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We investigate the question of representing nonpaternalistic functions (ag-
gregators) in paternalistic form, which was posed by Ray [1987], in an intergen-
erational setting. As in Hori [2001], the aggregators in this paper may differ
across generations and depend possibly on the utility levels of all other gener-
ations. We discuss two approaches to deal with an infinite horizon. The first
one explores monotonicity structures inherent in nonpaternalistic altruism. By
means of lattice-theoretic arguments, we establish the existence of representa-
tions of nonpaternalistic functions in paternalistic form. The second approach
uses the requirement of small degree of altruism. Keywords: Nonpaternalis-
tic intergenerational altruism, Paternalistic representation, Aggregator. JEL
Classification Numbers: D11, D64
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1. Introduction

To analyze intertemporal economic problems, the notion of intergenerational
altruism has been playing an important role. 2 Researchers in this field iden-
tified two models of intergenerational altruism. To borrow terminologies from
Ray [1987], the paternalistic model, on the one hand, incorporates intergen-
erational altruism into the utility function of each generation as a function of
consumption allocations among all generations. On the other hand, the nonpa-
ternalistic model captures intergenerational altruism by means of aggregators
which relate the utility level of each generation to the utility levels of other
generations as well as onés own consumption. The idea of nonpaternalistic al-
truism was formulated by Becker [1974] in the context of altruism among family
members. In intergenerational contexts, the same idea was employed by Barro
[1974], Kimball [1987], Ray [1987], Hori and Kanaya [1989], Hori [1992], and
Hori [2000].

Ray [1987, 113-114] addressed the following question concerning the two
approaches:

The representation of nonpaternalistic functions in paternalistic
form has also been the object of limited attention;.... But a sys-
tematic analysis of the relationship between these two frameworks
is yet to be written, and appears to be quite a challenge, especially
for models with an infinite horizon.

Several interesting results on this question have been delivered recently.
Bergstrom [1999] identified the relevance of an infinite version of McKenzie´s
[1960] dominant diagonal condition for a given list of linear aggregators to pos-
sess a unique representation. Hori [2001] considered the representation problem
for the case of a finite number of agents with possibly nonlinear aggregators.
Hori [2001] showed that McKenzie´s [1960] dominant diagonal matrix can be
useful in the case of non-linear aggregators as well. The model in this paper
is an extension of Hori´s [2001] to the case of countably many generations. As
in Hori [2001], the aggregators in this paper may differ across generations and
depend possibly on the utility levels of all other generations.

We discuss two approaches to deal with an infinite horizon. The first one ex-
plores monotonicity structures inherent in nonpaternalistic altruism. By means
of lattice-theoretic arguments alone, we establish the existence of representa-
tions of nonpaternalistic functions (aggregators) in paternalistic form. Becker
[1974] discussed the problem of infinite regress to require that the degree of
altruism be small. The second approach uses the requirement of the same
spirit expressed in terms of uniformly small Fréche derivative (with respect to
the utility level of other generations). We regard this approach as a natural
extension of Hori´s [2001] . We also discuss the case of linear aggregators. As

2For prominent examples, the reader is referred to the references in Ray [1987] and Hori
and Kanaya [1989].
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Bergstrom [1999] showed, a certain infinite matrix with a dominant diagonal ex-
presses the idea of small degree of altruism in this case and it offers a powerful
tool to represent nonpaternalistic functions in paternalistic form. Our treatment
is a little different from Bergstrom [1999] in that we view the infinite matrix
as a representation of a continuous linear operator on l∞ (the set of bounded
utility allocations of all generations) into itself while Bergstrom viewed it as a
certain limit of finite dimensional square matrices.

The rest of this paper is organized as follows. In the next section, we present
the model. In section 3, we discuss the lattice-theoretic approach to the repre-
sentation problem. In section 4, we discuss the approach based on the contrac-
tion mapping theorem. In section 5, we consider the case of linear aggregators.
In the last section, we show that the contraction approach is an extension of
Hori´s [2001] to the case of an infinite horizon.

