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Abstract. Herbert A. Simon, 1978 Economics Nobel Prize laureate,
talked about satisficing (his neologism) rather than optimising as be-
ing what the economists really need. We think that it is viability
theory, which is a relatively young area of mathematics, that rig-
orously captures the essence of satisficing. We aim to use viability
analysis to analyse a simple macroeconomic model and show how
some adjustment rules can be endogenously obtained.
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1. Introduction

The aim of this paper is to explore the usefulness of viability theory for macro-
economic modelling.

Herbert A. Simon, 1978 Economics Nobel Prize laureate, talked about satisficing
(his neologism) rather than optimising as being what the economists really need. We
think that economic theory, which follows the Simon prescription, brings modelling
closer to how people actually behave. We also think that it is viability theory, which is
a relatively young area of continuous mathematics (see [1] and [2]), that rigorously
captures the essence of satisficing. Therefore, viability theory appears to be an
appropriate tool of achieving a satisficing solution to many economic problems.
We aim to demonstrate this by solving a stylised Central Bank macroeconomic
problem. The solution will enable us to analyse the system transition trajectory
around a steady state (rather than towards the steady state). We believe that an
evolutionary analysis enabled by viability analysis gives us a better insight into
the system economics than just an equilibrium analysis. In particular, we hope to
contribute to the discussion on how to avoid a liquidity trap (for an analysis of a
liquidity trap problem performed through an established method see [6]).
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In the next section, we provide a brief introduction to viability theory and, in
Section 3, we apply it to a simple macroeconomic model1. The paper ends with
concluding remarks.

2. What is viability theory?

Viability theory is an area of mathematics concerned with viable evolution of
controlled dynamic systems. A system evolution is considered viable if the system
trajectory remains within a prescribed region of the phase space, the so-called via-
bility domain. The domain boundaries represent some normative constraints, which
the system should satisfy for as long as the evolution is concerned. The basic prob-
lem that viability theory attempts to solve is whether a control strategy exists that
prevents the system from leaving the viability domain. The viability kernel for such
a problem is the set of all initial conditions, for which such a strategy exists.

Consider a dynamic economic system with several stock (or state) variables. At
time t ∈ Θ, where interval Θ can be finite or infinite, the state variables are

[x1(t), x2(t), . . . xN (t)]′ ≡ x(t) ∈ X ≡ RN

and the instrument flows (or actions) are

[i1(t), i2(t), . . . iM (t)]′ ≡ i(t) ∈ I ⊂ RM .

Symbol I represents an instrument set (or action set) that could be split into two (or
more) parts if there were two (or more) players who would decide upon the actions.

The state evolves according to the system dynamics f(·, ·) and instruments i(t)
as follows

(1) ẋ(t) = f(x(t), i(t)) t ∈ Θ, i(t) ∈ I, x(t) ∈ X.

Evidently, at every state x(t), the system velocity ẋ(t) depends on action i(t). We
may say that the velocity is governed by the set-valued map (or correspondence)

(2) F (x) ≡ {f(x, i), i ∈ I} ∀x ∈ X

where, for convenience, we dropped the time argument from notation. Combining
the above formulae, the system dynamics can be rewritten in form of a differential
inclusion:

(3) ẋ(t) ∈ F (x(t)), for almost all t ∈ Θ,

which determines the speed of the system variables given the instrument set I.
In economic terms, the last relationship tells us that at time t, for a given com-

position of x (capital, labour, technology, etc.), the extent of growth (or decline), or
steady state stability, are all dependent on the map F : X Ã X whose values are
limited by the scope of instruments contained in I. Viability theory studies prop-
erties of differential inclusions (3) to say when the systems trajectories x(t), t ∈ Θ
evolve viably2 in the sense of the following definitions.

We will now say what we understand as viable evolution.

1For a viability theory application to environmental economics see [3]; also, see [8] for a viability
analysis of an endogenous business cycle.

2This is possible to infer from the mathematical properties of F , see [1], [2].
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Definition 2.1. Let a viability domain be given in form of a closed and nonempty
set of state constraints K ⊂ X. Evolution of dynamic system (3), (2) is viable in
K if and only if, from any initial state x0, at least one trajectory x(t) starts such
that x(t) ∈ K, t ∈ Θ.

