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Abstract

We study stability and instability of short-run and long-run equilibria of mo-
nopolistic competition with product differentiation. Since monopolistic competi-
tion is not either a game of complete information or of incomplete information,
there should exist dynamic adjustment process of prices in markets given the set
of incumbent firms. Moreover, entry and exit of firms occur depending on the lev-
els of individual profits. In the economies under investigation, the price index and
total income level of consumers determine whether the differentiated commodities
are substitutes or complements. We show that there may exist multiple short-run
equilibria including stable and unstable ones. The cause is characterized by de-
creasing marginal cost and endogenous complementarities between differentiated
commodities.

Keywords: monopolistic competition, short-run equilibrium, long-run equilibrium,
decreasing marginal cost, complementarities

1 Introduction

The theory of monopolistic competition, pioneered by Chamberlin (1933), has been ex-
tensively applied in economic analysis. Our interests are in dynamic adjustment pro-
cesses to lead an economy to equilibria in the ”short-run” and ”long-run” for monopo-
listically competitive markets with product differentiation. In such markets, each single
firm is not only a monopolist in the sense that its product is not a perfect substitute for
others, but also a non-strategic competitor in the sense that it regards its effect of its own
action on the whole markets negligible. We mean by ”short-run” that the set of firms
which participate in markets is fixed, and by ”long-run” that all potential firms are free
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to entry and exit. Then a short-run market equilibrium represents product prices, lev-
els of individual profits, and income level given the set of firms, all of which sell their
products without taking into account effects of their own prices on the ”price index”
of market. On the other hand, a long-run market equilibrium characterizes the set of
incumbent firms endogenously determined: those profits are nonnegative and no new
entrants can earn positive profits as long as the incumbent firms exist. This distinction
is standard.

So far the two types of equilibria have been studied with separate interests in the
literature: Short-run equilibrium is discussed about conditions for its existence to ex-
plain possibilities of consistent decision makings by firms with market powers (Negishi
(1961), Roberts and Sonnenschein (1977), Hart (1985a, 1985b, 1985c)). Long-run Equilib-
rium is examined to analyze economies of scales and product differentiations in various
contexts such as industrial organization, international trade, and economic geography
(Spence (1976), Dixit and Stiglitz (1977), Krugman (1979, 1991), Fujita, Krugman and
Venables (1991), Ottaviano, Tabuchi and Thisse (2002)).

Although there are vast range of articles that discuss existence, welfare analysis,
and comparative statics (”comparative dynamics” in the sense that long-run equilib-
rium is investigated) of monopolistically competitive equilibrium, the number of works
concerning dynamic stability of short-run and long-run equilibria is extremely limited.
Chao and Takayama (1990) emphasize the importance of stability analysis of long-run
equilibrium of monopolistic competition. They point out that a number of useful re-
sults have been obtained by the zero-profit situations supposed to be attained through
the free entry-exit market mechanism, which is necessary but not sufficient to attain
equilibrium. They present a necessary and sufficient condition for long-run stability
of monopolistically competitive equilibrium with a utility function of Dixit and Stiglitz
(1977), and a neoclassical constant-returns production functions in terms of average and
marginal factor intensities in the production side.

The purpose of this paper is to study what kind of conditions make short-run and
long-run equilibria dynamically stable or not, and to characterize such conditions in
terms of complementarities of differentiated products on the consumption side and
propensities of marginal cost on the production side. We employ a utility function
that exhibits ”love of product diversity ” as in Dixit and Stiglitz (1977) and a constant
marginal utility of income as in Spence (1976). The demand functions derived from
this type of utility functions have constant marginal propensities of income when the
income level is low than a ”critical level,” and zero income effects when the level is
higher than the critical one. They also show that the differentiated goods are always
substitutes when the income level is lower than the critical one, and they are substitute
or complements depending on a primitive condition when the income level is higher
than the critical level.

In the short-run analysis, we present that there may be two equilibria one of which
is unstable when products are complements and the marginal cost is highly decreasing.
In the long-run analysis, we show that the dynamics of switching from substitutes to
complements and its converse work through changes in the total income. Namely, the
total profit of an industry starts to decrease when the size of industry is large enough
and individual profits are quite small, and then the total income is so small that income
effect arises. We also give examples of economies where profits per firm increase when
entry occurs. We characterize those phenomena by primitive conditions of parameters
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of economies. We show that in the presence of income effect there may exist stable and
unstable short-run equilibria and a long-run equilibrium is always stable. We prove
that in the absence of income effect complementarities between differentiated products
and decreasing marginal cost are necessary conditions for short-run instability, and the
long-run instability is implied by the complementarities and the short-run stability.

2 Consumer

First we focus on short-run performances of market with product differentiation, and
ignore the entry process and endogenous selections of product variety. We tentatively
assume that the economy produces a fixed set of differentiated products, each of which
is supplied by a sole monopolist. We also suppose that there is a perfectly competitive
market in which all the firms produce a homogenous good with identical linear cost
functions whose values are measured in terms of numéraire. We thus always set the
price of the good to be γ, the constant marginal cost of the competitive firms.

Let M to be a positive real number which denotes a size of the industry under in-
vestigation. Then we represent by the interval [0,M ] the set of indices of differentiated
products sold on market. A product diversity on [0,M ] is a function from [0,M ] to the set
of nonnegative real numbers.

We suppose that there exists a representative agent in economy, whose behavior
coincides with the aggregation over the whole group of the existing consumers. We
then assume that the agent is endowed with N units of numéraire, holds ownership
shares of all firms, and has a preference relation represented by the following utility
function:

β

η

(∫ M

0
q(i)ρdi

)η/ρ

xα + z,

α + η < 1, 0 < η < 1, 0 < α < 1, β > 0, and 0 < ρ < 1

where q(·) is a product diversity on [0,M ], x is a consumption of the competitive good
and z is that of numéraire. The representative agent solves the following problem:

Maximize
β

η

(∫ M

0
q(i)ρdi

)η/ρ

xα + z,

subject to
∫ M

0
p(i)q(i)di + γx+ z ≤ Y

where p(i) is the price of differentiated product i and Y is income.

We take two steps to compute the solution. The first step is to consider

Minimize
∫ M

0
p(i)q(i)di, subject to

[∫ M

0
q(i)ρdi

]1/ρ

= Q.

The first order condition for interior maximum is:

p(i) = µρq(i)ρ−1 for all i ∈ [0,M ], and∫ M

0
q(i)ρdi = Qρ
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where µ is the Lagrangian multiplier. This gives equality of marginal rate of substitution
to price ratios,

p(i)
p(j)

=
q(i)ρ−1

q(j)ρ−1

for any pair i, j ∈ [0,M ]. We then set

q(i)
p(i)1/(ρ−1)

=
q(j)

p(j)1/(ρ−1)
= R, i.e., q(i) = Rp(i)1/(ρ−1).

We introduce the price index for differentiated goods by

P ≡
[∫ M

0
p(i)ρ/(ρ−1)di

](ρ−1)/ρ

. (1)

In general, the price index P is the minimal expenditure for one unit of Q, aggregate
utility from differentiated goods (See Appendix A). Then we obtain Q and q(i):

Q =R
(∫ M

0
p(i)ρ/(ρ−1)di

)1/ρ

= RP 1/(ρ−1)

(
i.e.,R =

Q

P 1/(ρ−1)

)
,

q(i) =Rp(i)1/(ρ−1) = Q

(
p(i)
P

)1/(ρ−1)

for all i ∈ [0,M ]. (2)

The second step is to substitute (1) and (2) into the original maximization problem.
Then we have:

Maximize
β

η
Qηxα + z, subject to PQ+ γx + z ≤ Y.

We discuss the case that both Q and x are positive, but take into account the fact that
z = 0 when Y is low enough. By the Kuhn-Tucker theorem, the first order condition is:

βQη−1xα =λP, (3)
αβ

η
Qηxα−1 =λγ, (4)

z(1 − λ) = 0, z ≥0, 1 − λ ≤ 0; and (5)

Y − PQ− γx− z =0. (6)

where λ is the Lagrangian multiplier.
First, we investigate the case of z > 0. Then (5) reduces to λ = 1. Substituting λ = 1

into (3) and (4), we obtain:

βQη−1xα =P ; and (7)
αβ

η
Qηxα−1 =γ. (8)

From (7) and (8),
Q =

ηγ

α

x

P
. (9)
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Substituting (9) into (7), we obtain:

x =

{
β

(
α

ηγ

)1−η

P−η

}1/(1−η−α)

. (10)

Substituting (10) into (9),

Q =
ηγ

α

1
P

{
β

(
α

ηγ

)1−η

P−η

}1/(1−η−α)

=
{(

α

ηγ

)α

β

}1/(1−η−α)

P
α−1

1−η−α .

Let K =
(
α

ηγ

)α

β. From (6), (9) and (10), we have:

z = Y − PQ− γx = Y − η + α

η
K1/(1−η−α)P−η/(1−η−α). (11)

Hence,

q(i) = Q

(
p(i)
P

)1/(ρ−1)

=
(
p(i)
P

)1/(ρ−1)

K1/(1−η−α)P
α−1

1−η−α ,

= p(i)1/(ρ−1)K1/(1−η−α)P
ρ(1−α)−η

(1−ρ)(1−η−α) ≡ d(p(i), P ). (12)

This is the formula of the demand function for product i when z > 0, i.e.,

P η/(1−η−α)Y >
η + α

η
K1/(1−η−α).

Remark 1 From (12), if z > 0, we say that differentiated goods are substitutes (i.e., ∂d(p(i), P )/∂P >
0) if ρ(1−α)−η > 0, and they are complements (i.e., ∂d(p(i), P )/∂P < 0) if ρ(1−α)−η < 0.
Notice that these relations are symmetric in our model although they are generally asymmetric.

Next we examine the case of z = 0. Even demand functions derived from quasi-
linear utility functions exhibits income effects when the income level is low enough
(See Fig.1). Income effects exist only if z = 0.

On the consumer side, the first order condition for utility maximization is:

βQη−1xα =λP, (13)
αβ

η
Qηxα−1 =λγ, (14)

z =0; and

Y − PQ− γx =0. (15)

Then obtain

Q =
(∫ M

0
q(i)ρdi

)1/ρ

= RP 1/(ρ−1)

(
i.e.,R =

Q

P 1/(ρ−1)

)
,

q(i) =Rp(i)1/(ρ−1) = Q

(
p(i)
P

)1/(ρ−1)

for all i ∈ [0,M ].
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(a) Income-Consumption
Path when Utility Function
is Quasi-Linear

q

Y

q=d(p(i),P)

q=D(p(i),P,Y)

Y1 Y2 Y3

(b) Kinked Demand Function

Figure 1: Income-Consumption Path and the Graph of Demand Function

From (13) and (14), we obtain:

PQ =
ηγx

α
. (16)

Substituting (16) into (15), we have:

x =
α

γ(η + α)
Y.

Then we obtain Q and q(i):

Q = (Y − γx)P−1 =
η

η + α
Y P−1, (17)

q(i) =
η

η + α
Y p(i)1/(ρ−1)P ρ/(1−ρ) ≡ D(p(i), P, Y ). (18)

Remark 2 From (18), if z = 0, the differentiated goods are always substitutes (i.e., ∂D(p(i), P, Y )/∂P >
0). Namely, complements change to substitutes and vice versa according to the price index and
the income level.

3 Monopolistically Competitive Firm

3.1 The Case without Income Effect

Consider the market of differentiated goods in which all firms are monopolistically
competitive. We assume that each firm i has the identical cost function

cq(i)θ + f, θ > ρ

where cq(i)θ is the variable cost and f is the fixed cost. The cost is measured in terms
of numéraire. Note that the marginal cost is decreasing if 0 < θ < 1 and is increasing
θ > 1.
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A monopolistically competitive firm maximizes its profit subject to the demand
function for its own product given the market price index. Hence, firm i chooses q(i)
and p(i) given P :

Maximize p(i)q(i) − (cq(i)θ + f)
subject to q(i) = d(p(i), P ).

Since d(p(i), P ) = p(i)1/(ρ−1)K1/(1−η−α)P
ρ(1−α)−η

(1−ρ)(1−η−α) , the inverse demand is:

p(i) = q(i)ρ−1K
ρ−1

1−η−αP
η−ρ(1−α)
1−η−α ,

so that the associated profit is:

π(i) ≡p(i)q(i) − (cq(i)θ + f) = q(i)ρK
ρ−1

1−η−αP
η−ρ(1−α)
1−η−α − (cq(i)θ + f)

=cq(i)ρ
{
c−1K

ρ−1
1−η−αP

η−ρ(1−α)
1−η−α − q(i)θ−ρ

}
− f.

Since θ > ρ, π(i) attains a single peak. From (12), the first order condition is:

ρ− cθq(i)θ−ρK
ρ−1

1−η−αP
η−ρ(1−α)
1−η−α = 0.

We thus obtain the profit-maximizing price level and output level independently of i:

p(P ) ≡
( ρ

cθ

) ρ−1
θ−ρ

K
(1−ρ)(θ−1)

(θ−ρ)(1−η−α)P
(θ−1){ρ(1−α)−η}

(θ−ρ)(1−η−α) , and (19)

q(P ) ≡
( ρ

cθ

)1/(θ−ρ)
K

1−ρ
(θ−ρ)(1−η−α)P

ρ(1−α)−η
(θ−ρ)(1−η−α) . (20)

3.2 The Case with Income Effect

The profit maximization problem of firm i is:

Maximize p(i)q(i) − (cq(i)θ + f)
subject to q(i) = D(p(i), P, Y ).

