values of k such as 3 and 4. The
results for low values of k are consistent with those of low income elasticity estimates of first differenced
regressions before researchers started to apply the cointegration methods to estimate money demand.
Therefore, the estimators in the old literature of first differenced regressions are likely to be downward

1 In FGLS corrected dynamic regression estimator, the serial correlation coefficient in error term is estimated before
being applied to the Cochrane-Orcutt transformation while it is assumed to be unity in GLS corrected dynamic regression
estimator which is equivalent to regressing the first difference of variables without constant term.
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biased because of the endogeneity problem. Third, all point estimates of the three estimators are very
similar, and the Hausman test fails to reject the null hypothesis of cointegration for large enough values
of k. Hence there is little evidence against cointegration. However, it should be noted that a small
random walk component is very hard to detect by any test for cointegration. Therefore, it is assuring
to know that all three estimators are similar for large enough values of k, and the estimates are robust
with respect to whether the regression error is I(0) or I(1).
We report the value of k chosen by the Bayesian Information Criterion (BIC) rule throughout our

empirical applications in order to give some guidance in interpreting results. It is beyond the scope of
this paper to study detailed analysis of how k should be chosen because this issue has not been settled
in the literature of dynamic cointegrating regressions.

3.2 Long-run implications of the consumption-leisure choice

Consider a simplified version of Cooley and Ogaki’s (1996) model of consumption and leisure in which
representative household maximizes

U = E0[
∞X
t=0

δtu(t)]

where Et denotes the expectation conditioned on the information available at t. We adopt a simple
intraperiod utility function that is assumed to be time- and state-separable and separable in nondurable
consumption, durable consumption, and leisure

u(t) =
C(t)1−β − 1
1− β

+ v(l(t))

where v(·) represents a continuously differentiable concave function, C(t) is nondurable consumption,
and l(t) is leisure.
The usual first order condition for a household that equates the real wage rate with the marginal

rate of substitution between leisure and consumption is given as:

W (t) =
v0(l(t))
C(t)−β

whereW (t) is the real wage rate. We assume that the stochastic process of leisure is (strictly) stationary
in the equilibrium as in Eichenbaum, Hansen, and Singleton (1988). Then an implication of the first
order condition is that ln(W (t)) − β ln(C(t)) = ln(v0(l(t))) is stationary. When we assume that the
log of consumption is difference stationary, this implies that the log of the real wage rate and the log
of consumption are cointegrated with a cointegrating vector (1,−β)0. Now assume that ln(W (t)) and
ln(C(t)) are measured with errors. Imagine that the ln(C(t)) is measured with a stationary measurement
error, ξ(t), and that ln(W (t)) is measured with a difference stationary measurement error, �(t) (perhaps
because of the difficulty in measuring fringe benefits). Assume that �(t) is independent of ln(C(t)) and
ξ(t) at all leads and lags. Consider a regression

ln(Wm(t)) = a+ β ln(Cm(t)) + u(t), (21)

where Wm(t) is the measured real wage rate, Cm(t) is measured consumption, and u(t) = −�(t) +
βξ(t)+ln(v0(l(t)))−a. If �(t) is stationary, then u(t) is stationary, and Regression (21) is a cointegrating
regression as in Cooley and Ogaki. In this simple version, the preference parameter β is the Relative
Risk Aversion (RRA) coefficient, which is equal to the reciprocal of the intertemporal elasticity of
substitution (IES). Cooley and Ogaki show that the same regression can be used to estimate the
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reciprocal of the long-run IES when preferences for consumption is subjected to time nonseparability
such as habit formation. For simplicity, we interpret β as the RRA coefficient in this paper.
If �(t) is unit root nonstationary, then Regression (21) is a spurious regression because u(t) is

nonstationary in this case. Hence the standard methods for cointegrating regressions cannot be used.
However, the preference parameter β can still be estimated by the spurious regression method.
Table 2 presents the estimation results for the RRA coefficient (β) based on various estimators. We

used the same data set that Cooley and Ogaki used.2 The results in Table 2 illustrate several points.
First, all point estimates for β have theoretically correct positive sign. Second, for nondurables (ND),
GLS-corrected dynamic regression estimates of β are much lower than Dynamic OLS estimates for all
values of k. As a result, the Hausman-type cointegration test rejects the null hypothesis of cointegration
for all values of k at the 1 percent level. Therefore, the evidence supports the view that Regression (21)
is a spurious regression, and the true value of the RRA coefficient is likely to be much lower than the
dynamic OLS estimates. Both the GLS corrected and the robust FGLS corrected dynamic regression
estimation results are consistent with the view that the RRA coefficient is about one for the value of k
chosen by BIC. For nondurables plus services (NDS), GLS corrected dynamic regression estimates of
β are much lower than Dynamic OLS estimates for small values of k. As a result, the Hausman-type
cointegration test rejects the null hypothesis of cointegration at the 5 percent level when k is 0, 1, and
2. It still rejects the null hypothesis of cointegration at the 5 percent level when k is 3. It does not
reject the null hypothesis when k is 4 and 5. According to the BIC rule, k is chosen to be 3, and
there is some evidence against cointegration. However, because the GLS corrected dynamic regression
estimates get closer to dynamic OLS estimates as k increases, the evidence is not very strong. It is
likely that a small random walk component exists for the error term of the regression for NDS, making
it a spurious regression. The robust FGLS corrected dynamic regression estimates are close to both
GLS corrected dynamic regression estimates and dynamic OLS estimates as long as k is 3 or greater.
Thus, we have fairly strong evidence that we have a spurious regression for ND, and some evidence

that we have spurious regression for NDS. The true value of RRA is likely to be about one for both
ND and NDS.

3.3 Output convergence across national economies

In this section, we apply the techniques to reexamine a long standing issue of macroeconomics, the
hypothesis of output convergence. For this application, our main purpose is not to estimate unknown
structural parameters, but to test the null hypothesis of cointegration with the Hausman-type test.
As a key proposition of the neoclassical growth model, the hypothesis has been one of the popular
subjects in macroeconomics and has attracted considerable attention in the empirical field particularly
during the last decade. Besides its important policy implications, the convergence hypothesis has been
used as a criterion to discern the two main growth theories, the exogenous growth theory and the
endogenous growth theory. However, it remains the subject of continuing debate mainly because the
empirical evidence supporting the hypothesis is mixed. Nevertheless the established literature based
on popular international dataset such as the Summers-Heston (1991) suggests a stylized fact in output
convergence among various national economies: convergence among industrialized countries but not
among developing countries and not between industrialized and developing countries.
Given that a mean stationary stochastic process of output disparities between two economies is

interpreted as supportive evidence of stochastic convergence, unit-root or cointegration testing proce-
dures are often used by empirical researchers to evaluate the convergence hypothesis. In this vein, our

2See Cooley and Ogaki (1996, page 127) for the detailed description of data.
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techniques proposed here fits in the study of output convergence. We consider four developing countries
(Columbia, Ecuador, Egypt, and Pakistan) along with four industrial countries (Germany, Luxemburg,
New Zealand, Switzerland). The raw data are extracted from the Penn World Tables of Summers-
Heston (1991) and consist of annual real GDP per capita (RGDPCH) over the period of 1950-1992.
The following two regression equations are considered with regard to the cointegration relation.

yDt = α+ βyIt + εt, (22)

yIt = α+ βyIt + εt, (23)

where yDEV
t and yIND

t denote log real GDP per capita for developing and industrial countries, respec-
tively.
Tables 3-1 and 3-2 report the results which exhibit a large variation in estimated coefficients. Recall

that our interest in this application lies in the cointegration test based on the Hausman-type test. As can
be seen from Table 3-1, irrespective of country combinations, the null hypothesis of cointegration can
be rejected when developing countries are regressed onto industrial countries, indicating that there is
little evidence of output convergence between developing countries and industrial countries. The picture
changes dramatically when industrial countries are regressed onto industrial countries as in (23). Table
3-2 displays that the Hausman test fail to reject the null of cointegration in all cases considered. Our
finding is therefore consistent with the stylized fact in the literature of the so-called convergence clubs.