So, this definition speaks of systems, which remain in K without any control.
However, there are few real life dynamic systems that would be like that. A more
realistic notion is that of viability kernel that specifically allows for an instrument
set I.

Definition 2.2. The viability kernel of the constraint set K for the instrument
set I is the set of initial conditions x0 ∈ K defined as the set V K

F :

(4) V K
F ≡ {x0 ∈ K : ∃x(t) ∈ K, t ∈ Θ while x(t) solves (3), (2) and x(0) = x0} .

In other words, if a trajectory begins at the viability kernel then we know that it
will forever remain in the constraint set.

Figure 1 illustrates the viability idea.

X 

K 

V
F
K 

Figure 1. The viable and non viable trajectories.

The state constraints are represented by the yellow (or light shadowed) oval con-
tour K contained in state space X. The dotted and dashed lines symbolise system
evolution, which converges to where an arrows ends.

The viability kernel for the constraint set K, given instruments from a set I, is
the purple (darker) shadowed contour denoted V K

I . The trajectories that start at
the kernel (i.e., the dashed lines) are viable in K i.e., they remain in K. This is not
the property of the other trajectories (dotted lines) that start outside the kernel.
They may pass through K but do not remain there.

3. A macroeconomic model

3.1. A viability theory problem. Realistically, what a typical Central Bank
wants to achieve is the maintenance of a few key macroeconomic variables within
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some bounds. Usually, the bank realises its multiple targets using optimising solu-
tions that result from minimisation of the bank’s loss function. Typically, the loss
function includes penalties for violating an allowable inflation band and also for a
non-smooth interest adjustment. The solution, which minimises the loss function,
is unique for a given selection of parameter and the loss function values. In that, it
does not allow for alternative strategies.

Our intention is to apply viability theory to a bank’s problem, which is to keep
variables of interest in a constrained set. This sounds very much like the viability
theory problem illustrated in Figure 1. We will try to establish what the set of
economy states is (i.e., what the kernel V K

F is) for a Central Bank to keep the
economy’s evolution viable (i.e., such that the key variables remain within some
prescribed bounds K) given available instruments.

In the next section we will use a stylised monetary rules model (inspired be [9]).
We will then show that the solutions obtained through viability theory do not suffer
from drawbacks typical of their optimising counterparts.

3.2. A Central Bank problem. Suppose a Central Bank is using nominal interest
rate i(t) as an instrumental variable to control inflation π(t) and, to a lesser extent,
output gap y(t). A model that relates these variables may look like follows (see [9],
p. 508 where the time step h = 1):

yt = a1 yt−h + a2 yt−2h − a3(it−h − Et−hπt) + ut(5)
πt = πt−h + γyt + ηt(6)

where yt is output gap, ut, ηt are serially uncorrelated disturbances, with means
equal to zero and a1, a2, a3, γ are calibrated parameters.

Assume3 a2 = 0 in (5) and apply the expectation operator to both (5), (6).
We could have used the full equation (5) in our study. However, this would have
increased the state space dimensionality and made the viability analysis less trans-
parent. As this paper’s main purpose is to show how viability theory can be applied
in macroeconomics we prefer to use a lower order system. We can therefore re-write
(5), (6) as

y(t) = a y(t− h)− a3(i(t− h)− π(t− h))(7)
π(t) = π(t− h) + γy(t).(8)

where we have defined y(t) ≡ Et−hyt and π(t) ≡ Et−hπt (obviously, y(t − h) =
Et−hyt−h and π(t− h) = Et−hπt−h). Then,

y(t)− y(t− h) = α h y(t− h)− ξ h (i(t− h)− π(t− h))(9)
π(t)− π(t− h) = ζ hy(t).(10)

where α h = a−1, ξ h = a3, ζ h = γ. Dividing each equation by h and requesting
h → 0 we get the expected inflation and output gap dynamics

dy

dt
= α y(t)− ξ (i(t)− π(t))(11)

dπ

dt
= ζ y(t).(12)

3Below, in Section 3.3, we explain how we have assigned a value to the one-lag term yt−h

coefficient a in (7).
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This model tells us that the expected speed of inflation (12) changes proportionally
to the expected output gap (however, for simplicity, we will drop “expected” from
the subsequent text). Output gap, in turn, constitutes a “sticky” process driven by
the difference between the interest and inflation rates.