From (18), the first order condition for profit maximization is rewritten as

ρ− cθ

(
η

η + α
Y

)ρ−1

q(i)θ−ρP−ρ = 0.

Hence we have p(P, Y ) and q(P, Y ) independently of i:

p(P, Y ) =
( ρ

cθ

) ρ−1
θ−ρ

(
η

η + α
Y

) (θ−1)(ρ−1)
ρ−θ

P
ρ(θ−1)

θ−ρ , (21)

and q(P, Y ) =
( ρ

cθ

)1/(θ−ρ)
(

η

η + α
Y

) 1−ρ
θ−ρ

P ρ/(θ−ρ). (22)
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4 Short-run Equilibrium and Dynamics

We mean by ”short-run” that the set of incumbent firms is fixed. We formulate a dynam-
ics á la Cournot, which is a price adjustment process of monopolistic competition.

In this dynamical process, each firm produces and supplies its own product given
price index of the industry and income level of consumers. The price is determined by
market demand, and agents make trades. The earned profit becomes part of the new
income of consumers. Then, the price index and income level are updated (See Fig.2).

Firms:

Price Index(P)   Income Level(Y)

Individual

quantities

Market:

Individual Prices

Profit

Functions

Demand

Functions

Update

Figure 2: Price Adjustment Process of Monopolistic Competition in the Short-run

This dynamic process continues until neither the price index nor income level change.
The new price system (p∗, P ∗) and the income Y ∗ to clear the markets solves the follow-
ing simultaneous equations:

g

(
p∗

P ∗k

)
Q(P ∗, Y ∗) = q(P, Y ), (23)

P ∗ = Mp∗g
(

p∗

P ∗k

)
, and (24)

Y ∗ = N +M(p∗q(P, Y ) − C(q(P, Y )), (25)

where g isn the inverse function of v′. Equation (23) means that supply equals demand,
and (24) and (25) respectively follows from the definitions of price index and income.
See Appendix A for these general settings and derivations.

We suppose that individual prices are determined by the demand functions and
output levels. Hence, p∗ = p∗(P, Y,M), P ∗ = P ∗(P, Y,M), and Y ∗ = Y ∗(P, Y,M). It
means that given M , (P, Y ) is updated by P ∗(·) and Y ∗(·). Thus, the short-run dynamic
adjustment system is:

Ṗ =P ∗(P, Y,M) − P ; and

Ẏ =Y ∗(P, Y,M) − Y.

4.1 Two Kinds of Demand Functions

We consider two kinds of demand functions categorized by income effect.
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There exists no income effect when either Y or P is high enough, but it emerges with
increase in Y or P . In this section, we investigate the boundary dividing the ”Spence
case” and the ”Dixit-Stiglitz case”, i.e., the border between existence and non-existence
of income effects. From (11), we define the function ζ by:

ζ(P, Y ) = Y − η + α

η
K1/(1−η−α)P−η/(1−η−α). (26)

Equation (26) means that ζ(P, Y ) may be negative. Therefore, we need to investigate
two cases of output levels according to the signs of z. We refer to the case of ζ(P, Y ) > 0
as the SP (Spence) case. In this case, we deal with the profit-maximization output level
q(P ) as (20). On the other hand, when ζ(P, Y ) ≤ 0, we deal with a output level q(P, Y )
as (22). We call this the DS (Dixit-Stiglitz) case.

Furthermore, there are two types of demand function according to the signs of
ζ(P, Y ). Namely,

g

(
p∗

P ∗k

)
Q(P ∗, Y ∗)

≡ d(p∗, P ∗) = p∗1/(ρ−1)K1/(1−η−α)P ∗ ρ(1−α)−η
(1−ρ)(1−η−α) if ζ(P ∗, Y ∗) > 0, and (27)

≡ D(p∗, P ∗, Y ∗) =
η

η + α
Y ∗p∗1/(ρ−1)P ∗ρ/(1−ρ). if ζ(P ∗, Y ∗) ≤ 0. (28)

Hence, we have to consider four kinds of dynamics.

4.2 Range of P and Y

4.2.1 SP Case

First, we deal with the SP case, in which output level q(P ) is (20). The SP case can be
classified by two kinds of demand functions. One is the SP-SP case. In this case, firms
face the demand function of the SP case, and the representative consumer reveals that of
the same case. It is because ζ(P, Y ) and ζ(P ∗(P, Y,M), Y ∗(P, Y,M)) are both positive.
Then we solve the following simultaneous equations:

p∗1/(ρ−1)K1/(1−η−α)P ∗ ρ(1−α)−η
(1−ρ)(1−η−α)

=
( ρ

cθ

)1/(θ−ρ)
K

1−ρ
(θ−ρ)(1−η−α)P

ρ(1−α)−η
(θ−ρ)(1−η−α) , (29)

P ∗ =
[∫ M

0
p∗ρ/(ρ−1)di

](ρ−1)/ρ

= p∗M (ρ−1)/ρ; and (30)

Y ∗ =N +M
{
p∗q(P ) − cq(P )θ − f

}
. (31)

The other is the DS-SP case. In this case, firms are subject to the demand function of
the DS case, and the market demand is of the SP case. It means that ζ(P ∗(P, Y,M), Y ∗(P, Y,M)) ≤

9



0 and ζ(P, Y ) > 0. Then we solve the following simultaneous equations:

η

η + α
Y ∗p∗1/(ρ−1)P ∗ρ/(1−ρ)

=
( ρ

cθ

)1/(θ−ρ)
K

1−ρ
(θ−ρ)(1−η−α)P

ρ(1−α)−η
(θ−ρ)(1−η−α) , (32)

P ∗ =
[∫ M

0
p∗ρ/(ρ−1)di

](ρ−1)/ρ

= p∗M (ρ−1)/ρ; and (33)

Y ∗ =N +M
{
p∗q(P ) − cq(P )θ − f

}
. (34)

Now we investigate the boundary of the SP-SP case and the DS-SP case. Consider
(P ∗, Y ∗) as variables. Substituting (30) into (29), we have:

P ∗ α−1
1−η−α =

( ρ

cθ

)1/(θ−ρ)
K

1−θ
(θ−ρ)(1−η−α)M1/ρP

ρ(1−α)−η
(θ−ρ)(1−η−α) . (35)

Substituting (33) into (32), we have:

η

η + α
Y ∗ = P ∗

( ρ

cθ

)1/(θ−ρ)
K

1−ρ
(θ−ρ)(1−η−α)M1/ρP

ρ(1−α)−η
(θ−ρ)(1−η−α) . (36)

From (11), the equation that satisfies ζ(P ∗, Y ∗) = 0 is:

η

η + α
Y ∗ = K1/(1−η−α)P ∗−η/(1−η−α). (37)

The curves (35), (36) and (37) intersect at the point (Y ∗
1 , P

∗
1 ):

Y ∗
1 =

η + α

η

( ρ

cθ

) η
(θ−ρ)(1−α)

K
η(1−θ)−(θ−ρ)(α−1)
(θ−ρ)(1−α)(1−η−α)M

η
ρ(1−α)P

η{ρ(1−α)−η}
(θ−ρ)(1−α)(1−η−α) ,

P ∗
1 =

( ρ

cθ

) 1−η−α
(θ−ρ)(α−1)

K
1−θ

(θ−ρ)(α−1)M
1−η−α
ρ(α−1)P

ρ(1−α)−η
(θ−ρ)(α−1) .

From (30) and (31), we obtain:

Y ∗ =N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)P

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)

+ P ∗M1/ρ
( ρ

cθ

)1/(θ−ρ)
K

1−ρ
(θ−ρ)(1−η−α)P

ρ(1−α)−η
(θ−ρ)(1−η−α) . (38)

In the SP-SP case, (35) intersects (38) in the domain of z > 0. Namely,

F (P,M) ≡ N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)P

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)

−α

η

( ρ

cθ

) η
(θ−ρ)(1−α)

K
η(1−θ)−(θ−ρ)(α−1)
(θ−ρ)(1−α)(1−η−α)M

η
ρ(1−α)P

η{ρ(1−α)−η}
(θ−ρ)(1−α)(1−η−α) > 0. (39)

On the other hand, in the DS-SP case, (36) intersects (38) in the domain of z < 0, that
is:

F (P,M) = N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)P

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)

−α

η

( ρ

cθ

) η
(θ−ρ)(1−α)

K
η(1−θ)−(θ−ρ)(α−1)
(θ−ρ)(1−α)(1−η−α)M

η
ρ(1−α)P

η{ρ(1−α)−η}
(θ−ρ)(1−α)(1−η−α) ≤ 0. (40)
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Namely, F (P,M) = 0 is the boundary line between the SP-SP case and the DS-SP
case.

In the SP-SP case, we obtain P ∗(P,M) and Y ∗(P,M) from (35) and (38):

P ∗(P,M) =
( ρ

cθ

) 1−η−α
(α−1)(θ−ρ)

K
1−θ

(α−1)(θ−ρ)P
ρ(1−α)−η

(α−1)(θ−ρ)M
1−η−α
ρ(α−1) ,

Y ∗(P,M) =N −Mf +
( ρ

cθ

) η
(1−α)(θ−ρ)

K
(α−1)(θ−ρ)+η(θ−1)
(α−1)(θ−ρ)(1−η−α)P

η{η−ρ(1−α)}
(α−1)(θ−ρ)(1−η−α)M

η
ρ(1−α)

− cM
( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)P

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α) .

For regularity, we set a restriction that the overall input cannot exceed the total
amount of numéraire and the competitive good is produced however less it is. That
is,

N >c

∫ M

0
q(i)θdi +Mf = M(cq(P )θ + f)

=cM
( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)P

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α) +Mf. (41)

Then Y ∗(P,M) is always positive. We thus define the time-derivative of P and Y in
the SP-SP case by

Ṗ =P ∗(P,M) − P

=
( ρ

cθ

) 1−η−α
(α−1)(θ−ρ)

K
1−θ

(α−1)(θ−ρ)P
ρ(1−α)−η

(α−1)(θ−ρ)M
1−η−α
ρ(α−1) − P, (42)

Ẏ =Y ∗(P,M) − Y

=N −Mf +
( ρ

cθ

) η
(1−α)(θ−ρ)

K
(α−1)(θ−ρ)+η(θ−1)
(α−1)(θ−ρ)(1−η−α)P

η{η−ρ(1−α)}
(α−1)(θ−ρ)(1−η−α)M

η
ρ(1−α)

− c
( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)P

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)M − Y. (43)

Rearranging (36) and (38), we also obtain P ∗(P,M) and Y ∗(P,M) in the DS-SP case:

P ∗(P,M) =
η

α

( ρ

cθ

)1/(ρ−θ)
K

ρ−1
(θ−ρ)(1−η−α)M−1/ρP

η−ρ(1−α)
(θ−ρ)(1−η−α)[

N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)P

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)

]
,

Y ∗(P,M) =
η + α

α

[
N −Mf − cM

( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)P

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)

]
.

From (41), both P ∗(P,M) and Y ∗(P,M) are always positive. We thus define the
time-derivative of P and Y in the DS-SP case by

Ṗ =P ∗(P,M) − P

=
η

α

( ρ

cθ

)1/(ρ−θ)
K

ρ−1
(θ−ρ)(1−η−α)M−1/ρP

η−ρ(1−α)
(θ−ρ)(1−η−α)[

N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)P

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)

]
− P, (44)

Ẏ =Y ∗(P,M) − Y

=
η + α

α

[
N −Mf − cM

( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)P

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)

]
− Y. (45)
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4.2.2 DS Case

Next, we deal with the DS case in which output level q(P, Y ) is (22). The DS case can
also be classified two cases by two types of demand functions. One is the SP-DS case,
in which the demand function is d(p∗, P ∗). Then we solve the following simultaneous
equations:

p∗1/(ρ−1)K1/(1−η−α)P ∗ ρ(1−α)−η
(1−ρ)(1−η−α)

=
( ρ

cθ

)1/(θ−ρ)
(

η

η + α
Y

) 1−ρ
θ−ρ

P ρ/(θ−ρ), (46)

P ∗ =
[∫ M

0
p∗ρ/(ρ−1)di

](ρ−1)/ρ

= p∗M (ρ−1)/ρ; and (47)

Y ∗ =N +M
{
p∗q(P, Y ) − cq(P, Y )θ − f

}
. (48)

The other is the DS-DS case. In this case, we employ D(p∗, P ∗, Y ∗) as the demand
function. Then we solve the following simultaneous equations:

η

η + α
Y ∗p∗1/(ρ−1)P ∗ρ/(1−ρ) =

( ρ

cθ

)1/(θ−ρ)
(

η

η + α
Y

) 1−ρ
θ−ρ

P ρ/(θ−ρ), (49)

P ∗ =
[∫ M

0
p∗ρ/(ρ−1)di

](ρ−1)/ρ

= p∗M (ρ−1)/ρ; and (50)

Y ∗ = N +M
{
p∗q(P, Y ) − cq(P, Y )θ − f

}
. (51)

Now we investigate the boundary of the SP-DS case and the DS-DS case. Consider
(P ∗, Y ∗) as variables. Substituting (47) into (46), we have:

P ∗ α−1
1−η−α =

( ρ

cθ

)1/(θ−ρ)
K−1/(1−η−α)M1/ρP ρ/(θ−ρ)

(
η

η + α
Y

) 1−ρ
θ−ρ

. (52)

Substituting (50) into (49), we have:

η

η + α
Y ∗ = P ∗

( ρ

cθ

)1/(θ−ρ)
M1/ρP ρ/(θ−ρ)

(
η

η + α
Y

) 1−ρ
θ−ρ

. (53)

The curves (52), (53) and (37) intersect at a point (Y ∗
2 , P

∗
2 ):

Y ∗
2 =

η + α

η

( ρ

cθ

) η
(θ−ρ)(1−α)

K1/(1−α)M
η

ρ(1−α)P
ρη

(θ−ρ)(1−α)

(
η

η + α
Y

) η(1−ρ)
(θ−ρ)(1−α)

,

P ∗
2 =

( ρ

cθ

) 1−η−α
(θ−ρ)(α−1)

K1/(1−α)M
1−η−α
ρ(α−1)P

ρ(1−η−α)
(θ−ρ)(α−1)

(
η

η + α
Y

) (1−ρ)(1−η−α)
(θ−ρ)(α−1)

.