3.4 PPP for traded and non-traded goods

As a major building block for many models of exchange rate determination, PPP has been one of the
most heavily studied subjects in international macroeconomics. Despite extensive research, however,
the empirical evidence on PPP remains inconclusive, largely due to econometric challenges involved in
determining its validity. As is generally agreed, most real exchange rates show very slow convergence
which makes estimating long-run relationships difficult with existing statistical tools. The literature
suggests a number of potential explanations for the very slow adjustment of relative price: volatility
of nominal exchange-rate; market frictions such as trade barriers and transportation costs; imperfect
competition in product markets; and the presence of non-traded goods in the price basket. According
to the commodity-arbitrage view of PPP, the law of one price holds only in tradable goods and the
departures from PPP are primarily attributed to the large weight placed on nontraded goods in the
CPI. This view has obtained support from many empirical studies based on disaggregated price indices.
They tend to provide ample evidence that prices in non-traded goods are much more disperse than
traded goods and consequently non-traded goods exhibit far larger deviations from PPP than traded
goods. Given that general price indices involve a mix of both traded and non-traded goods, highly
persistent deviations of non-traded goods from PPP can lead to the lack of conclusive evidence on the
long run PPP relationship. As in the previous application, our main purpose for this application is not
to estimate unknown structural parameters, but to test the null hypothesis of cointegration with the
Hausman-type test.
Let pt and p∗t denote the logarithms of the consumer price indices in the base country and foreign

country respectively, and st be the logarithm of the price of foreign country’s currency in terms of the
base country’s currency. Long-run PPP requires that a linear combination of these three variables be
stationary. To be more specific, long-run PPP is said to hold if ft = st+p∗t is cointegrated with pt such
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that �t ∼ I(0) in

fTt = α+ βpTt + �t,

fNt = α+ βpNt + �t,

where the superscripts T and N denote the price levels of traded goods and non-traded goods, respec-
tively.
Following the method of Stockman and Tesar (1995), Kim (2004) recently used the real exchange

rate for total consumption using the general price deflator, and the real exchange rate for traded
and non-traded goods using implicit deflators for non-service consumption and service consumption,
respectively.3 We use Kim’s dataset to apply our techniques to the linear combination of sectorally
decomposed variables. Table 4 presents the results using quarterly price and exchange rate data for
six countries, Canada, France, Italy, Japan, U.K., and U.S. for the period of 1974 Q1 through 1998
Q4. With the Canadian dollar used as numeraire, Table 4 presents the estimates for β which should
be close to unity according to long-run PPP. For traded goods, estimates are above unity in most cases
but the variation across estimators does not seem substantial, resulting in non-rejection of the null of
cointegration in all cases considered. By sharp contrast, the Hausman-type cointegration test rejects
the null hypothesis in every country when the price for non-traded goods is used. It is noteworthy that
there exists considerable difference between GLS-corrected estimates for β and their DOLS and FGLS
counterparts which are far greater than unity. That is, supportive evidence of PPP is found for traded
goods but not for non-traded goods, congruent with the general intuition as well as the findings by
other studies in the literature such as Kakkar and Ogaki (1999) and Kim (2004).4

4 Concluding remarks

In this paper, we developed two estimators to estimate structural parameters in spurious regressions:
GLS corrected dynamic regression and FGLS corrected dynamic regression estimators. A GLS corrected
dynamic regression estimator is basically a first difference version of a dynamic OLS regression estimator.
The asymptotic theory showed that, under some regularity conditions, the endogeneity correction of
the dynamic regression works for the first differenced regressions for both cointegrating and spurious
regressions. This result is useful because it is not intuitively clear that the endogeneity correction works
even in regressions with stationary first differenced variables.
We also developed the Hausman-type cointegration test by comparing the dynamic OLS regression

and GLS corrected dynamic regression estimators. As noted in the Introduction, this task is important
because no test for cointegration has been developed for dynamic OLS, and because tests for the null
hypothesis of cointegration are useful in many applications.
We applied our estimation and testing methods to four types of applications. In the first two appli-

cations, we estimated unknown structural parameters. The main purpose of the last two applications
was to test for cointegration.
In the first application of estimating the money demand function, the results suggest that the

endogeneity correction of the dynamic regression works with a moderately large number of leads and lags
for the GLS corrected dynamic regression estimator. The GLS corrected dynamic regression estimates
are very low with low orders of leads and lags, and then increase to more plausible values as the order

3For details, see the Appendix for the description of data. We thank JB Kim for sharing the dataset.
4Engel (1999) finds little evidence for long-run PPP for traded goods with his variance decomposition method. How-

ever, it should be noted that his method is designed to study variations of real exchange rates over relatively shorter
periods compared with coingegration-type methods that are designed to study long-run relationships.
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of leads and lags increases. Dynamic OLS estimates are close to the GLS corrected dynamic regression
estimates for large enough order of leads and lags, and we find little evidence against cointegration with
the Hausman-type cointegration test. The FGLS corrected dynamic regression estimates are very close
to the GLS corrected dynamic regression and the dynamic OLS estimates for large enough order of
leads and lags.
In the second application of the long-run implications of the consumption-leisure choice, we found

strong evidence against cointegration when nondurables are used as the measure of consumption with the
Hausman-type cointegration test. We also found some evidence against cointegration when nondurables
plus services are used as the measure of consumption. We estimate the RRA coefficient to be about
one with both GLS corrected and FGLS corrected dynamic regression estimators.
Hence, in these first two applications, the FGLS corrected dynamic regression estimator worked well

in the sense that it yielded estimates that are close to those of the estimator that seems to be correctly
specified. This is consistent with our simulation results in Section 2 that the small sample efficiency
loss from using FGLS corrected dynamic regression estimator is negligible for reasonable sample sizes.
Therefore, we recommend the robust FGLS corrected dynamic regression estimator when the researcher
is unsure about whether or not the regression error is I(0) or I(1). This is important because it is difficult
to detect a small random walk component in the error term when the error is actually I(1) and to detect
a small deviation from a unit root when the dominant autoregressive root is very close to one when the
error is actually I(0).
We applied the Hausman-type cointegration test to log real output of pairs of countries to study

output convergence across national economies. Our test results are consistent with the stylized fact
of convergence clubs in that we reject the null hypothesis of cointegration between developing and
developed countries while failing to reject the null hypothesis of cointegration between two developed
countries. We also applied the Hausman-type cointegration test to study long-run PPP. Our test results
support the view that long-run PPP holds for traded goods but not for non-traded goods.
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Appendix