3.3. Parameter values. We use the following parameter values (see [9]):

ξ =
a3

h

∣∣∣
h=1

= .35, ζ =
γ

h

∣∣∣
h=1

= .002 .

Regarding α we know that α = a−1
h

∣∣
h=1

but, we first need to say what the value
of a is. In general, it is impossible to approximate a second order system (5) by a
first order system (7). However, long term, both systems stalibilise if perturbed by
a step function. We have chosen a such that, after some time, the responses of (5)
and (7) are at the same level, see Figure 2.

time

Figure 2. A second order and a first order system responses.

The solid line shows a step-function response of (5) with a1 = 1.53, a2 = −.55
(see [9]4). The value of a for the dotted line is a = .98 5 so, α = −.02. Hence the
macroeconomic model that we will analyse is

dy

dt
= −0.02 y(t)− 0.35 (i(t)− π(t))(13)

dπ

dt
= 0.002 y(t).(14)

4. Viable solutions

We will perform a viability theory analysis using model (13), (14) and for a given
constraint set. This is computational economics and the results will be parameter
specific; however, the procedure can be easily repeated for any plausible parameter
selection.

4The parameter values come from a table published in [9], which quotes maximum likelihood
estimates for a model originally studied by [4].

5Notice that 1.53-.55=.98 .
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4.1. The constraints. Usually there is little doubt what the politically desired
inflation bounds are. For example, in New Zealand, the inflation band has been
legislated [.01, .03] . Less agreement is about what the desired output gap should
be. We will assume a rather wide interval for output gap to reflect a lesser concern
of the Central Bank for y(t) (e.g., y(t) ∈ [−.04, .04]). So, our viability domain (or
the constraint set) K is

K ≡ {(y(t), π(t)) : −.04 ≤ y(t) ≤ .04 and .01 ≤ π ≤ .03}
see Figure 3.
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Figure 3. Constraint set K (viability domain).

Similarly to the desired size of the output gap, the instrument set composition
also depends on political decisions. We will assume that i(t) ∈ [0, .07]. Indepen-
dently of keeping the interest range constrained, many central banks are worried
about the interest rate smoothness. That concern is usually modelled by adding
w(it − tt−h)2, w > 0 to the loss function. In continuous time, limiting the interest

rate “velocity”
di

dt
will produce smooth time profile i(t). Bearing in mind that the

central bank’s announcements are usually made every quarter and that the typical

change is a
1
4
%, our instrument set I will be defined as

(15) I ≡
{

i : i(t) ∈ [0, .07], and
di

dt
∈ [−.005, .005]

}

i.e., the interest rate can drop, or increase, between 0 and .5% per quarter.
Hence, the dynamic system to analyse the relationship between the interest rate,

inflation and output gap needs to be augmented by the interest rate velocity con-
straint and will now look as follows:

dy

dt
= −0.02 y(t)− 0.35 (i(t)− π(t))(16)

dπ

dt
= 0.002 y(t).(17)

di

dt
∈ [−.005, .005] .(18)
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A 3D region, within which the system trajectory [y(t), π(t), i(t)] will have to be
contained, is shown in Figure 4.
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Figure 4. Constraint set K.

Let us briefly examine existence of steady states of (16), (17) and assess their
stability. We add the plane y = 0 and another one i = π to Figure 4. The steady
states are at the intersection of those planes, see the dash-dotted line in Figure 5 top
panel. The bottom panel shows the directions of system evolution on y − π plane.

At any point where output gap is negative (y < 0) inflation decreases (arrow
points toward “A”); reciprocally, inflation increases if output gap is positive (arrow
points away from “A”). Above the plane i = π interest rate dominates inflation,
which decreases the output gap (above i = π, arrows point left). Below i = π where
inflation is higher than interest rate the arrows point right, which means that the
output gap increases. (Basically, output gap diminishes where real interest rate is
positive.)

Two interesting monetary control problems can be analysed with the help of
Figure 5. The problems occur in the three dimensional space (upper panel) but can
also be examined in two dimensions (bottom panel). First, the figure suggests that
when output gap is positive, increasing i must not happen “too late”, otherwise the
inflation upper boundary will be violated.