From (47) and (48), we obtain:

Y ∗ =N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
(

η

η + α
Y

) θ(1−ρ)
θ−ρ

P ρθ/(θ−ρ)

+ P ∗M1/ρ
( ρ

cθ

)1/(θ−ρ)
(

η

η + α
Y

) 1−ρ
θ−ρ

P ρ/(θ−ρ). (54)
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Figure 3: The Range of Four Dynamics Cases

In the SP-DS case, (52) intersects (54) in the domain of z > 0. Namely,

G(P, Y,M) =N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
(

η

η + α
Y

) θ(1−ρ)
θ−ρ

P
ρθ

θ−ρ

− α

η

( ρ

cθ

) η
(θ−ρ)(1−α)

K1/(1−α)M
η

ρ(1−α)P
ρη

(θ−ρ)(1−α)

(
η

η + α
Y

) η(1−ρ)
(θ−ρ)(1−α)

> 0.

(55)

On the other hand, in the DS-DS case, (53) intersects (54) in the domain of z < 0.
That is:

G(P, Y,M) =N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
(

η

η + α
Y

) θ(1−ρ)
θ−ρ

P
ρθ

θ−ρ

− α

η

( ρ

cθ

) η
(θ−ρ)(1−α)

K1/(1−α)M
η

ρ(1−α)P
ρη

(θ−ρ)(1−α)

(
η

η + α
Y

) η(1−ρ)
(θ−ρ)(1−α)

≤ 0.

(56)

Namely, G(P, Y,M) = 0 is the boundary line between the DS-DS case and the SP-DS
case.

In the SP-DS case, we obtain P ∗(P, Y,M) and Y ∗(P, Y,M) from (52) and (54):

P ∗(P, Y,M) =
( ρ

cθ

) 1−η−α
(θ−ρ)(α−1)

K1/(1−α)M
1−η−α
ρ(α−1)

(
η

η + α
Y

) (1−ρ)(1−η−α)
(α−1)(θ−ρ)

P
ρ(1−η−α)

(θ−ρ)(α−1) ,

Y ∗(P, Y,M) =N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
(

η

η + α
Y

) θ(1−ρ)
θ−ρ

P
ρθ

θ−ρ

+
( ρ

cθ

) η
(θ−ρ)(1−α)

K1/(1−α)M
η

ρ(1−α)

(
η

η + α
Y

) η(1−ρ)
(θ−ρ)(1−α)

P
ρη

(θ−ρ)(1−α) .
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For regularity, we set a restriction that the overall input cannot exceed the total
amount of numéraire and the competitive good is produced however less it is. That
is,

N >M(cq(P, Y )θ + f)

=cM
( ρ

cθ

)θ/(θ−ρ)
(

η

η + α
Y

) θ(ρ−1)
ρ−θ

P
ρθ

θ−ρ +Mf. (57)

Then Y ∗(P, Y,M) is always positive. We thus define the time-derivative of P and Y
in the SP-DS case by

Ṗ =P ∗(P, Y,M) − P

=
( ρ

cθ

) 1−η−α
(θ−ρ)(α−1)

K1/(1−α)M
1−η−α
ρ(α−1)

(
η

η + α
Y

) (1−ρ)(1−η−α)
(α−1)(θ−ρ)

P
ρ(1−η−α)

(θ−ρ)(α−1) − P, (58)

Ẏ =Y ∗(P, Y,M) − Y

=N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
(

η

η + α
Y

) θ(1−ρ)
θ−ρ

P
ρθ

θ−ρ

+
( ρ

cθ

) η
(θ−ρ)(1−α)

K1/(1−α)M
η

ρ(1−α)

(
η

η + α
Y

) η(1−ρ)
(θ−ρ)(1−α)

P
ρη

(θ−ρ)(1−α) − Y. (59)

Rearranging (53) and (54), we also obtain P ∗(P, Y,M) and Y ∗(P, Y,M) in the DS-DS
case:

P ∗(P, Y,M) =
η

α

( ρ

cθ

)1/(ρ−θ)
M−1/ρ

(
η

η + α
Y

) ρ−1
θ−ρ

P ρ/(ρ−θ)


N −Mf − cM

( ρ

cθ

)θ/(θ−ρ)
(

η

η + α
Y

) θ(1−ρ)
θ−ρ

P
ρθ

θ−ρ


 ,

Y ∗(P, Y,M) =
η + α

α


N −Mf − cM

( ρ

cθ

)θ/(θ−ρ)
(

η

η + α
Y

) θ(1−ρ)
θ−ρ

P
ρθ

θ−ρ


 .

From (57), P ∗(P, Y,M) and Y ∗(P, Y,M) are always positive. We thus define the
time-derivative of P and Y in the DS-DS case by

Ṗ =P ∗(P, Y,M) − P

=
η

α

( ρ

cθ

)1/(ρ−θ)
M−1/ρ

(
η

η + α
Y

) ρ−1
θ−ρ

P ρ/(ρ−θ)


N −Mf − cM

( ρ

cθ

)θ/(θ−ρ)
(

η

η + α
Y

) θ(1−ρ)
θ−ρ

P
ρθ

θ−ρ


 − P. (60)

Ẏ =Y ∗(P, Y,M) − Y

=
η + α

α


N −Mf − cM

( ρ

cθ

)θ/(θ−ρ)
(

η

η + α
Y

) θ(1−ρ)
θ−ρ

P
ρθ

θ−ρ


 − Y. (61)

Then we separate the Y -P plane into these four cases (See Fig.3). In the next section,
we investigate the locus of Ṗ = 0 and Ẏ = 0 in each range.
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4.3 The loci of Ṗ = 0 and Ẏ = 0

First, we consider the locus of Ṗ = 0.
We draw Ṗ = 0 in Figs.4 and 5 according to the signs of ρ(1−α)−η and θ(1−α)−η.

Fig.4 shows the case that Ṗ = 0 of the SP-SP case exists in the SP-SP case and Fig.5 is
not. See Appendix B for Ṗ = 0 of each range and coordinate value of the intersections
A, B and C . Define the function Z by

Z(M) ≡ N −Mf − αθ + ρη

ηθ

( ρ

cθ

)η/{θ(1−α)−η}
Kθ/{θ(1−α)−η}M

η(θ−ρ)
ρ{θ(1−α)−η} . (62)

Then the condition that Ṗ = 0 of the SP-SP case exists in the SP-SP case is Z(M) > 0.
Next, we consider the locus of Ẏ = 0. We draw Ẏ = 0 as Figs.6 and 7. See Appendix

C for Ẏ = 0 of each range and coordinate values of the intersections D, E, F and G.

4.4 The Short-run Equilibria

4.4.1 The locus of z(M) and the Range of M

To preparing for the dynamic analysis of Ṗ = 0 and Ẏ = 0, we investigate the boundary
of M according to the signs of z. We combine Figs.5, 6, 7 and 8 and see whether short-
run equilibria exist or not in each case.

From (109) and (116) in Appendix B, there exists a unique equilibrium in the SP-SP
case:

Y ∗
s (M) =N −Mf +M

η(θ−ρ)
ρ{θ(1−α)−η}

( ρ

cθ

)η/{θ(1−α)−η}
Kθ/{θ(1−α)−η}

(
1 − ρ

θ

)
, and (63)

P ∗
s (M) =

( ρ

cθ

) 1−η−α
η−θ(1−α)

K
θ−1

θ(1−α)−ηM
(ρ−θ)(1−η−α)
ρ{θ(1−α)−η} . (64)

We call (Y ∗
s (M), P ∗

s (M)) the SP short-run equilibrium.
From (112) and (119), we also have a unique equilibrium (Y ∗

d (M), P ∗
d (M)) in the

DS-DS case,

Y ∗
d (M) =

θ(η + α)
αθ + ρη

(N −Mf), and (65)

P ∗
d (M) =

( ρ

cθ

)−1/θ
{

ηθ

αθ + ρη
(N −Mf)

}(θ−1)/θ

M
ρ−θ
ρθ . (66)

We call (Y ∗
d (M), P ∗

d (M)) the DS short-run equilibrium.
We investigate the boundary of M of the SP case. Substituting (63) and (64) into (11),

we define the function zs by:

zs(M) ≡ζ(P ∗
s (M), Y ∗

s (M))

=Ys(M)∗ − η + α

η
K1/(1−η−α)Ps(M)∗−η/(1−η−α)

=N −Mf − αθ + ρη

ηθ

( ρ

cθ

)η/{θ(1−α)−η}
Kθ/{θ(1−α)−η}M

η(θ−ρ)
ρ{θ(1−α)−η} . (67)

Note that N > Mf . Then

∂zs
∗(M)
∂M

= − f − (θ − ρ)(αθ + ρη)
ρθ{θ(1 − α) − η}

( ρ

cθ

)η/{θ(1−α)−η}
Kθ/{θ(1−α)−η}M

θ{η−ρ(1−α)}
ρ{θ(1−α)−η} . (68)
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When θ(1 − α) > η, (68) is always negative. This means that zs(·) is monotoni-
cally decreasing for M . Since zs(·) becomes negative if M goes to infinity, there exists a
unique point M b such that zs(M b) = 0 (See Fig.8(a)). Namely, the boundary level of the
SP case is M b defined below:

N −M bf =
αθ + ρη

ηθ

( ρ

cθ

)η/{θ(1−α)−η}
Kθ/{θ(1−α)−η}M b

η(θ−ρ)
ρ{θ(1−α)−η} . (69)

From (67), M satisfy the following inequality when Z(M) > 0:

N −Mf >
αθ + ρη

ηθ

( ρ

cθ

)η/{θ(1−α)−η}
Kθ/{θ(1−α)−η}M

η(θ−ρ)
ρ{θ(1−α)−η} . (70)

Recall (62). When M is low enough, zs(M) is positive. We thus define 0 < M < M b

as the domain in the SP case (See Fig.8(a)).
When θ(1 − α) < η, there exists M̂ such that (68) is zero. Then we have:

M̂ =
{

αθ + ρη

ρ{η − θ(1 − α)}
} ρ{η−θ(1−α)}

θ{η−ρ(1−α)}
{

1
f

(
1 − ρ

θ

)} ρ{η−θ(1−α)}
θ{η−ρ(1−α)} ( ρ

cθ

) ρη
θ{ρ(1−α)−η}

K
ρ

ρ(1−α)−η .

(71)
From equation (68), we obtain the slope of the function z(·) as:

∂zs(M)
∂M

> 0, if 0 < M < M̂ ;

∂zs(M)
∂M

= 0, if M = M̂ ; and

∂zs(M)
∂M

< 0, if M̂ < M <
N

f
.

Thus the function zs(·) has the maximum value at M̂ . From (67), we also have:

zs(M) → −∞ as M → 0+; and

zs(M) < 0 as M → N

f
− .

Let T =
1
f

(
1 − ρ

θ

)
. Substituting (71) into (67) and rearranging,

zs(M̂) =N − η − ρ(1 − α)
η

{
αθ + ρη

ρ{η − θ(1 − α)}
} ρ{η−θ(1−α)}

θ{η−ρ(1−α)}
T

η(θ−ρ)
θ{ρ(1−α)−η}

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

K
ρ

ρ(1−α)−η .

Thus, there exist two boundaries M b
1 and M b

2 , M b
1 < M b

2 , which satisfy (69) if

N >
η − ρ(1 − α)

η

{
αθ + ρη

ρ{η − θ(1 − α)}
} ρ{η−θ(1−α)}

θ{η−ρ(1−α)}
T

η(θ−ρ)
θ{ρ(1−α)−η}

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

K
ρ

ρ(1−α)−η .