Appendix A: Proof of results in section 2.1

To show the distribution of the OLS estimator in regression (3), define

Hn =

·
n 0

0 n1/2

¸
. (24)

The OLS estimator for β and α can be written as"
β̂n − β

α̂− α

#
=

·
H−1n
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2
t
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For the first term,·
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where σ2v = E(v2t ). For the second term,·
n−2
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n−1
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t=1 vtet

¸
→d

"
σ1σ2

R 1
0
V (r)U(r)dr

σ1σ2
R 1
0
U(r)dV (r)

#
.

Equation (4) then follows.
To show the limit distribution of the GLS corrected estimator in regression (5), let zt = (∆xt,∆vt)5,

then
√
n(θ̃n − θ) =

"
n−1

nX
t=1

ztz
0
t

#−1 "
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nX
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#
. (26)

For the first term,

n−1
nX
t=1

ztz
0
t =
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P
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¸
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where ψv is the first order autocorrelation coefficient of {vt}.
For the second term, we want to show that
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¸
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To show this, let λ = (λ1, λ2)0 be an arbitrary vector of real numbers.
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2
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0Qλ)
5Through this paper, we always use zt to denote the vector of independent variables and let θ to denote the vector

of parameters (but keep in mind that we are mostly interested in β). Note that in different regressions, those symbols
denote different variables.
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Hence, for the quantity defined in (26), we have the limiting distribution given in (6).
To derive the limiting distribution for the FGLS corrected estimator, we first derive the limiting

distribution for ρ̂n in regression (8). Write the process of R̂t as

R̂t = yt − β̂xt − α̂vt

= yt−1 − β̂xt−1 − α̂vt−1 + [(yt − yt−1)− β̂n(xt − xt−1)− α̂(vt − vt−1)]

= R̂t−1 + [(β − β̂n)vt + (α− α̂)(vt − vt−1) + ut]

= R̂t−1 + ht, say.

>From this expression, we can see that R̂t is a unit root process with serially correlated error ht. Then
the OLS estimator ρ̂n can be written as

ρ̂n =

Pn
t=1 R̂tR̂t−1Pn
t=1 R̂

2
t−1

= 1 +

Pn
t=1 R̂t−1htPn
t=1 R̂

2
t−1

To derive the limit of ρ̂n, write

R̂t = yt − β̂nxt − α̂nvt = (β − β̂n)xt + (α− α̂n)vt + et. (27)

Hence the denominator

R̂2t = (β − β̂n)x
2
t + e2t + 2(β − β̂n)xtet

+(α− α̂n)
2v2t + 2(α− α̂n)(β − β̂n)xtvt + 2(α− α̂n)etvt,

where we can see that the sum of the first line diverges faster as they are products of I(1) variables. In
particular,
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For the numerator,

R̂t−1ht = [(β − β̂n)xt−1 + (α− α̂)vt−1 + et−1][(β − β̂n + α− α̂)vt − (α− α̂)vt−1 + ut]

The sum of all the terms of products in this expression converges when normed with n−1. We omit the
details here as we will not make use of the exact distribution of ρ̂n. Plug in the limits of all the terms,
we can write

n−1
nX
t=1

R̂t−1ht → η, say.

Hence,

n(ρ̂n − 1) =
n−1

Pn
t=1 R̂t−1ht

n−2
Pn

t=1 R̂
2
t−1

→d
η

ζ
. (28)

Actually, in our following computations, all we need to know is that

ρ̂n − 1 = op(1) and n(ρ̂n − 1) = Op(1).
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Below, we show how to derive the limit distribution for θ̃. For the sequence of ỹt, we can write it as

ỹt = yt − ρ̂nyt−1
= βxt + αvt + et − ρ̂n(βxt−1 + αvt−1 + et−1)

= β(xt − ρ̂nxt−1) + α(vt − ρ̂nvt−1) + (et − et−1) + (1− ρ̂n)et−1
= βx̃t + αṽt + ut + (1− ρ̂n)et−1
= z0tθ + ut + (1− ρ̂n)et−1

Now, we can write

θ̂ − θ =

"
nX
t=1

ztz
0
t

#−1 " nX
t=1

zt[ut + (1− ρ̂n)et−1]

#
. (29)

For the first term:
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ṽ2t

¸
The asymptotics of each term follows. First,

nX
t=1

x̃2t =
nX
t=1

(xt − ρ̂nxt−1)
2

=
nX
t=1

[(1− ρ̂n)xt−1 + vt]
2

= (1− ρ̂n)
2

nX
t=1

x2t−1 + 2(1− ρ̂n)
nX
t=1

xt−1vt +
nX
t=1

v2t .

Hence,

n−1
nX
t=1

x̃2t = n(1− ρ̂n)
2

Ã
n−2

nX
t=1

x2t−1

!
+ 2(1− ρ̂n)

Ã
n−1

nX
t=1

xt−1vt

!
+ n−1

nX
t=1

v2t

= n−1
nX
t=1

v2t + op(1)

→ σ2v

Similarly,

n−1
X
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Now, consider the second term in (29)
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It is not hard to see that n−1
Pn

t=1 zt[ut+(1− ρ̂n)et−1]→p 0. Intuitively, x̃t behaves asymptotically
like vt, while u and v are independent by assumption. Again, our remaining task is to show that

n−1/2
nX
t=1

zt[ut + (1− ρ̂n)et−1]→ N(0, σ2vσ
2
uQ). (31)

This can be shown in the same way as in the proof for (6). Combine (31) with (30), we obtain the limit
distribution for θ̃, as given in (11).

Appendix B: Some extensions

So far we have assumed that there is no constant term or deterministic time trends in the DGP of yt.
If there is a constant term, e.g.

yt = δ + βxt + αvt + ut.

Correspondingly, in the OLS estimation, we also include a constant.
The limit of β̂n and α̂n are similar as in the case without constant, except that we have demeaned

Brownian motions instead of standard Brownian motions in the limit. Since this is still a spurious
regression, the estimator of the constant term diverges as was shown in Phillips (1986). Here

δ̂n = ȳ − β̂nx̄− α̂nv̄t

= δ0 + (β̂n − β)x̄+ (α̂n − α)v̄ + ē

Hence
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where we let ξ̄ to denote the limit of β̂n − β. Next, if we do GLS or the differenced regression, the
constant is canceled so we could have the same limit result as is given by (6). Finally, consider the
Cochrane-Orcutt feasible GLS estimation. Still let R̂t denote the OLS residual

R̂t = yt − δ̂n − β̂nxt − α̂nvt.

Then do another OLS estimation in

R̂t = ρ̂nR̂t−1 + error.