A different problem may occur if output gap is negative. If the bank lowers the
interest rate “too late”, the economy might drift (with negative output gap) toward
zero inflation where no instrument exists to lift the output. This means that the
economy experiences a liquidity trap i.e., remains in an area where output gap is
negative and inflation is close to zero (positive or negative)6.

6Again, we cite [6] for an analysis of a liquidity trap problem performed through an established
method. Also notice that [7] is a recent publication where a liquidity trap problem is analysed in
state space.
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Figure 5. Constraint set K and steady states.

Situations like those ask for the determination of a collection of points from where
the control from I (15) is sufficient to avoid leaving K. Such a collection is the
viability kernel defined in Definition 2.2. In the next section we will determine V K

F
where the correspondence F is defined through (16)-(18).
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4.2. The viability kernel. We will show the viability kernel’s boundaries for two
important economic situations that we call overheating and liquidity trap.

4.2.1. Overheating. Given model (16)-(18) and K we can determine V K
F . We will

determine the kernel’s boundaries for the “north-east” corner (C) by running (16)-
(18) backwards from [y(T ) = 0, π(T ) = .03, i(T ) = .03] (where T is some final time)
with the maximal interest rate “velocity” (see (15). The results are shown in Figure
6 and also in the three dimensional Figure 8.

Figure 6 explains what will happen if the bank does not combat inflation early.
The solid line shows a “booming” economy evolution that the bank started control-
ling when the output gap was maximal (4%) and inflation run7 high but still below
3%. To “cool” the economy down, the interest rate applied at this moment must be
close to the limit (which was 7%). The interest rate can gradually ease and, after
more than 6 quarters, can reach 3%, the same value as inflation.

The solid line delimits the viability kernel (left, denoted V K
F and marked by thin

lines). Right from the line are states of the economy, from which violation of the
3% inflation limit is imminent, given the constraints on i(t). The latter include
i0 > 6.3% (but less than 7%) and also a wish to achieve i(t) ≈ π(t) as quickly as
possible to enable stabilisation of the output gap.

Figure 6. Viability kernel and trajectories at corner C.

7The numerical results suggest that a booming economy is viable in that a relatively high interest
policy but such that remains in I can control the economy to y = 0 and not violate the inflation
upper bound.
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4.2.2. Liquidity trap. We will now determine the kernel’s boundaries for the “south-
west” corner (A) by running (16)-(18) backwards from [0, .01, .0]. The results are
shown in Figure 7 and also in the three dimensional Figure 8.

Figure 7 explains what will happen if an economy had a negative output gap
and inflation was close to the lower limit. The solid line in the left panel delimits
a viability kernel (right, denoted V K

F and marked by thin lines) from where the
zero-interest rate policy guarantees an achievement of a positive output gap within
10 quarters. Any state to the left of the solid line does not have that property. So,
an economy, which once fells outside the viability kernel V K

F can remain for “long”
at a negative output gap level and become deflationary. We can see that remaining
in the viability kernel can prevent the liquidity trap.

A slightly different story tells the right panel. Here the viability kernel (again,
right, denoted V K

F and marked by thin lines) contains states of maximum-speed
recovery from a negative output gap. The solid line is the trajectory, on which
di

dt
= −.005 and that leads to y(t) > 0 with inflation above its lower bound. Any

point to the left from the line is non viable in that the economy, from that point,
might slide to a liquidity trap.

A warning can be learned from this figure that even mildly negative output gaps
can lead to a liquidity trap if inflation is very low and if the bank starts “late” to
control the economy.

The two solid lines that define the kernels for different interest rates in Figure 7
are also visible in Figure 8. Here, we can appreciate the difference in the interest
rate strategies between the situations described above.

Figure 7. Viability kernel and trajectories at corner A.
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Figure 8. A 3D viability problem.

5. Concluding remarks

We have applied viability theory to a simple stylised model yet we were able to
discuss many relevant issues related to macroeconomic modelling. In fact, we can
also draw policy recommendations. At this stage we can say that the policy:

every time interval h (could be a quarter) when y(t), π(t) are
assessed and are ‘‘well inside"8 V K

F , set i(t) + h[−.005, .005]
will be satisficing.

The else condition will be to apply i(t)−.005h or i(t)+.005h depending on where
the economy is. However, the precise meaning of this rule will be our next research
topic.
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