On the other hand, zs(·) is always negative when

N <
η − ρ(1 − α)

η

{
αθ + ρη

ρ{η − θ(1 − α)}
} ρ{η−θ(1−α)}

θ{η−ρ(1−α)}
T

η(θ−ρ)
θ{ρ(1−α)−η}

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

K
ρ

ρ(1−α)−η .
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z

M

N

z=z(M)

Mb

SP Case
(without Income Effect)

DS Case
(with Income Effect)

N/f

(a) θ(1 − α) > η

z

M

N

z=z(M)

M

SP Case
DS Case

N/f^Mb
1 Mb

2

(b) θ(1 − α) < η

z

M

N

z=z(M)

M
^ N/f

(c) θ(1 − α) < η

z

M

N

z=z(M)

M
^ N/f

(d) θ(1 − α) < η

Figure 8: Domains of the SP case and the DS case
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If there exist two boundaries, the domain of the SP case is denoted byM b
1 < M < M b

2

(See Fig.8(b)). On the other hand, if zs(·) is always negative, there exists no M which is
of the SP case (See Fig.8(c)).

Next, we investigate the boundary of M of the DS case. Substituting (65) and (66)
into (11), we have:

zd(M) ≡ζ(P ∗
d (M), Y ∗

d (M))

=Y ∗
d (M) − η + α

η
K1/(1−η−α)P ∗

d (M)−η/(1−η−α)

=
θ(η + α)
αθ + ρη

(N −Mf)

− η + α

η

( ρ

cθ

)η/(1−η−α)
K1/(1−η−α)

{
ηθ

αθ + ρη
(N −Mf)

} η(1−θ)
θ(1−η−α)

M
η(θ−ρ)

ρθ(1−η−α) .

(72)

The domain in the DS case is defined zd(M) ≤ 0. Rearranging (72), we obtain the
following inequality, which indicates zd(M) ≤ 0:{

ηθ

αθ + ρη
(N −Mf)

}θ(1−α)−η

≤
( ρ

cθ

)η
KθM

η(θ−ρ)
ρ . (73)

If θ(1 − α) > η, we obtain from (73) the domain in the DS case:

N −Mf ≤ αθ + ρη

ηθ

( ρ

cθ

)η/{θ(1−α)−η}
Kθ/{θ(1−α)−η}M

η(θ−ρ)
ρ{θ(1−α)−η} . (74)

We also obtain the domain of M in the DS case when θ(1 − α) < η:

N −Mf ≥ αθ + ρη

ηθ

( ρ

cθ

)η/{θ(1−α)−η}
Kθ/{θ(1−α)−η}M

η(θ−ρ)
ρ{θ(1−α)−η} . (75)

Compare (70), (74) and (75). When θ(1 − α) > η, we obtain the domain of M in the
DS case as the complement of that in the SP case (See Fig.8(a)). On the other hand, if
θ(1−α) < η, the domain in the DS case coincides with that in the SP case (See Fig.8(b)).
Furthermore, there could exist M̂ as a unique point of the DS case (See Fig.8(c)), and
there is no M that satisfies either of two cases. (See Fig.8(d)).

Now we draw three patterns of the dynamics of Ṗ = 0 and Ẏ = 0 according to the
signs of Z(M).

Under the condition of Z(M) > 0, there exists a unique equilibrium of the SP case
when θ(1 − α) > η (See Fig.9(a) and Fig.9(b)). On the other hand, if θ(1 − α) < η, there
exist two equilibria E∗

s3, and E∗
d1 in the SP and the DS case, respectively (See Fig.9(c)).

Compare E∗
s3(P

∗
s3(M), Y ∗

s3(M)) and E∗
d1(P

∗
d1(M), Y ∗

d1(M)). From (64) and (66), we
obtain:

P ∗
s3(M) − P ∗

d1(M)

=
( ρ

cθ

) 1−η−α
η−θ(1−α)

K
θ−1

θ(1−α)−ηM
(ρ−θ)(1−η−α)
ρ{θ(1−α)−η} −

( ρ

cθ

)−1/θ
{

ηθ

αθ + ρη
(N −Mf)

}(θ−1)/θ

M
ρ−θ
ρθ

=
( ρ

cθ

) 1−η−α
η−θ(1−α)

K
θ−1

θ(1−α)−ηM
(ρ−θ)(1−η−α)
ρ{θ(1−α)−η}[

1 −
( ρ

cθ

) η(θ−1)
θ{η−θ(1−α)}

{
ηθ

αθ + ρη
(N −Mf)

}(θ−1)/θ

M
η(ρ−θ)(θ−1)

ρθ{θ(1−α)−η}

]
.
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dP/dt=0
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Y*
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E*
S1

N-Mf

(a) ρ(1 − α) > η

P

Y

P*
S

Y*
S

dY/dt=0

dP/dt=0

dP/dt=0

N-Mf

E*
S2

(b) ρ(1 − α) < η < θ(1 − α)

P

Y

dY/dt=0

dP/dt=0

N-Mf

P*
S

Y*
DY*

S

P*
D

E*
S3

E*
D1

(c) ρ(1 − α) < η and θ(1 − α) < η

Figure 9: Dynamics of Short-run Equilibria when Z(M) > 0
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P
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N-Mf

dY/dt=0

dP/dt=0

Y*
D

P*
D E*

D2

(a) ρ(1 − α) > η

P

Y
N-Mf

dY/dt=0

dP/dt=0

Y*
D

P*
D

E*
D3

(b) ρ(1 − α) < η < θ(1 − α)

P

Y

dY/dt=0

dP/dt=0

Y*
D

P*
D

N-Mf

E*
D4

(c) ρ(1 − α) < η and θ(1 − α) < η

Figure 10: Dynamics of Short-run Equilibria when Z(M) = 0
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dY/dt=0
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D E*

D5

(a) ρ(1 − α) > η

P

Y
N-Mf

dY/dt=0

dP/dt=0

Y*
D

P*
D

E*
D6

(b) ρ(1 − α) < η < θ(1 − α)

P

Y

dY/dt=0

dP/dt=0

N-Mf

(c) ρ(1 − α) < η and θ(1 − α) < η

Figure 11: Dynamics of Short-run Equilibria when Z(M) < 0
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Thus the condition of P ∗
s3(M) > P ∗

d1(M) is:

1 >
( ρ

cθ

) η(θ−1)
θ{η−θ(1−α)}

{
ηθ

αθ + ρη
(N −Mf)

}(θ−1)/θ

M
η(ρ−θ)(θ−1)

ρθ{θ(1−α)−η} .

We consider when θ(1 − α) < η. Rearranging this inequality, we have:

N −Mf >
αθ + ρη

ηθ

( ρ

cθ

)η/{θ(1−α)−η}
Kθ/{θ(1−α)−η}M

η(θ−ρ)
ρ{θ(1−α)−η} .

It means that P ∗
s3(M) is always larger than P ∗

d1(M) when θ(1−α) < η andZ(M) > 0.
When Z(M) = 0, there exists a unique equilibrium in the DS case (See Fig.10(a),

Fig.10(b) and Fig.10(c)).
Under the condition of Z(M) < 0, there exists a unique equilibrium in the DS case

when θ(1 − α) > η (See Fig.11(a) and Fig.11(b)). On the other hand, there exists no
equilibrium if θ(1 − α) < η (See Fig.11(c)).

As is seen above, the key thing is the sign of θ(1 − α) − η. In a general the SP case,
namely when there is no income effect, it follows from equations (23) and (24) that

∂Ṗ

∂P
=

∂P ∗(P, Y,M)
∂P

− 1 =
gP − gQP

gQP
.

Suppose thatQP (P ∗(P, Y ), Y ∗(P, Y )) < 0, then the sign of
∂Ṗ

∂P
coincides with

PQP

Q
−

PqP

q
, which is the difference between elasticities ofQ(P, Y ) and q(P, Y ). It can be shown

that the sign of the difference is that of θ(1 − α) − η.

4.5 Stability and Instability of Short-run Equilibria

4.5.1 SP-SP Case

There exist short-run equilibria in the cases of the ”SP-SP” and ”DS-DS”. In this section,
we investigate whether these equilibria are dynamically stable or not.

We start with the SP-SP case. Let H1(P ) and H2(P, Y ) be the LHS’s of (42) and
(43), respectively. By (63) and (64), we have Jacobian matrix of the dynamics system at
(P ∗

s (M), Y ∗
s (M)) is:

A∗
1(P

∗
s , Y

∗
s ) ≡

[
∂H1(P ∗

s )
∂P

∂H1(P ∗
s )

∂Y
∂H2(P ∗

s ,Y ∗
s )

∂P
∂H2(P ∗

s ,Y ∗
s )

∂Y

]

where

∂H1(P ∗
s )

∂P
=

θ(1 − α) − η

(α− 1)(θ − ρ)
,

∂H1(P ∗
s )

∂Y
= 0,

∂H2(P ∗
s , Y

∗
s )

∂P
=

{ρ(1 − α) − η}2

(α− 1)(θ − ρ)(1 − η − α)

( ρ

cθ

) 1−α
θ(1−α)−η

K1/{θ(1−α)−η}M
(θ−ρ)(1−α)

ρ{θ(1−α)−η} , and

∂H2(P ∗
s , Y

∗
s )

∂Y
= − 1.
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Then the trace and determinant are:

trA1(P ∗
s , Y

∗
s ) =

∂H1(P ∗
s )

∂P
+
∂H2(P ∗

s , Y
∗
s )

∂Y
=

θ(1 − α) − η

(α− 1)(θ − ρ)
− 1, and

detA1(P ∗
s , Y

∗
s ) =

∂H1(P ∗
s )

∂P

∂H2(P ∗
s , Y

∗
s )

∂Y
− ∂H1(P ∗

s )
∂Y

∂H2(P ∗
s , Y

∗
s )

∂P
=

θ(1 − α) − η

(1 − α)(θ − ρ)
.

When θ(1 − α) > η, trA1(P ∗, Y ∗) < 0 and detA1(P ∗, Y ∗) > 0. It means that the SP
short-run equilibrium is locally stable if θ(1−α) > η. On the other hand, trA1(P ∗, Y ∗) <
0 and detA1(P ∗, Y ∗) < 0 if θ(1 − α) < η. That is, the short-run SP equilibrium is locally
unstable. We make the point that complementarity and decreasing marginal cost are
necessary conditions for short-run instability.

4.5.2 DS-DS Case

Next, we move to the DS-DS case. Let H3(P, Y ) and H4(P, Y ) be the LHS’s of (60) and
(61), respectively. By (65) and (66), we have Jacobian matrix at (P∗

d (M), Y ∗
d (M)) is:

We obtain the following Jacobian matrix from (112) and (119):

A∗
2(P

∗
d , Y

∗
d ) ≡

[
∂H3(P ∗

d ,Y ∗
d )

∂P
∂H3(P ∗

d ,Y ∗
d )

∂Y
∂H4(P ∗

d ,Y ∗
d )

∂P
∂H4(P ∗

d ,Y ∗
d )

∂Y ,

]

where

∂H3(P ∗
d , Y

∗
d )

∂P
=
αθ + ηρ2

α(ρ− θ)
,

∂H3(P ∗
d , Y

∗
d )

∂Y
=
η(1 − ρ)(α + ρη)
α(η + α)(ρ− θ)

( ρ

cθ

)−1/θ
{

ηθ

αθ + ρη
(N −Mf)

}−1/θ

M
ρ−θ
ρθ ,

∂H4(P ∗
d , Y

∗
d )

∂P
=
ρ2(η + α)
α(ρ− θ)

( ρ

cθ

)1/θ
{

ηθ

αθ + ρη
(N −Mf)

}1/θ

M
θ−ρ
ρθ , and

∂H4(P ∗
d , Y

∗
d )

∂Y
=
α(ρ− θ) − ρη(1 − ρ)

α(θ − ρ)
.

Then the trace and determinant are:

trA2(P ∗
d , Y

∗
d ) =

∂H3(P ∗
d , Y

∗
d )

∂P
+
∂H4(P ∗

d , Y
∗
d )

∂Y

=
αθ + ηρ2

α(ρ− θ)
+
α(ρ− θ) − ρη(1 − ρ)

α(θ − ρ)
=

α(θ − ρ) + αθ + ρη

α(ρ− θ)
< 0, and

detA2(P ∗
d , Y

∗
d ) =

∂H3(P ∗
d , Y

∗
d )

∂P

∂H4(P ∗
d , Y

∗
d )

∂Y
− ∂H3(P ∗

d , Y
∗
d )

∂Y

∂H4(P ∗
d , Y

∗
d )

∂P

=
(αθ + ηρ2){α(ρ − θ) − ρη(1 − ρ)}

α2(ρ− θ)2
− ρ2η(1 − ρ)(α + ρη)

α2(ρ− θ)2
=

αθ + ηρ

α(θ − ρ)
> 0.

Hence, the short-run DS equilibrium is locally stable.

Under the condition of Z(M) > 0 and θ(1 − α) > η, the short-run equilibria of the
SP case E∗

S1 (Fig.9(a)) and E∗
S2 (Fig.9(b)) are stable.

When θ(1−α) < η, the short-run equilibrium of the SP caseE∗
S3 (Fig.9(c)) is unstable,

while the short-run equilibrium of the DS case E∗
D1 is stable.
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When Z(M) = 0, there exists stable equilibria E∗
S2 and E∗

S3 of the DS case if θ(1 −
α) > η (See Figs.10(a) and 10(b)). Furthermore, when Z(M) = 0 and θ(1 − α) < η, E∗

D4

is ”semi-stable” in the since that it is unstable but there is a continuum of stable paths
(See Fig.10(c)).