Write

R̂t = yt − δ̂n − β̂nxt − α̂nvt

= R̂t−1 + [(β − β̂n)vt + (α− α̂n)(vt − vt−1) + ut]

= R̂t−1 + ht

which takes the same form as in the previous section where no constant is included. Hence we still have
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2
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Write the process of R̂t as:

R̂t = yt − δ̂n − β̂nxt − α̂nvt = (β − β̂n)(xt − x̄) + (α− α̂n)(vt − v̄) + (et − ē). (32)

Comparing equation (32) with (27), the only difference in (32) is that all terms are subtracted by their
sample means. This will correspond to demeaned Brownian motions instead of standard Brownian
motions in the limit of the distribution of ρ̂n. Using similar methods as in the previous section, we can
show that

ρ̂n − 1 = op(1) and n(ρ̂n − 1) = Op(1).

Next, conduct the Cochrane-Orcutt transformation as in (9), and consider the OLS estimator in the
regression

ỹt = β̃nx̃t + α̃nṽt + error.

Define zt = (x̃t, ṽt)0 and θ = (β, α)0, then
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For ỹt, write
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= (1− ρ̂n)δ + βx̃t + αṽt + ut + (1− ρ̂n)et−1
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Hence we can write
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The only difference of (33) with (29) is that we have a term (1 − ρ̂n)δ here. However, since δ is
just a finite constant and n(1 − ρ̂n) = Op(1), this term disappears in the limit. Therefore, using the
Cochrane-Orcutt transformation, the limiting distribution of the estimators are the same no matter
whether we have or have not a constant in the data generating process of the data. So we have the
same result as given by (6).

Appendix C: Proof of results in section 2.2

To show the limit distribution of the dynamic OLS estimator in the cointegration, using the matrix Hn

defined in (24), we can write"
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so the estimator of the I(1) and I(0) components are asymptotically independent. For the second term
on the right hand side, ·
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Equation (14) then follows.
To show the limit distribution for FGLS corrected estimator in regression (16), write
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2
t

→p ψu

Conduct the Cochrane-Orcutt transformation (9) and estimate

ỹt = β̃x̃t + α̃ṽt + error.

For the sequence of ỹt, we can write it as

ỹt = βx̃t + αṽt + ut − ρ̂nut−1.

Using the same weight matrix Hn, write·
n(β̃ − β)

n1/2(α̃− α)

¸
=

·
H−1n

· Pn
t=1 x̃

2
t

Pn
t=1 x̃tṽtPn

t=1 x̃tṽt
Pn

t=1 ṽ
2
t

¸
H−1n

¸−1 ·
n−1

Pn
t=1 x̃t(ut − ρ̂nut−1)

n−1/2
Pn

t=1 ṽt(ut − ρ̂nut−1)

¸
(36)

There are three different elements in the first term. Using similar methods as in the earlier proofs,
we can show that

n−2
nX
t=1

x̃2t →d (1− ψu)
2σ21

Z 1

0

V (r)2dr

n−2/3
nX
t=1

x̃tṽt →p 0

n−1
nX
t=1

ṽ2 → (1− 2ψuψv + ψ2u)σ
2
v
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Hence, the limit of the first item in (36) is

H−1n

"
nX
t=1

ztz
0
t

#
H−1n =

·
n−2

Pn
t=1 x̃

2 n−3/2
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t=1 x̃ṽ

n−3/2
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t=1 ṽ
2

¸

→d

"
(1− ψu)

2σ21
R 1
0
V (r)2dr 0

0 (1− 2ψuψv + ψ2u)σ
2
v

#
.

Next, consider the second term in (36). Actually, we are only interested in the first element,

n−1
nX
t=1

x̃(ut − ρ̂nut−1)

= n−1
nX
t=1

(vt + (1− ρ̂n)xt−1)(ut − ρ̂nut−1)

= n−1
nX
t=1

vtut − ρ̂n

nX
t=1

vtut−1 + (1− ρ̂n)n
−1

nX
t=1

xt−1ut − ρ̂n(1− ρ̂n)n
−1

nX
t=1

xt−1ut−1

→ (1− ψu)
2σ1σ2

Z 1

0

V (r)dU(r).

Therefore, we obtain the limit distribution for β̃n as given in (17).

Appendix D: Data descriptions

In the first two empirical analyses, we use the same data set as in Stock and Watson (1993, page 817)
for the U.S. money demand, and the data set of Cooley and Ogaki (1996, page 127) for the long-run
intertemporal elasticity of substitution. Readers are referred to the original work for further details on
data.
Per capita output series are extracted from the Penn World Tables of Robert Summers and Alan

Heston (1991). They are annual data on real GDP per capita (RGDPCH) for four developing countries
(Columbia, Ecuador, Egypt, and Pakistan) along with four industrial countries (Germany, Luxemburg,
New Zealand, and Switzerland) over the period of 1950-1992.
In the PPP application, we borrow the dataset from Kim (2004) who constructed the real exchange

rate for total consumption using the general price deflator, and the real exchange rate for traded
and non-traded goods using implicit deflators for non-service consumption and service consumption,
respectively. Data are quarterly observations spanning from 1974 Q1 to 1998 Q4. The exchange rates
for Canada, France, Italy, Japan, the United Kingdom, and the United States are taken from the
International Financial Statistics (IFS) CD-ROM, and bilateral real exchange rates of traded and non-
traded goods classified by type and total consumption deflators from the Quarterly National Accounts
and Data Stream are studied.
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Table 1: Application to Long Run U.S. Money Demand

Estimator k Equation 1 Equation 2 Equation 3
β̂ γ̂ β̂ γ̂ β̂ γ̂

AR(1) Error Term
0 0.944 (0.054) -0.090 (0.015) 0.889 (0.057) -0.308 (0.058) 0.850 (0.085) 0.906 (0.280)
1 0.958 (0.048) -0.096 (0.014) 0.884 (0.046) -0.313 (0.045) 0.843 (0.066) 0.915 (0.216)
2 0.970 (0.051) -0.101 (0.014) 0.879 (0.044) -0.320 (0.043) 0.837 (0.072) 0.941 (0.233)

DOLS 3 0.975 (0.055) -0.104 (0.015) 0.871 (0.036) -0.328 (0.035) 0.832 (0.062) 0.975 (0.205)
4 0.967 (0.054) -0.108 (0.015) 0.855 (0.029) -0.334 (0.028) 0.824 (0.065) 0.995 (0.215)
BIC
[lag] [3] [5] [5]
0 0.407 (0.081) -0.014 (0.004) 0.419 (0.079) -0.086 (0.022) 0.388 (0.078) 0.300 (0.082)
1 0.654 (0.119) -0.025 (0.010) 0.685 (0.115) -0.177 (0.046) 0.643 (0.115) 0.506 (0.148)
2 0.837 (0.134) -0.050 (0.013) 0.848 (0.130) -0.248 (0.053) 0.787 (0.133) 0.620 (0.161)

GLS- 3 0.856 (0.145) -0.067 (0.017) 0.884 (0.140) -0.289 (0.061) 0.816 (0.146) 0.725 (0.185)
corrected 4 0.962 (0.161) -0.086 (0.022) 0.898 (0.151) -0.283 (0.067) 0.811 (0.153) 0.654 (0.195)