Under the condition of Z(M) < 0, there exists a stable equilibrium of the DS case
when θ(1 − α) > η (See Figs.11(a) and 11(b)).

Then we obtain the following theorems:

Theorem 1 If the differentiated goods are substitutes, i.e., ρ(1 − α) > η, there exists a unique
and stable short-run equilibrium.

Theorem 2 If the differentiated goods are complements and marginal cost is not highly decreas-
ing, i.e., ρ(1 − α) < η < θ(1 − α), there exists a unique and stable short-run equilibrium.

Theorem 3 If the differentiated goods are complements and marginal cost is highly decreasing,
i.e., θ(1 − α) < η, there exist no, one or two short-run equilibria according to the size of M . If
two equilibria exist, one is stable and the other is unstable.

4.6 Stability of Long-run Equilibrium: The Case without Income Effect

From (64), the individual price, quality, and the aggregate utility of the short-run SP
equilibrium are:

p∗s(M) =
( ρ

cθ

) 1−η−α
η−θ(1−α)

K
θ−1

θ(1−α)−ηM
(1−θ){ρ(1−α)−η}

ρ{θ(1−α)−η} ,

q∗s(M) =
( ρ

cθ

) 1−α
θ(1−α)−η

K1/{θ(1−α)−η}M
η−ρ(1−α)

ρ{θ(1−α)−η} ,

Q∗
s(M) =

( ρ

cθ

) 1−α
θ(1−α)−η

K1/{θ(1−α)−η}M
(θ−ρ)(1−α)

ρ{θ(1−α)−η} .

Thus the short-run SP equilibrium profit of firm i is:

π∗
s(M) =

( ρ

cθ

)η/{θ(1−α)−η}
Kθ/{θ(1−α)−η}M

θ{η−ρ(1−α)}
ρ{θ(1−α)−η}

(
1 − ρ

θ

)
− f. (76)

The size of M of industry expands when the individual profit level is positive and
shrinks when the level is negative. Note that the industry never shrink from M = 0.
Hence, we call M ≥ 0 a long-run SP equilibrium if π∗s(M) = 0 orM = 0 and lim

M→0
π∗

s(M) <
0.

When π∗
s(M) = 0, we obtain the long-run SP equilibrium size of industry:

M̄s =
( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}T
ρ{θ(1−α)−η}
θ{ρ(1−α)−η} . (77)

Substituting (77) into (63) and (64), we obtain:

P ∗
s (M̄s) =

( ρ

cθ

) ρ(1−η−α)
θ{η−ρ(1−α)}

K
1−ρ

η−ρ(1−α)T
(θ−ρ)(1−η−α)
θ{η−ρ(1−α)} ,

Y ∗
s (M̄s) =N.
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M

π*
s(M)

Ms

(a) ρ(1 − α) > η or θ(1 − α) < η

M
Ms

π*
s(M)

(b) ρ(1 − α) < η < θ(1 − α)

Figure 12: Stability and Instability of the SP Long-run Equilibrium

We also have:

p∗s(M̄s) =
( ρ

cθ

)−1/θ
T (1−θ)/θ,

q∗s(M̄s) =
( ρ

cθ

)1/θ
T−1/θ,

Q∗
s(M̄s) =

( ρ

cθ

) ρ(1−α)
θ{ρ(1−α)−η}

K1/{ρ(1−α)−η}T
(θ−ρ)(1−α)

θ{ρ(1−α)−η} .

From equation (77), we have:

∂π∗(M)
∂M

=
(θ − ρ){η − ρ(1 − α)}

ρ{θ(1 − α) − η}
( ρ

cθ

)η/{θ(1−α)−η}
K

θ
θ(1−α)−ηM

θ{η−ρ(1−α)}
ρ{θ(1−α)−η}−1

.

Recall θ > ρ. The above formula tells us:

∂π(M)
∂M

< 0 if
η

1 − α
< ρ or θ <

η

1 − α
,

∂π(M)
∂M

> 0 if ρ <
η

1 − α
< θ.

This implies that the individual profit increases as the size of industry expands only
if the products are complements, and that it may decrease as the size expands even
if these are complements (See Fig.12). Notice that there exists a ”reswitching” phe-
nomenon of stability (See the fourth column of Table.1)

ρ(1 − α) > η ρ(1 − α) < η <
θ(1 − α)

θ(1 − α) < η

substitutes complements complements
Short-run Equilibrium locally stable E∗

S1 locally stable E∗
S2 locally unstable

(saddle point) E∗
S3

Long-run Equilibrium globally stable locally unstable globally stable

Table 1: Stability and Instability in the Short-run and in the Long-run (The Case without
Income Effect)
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4.7 Stability of Long-run Equilibrium: The Case with Income Effect

From (65) and (66):

p∗d(M) =
( ρ

cθ

)−1/θ
{

ηθ

αθ + ρη
(N −Mf)

}(θ−1)/θ

M (1−θ)/θ,

q∗d(M) =
( ρ

cθ

)1/θ
{

ηθ

αθ + ρη
(N −Mf)

}1/θ

M−1/θ,

Q∗
d(M) =

( ρ

cθ

)1/θ
{

ηθ

αθ + ρη
(N −Mf)

}1/θ

M
θ−ρ
ρθ .

Thus the profit of each firm is:

π∗
d(M) =

η(θ − ρ)
αθ + ρη

N −Mf

M
− f. (78)

We call M ≥ 0 a long-run DS equilibrium if π∗d(M) = 0 or M = 0 and lim
M→0

π∗
d(M) < 0.

We obtain:
∂π(M)
∂M

=
η(ρ− θ)
αθ + ρη

N

M2
< 0.

It means that the long-run equilibrium is always stable (See Fig.13). The long-run
equilibrium size of industry is:

M̄d =
η

η + α
NT. (79)

M

π*
d(M)

Md

Figure 13: Stability of the DS Long-run Equilibrium

Substituting (78) into (65) and (66), we obtain:

P ∗
d (M̄d) =

( ρ

cθ

)−1/θ
(

η

η + α
N

)(ρ−1)/ρ

T
ρ−θ
ρθ ,

Y ∗
d (M̄d) =N.

We also have:

p∗d(M̄d) =
( ρ

cθ

)−1/θ
T (1−θ)/θ,

q∗d(M̄d) =
( ρ

cθ

)1/θ
T−1/θ,

Q∗
d(M̄d) =

( ρ

cθ

)1/θ
(

η

η + α
N

)1/ρ

T
θ−ρ
ρθ .
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ρ(1 − α) > η ρ(1 − α) <
η < θ(1 − α)

θ(1 − α) < η

substitutes complements complements
Short-run Equilibrium when Z(M) > 0 - - locally stable

E∗
D1

Short-run Equilibrium when Z(M) = 0 locally stable
E∗

D2

locally stable
E∗

D3

semi-stable
E∗

D4

Short-run Equilibrium when Z(M) < 0 locally stable
E∗

D5

locally stable
E∗

D6

-

Long-run Equilibrium globally sta-
ble

globally sta-
ble

globally sta-
ble

Table 2: Stability and Instability in the Short-run and in the Long-run (The Case with
Income Effect)

5 Existence and Non-Existence of Income Effects

5.1 Two Kinds of Demand Functions

There exists no income effect when either Y or P is high enough, but it emerges with
increase in Y or P . In this section, we investigate the boundary dividing the SP case
and the DS case, i.e., the border between existence and non-existence of income effects.

5.2 Conversion of Profit Function

We also consider the connecting point of profit functions. In the SP case, the individual
profit is:

πs(M) =
( ρ

cθ

)η/{θ(1−α)−η}
K

θ
θ(1−α)−ηM

θ{η−ρ(1−α)}
ρ{θ(1−α)−η}

(
1 − ρ

θ

)
− f. (80)

In the the DS case, the profit of each firm is:

πd(M) =
η(θ − ρ)
αθ + ρη

(
N

M
− f

)
− f. (81)

From (69) and (80), we obtain the profit at the boundary value M b:

πs(M b) =
( ρ

cθ

)η/{θ(1−α)−η}
K

θ
θ(1−α)−ηM b

θ{η−ρ(1−α)}
ρ{θ(1−α)−η}

(
1 − ρ

θ

)
− f

=
η(θ − ρ)
αθ + ηρ

(
N

M b
− f

)
− f. (82)

It is clear from (81) and (82) that πd(M b) = πs(M b). From (82),

πs(M b) > 0 if Mb <
η

η + α
NT,

πs(M b) < 0 if Mb >
η

η + α
NT.
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π(M)

M

-f

case A

case B

Mb

N/f

Md(b)Ms(a)

DS Case
(with Income Effect)

SP Case
(without Income Effect)

(a) ρ(1 − α) < η

π(M)
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Figure 14: The Conversion of Profit Function
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We can prove that M b is in proportion to the size of N/f . In other words, M b is
relatively large if N is large enough or f is small enough.

There are two types of graphs of πs(·) depending on the sign of θ(1 − α) − η (See
Fig.14). First, we consider the case of θ(1 − α) > η. From (80), we have:

∂πs(M)
∂M

=
θ{η − ρ(1 − α)}
ρ{θ(1 − α) − η}

( ρ

cθ

)η/{θ(1−α)−η}
K

θ
θ(1−α)−ηM

θ{η−ρ(1−α)}
ρ{θ(1−α)−η}−1

(
1 − ρ

θ

)
− f.

(83)
From (83), we obtain:

∂πs(M)
∂M

> 0 if ρ(1 − α) < η < θ(1 − α),

∂πs(M)
∂M

< 0 if θ(1 − α) < η and ρ(1 − α) > η.

Hence, πs(·) is monotonically increasing if ρ(1 − α) < η < θ(1 − α), and monotoni-
cally decreasing if θ(1−α) < η and ρ(1−α) > η. From (81), πd(·) is always monotonically
decreasing.

First, we consider πs(·). When θ(1 − α) > η, the domain of the SP case is defined
0 < M < M b (See Fig.8(a)). If ρ(1−α) > η, i.e., θ is relatively high and the differentiated
goods are substitutes, πs(·) is monotonically decreasing (See Fig.14(a)). In addition,
when M b <

η

η + α
NT , there exists a unique stable equilibrium (M̄s(a)) on the domain

of the SP case (Case A, See Fig.14(a)). On the other hand, there is no equilibrium of the
SP case if M b >

η

η + α
NT , (Case B, See Fig.14(a)).

When ρ(1 − α) < η < θ(1 − α), namely, the differentiated goods are complements
and θ is relatively high, πs(·) is monotonically increasing. Furthermore, under the con-
dition of M b <

η

η + α
NT , there exists a unique unstable equilibrium (M̄s(c)) of the SP

case (Case C, See Fig.14(a)). On the other hand, when M b >
η

η + α
NT , there is no

equilibrium of the SP case (Case D, See Fig.14(a)).

Next, we consider πd(·) on the domain of M b < M < N/f , that is, in the DS case.
Since πd(·) is monotonically decreasing and goes to −f when M approaches to N/f ,
there exists a stable equilibrium in Case B (M̄d(b)) and Case C (M̄d(c)) (See Fig.14(a)).

Namely, under the condition of θ(1 − α) > η, we obtain four cases of conversion
of profit function. In Case A, there exists a unique stable equilibrium (M̄s(a)) in the SP
case. In Case B, there exists a unique stable equilibrium (M̄d(b)) in the DS case.

We also show that in Case C there exist equilibria M̄s(c) and M̄d(c) on the domains.
The equilibrium of the SP case is stable and that of the DS case is unstable. Furthermore,
we can prove that there exists no equilibrium on any domain (Case D).

Next, we consider the condition of θ(1 − α) < η. In this case, the domain of the SP
case is M b

1 < M < M b
2 and that of the DS case is M b

1 ≤ M ≤ M b
2 (See Fig.8(b)).

Under this condition, both πs(·) and πd(·) is monotonically decreasing. We consider
the condition that M̄s exists on the domain of the SP case.

Substituting (77) into (67), we have:

zs(M̄s) = N − η + α

η

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{θ(1−α)−η}T
η(θ−ρ)

θ{ρ(1−α)−η} . (84)
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When zs(M̄s) > 0, M̄s exists in the SP case, that is,

η

η + α
N >

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}T
η(θ−ρ)

θ{ρ(1−α)−η} . (85)

Substituting (79) into (72), we have:

zd(M̄d) = N − η + α

η

( ρ

cθ

)η/(1−η−α)
K1/(1−η−α)

(
η

η + α
N

) η(1−ρ)
ρ(1−η−α)

T
η(θ−ρ)

ρθ(1−η−α) . (86)

When zd(M̄d) ≤ 0, M̄d exists in the DS case. If θ(1 − α) < η, we obtain inequality
which satisfy zd(M̄d) ≤ 0 as follows:

η

η + α
N ≥

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}T
η(θ−ρ)

θ{ρ(1−α)−η} . (87)

Note that (87) coincides with (85) except equality. We draw graphs in Fig.14(b),
Fig.14(c) and Fig.14(d). When either (85) or (87) are satisfied, there exist two equilibria
M̄s(e), M̄d(e) and both of them are stable (Case E, See Fig.14(b)). Furthermore, rear-
ranging (87), we obtain:

η

η + α
NT ≥

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}T
ρ{θ(1−α)−η}
θ{ρ(1−α)−η} .