BIC
[lag] [2] [2] [5]
0 0.942 (0.052) -0.083 (0.023) 0.893 (0.049) -0.290 (0.079) 0.858 (0.071) 0.850 (0.435)
1 0.888 (0.040) -0.065 (0.009) 0.872 (0.035) -0.278 (0.030) 0.815 (0.045) 0.744 (0.115)

FGLS- 2 0.940 (0.045) -0.081 (0.010) 0.901 (0.036) -0.309 (0.031) 0.840 (0.054) 0.797 (0.128)
corrected 3 0.980 (0.050) -0.096 (0.011) 0.905 (0.029) -0.330 (0.026) 0.851 (0.046) 0.912 (0.124)
AR(1) 4 1.010 (0.045) -0.108 (0.011) 0.886 (0.025) -0.333 (0.023) 0.833 (0.051) 0.895 (0.133)

BIC
[lag] [4] [5] [5]
0 0.942 (0.052) -0.083 (0.023) 0.893 (0.049) -0.290 (0.079) 0.858 (0.071) 0.850 (0.435)
1 0.900 (0.039) -0.069 (0.009) 0.872 (0.038) -0.276 (0.031) 0.809 (0.049) 0.722 (0.118)

FGLS- 2 0.948 (0.042) -0.086 (0.010) 0.894 (0.033) -0.312 (0.029) 0.839 (0.049) 0.830 (0.131)
corrected 3 0.991 (0.044) -0.100 (0.011) 0.907 (0.029) -0.332 (0.026) 0.853 (0.050) 0.903 (0.128)
AR(2) 4 1.012 (0.042) -0.109 (0.010) 0.889 (0.026) -0.335 (0.023) 0.827 (0.061) 0.856 (0.142)

BIC
[lag] [3] [5] [5]
0 289.892‡ 113.485‡ 79.188‡
1 54.427‡ 10.203‡ 9.946‡

Hausman- 2 15.059‡ 1.867 3.978
Test 3 4.690† 0.460 1.852

4 1.112 0.820 3.102

Note:

ln

µ
M

P

¶
t

= α+ β ln (yt) + γit + ut, (equation 1)

ln

µ
M

P

¶
t

= α+ β ln (yt) + γ ln(it) + ut, (equation 2)

ln

µ
M

P

¶
t

= α+ β ln (yt) + γ ln

·
1 + it

it

¸
+ ut. (equation 3)

‘GLS-corrected (FGLS-corrected)’ denotes the GLS (FGLS) corrected dynamic regression estimator. Figures in the parenthesis

represent standard errors. ‘k’ denotes the maximum length of leads and lags. In FGLS corrected estimation, the serial correlation

coefficient in error term is estimated before being applied to the Cochrane-Orcutt transformation whereas it is assumed to be

unity in GLS corrected estimation which is analogous to regressing the first difference of variables without constant term. AR(1)

error term in the FGLS corrected estimation is structured as ut = ρut−1+�t while AR(2) error term is ut = δ1ut−1+δ2ut−2+�t.

Hausman test represents the Hausman-type cointegration test as stipulated in section 2.4. The test statistic is constructed as

(Γ̂OLS − Γ̃GLS)Σ(Γ̂OLS − Γ̃GLS)0 → χ2(2) where Γ = [β, γ] and Σ =
·

var(β̃GLS cov(β̃GLS , γ̃GLS)

cov(β̃GLS , γ̃GLS) var(γ̃GLS)

¸
. The critical

values of χ2(2) are 4.61, 5.99 and 9.21 for 10%, 5%, and 1% significance levels. ‡(†) represents that the null hypothesis of
β̂OLS = β̃GLS can be rejected at 5% (10%).

23



Table 2: Application to Preference Parameter (β) Estimation

Estimator k ND NDS
0 1.865 (0.218) 1.102 (0.052)
1 1.865 (0.192) 1.103 (0.052)

DOLS 2 1.870 (0.181) 1.102 (0.042)
3 1.873 (0.193) 1.100 (0.041)
4 1.877 (0.204) 1.099 (0.036)
5 1.880 (0.196) 1.095 (0.033)

BIC [lag] [0] [0]
0 0.222 (0.061) 0.480 (0.066)
1 0.628 (0.091) 0.796 (0.080)

GLS- 2 0.720 (0.102) 0.855 (0.084)
corrected 3 0.850 (0.110) 0.924 (0.085)

4 0.963 (0.117) 0.967 (0.087)
5 1.041 (0.123) 0.995 (0.088)

BIC [lag] [3] [3]
0 1.874 (0.151) 1.106 (0.095)
1 0.983 (0.087) 0.912 (0.041)

FGLS- 2 1.160 (0.089) 0.952 (0.034)
corrected 3 1.199 (0.097) 0.978 (0.032)
AR(1) 4 1.207 (0.107) 0.998 (0.030)

5 1.391 (0.104) 1.018 (0.028)
BIC [lag] [4] [3]

0 1.874 (0.151) 1.106 (0.095)
1 0.928 (0.086) 0.932 (0.035)

FGLS- 2 1.101 (0.092) 0.911 (0.038)
corrected 3 1.155 (0.099) 0.975 (0.031)
AR(2) 4 1.280 (0.107) 1.000 (0.029)

5 1.346 (0.110) 1.009 (0.029)
BIC [lag] [4] [3]

0 737.38‡ 87.81‡
1 185.37‡ 14.56‡

Hausman- 2 125.88‡ 8.56‡
Test 3 86.79‡ 4.30†

4 60.53‡ 2.31
5 46.22‡ 1.30

Note: Results for W (t) = v0(l(t))
C(t)−β . ‘GLS-corrected (FGLS-corrected)’ denotes the GLS (FGLS) corrected dynamic

regression estimator. Figures in the parenthesis represent standard errors. ‘k’ denotes the maximum length of leads

and lags. In FGLS corrected estimation, the serial correlation coefficient in error term is estimated before being applied to the

Cochrane-Orcutt transformation whereas it is assumed to be unity in GLS corrected estimation which is analogous to regressing

the first difference of variables without constant term. AR(1) error term in the FGLS is structured as ut = ρut−1 + �t while

AR(2) error term is ut = δ1ut−1 + δ2ut−2 + �t. Hausman test represents the Hausman-type cointegration test as stipulated

in section 2.4. The test statistic is constructed as (β̂OLS−β̃GLS)2)
V ar(β̃GLS)

→ χ2(1). The critical values of χ2(1) are 2.71, 3.84

and 6.63 for ten, five, and one percent significance level. ‡(†) asterisk represent that the null hypothesis of β̂OLS = β̃GLS

can be rejected at 5% (10%) significance level.
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Table 3-1: Application to Output Convergence (Regressand: developing countries; Regressor:
industrial countries)

Regressand Regressor k DOLS GLS- FGLS- Hausman
corrected corrected Test

0 0.680 (0.156) 0.464 (0.091) 0.635 (0.030) 5.678‡
1 0.755 (0.179) 0.501 (0.111) 0.963 (0.109) 5.221‡

GER 2 0.876 (0.245) 0.490 (0.130) 1.087 (0.121) 8.850‡
3 0.963 (0.235) 0.409 (0.154) 0.979 (0.058) 12.984‡
4 1.105 (0.267) 0.607 (0.169) 1.029 (0.067) 8.635‡
BIC [0] [0] [3]
0 0.923 (0.144) 0.322 (0.097) 0.915 (0.009) 38.115‡
1 0.953 (0.208) 0.642 (0.151) 0.669 (0.143) 4.276‡

LUX 2 0.993 (0.136) 0.633 (0.167) 0.892 (0.103) 4.633‡
3 1.035 (0.118) 0.657 (0.193) 1.030 (0.095) 3.841‡
4 1.087 (0.093) 0.739 (0.223) 1.119 (0.075) 2.443
BIC [1] [1] [1]

COL 0 1.218 (0.454) 0.363 (0.117) 1.219 (0.053) 53.309‡
1 1.213 (0.368) 0.650 (0.199) 0.931 (0.270) 7.969‡

NZL 2 1.203 (0.309) 0.600 (0.241) 1.425 (0.221) 6.245‡
3 1.218 (0.330) 0.748 (0.261) 1.608 (0.235) 3.232†
4 1.178 (0.328) 0.788 (0.294) 1.801 (0.191) 1.760
BIC [0] [0] [1]
0 0.972 (0.349) 0.493 (0.121) 0.969 (0.021) 15.639‡
1 0.967 (0.343) 0.663 (0.162) 0.875 (0.284) 3.498‡

SWI 2 0.948 (0.327) 0.662 (0.189) 1.350 (0.248) 2.289
3 0.901 (0.291) 0.567 (0.212) 1.435 (0.175) 2.496
4 0.926 (0.437) 0.576 (0.210) 1.491 (0.212) 2.769‡
BIC [0] [0] [1]
0 0.784 (0.311) 0.344 (0.159) 0.779 (0.009) 7.639‡
1 0.816 (0.400) 0.472 (0.191) 0.742 (0.413) 3.228†

GER 2 0.873 (0.583) 0.472 (0.231) 0.956 (0.503) 3.008†
3 0.913 (0.596) 0.357 (0.273) 1.259 (0.289) 4.155‡
4 1.041 (0.743) 0.501 (0.322) 1.245 (0.252) 2.815†
BIC [0] [0] [1]
0 1.078 (0.697) 0.129 (0.157) 1.067 (0.034) 36.651‡
1 1.158 (0.661) 0.393 (0.263) 0.085 (0.293) 8.442‡

LUX 2 1.261 (0.410) 0.397 (0.291) 0.631 (0.246) 8.806‡
3 1.347 (0.696) 0.734 (0.301) 0.573 (0.407) 4.153‡
4 1.438 (0.518) 0.848 (0.343) 1.076 (0.362) 2.963†
BIC [0] [0] [1]

ECU 0 1.496 (0.418) 0.299 (0.182) 1.505 (0.091) 43.377‡
1 1.499 (0.446) 0.608 (0.331) 0.988 (0.366) 7.230‡

NZL 2 1.487 (0.536) 0.662 (0.387) 1.087 (0.436) 4.538‡
3 1.520 (0.573) 0.795 (0.409) 1.367 (0.465) 3.148†
4 1.535 (0.631) 0.928 (0.462) 1.934 (0.486) 1.725
BIC [0] [0] [1]
0 1.155 (0.439) 0.287 (0.202) 1.176 (0.052) 18.378‡
1 1.139 (0.405) 0.368 (0.294) 0.819 (0.321) 6.864‡

SWI 2 1.086 (0.400) 0.418 (0.326) 1.139 (0.294) 4.208‡
3 1.022 (0.340) 0.470 (0.352) 1.354 (0.235) 2.455
4 1.061 (0.378) 0.563 (0.352) 1.332 (0.246) 2.010
BIC [0] [0] [1]

Note: See the notes in Table 2. Annual data covering 1950-1992 are used for four developing countries (COL: Columbia;

ECU: Ecuador; EGT: Egypt; PAK: Pakistan) and four industrial countries (GER: Germany; LUX: Luxemburg; NZL:

New Zealand; SWI: Switzerland). Regression equation is ln(yDEV ) = α+ βln(yIND) + ε.
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Table 3-1: Continued—

Regressand Regressor k DOLS GLS- FGLS- Hausman
corrected corrected Test

0 0.916 (0.108) 0.372 (0.133) 0.851 (0.009) 16.815‡
1 1.011 (0.145) 0.550 (0.143) 1.224 (0.094) 10.387‡

GER 2 1.125 (0.256) 0.663 (0.165) 1.278 (0.140) 7.792‡
3 1.160 (0.342) 0.691 (0.192) 1.263 (0.143) 5.965‡
4 1.233 (0.449) 0.767 (0.223) 1.227 (0.151) 4.369‡
BIC [1] [1] [1]
0 1.228 (0.270) 0.059 (0.136) 1.203 (0.056) 73.478‡
1 1.313 (0.362) 0.568 (0.198) 0.596 (0.199) 14.176‡

LUX 2 1.390 (0.141) 0.611 (0.229) 1.239 (0.107) 11.574‡
3 1.436 (0.144) 0.831 (0.264) 1.280 (0.122) 5.253‡
4 1.476 (0.100) 1.025 (0.287) 1.396 (0.091) 2.469

EGT BIC [5] [1] [1]
0 1.674 (0.317) 0.299 (0.155) 1.658 (0.115) 78.339‡
1 1.737 (0.301) 0.829 (0.257) 1.666 (0.260) 12.516‡

NZL 2 1.794 (0.388) 1.090 (0.298) 1.653 (0.331) 5.570‡
3 1.837 (0.456) 1.355 (0.324) 1.940 (0.412) 2.210
4 1.852 (0.594) 1.473 (0.359) 2.719 (0.497) 1.109
BIC [3] [1] [4]
0 1.344 (0.243) 0.388 (0.169) 1.311 (0.075) 32.144‡
1 1.422 (0.266) 0.666 (0.229) 1.464 (0.246) 10.889‡

SWI 2 1.498 (0.387) 0.991 (0.235) 1.571 (0.372) 4.627‡
3 1.537 (0.483) 1.080 (0.268) 1.636 (0.462) 2.909†
4 1.756 (0.453) 1.176 (0.297) 2.005 (0.254) 3.820†
BIC [2] [2] [2]
0 0.746 (0.112) 0.328 (0.155) 0.696 (0.007) 7.223‡
1 0.858 (0.144) 0.454 (0.177) 0.930 (0.096) 5.223†

GER 2 0.981 (0.193) 0.526 (0.213) 0.994 (0.103) 4.550†
3 1.020 (0.269) 0.727 (0.241) 1.066 (0.131) 1.479
4 0.999 (0.339) 0.771 (0.283) 0.985 (0.157) 0.649
BIC [0] [0] [1]
0 0.980 (0.233) 0.267 (0.148) 0.972 (0.031) 23.103‡
1 1.014 (0.257) 0.315 (0.245) 0.649 (0.188) 8.119‡