From (77) into (79), we obtain the inequality when both M̄s(e) and M̄d(e) exist:

M̄d(e) > M̄s(e). (88)

When only (87) is satisfied, that is,

η

η + α
N =

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}T
η(θ−ρ)

θ{ρ(1−α)−η} ,

there exists a unique stable equilibrium M̄d(f) (Case F, See Fig.14(c)). When neither (85)
nor (87) are satisfied, there exists no equilibrium (Case G, See Fig.14(d)).

Then we obtain the following theorems:

Theorem 4 If the differentiated goods are substitutes, i.e., ρ(1 − α) > η, there exists a unique
and stable long-run equilibrium.

Theorem 5 If the differentiated goods are complements and marginal cost is not highly decreas-
ing, i.e., ρ(1 − α) < η < θ(1 − α), there exist three long-run equilibria which are stable one
with no firms, unstable one and stable one with firms.

Theorem 6 If the differentiated goods are complements and marginal cost is highly decreasing,
i.e., θ(1 − α) < η, two kinds of equilibria exist.
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5.3 Social Welfare

In this section, we consider social welfare in the SP case and the DS case. We inves-
tigate the optimal size of industry that maximize social welfare subject to short-run
equilibrium, and compare it with long-run equilibrium size of industry. Furthermore,
we compare social welfare in the SP case with that in the DS case when θ(1 − α) < η,
that is, when M̄s and M̄d exist on the same domain.

The social welfare W is calculated by the following formula:

W =
β

η

(∫ M

0
q(i)ρdi

)η/ρ

xα + z

=
β

η
Qη

(
α

ηγ
PQ

)α

+N +
∫ M

0
(p(i)q(i) − cq(i)θ − f)di− PQ− γx

=
β

η
Qη

(
α

ηγ
PQ

)α

+N −Mf − cM (ρ−θ)/ρQθ − α

η
PQ. (89)

5.3.1 SP case

When 0 < M < M b, we obtain social welfare Ws(M) in the the SP case as:

Ws(M) = N −Mf +
θ(1 − α) − ηρ

ηθ

( ρ

cθ

)η/{θ(1−α)−η}
Kθ/{θ(1−α)−η}M

η(θ−ρ)
ρ{θ(1−α)−η} . (90)

Then we have:

∂Ws(M)
∂M

=
(θ − ρ){θ(1 − α) − ηρ}

ρθ{θ(1 − α) − η}
( ρ

cθ

)η/{θ(1−α)−η}
Kθ/{θ(1−α)−η}M

θ{η−ρ(1−α)}
ρ{θ(1−α)−η} − f.

(91)
When θ(1 − α) < η, (91) is always negative, that is, (90) is monotonically decreasing

for M . When θ(1 − α) > η, there exists M ◦
s that satisfy

∂Ws(M)
∂M

= 0. Rearranging (91),

we obtain the inequality when
∂Ws(M)
∂M

> 0:

M
θ{η−ρ(1−α)}
ρ{θ(1−α)−η} >

ρθ{θ(1 − α) − η}
(θ − ρ){θ(1 − α) − ηρ}

( ρ

cθ

)η/{η−θ(1−α)}
Kθ/{η−θ(1−α)}f. (92)

From (92), M◦
s is the minimum value when ρ(1 − α) < η < θ(1 − α), and the maxi-

mum value when η < ρ(1−α) < θ(1−α). Suppose that W ◦
s denotes Ws(M◦

s ). Then M ◦
s

and W ◦
s are given by the following formula:

M◦
s =

[
θ(1 − α) − ηρ

ρ{θ(1 − α) − η}
] ρ{θ(1−α)−η}

θ{ρ(1−α)−η}
T

ρ{θ(1−α)−η}
θ{ρ(1−α)−η}

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}, (93)

W ◦
s =N +

ρ(1 − α) − η

η

[
θ(1 − α) − ηρ

ρ{θ(1 − α) − η}
] ρ{θ(1−α)−η}

θ{ρ(1−α)−η} ( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}

T
η(θ−ρ)

θ{ρ(1−α)−η} . (94)
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Compare M◦
s and M̄s:

M̄s −M◦
s =

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}T
ρ{θ(1−α)−η}
θ{ρ(1−α)−η}

1 −
(

θ(1 − α) − ηρ

ρ{θ(1 − α) − η}
) ρ{θ(1−α)−η}

θ{ρ(1−α)−η}

 . (95)

Hence, M ◦
s > M̄s when ρ(1 − α) > η. It means that W̄s, social welfare at M̄s, is

smaller than W ◦
s , that is, under-entry of firms occurs when goods are substitutes. When

ρ(1 − α) < η < θ(1 − α), M◦
s < M̄s. It means that under-entry of firms occurs. When

θ(1 − α) < η, (90) is monotonically decreasing, namely, excess-entry of firms occurs.
Substituting (77) into (90), we obtain:

W̄s ≡ Ws(M̄s) = N +
1 − η − α

η

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}T
η(θ−ρ)

θ{ρ(1−α)−η} .

Then it is clear that W̄s is always larger than N .
We show the graphs of social welfare as Figs.15 and 16 according to the signs of

θ(1 − α) − η. When θ(1 − α) > η, the domain in the SP case is 0 < M < Mb and we can
draw two kinds of graphs according to the signs of ρ(1 − α) − η.

In the range of the SP case, (90) has the maximum value at M ◦
s when ρ(1 − α) > η

(See Figs.15(a), 15(b), 15(c) and 15(d)). Furthermore, we draw the graphs according to
the profit functions (See Fig.14). When M̄s exists in the SP case (See Case A in Fig.14(a)),
it is clear that under-entry of firms occurs. We show some graphs by the size of M ◦

s (See
Figs.15(a), 15(b), 15(c) and Appendix D for more information). When ρ(1 − α) < η <
θ(1 − α) and there exists M̄s in the SP case (See Case C in Fig.14(b)), we see that M ◦

s is
smaller than M̄s.

When θ(1 − α) < η, the domain in the SP case is Mb1 < M < Mb2 and W̄s is
monotonically decreasing (See Fig.16).

5.3.2 DS case

When M b ≤ M < N/f , we obtain the social welfare Wd(M) in the DS case as follows:

Wd(M) =
1
η

( ρ

cθ

)η/θ
K

{
ηθ

αθ + ρη
(N −Mf)

}(η+αθ)/θ

M
η(θ−ρ)

ρθ . (96)

Then we have:

∂Wd(M)
∂M

=
1
η

( ρ

cθ

)η/θ
K

{
ηθ

αθ + ρη

}(η+αθ)/θ

(N −Mf){η−θ(1−α)}/θM
η(θ−ρ)−ρθ

ρθ

{
η(θ − ρ)

ρθ
N − αρ + η

ρ
Mf

}
. (97)

Thus there exists M ◦
d such that (97) is zero:

M◦
d =

η

αρ + η
NT. (98)
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Figure 15: Social Welfare when η < θ(1 − α)
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Since
∂Wd(M)
∂M

> 0 if M <M◦
d and

∂Wd(M)
∂M

< 0 if M >M◦
d , (96) has the maximum

value at M◦
d (See Fig.15). Substituting (98) into (96), we have:

Wd(M◦
d ) =

1
η

( ρ

cθ

)η/θ
K

{
ρ(αρ + η)
αθ + ρη

}(η+αθ)/θ (
η

αρ + η
N

)(αρ+η)/ρ

T
η(θ−ρ)

ρθ .

From (77) and (96), we also obtain:

W̄d ≡ Wd(M̄d) =
1
η

( ρ

cθ

)η/θ
K

(
η

αρ + η
N

)(αρ+η)/ρ

T
η(θ−ρ)

ρθ .

Compare M◦
d and M̄d. From (79) and (98),

M̄d −M◦
d =

η

η + α
NT − η

αρ+ η
NT =

ηα(ρ − 1)
(η + α)(αρ + η)

NT < 0. (99)

It means that the number of firms of the long run equilibrium is less than the opti-
mum level M◦

d .

When θ(1− α) > η, the range of the DS case is Mb < M < N/f . When ρ(1 − α) > η,
there are two cases whether M̄d exists in the DS case (Fig. 15(d)) or not (Figs.15(a), 15(b),
15(c)). If M̄d exists in the DS case, we draw social welfare as Fig. 15(d) (See Appendix D
for more information). It is clear that under-entry of firms occurs.

When ρ(1 − α) < η < θ(1 − α), there may exist M̄s in the SP case and M̄d in the DS
case simultaneously (See Case C in Fig.14(b) and Fig.15(e)).

In this case, W ◦
s is the minimum value at M◦

s and M◦
s < M̄s < Mb. It means that

W ◦
s < W̄s < Wb. We also have the condition of Wb < W̄d < W ◦

d because W ◦
d is the

maximum value at M◦
d and Mb < M̄d < M◦

d . Recall that W̄s is always larger than N .
Hence, we have the condition of N < W̄s < W̄d.

In the case that there exists no equilibrium on any domain (See Case D in Fig.14(c)),
social welfare is monotonically decreasing for M (See Fig.15(f)).
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When θ(1−α) < η, the domain in the DS case coincides with that in the SP case (See
Fig.16).

Compare Ws(M) and Wd(M) when θ(1−α) < η. Then we know that Wd(M) has the
maximum value Wd(M◦

d ) and the values of M-intercept are 0 and N/f . Since Ws(M)
and Wd(M) intersect at two values Mb1 and Mb2, and Ws(M) is monotonically decreas-
ing for M , it is clear that M◦

d < Mb2.
Furthermore, from (88) and (99), M̄s < M̄d < M◦

d is the condition which both M̄s

and M̄d exist on the domain of Mb1 < M < Mb2 .
Then it can be seen that Ws(M) is below Wd(M) on the domain of Mb1 < M < Mb2

(See Fig.16). We thus obtain the following theorems:

Theorem 7 Social welfare level of the DS case is always higher than that of the SP case.

Theorem 8 When two equilibria exist (See Fig.10(c)), the social welfare level of the stable equi-
librium E∗

D1 is higher than that of the unstable equilibrium E∗
S3.
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Appendix A

This appendix is to explain from more general settings the maximization behaviors of
the representative consumer and monopolistically competitive firms shown in the pa-
per.

The representative consumer has the utility function U(Q,x, z) for consumption of
the three types of goods: Q denotes a composite index of differentiated goods, x is
consumption of the agricultural good, and z is the numéraire. The quantity index Q is
given by subutility functions over the interval [0,M ] of varieties of manufactured goods
where M is the range of varieties produced.

The composite index Q of differentiated goods is defined by subutility functions V
and v as

Q = V

(∫ M

0
v(q(i))di

)
.

We impose one-homogeneity on the composite function of V and the integral of v.
Namely,

V

(∫ M

0
v(tq(i))di

)
= tV

(∫ M

0
v(q(i))di

)
for all t > 0 and all M > 0.

We assume that the preference is doubly separable, that is, the utility of q(·), x and z is
measured by a composite function of U , V and v as

U

(
V

(∫ M

0
v(q(i))di

)
, x, z

)

Given income Y and a system of prices, p(i) for each manufactured goods i and r
for the homogeneous product, the consumer maximizes the utility subject to the budget
constraint:

Maximize U

(
V

(∫ M

0
v(q(i))di

)
, x, z

)
, subject to

∫ M

0
p(i)q(i) + rx+ z ≤ Y.

This maximization problem is solved in two steps. First, however much the value
of the manufacturing composite Q is, each q(i) needs to be chosen so as to minimize the
expenditure of attaining M . This means:

Minimize
∫ M

0
p(i)q(i)di subject to V

(∫ M

0
v(q(i))di

)
= Q.

For each i ∈ [0,M ], the compensated demand function h(i, p,Q,M) for manufac-
tured good indexed i is defined by

V

(∫ M

0
v(h(i, p,Q,M))di

)
= Q, and

∫ M

0
p(i)h(i, p,Q,M)di ≤

∫ M

0
p(i)q(i)di

for all q ∈ (�+)[0,M ] such that V

(∫ M

0
v(q(i))di

)
= Q.
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By the one-homogeneity of V
(∫ M

0
v(·)di

)
, we can show that h(i, p,Q,M) = h(i, p, 1,M)Q.

Define q̄(i, p,M) ≡ h(i, p, 1,M), then

1 = V −1

(∫ M

0
v(q̄(i, p, 1,M))di

)
and h(i, p,Q,M) = Qq̄(i, p,M).

Hence, the expenditure function e is defined by

e(p,Q,M) ≡
∫ M

0
p(i)h(i, p,Q,M)di = Q

∫ M

0
p(i)q̄(i, p,M)di

The price index is therefore defined by

P ≡ e(p,Q,M)
Q

=
∫ M

0
p(i)q̄(i, p,M)di = e(p, 1,M).

Next consider the maximization problem as follows:

Maximize U(Q,x, z), subject to PQ+ γx+ z ≤ Y.

Since γ is the marginal cost of the competitive sector, which is constant, the maxi-
mizer is denoted by (Q(P, Y ), x(P, Y ), z(P, Y )). Let Q = 1, and consider

Minimize
∫ M

0
p(i)q(i)di, subject to V

(∫ M

0
v(q(i))di

)
= 1.