LUX 2 1.055 (0.167) 0.330 (0.282) 0.935 (0.127) 6.606‡
3 1.059 (0.196) 0.617 (0.321) 0.932 (0.164) 1.898
4 1.038 (0.169) 0.809 (0.355) 0.937 (0.140) 0.417
BIC [0] [0] [1]

PAK 0 1.354 (0.318) 0.294 (0.177) 1.347 (0.079) 35.760‡
1 1.377 (0.268) 0.675 (0.314) 1.392 (0.258) 5.007‡

NZL 2 1.382 (0.273) 0.598 (0.381) 1.453 (0.251) 4.244‡
3 1.447 (0.311) 0.936 (0.409) 1.454 (0.303) 1.564
4 1.538 (0.582) 1.409 (0.384) 1.701 (0.633) 0.113
BIC [4] [0] [4]
0 1.121 (0.185) 0.557 (0.182) 1.088 (0.048) 9.580‡
1 1.177 (0.176) 0.655 (0.260) 1.320 (0.172) 4.037‡

SWI 2 1.254 (0.169) 0.722 (0.304) 1.413 (0.143) 3.064
3 1.333 (0.202) 1.036 (0.312) 1.579 (0.170) 0.906
4 1.542 (0.170) 1.208 (0.331) 1.692 (0.133) 1.020
BIC [0] [0] [3]

Note: Refer to the notes in Table 2. Annual data covering 1950-1992 are used for four developing countries (COL:

Columbia; ECU: Ecuador; EGT: Egypt; PAK: Pakistan) and four industrial countries (GER: Germany; LUX: Luxemburg;

NZL: New Zealand; SWI: Switzerland). Regression equation is ln(yDEV ) = α+ βln(yIND) + ε.
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Table 3-2: Application to Output Convergence (Regressand: industrial countries; Regressor:
industrial countries)

Regressand Regressor k DOLS GLS- FGLS- Hausman
corrected corrected Test

0 1.291 (0.246) 0.623 (0.112) 1.330 (0.044) 35.849‡
1 1.302 (0.207) 1.018 (0.162) 0.719 (0.079) 3.095†

LUX 2 1.312 (0.174) 1.094 (0.174) 0.849 (0.077) 1.572
3 1.294 (0.222) 1.040 (0.184) 0.706 (0.101) 1.910
4 1.293 (0.262) 1.074 (0.178) 0.694 (0.119) 1.508
BIC [4] [4] [1]
0 1.829 (0.125) 0.494 (0.159) 1.889 (0.078) 70.817‡
1 1.802 (0.165) 1.089 (0.240) 1.465 (0.165) 8.852‡

GER NZL 2 1.775 (0.105) 1.268 (0.285) 1.658 (0.096) 3.165†
3 1.760 (0.060) 1.480 (0.301) 1.643 (0.056) 0.869
4 1.692 (0.076) 1.671 (0.174) 1.746 (0.079) 0.014
BIC [5] [5] [5]
0 1.494 (0.087) 0.811 (0.147) 1.531 (0.064) 21.513‡
1 1.482 (0.127) 1.260 (0.150) 1.305 (0.121) 2.178

SWI 2 1.452 (0.127) 1.326 (0.169) 1.379 (0.107) 0.557
3 1.413 (0.118) 1.339 (0.171) 1.331 (0.090) 0.185
4 1.369 (0.184) 1.347 (0.148) 1.421 (0.134) 0.022
BIC [4] [4] [4]
0 0.726 (0.239) 0.702 (0.126) 0.678 (0.045) 0.037
1 0.800 (0.168) 0.581 (0.136) 0.909 (0.092) 2.586

GER 2 0.925 (0.191) 0.536 (0.163) 0.938 (0.088) 5.687‡
3 1.030 (0.265) 0.723 (0.185) 1.039 (0.111) 2.743
4 1.104 (0.328) 0.838 (0.209) 1.000 (0.133) 1.618
BIC [0] [1] [1]
0 1.289 (0.633) 0.412 (0.176) 1.290 (0.040) 24.806‡
1 1.256 (0.852) 0.796 (0.294) 0.445 (0.447) 2.434

LUX NZL 2 1.227 (0.555) 0.797 (0.354) 1.231 (0.503) 1.472
3 1.255 (0.886) 1.098 (0.362) 0.464 (0.814) 0.189
4 1.188 (0.676) 1.277 (0.383) 2.311 (0.608) 0.054
BIC [3] [1] [1]
0 1.040 (0.499) 0.603 (0.184) 1.035 (0.007) 5.623‡
1 1.016 (0.642) 0.898 (0.240) 0.932 (0.480) 0.238

SWI 2 1.006 (0.461) 0.771 (0.273) 1.443 (0.469) 0.747
3 0.984 (0.616) 0.875 (0.309) 1.578 (0.626) 0.124
4 0.932 (0.900) 0.967 (0.336) 1.766 (0.845) 0.011
BIC [1] [1] [1]

Note: Refer to the notes in Table 2. Annual data covering 1950-1992 are used for four developing countries (COL:

Columbia; ECU: Ecuador; EGT: Egypt; PAK: Pakistan) and four industrial countries (GER: Germany; LUX: Luxemburg;

NZL: New Zealand; SWI: Switzerland). Regression equation is ln(yIND) = α+ βln(yIND) + ε.
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Table 3-2: Continued—

Regressand Regressor k DOLS GLS- FGLS- Hausman
corrected corrected Test

0 0.509 (0.044) 0.395 (0.127) 0.501 (0.046) 0.811
1 0.498 (0.060) 0.449 (0.149) 0.507 (0.047) 0.110

GER 2 0.498 (0.075) 0.459 (0.175) 0.488 (0.055) 0.052
3 0.520 (0.096) 0.285 (0.177) 0.511 (0.060) 1.758
4 0.517 (0.142) 0.315 (0.170) 0.452 (0.081) 1.406
BIC [5] [5] [5]
0 0.676 (0.232) 0.292 (0.125) 0.671 (0.044) 9.446‡
1 0.703 (0.233) 0.552 (0.202) 0.314 (0.161) 0.558

NZL LUX 2 0.731 (0.133) 0.576 (0.224) 0.485 (0.105) 0.484
3 0.734 (0.209) 0.483 (0.206) 0.496 (0.164) 1.487
4 0.745 (0.184) 0.628 (0.228) 0.597 (0.144) 0.264
BIC [5] [5] [5]
0 0.797 (0.043) 0.613 (0.145) 0.783 (0.013) 1.599
1 0.801 (0.050) 0.742 (0.201) 0.791 (0.050) 0.087

SWI 2 0.778 (0.047) 0.817 (0.224) 0.769 (0.046) 0.031
3 0.763 (0.057) 0.681 (0.227) 0.789 (0.055) 0.131
4 0.844 (0.080) 0.812 (0.238) 0.832 (0.080) 0.019
BIC [0] [0] [3]
0 0.634 (0.045) 0.531 (0.097) 0.639 (0.045) 1.133
1 0.649 (0.079) 0.623 (0.100) 0.653 (0.063) 0.070