The first-order condition is:

p(i) =µV ′
(∫ M

0
v(q(i))di

)
v′(q(i)), (100)

1 =V
(∫ M

0
v(q(i))di

)
, (101)

where µ is a Lagrangian multiplier. From equation (101),

V −1(1) =
∫ M

0
v(q(i))di. (102)

Substituting (102) into (100), we have:

p(i) = µV ′ (V −1(1)
)
v′(q(i)).

Let k = V ′ (V −1(1)
)
, then

v′(q(i)) =
p(i)
µk

(103)

Let q̄ be the expenditure minimizer. By homogeneity,

V

(∫ M

0
v(tq̄(i))di

)
= t.
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Then we obtain

1 = V ′
(∫ M

0
v′(tq̄(i))di

) ∫ M

0
v′(tq̄(i))q̄(i)di. (104)

Substituting t = 1 into equation (104),

1 = V ′ (V −1(1)
) ∫ M

0
v′(q̄(i))q̄(i)di = k

∫ M

0
v′(q̄(i))q̄(i)di. (105)

Substituting (103) into (105) and rearranging,

µ =
∫ M

0
p(i)q̄(i)di.

Then P = µ, and we obtain from (103),

q̄(i) = (v′)−1

[
p(i)
Pk

]

Hence,

q(i) = q̄(i)Q(P, Y ) = (v′)−1

(
p(i)
Pk

)
Q(P, Y )

Define g ≡ (v′)−1, then

q(i) = g

(
p(i)
Pk

)
Q(P, Y ).

Recall P = e(p, 1,M), then we have (q(·), x, z) that solves the original maximization
problem.

Next consider behavior of firms and performances of markets of monopolistic com-
petition. Let C be the identical total cost function of firms in the industry. We present
some dynamics of monopolistic competition in the short-run. We mean by ’short-run’
that the set of incumbent firms is fixed. Let M be the size of the industry. We propose
three versions of formulations of price adjustment process of monopolistic competition.
Each of them is based on its own characteristics of the commodity.

The first version is á la Cournot. Each firm produces and supplies its own product
given price index of the industry and income level of consumers. The price is deter-
mined by market demand, and agents make trades. The earned profit becomes part of
the new income of consumers. Then, the price index and income level are updated. This
dynamic process continues until neither the price index nor the income level change.
This is formulated as follows: Note that p(i) = Pkv′(q(i)). Given (P, Y ), each firm i
selects quantity q(i) to maximize its profit

Pkv′(q(i))q(i) − C (q(i)) .

By functional form, the maximizer is written as q(i) = q(P, Y ), which is independent of
i.
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Suppose that q(P, Y ) is actually produced and supplied to market i. Then the new
price system (p∗, P ∗) and the income Y ∗ to clear the markets solves the following simul-
taneous equations

g

(
p∗

P ∗k

)
Q(P ∗, Y ∗) = q(P, Y ), (106)

P ∗ = Mp∗g
(

p∗

P ∗k

)
, and (107)

Y ∗ = N +M(p∗q(P, Y ) − C(q(P, Y )). (108)

Hence, p∗ = p∗(P, Y,M), P ∗ = P ∗(P, Y,M), and Y ∗ = Y ∗(P, Y,M). Thus, the short-
run dynamic adjustment system is:

Ṗ =P ∗(P, Y,M) − P ; and

Ẏ =Y ∗(P, Y,M) − Y.

The second version is á la Bertrand. Each firm sets the price of its own product given
price index of the industry and income level of consumers. The quantity is determined
by market demand, and agents make trades. The earned profit becomes part of the
new income of consumers. Then, the price index and income level are updated. This
dynamic process continues until the neither the price index nor income level change:

Recall that the market demand is expressed as g

(
p(i)
Pk

)
Q(P, Y ). Given (P, Y ), each

firm i selects p(i) to maximize its profit

p(i)g
(
p(i)
Pk

)
Q(P, Y ) − C

(
g

(
p(i)
Pk

)
Q(P, Y )

)
.

By functional form, the solution is independent of i, then it is written as p(i) =
p(P, Y ). Suppose that p(P, Y ) is set and fixed in market i, then the new value of the
price index P ∗ and the income level Y ∗ solve the simultaneous equations:

P ∗ = Mp(P, Y )g
(
p(P, Y )
P ∗k

)
; and

Y ∗ = N +M

(
p(P, Y )g

(
p(P, Y )
P ∗k

)
Q(P ∗, Y ∗) −C

(
g

(
p(P, Y )
P ∗k

)
Q(P ∗, Y ∗)

))
.

Hence, P ∗ = P ∗(P, Y,M), and Y ∗ = Y ∗(P, Y,M). Thus, the short-run dynamic
adjustment system is:

Ṗ = P ∗(P, Y,M) − P ; and

Ẏ = Y ∗(P, Y,M) − Y.

The last version is á la Walras. Each firm tentatively sets the price of its own product
given price index of the industry and income level of consumers. Its anticipated profit is
informed to consumers as part of their new income, and the information of price index
and income level is updated. This adjustment process continues until the anticipated
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values coincides with the actual ones. Agents trade only after the adjustment process
terminates: Given (P, Y ), each firm i selects p(i) to maximize its profit

p(i)g
(
p(i)
Pk

)
Q(P, Y ) − C

(
g

(
p(i)
Pk

)
Q(P, Y )

)
.

By functional form, the solution is independent of i, then it is written as p(i) =
p(P, Y ). Then the anticipated profit of firm i is:

π(P, Y ) = p(P, Y )g
(
p(P, Y )
Pk

)
Q(P, Y ) − C

(
g

(
p(P, Y )
Pk

)
Q(P, Y )

)
,

and the new value of the price index P ∗ and the income level Y ∗ are determined by:

P ∗ = Mp(P, Y )g
(
p(P, Y )
P ∗k

)
; and

Y ∗ = N +Mπ(P, Y ).

Hence, P ∗ = P ∗(P, Y,M), and Y ∗ = Y ∗(P, Y,M). Thus, the short-run dynamic
adjustment system is:

Ṗ = P ∗(P, Y,M) − P ; and

Ẏ = Y ∗(P, Y,M) − Y.

We can see that the short-run equilibrium (P (M), Y (M)), which is defined by

P ∗(P (M), Y (M),M) = P (M); and

Y ∗(P (M), Y (M),M) = Y (M)

is the same regardless of adjustment processes.
Finally, we give the standard formulation of dynamics of monopolistic competition

in the long-run. The size of industry expands when the individual profit level is positive
and shrinks when the level is negative, so that

Ṁ = φ(π∗(M)),

where φ′(π) > 0 for all π ∈ � and φ(0) = 0. Then the long-run equilibrium size of
industry is M̄ such that π∗(M̄) = 0.

Appendix B

This appendix is to indicate Ṗ = 0 of four cases: the SP-SP, DS-SP, SP-DS and DS-DS
cases and coordinate values of the intersections A, B and C .

From (42), (44), (58) and (60), we have the following four equations:
Ṗ = 0 of the SP-SP case:

P =
( ρ

cθ

) 1−η−α
η−θ(1−α)

K
1−θ

η−θ(1−α)M
(θ−ρ)(1−η−α)
ρ{η−θ(1−α)} . (109)
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Ṗ = 0 of the DS-SP case:

P
θ(1−η−α)−η(1−ρ)

(θ−ρ)(1−η−α) =
η

α

( ρ

cθ

)1/(ρ−θ)
K

ρ−1
(θ−ρ)(1−η−α)M−1/ρ

[
N −Mf − cM

( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)P

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)

]
. (110)

Ṗ = 0 of the SP-DS case:

P =
( ρ

cθ

) 1−η−α
θ(α−1)+ρη

K
ρ−θ

θ(α−1)+ρηM
(θ−ρ)(1−η−α)
ρ{θ(α−1)+ρη}

(
η

η + α
Y

) (1−ρ)(1−η−α)
θ(α−1)+ρη

. (111)

Ṗ = 0 of the DS-DS case:

P θ/(θ−ρ) =
η

α

( ρ

cθ

)1/(ρ−θ)
M−1/ρ

(
η

η + α
Y

) ρ−1
θ−ρ


N −Mf − cM

( ρ

cθ

)θ/(θ−ρ)
(

η

η + α
Y

) θ(1−ρ)
θ−ρ

P
ρθ

θ−ρ


 . (112)

From (26), (40) and (56), we also obtain the boundaries between these cases.

The boundary between the SP case and the DS case is z = 0. That is:

η

η + α
Y = K1/(1−η−α)P−η/(1−η−α). (113)

The boundary between the SP-SP case and the DS-SP case is F (P,M) = 0. That is:

N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)P

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)

=
α

η

( ρ

cθ

) η
(θ−ρ)(1−α)

K
η(1−θ)−(θ−ρ)(α−1)
(θ−ρ)(1−α)(1−η−α)M

η
ρ(1−α)P

η{ρ(1−α)−η}
(θ−ρ)(1−α)(1−η−α) . (114)

The boundary between the SP-DS case and the DS-DS case G(P, Y,M) = 0. That is:

N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
(

η

η + α
Y

) θ(1−ρ)
θ−ρ

P
ρθ

θ−ρ

=
α

η

( ρ

cθ

) η
(θ−ρ)(1−α)

K1/(1−α)M
η

ρ(1−α)P
ρη

(θ−ρ)(1−α)

(
η

η + α
Y

) η(1−ρ)
(θ−ρ)(1−α)

. (115)

The curves (109), (111) and (113) intersect at the point A(YA, PA):

YA =
η + α

η

( ρ

cθ

) η
θ(1−α)−η

K
θ

θ(1−α)−ηM
η(θ−ρ)

ρ{θ(1−α)−η} ,

PA =
( ρ

cθ

) 1−η−α
η−θ(1−α)

K
1−θ

η−θ(1−α)M
(θ−ρ)(1−η−α)
ρ{η−θ(1−α)}
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The curves (111), (112) and (115) intersect at the point B(YB , PB), which satisfies the
following equations:

N −Mf−c
( ρ

cθ

) θ(α−1)
θ(α−1)+ρη

K
−ρθ

θ(α−1)+ρηM
η(ρ−θ)

θ(α−1)+ρη

(
η

η + α
YB

) θ(1−ρ)(α−1)
θ(α−1)+ρη

=
α

η

( ρ

cθ

) −η
θ(α−1)+ρη

K
−θ

θ(α−1)+ρηM
η(ρ−θ)

ρ{θ(α−1)+ρη}
(

η

η + α
YB

) η(ρ−1)
θ(α−1)+ρη

,

N −Mf−cKθ/(1−η−α)M (ρ−θ)/ρPB

θ(α−1)
1−η−α

=
α

η
K1/(1−η−α)PB

−η/(1−η−α).

The curves (110), (112) and (113) intersect at the point C(YC , PC), which satisfies the
following equations:

N −Mf−cM
( ρ

cθ

)θ/(θ−ρ)
K

ρθ
η(θ−ρ)

(
η

η + α
YC

) θ{η−ρ(1−α)}
η(θ−ρ)

=
α

η

( ρ

cθ

)1/(θ−ρ)
K

θ
η(θ−ρ)M1/ρ

(
η

η + α
YC

) θ(1−η−α)−η(1−ρ)
η(ρ−θ)

,

N −Mf−cM
( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)PC

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)

=
α

η

( ρ

cθ

)1/(θ−ρ)
K

1−ρ
(θ−ρ)(1−η−α)M1/ρPC

θ(1−η−α)−η(1−ρ)
(θ−ρ)(1−η−α) .

Appendix C

This appendix is to indicate Ṗ = 0 of four cases: the SP-SP, DS-SP, SP-DS and DS-DS
cases and coordinate values of the intersections D, E, F and G.

From (42), (44), (58) and (60), we have the following four equations:

Ẏ = 0 of the SP-SP case:

Y =N −Mf +
( ρ

cθ

) η
(1−α)(θ−ρ)

K
(α−1)(θ−ρ)+η(θ−1)
(α−1)(θ−ρ)(1−η−α)P

η{η−ρ(1−α)}
(α−1)(θ−ρ)(1−η−α)M

η
ρ(1−α)

− c
( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)P

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)M. (116)

Ẏ = 0 of the DS-SP case:

Y =
η + α

α

[
N −Mf − cM

( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)P

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)

]
. (117)

Ẏ = 0 of the SP-DS case:

Y =N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
(

η

η + α
Y

) θ(1−ρ)
θ−ρ

P
ρθ

θ−ρ

+
( ρ

cθ

) η
(θ−ρ)(1−α)

K1/(1−α)M
η

ρ(1−α)

(
η

η + α
Y

) η(1−ρ)
(θ−ρ)(1−α)

P
ρη

(θ−ρ)(1−α) . (118)
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Ẏ = 0 of the DS-DS case:

Y =
η + α

α


N −Mf − cM

( ρ

cθ

)θ/(θ−ρ)
(

η

η + α
Y

) θ(1−ρ)
θ−ρ

P
ρθ

θ−ρ


 . (119)

The curves (114), (116) and (117) intersect at the point D(YD, PD), which satisfies the
following equations:

N −Mf− α

η + α
YD = cK−θ/ηM (ρ−θ)/ρ

(
η

η + α
YD

) θ(1−α)
η

,

N −Mf−cM
( ρ

cθ

) θ
θ−ρ

K
θ(1−ρ)

(θ−ρ)(1−η−α)PD

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)

=
α

η

( ρ

cθ

) η
(θ−ρ)(1−α)

K
(θ−ρ)(α−1)−η(1−θ)
(θ−ρ)(α−1)(1−η−α)M

η
ρ(1−α)PD

η{ρ(1−α)−η}
(θ−ρ)(1−α)(1−η−α) .

The curves (113), (116) and (118) intersect at the point E(YE , PE), which satisfies the
following equations:

YE =N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
K

ρθ
η(θ−ρ)

(
η

η + α
YE

) θ{η−ρ(1−α)}
η(θ−ρ)

+
( ρ

cθ

) η
(θ−ρ)(1−α)

K
θ

(θ−ρ)(1−α)M
η

ρ(1−α)

(
η

η + α
YE

) η−ρ(1−α)
(θ−ρ)(1−α)

,

η + α

η
K1/(1−η−α)PE

−η/(1−η−α)

=N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)PE

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α)

+
( ρ

cθ

) η
(θ−ρ)(1−α)

K
(θ−ρ)(α−1)−η(1−θ)
(θ−ρ)(α−1)(1−η−α)M

η
ρ(1−α)PE

η{η−ρ(1−α)}
(θ−ρ)(α−1)(1−η−α) .

The curves (115), (118) and (119) intersect at the point F (YF , PF ), which satisfies the
following equations:

N −Mf − α

η + α
YF = cK−θ/ηM (ρ−θ)/ρ

(
η

η + α
YF

) θ(1−α)
η

,

α

η

( ρ

cθ

) η
(θ−ρ)(1−α)−η(1−ρ)

K
θ−ρ

(θ−ρ)(1−α)−η(1−ρ)M
η(θ−ρ)

ρ{(θ−ρ)(1−α)−η(1−ρ)}PF

ρη
(θ−ρ)(1−α)−η(1−ρ)

=N −Mf − c
( ρ

cθ

) θ(1−α)
(θ−ρ)(1−α)−η(1−ρ)

K
η(θ−ρ)(1−ρ)

(θ−ρ)(1−α)−η(1−ρ)M
(θ−ρ){ρ(1−η−α)+η}

ρ{(θ−ρ)(1−α)−η(1−ρ)}

PF

ρθ(1−α)
(θ−ρ)(1−α)−η(1−ρ) .

The curves (113), (117) and (119) intersect at the point G(YG, PG), which satisfies the
following equations:

N −Mf − α

η + α
YG = cM

( ρ

cθ

) θ
θ−ρ

K
ρθ

η(θ−ρ)

(
η

η + α
YG

) θ{η−ρ(1−α)}
η(θ−ρ)

,

α

η
K1/(1−η−α)PG

−η/(1−η−α)

= N −Mf − cM
( ρ

cθ

)θ/(θ−ρ)
K

θ(1−ρ)
(θ−ρ)(1−η−α)PG

θ{ρ(1−α)−η}
(θ−ρ)(1−η−α) .
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We obtain E∗
D4(Y

∗
E4, P

∗
E4) as the point that C coincides with G, that is:

Y ∗
E4 =

η + α

η

( ρ

cθ

)η/{θ(1−α)−η}
Kθ/{θ(1−α)−η}M

η(θ−ρ)
ρ{θ(1−α)−η} ,

P ∗
E4 =

( ρ

cθ

) 1−η−α
η−θ(1−α)}

K
1−θ

η−θ(1−α)M
(θ−ρ)(1−η−α)
ρ{η−θ(1−α)}

Appendix D

This appendix is to prepare for drawing Fig.15. We consider the condition of the exis-
tence of M̄s, M̄d, M◦

s and M◦
d . From (77) and (70), the condition that M̄s exists in the SP

case is:

N >
η + α

η

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}T
η(θ−ρ)

θ{ρ(1−α)−η} ≡ N̄s.

We thus see that M̄s exists in the DS case when N < N̄s. From (70) and (94), the
condition of M◦

s in the SP case is:

N >

[
αθ + ρη

ηθ
+

(θ − ρ){θ(1 − α) − ρη}
ρθ{θ(1 − α) − η}

] ( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}T
η(θ−ρ)

θ{ρ(1−α)−η}

[
θ(1 − α) − ρη

ρ{θ(1 − α) − η}
] η(θ−ρ)

θ{ρ(1−α)−η}
≡ N◦

s .

We thus see that M ◦
s exists in the DS case when N < M ◦

s . From (79) and (74), the
condition of M̄d in the DS case is:

N <
η + α

η

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}T
η(θ−ρ)

θ{ρ(1−α)−η} ≡ N̄d if ρ(1 − α) > η,

N >
η + α

η

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}T
η(θ−ρ)

θ{ρ(1−α)−η} . if ρ(1 − α) < η.

Note that N̄s equals to N̄d.
If we define N ◦

d as follows, the condition of M ◦
d in the DS case is:

N◦
d ≡ (αρ + η)(αθ + ρη)

ηρ(αθ + η)

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}T
η(θ−ρ)

θ{ρ(1−α)−η}
[
αθ + ρη

ρ(αθ + η)

] η(θ−ρ)
θ{ρ(1−α)−η}

.

N <N◦
d if ρ(1 − α) > η,

N >N◦
d if ρ(1 − α) < η.

From (95), N̄s < N◦
s is a necessary and sufficient condition for M̄s > M◦

s when
ρ(1 − α) > η and N̄s > N◦

s when ρ(1 − α) < η. We also obtain N̄d < N◦
d from (99).

Assume that N̄s = N̄d ≡ N̄ . Then we prove that N̄ < N◦
d < N◦

s when ρ(1 − α) > η and
N◦

s < N̄ < N◦
d when ρ(1 − α) < η.

Compare M̄s and M̄d. From (77) and (79),

M̄d − M̄s =
η

η + α

{
N − η + α

η

( ρ

cθ

) ρη
θ{ρ(1−α)−η}

Kρ/{ρ(1−α)−η}T
η(θ−ρ)

θ{ρ(1−α)−η}
}
.
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Then we obtain the following inequalities:

M̄d >M̄s if N > N̄,

M̄d <M̄s if N < N̄.

First, we consider social welfare when ρ(1 − α) > η.
WhenN > N ◦

s , M̄s,M◦
s , M̄d andM◦

d are in the SP Case. We thus obtain the inequality
M̄s < M◦

s < M̄d < M◦
d < M b and draw Fig.15(a). When N◦

d < N < N◦
s , M̄s, M̄d

and M◦
d are in the SP Case and M ◦

s is in the DS Case. We thus obtain the inequality
M̄s < M̄d < M◦

d < M b < M◦
s < N/f and draw Fig.15(b). When N̄ < N < N◦

d , M̄s and
M̄d are in the SP Case and M ◦

s and M◦
d are in the DS Case. We thus obtain the inequality

M̄s < M̄d < M b < M◦
d < M◦

s < N/f and draw Fig.15(c). When N < N̄ , M̄s, M◦
s , M̄d

and M◦
d are in the DS Case. We thus obtain the inequality M b < M̄d < M̄s < M◦

s <
M◦

d < N/f and draw Fig.15(d).
Next, we consider social welfare when ρ(1 − α) < η.
When N̄ < N , M̄s and M◦

s are in the SP Case and M̄d and M◦
d are in the DS Case.

We thus obtain the inequality M ◦
s < M̄s < M b < M̄d < M◦

d < N/f and draw Fig.15(e).
When N̄ > N , M̄d and M◦

d are in the SP Case and M̄s and M◦
s are in the DS Case. We

thus obtain the inequality M̄d < M◦
d < M b < M◦

s < M̄s < N/f and draw Fig.15(f).

Appendix E

We consider the loci of P (M) and Y (M). First we deal with the SP case. The equilibrium
of the the SP case is denoted by (63) and (64). Then we express Y as a function of P :

Ys(P ) = N − P
ρ{η−θ(1−α)}
(θ−ρ)(1−η−α)

( ρ

cθ

)ρ/(ρ−θ)
K

ρ(θ−1)
(θ−ρ)(1−η−α) f + P

−η
1−η−αK1/(1−η−α)

(
1 − ρ

θ

)
.

(120)
Then we have:

∂Ys(P )
∂P

=
ρ{θ(1 − α) − η}

(θ − ρ)(1 − η − α)
P

ρ{η−θ(1−α)}
(θ−ρ)(1−η−α)

−1
( ρ

cθ

)ρ/(ρ−θ)
K

ρ(θ−1)
(θ−ρ)(1−η−α) f

− η

1 − η − α
P

−η
1−η−αK1/(1−η−α)

(
1 − ρ

θ

)
. (121)

When θ(1 − α) < η, (121) is always negative, i.e., Ys(P ) is monotonically decreasing
function as Case A (See Fig.17(a)).

On the other hand, there exists Pm
s that satisfy (121) is zero, when θ(1 − α) > η.

Namely,

Pm
s =

{
ρ{θ(1 − α) − η}

η(θ − ρ)

} (θ−ρ)(1−η−α)
θ{ρ(1−α)−η}

T
(θ−ρ)(1−η−α)
η−θ{ρ(1−α)}

( ρ

cθ

) ρ(1−η−α)
θ{η−ρ(1−α)}

K
ρ−1

ρ(1−α)−η .

When ρ(1−α) < η, Y → −∞ as P → 0 (Case B, See Fig.17(a)), and Y → ∞ as P → 0
when ρ(1 − α) > η (Case C, See Fig.17(a)). Then it is clear that the function Ys(P ) has
the maximum value (Pm

s , Y m
s ) in Case B, and has the minimum value (Pm

s , Y m
s ) in Case

C.

49



From (113), we obtain the following function Yz=0(P ) such as:

Yz=0(P ) =
η + α

η
K1/(1−η−α)P−η/(1−η−α). (122)

Recall that z > 0 is the domain of the SP case, that is, we consider Ys(P ) when
Yz=0(P ) > 0. And we have to take into account the coverage limitation that N −Mf is
always positive. Namely,

Ys(P ) >
(
1 − ρ

θ

)
K1/(1−η−α)P−1/(1−η−α).

There could exist two intersections ((P b
s1, Y

b
s1) and (P b

s2, Y
b
s2), P

b
s1 < P b

s2) of (120) and
(122). These intersections satisfy the following equation.

N =
( ρ

cθ

)ρ/(ρ−θ)
K

ρ(θ−1)
(θ−ρ)(1−η−α)P

ρ{η−θ(1−α)}
(θ−ρ)(1−η−α) f +

αθ + ρη

ηθ
K1/(1−η−α)P

−η
1−η−α . (123)

On the other hand, there exists a unique intersection (P b
s , Y

b
s ) that satisfy (123) when

θ(1 − α) > η.

Next we deal with the DS case. From (65) and (66), we obtain Pd(Y ):

Pd(Y ) =
( ρ

cθ

)−1/θ
(

η

η + α
Y

)(θ−1)/θ {
N − αθ + ρη

θ(η + α)
Y

} ρ−θ
ρθ

f
θ−ρ
ρθ . (124)

Recall N −Mf > 0. Then (65) gives the domain Y

]
0,
θ(η + α)
αθ + ρη

N

f

[
. Furthermore,

from the equation (122), the range of Pd(Y ) is

Pd(Y ) ≤ K1/η

(
η

η + α
Y

)−(1−η−α)/η

.

From (124), we have:

∂Pd(Y )
∂Y

=
( ρ

cθ

)−1/θ
(

η

η + α

)(θ−1)/θ

Y −1/θ

{
N − αθ + ρη

θ(η + α)
Y

} ρ−θ−ρθ
ρθ

f
θ−ρ
ρθ

{
θ − 1
θ

N +
(1 − ρ)(αθ + ρη)

ρθ(η + α)
Y

}
. (125)

When θ > 1, (125) is always positive, i.e., Pd(Y ) is monotonically increasing function
(Case D, See Fig.17(b)). And there exists a unique intersection of (122) and (124) (Y b

d1,
P b

d1) that satisfy the following equation.

{
N − αθ + ρη

θ(η + α)
Y

} ρ−θ
ρθ

=
( ρ

cθ

)1/θ
K1/η

(
η

η + α
Y

) η−θ(1−α)
ηθ

f
ρ−θ
ρθ . (126)

When 0 < θ < 1, there exists Y m
d that satisfy (125) is zero where

Y m
d =

ρ(1 − θ)(η + α)
(1 − ρ)(αθ + ρη)

N.
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P

Y
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1d

Pb
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1d Ym

d

P(Y)z=0
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N

Case E
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Yθ(η+α)N
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2

P(Y)z=0

Pb
1
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2

(c) Conversion of the Model

Figure 17: The loci of P (M) and Y (M)
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And if Y satisfy 0 < Y < Y m
d , (125) is positive, and is negative when Y m

d < Y <
θ(η + α)
αθ + ρη

N . It means that (Y m
d , Pm

d ) is maximum value. Then, there could exist two

intersections ((Y b
d1, P

b
d1) and (Y b

d2, P
b
d2), Y

b
d1 < Y b

d2) may exist (Case E, See Fig.17(b)).
These intersections also fill the equation (126).

We can show the conversion between the SP case and the DS case (See Fig.17(c)). We
prove that (Y b

s1, P
b
s1) = (Y b

d1, P
b
d1) and (Y b

s2, P
b
s2) = (Y b

d2, P
b
d2).
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