GER 2 0.671 (0.119) 0.650 (0.114) 0.665 (0.078) 0.034
3 0.676 (0.179) 0.572 (0.130) 0.672 (0.091) 0.638
4 0.709 (0.278) 0.672 (0.149) 0.696 (0.122) 0.063
BIC [1] [1] [1]
0 0.831 (0.340) 0.350 (0.107) 0.848 (0.022) 20.185‡
1 0.850 (0.244) 0.724 (0.162) 0.421 (0.142) 0.610

SWI LUX 2 0.857 (0.214) 0.746 (0.183) 0.469 (0.137) 0.371
3 0.845 (0.250) 0.702 (0.214) 0.423 (0.169) 0.446
4 0.824 (0.268) 0.611 (0.238) 0.442 (0.182) 0.795
BIC [0] [1] [1]
0 1.206 (0.073) 0.503 (0.119) 1.233 (0.014) 34.878‡
1 1.219 (0.098) 0.991 (0.187) 1.148 (0.106) 1.488

NZL 2 1.224 (0.095) 1.005 (0.232) 1.171 (0.095) 0.890
3 1.233 (0.088) 1.056 (0.260) 1.180 (0.091) 0.465
4 1.234 (0.116) 1.194 (0.272) 1.263 (0.124) 0.022
BIC [1] [1] [1]

Note: Refer to the notes in Table 2. Annual data covering 1950-1992 are used for four developing countries (COL:

Columbia; ECU: Ecuador; EGT: Egypt; PAK: Pakistan) and four industrial countries (GER: Germany; LUX: Luxemburg;

NZL: New Zealand; SWI: Switzerland). Regression equation is ln(yIND) = α+ βln(yIND) + ε.
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Table 4: Application to PPP for traded and non-traded goods

Estimator k Traded Goods Non-traded Goods
FRA ITA JPN U.K. U.S. FRA ITA JPN U.K. U.S.

0 1.149 1.379 1.558 1.306 1.053 1.872 2.142 2.357 2.059 1.711
(0.312) (0.165) (0.326) (0.201) (0.198) (0.165) (0.241) (0.299) (0.278) (0.443)

1 1.179 1.456 1.485 1.439 1.078 1.887 2.175 2.376 2.066 1.728
(0.424) (0.217) (0.459) (0.262) (0.276) (0.151) (0.222) (0.299) (0.290) (0.441)

2 1.195 1.511 1.442 1.533 1.092 1.898 2.216 2.399 2.067 1.748
DOLS (0.515) (0.277) (0.646) (0.342) (0.328) (0.161) (0.237) (0.331) (0.272) (0.473)

3 1.186 1.531 1.390 1.571 1.102 1.888 2.250 2.397 2.054 1.762
(0.524) (0.308) (0.561) (0.392) (0.381) (0.165) (0.247) (0.346) (0.261) (0.511)

4 1.195 1.553 1.388 1.613 1.109 1.871 2.287 2.402 2.042 1.763
(0.502) (0.353) (0.471) (0.412) (0.401) (0.159) (0.252) (0.343) (0.233) (0.484)

BIC [0] [0] [0] [2] [0] [0] [0] [5] [1] [0]
0 0.833 1.114 1.086 1.030 0.919 0.375 0.448 0.372 0.351 0.159

(0.393) (0.381) (0.411) (0.365) (0.140) (0.178) (0.176) (0.198) (0.171) (0.080)
1 0.984 1.086 1.221 1.324 1.027 0.864 0.900 0.888 0.988 0.397

(0.454) (0.436) (0.477) (0.419) (0.161) (0.315) (0.309) (0.352) (0.295) (0.142)
2 1.259 1.333 1.415 1.516 1.103 1.127 1.104 1.046 1.001 0.569

GLS- (0.469) (0.454) (0.477) (0.430) (0.167) (0.369) (0.368) (0.408) (0.355) (0.166)
corrected 3 1.374 1.391 1.246 1.560 1.158 1.255 1.171 1.192 1.088 0.751

(0.501) (0.485) (0.504) (0.460) (0.176) (0.422) (0.422) (0.456) (0.407) (0.185)
4 1.549 1.661 1.248 1.600 1.184 1.577 1.411 1.379 1.166 0.785

(0.520) (0.511) (0.535) (0.492) (0.188) (0.456) (0.468) (0.503) (0.457) (0.208)
BIC [0] [0] [0] [0] [0] [0] [0] [0] [1] [0]
0 1.156 1.358 1.605 1.269 1.049 1.868 2.129 2.354 2.063 1.712

(0.259) (1.163) (0.783) (0.125) (0.054) (0.232) (1.223) (0.760) (0.156) (0.073)
1 1.229 1.456 1.607 1.248 0.766 1.909 2.005 1.947 1.671 0.291

(0.329) (0.149) (0.339) (0.162) (0.242) (0.141) (0.201) (0.257) (0.226) (0.159)
2 1.178 1.487 1.717 1.323 0.802 1.932 2.102 2.095 1.864 0.357

FGLS- (0.355) (0.181) (0.396) (0.217) (0.266) (0.152) (0.218) (0.286) (0.217) (0.191)
corrected 3 1.152 1.463 1.625 1.376 0.822 1.920 2.158 2.173 1.983 0.392

(0.339) (0.204) (0.318) (0.250) (0.301) (0.157) (0.233) (0.311) (0.214) (0.216)
4 1.252 1.603 1.506 1.423 0.826 1.922 2.285 2.202 2.052 0.631

(0.333) (0.245) (0.277) (0.272) (0.284) (0.153) (0.240) (0.310) (0.189) (0.234)
BIC [1] [1] [2] [1] [1] [2] [1] [5] [1] [3]
0 0.644 0.482 1.319 0.573 0.924 70.35‡ 93.02‡ 100.88‡ 99.87‡ 377.01‡

Hausman 1 0.184 0.720 0.308 0.075 0.102 10.57‡ 17.01‡ 17.86‡ 13.32‡ 87.77‡
Test 2 0.019 0.153 0.003 0.001 0.004 4.36‡ 9.14‡ 11.00‡ 8.99‡ 50.20‡

3 0.140 0.084 0.081 0.001 0.101 2.25 6.52‡ 6.97‡ 5.63‡ 29.93‡
4 0.464 0.045 0.069 0.001 0.158 0.42 3.52† 4.15‡ 3.67† 22.21‡

Note: Results are for fTt = α + βpTt + �t and fNt = α + βpNt + �t using Canada as a base country. Figures in

the parenthesis represent standard errors. ‘k’ denotes the maximum length of leads and lags. For the FGLS corrected

estimator, AR(1) error term is structured as ut = ρut−1 + �t. Hausman test represents the Hausman-type cointegration

test as stipulated in section 2.4. The test statistic is constructed as (β̂OLS−β̃GLS)2)
V ar(β̃GLS)

→ χ2(1). The critical values of

χ2(1) are 2.71, 3.84 and 6.63 for ten, five, and one percent significance level. ‡(†) represent that the null hypothesis of
β̂OLS = β̃GLS can be rejected at 5% (10%) significance level.
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