2. The Model

For simplicity, we assume that there is one consumer for each generation.
The integers t=1, 2, ... denote generations. For each t, Xt = Rl

+ denotes the
consumption set of generation t.

Let X=
∏∞

t=1Xt. For each t, let Ut be a nonempty subset of R∞. A generic
element u−t = (u1,..., ut−1, ut+1, ...)∈ Ut signifies a profile of utilities other
than generation t.

We employ the following terminologies. Let f be a real-valued function on
an ordered set Y. We say that f is non-decreasing (resp. strictly increasing) if
f(x)≥f(y) (resp. f(x)>f(y)) for all x, y ∈Y with x≥ y and x 6=y.

For each t, a real-valued function Gt on Xt×Ut is given. We call it the
aggregator for generation t. Let G=(G1, G2, ...) be the profile of the
aggregators.

Representation Problem (RP): Given the profile G of aggregators, find
a profile u=(u1, u2, ...) of real-valued functions on X such that for each x ∈X
and t, ut(x) = Gt(xt, u−t(x)), where u−t(·) denotes the profile with the t-th
component ut(·) deleted, ut(x) is strictly increasing in xt and non-decreasing in
x−t =(x1,..., xt−1, xt+1, ...).

If RP has a solution u = (u1, u2,...), we call it a paternalistic representa-
tion of G = (G1, G2,...).We call the t-th component ut(·) of the representation
u the utility function of generation t. Two questions immediately arise.

Question 1: Does G have a paternalistic representation?

Question 2: Is the representation unique?

3. The Lattice-Theoretic Approach
In this section, we assume the following on the aggregators.
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Pointwise Boundedness (PB): For each t and xt ∈Xt, {Gt(xt, u−t):
u−t ∈Ut} is bounded.

Monotonicity(MON): For each t, Gt(xt, u−t) is strictly increasing in xt

and non-decreasing in u−t.
Now, we present the first main result.
Theorem 1: Under PB and MON, there exists a paternalistic representation

of a given profile of aggregators.
Proof. By PB, we can define the following real-valued functions. For each

t and x = (x1, x2, ...)∈X, let αt(x) = inf{Gt(xt, u−t): u−t ∈Ut}, βt(x) =
sup{Gt(xt, u−t): u−t ∈Ut}. We consider the following function spaces. Ut

={ut(·)| ut(·) is non-decreasing and for each x∈X, αt(x)≤ u(x)≤ βt(x)}. The
set Ut is non-empty since αt(·) and βt(·) belong to it. Let U =

∏∞
t=1 Ut. We

equip U with the natural order ≥, i. e. u ≥ v if ut(x) ≥ vt(x) for every x and t.
For u = (u1, u2, ...), v = (v1, v2, ...)∈ U , let u∧v = inf {u, v} and u ∨ v = sup{u,
v}. Then, for each x∈X, (u ∧ v)(x) = (min{u1(x), v1(x)}, min{u2(x), v2(x)},...)
and (u∨v)(x) =(max{u1(x), v1(x)}, max{u2(x), v2(x)},...). These operations,
∧ and ∨, make U a complete lattice, i. e. for every non-empty subset T of U ,
infT and supT exist and belong to U . Indeed, infT (x)= (inf{u1(x) |u∈ T },
inf{u2(x) |u∈ T },...) and supT (x)= (sup{u1(x) |u∈ T }, sup{u2(x) |u∈ T
},...) are non-decreasing in x and belong to U .

For each u(·)=(u1(·), u2(·),...)∈ U and t, let F(u(·))t(x)= Gt(xt, u−t(x)).
Clearly, F(u(·))t(x) is strictly increasing in xt and non-decreasing in x−t. It
is also trivial that F(u(·))t(·) ∈ Ut. Hence, the operator F maps U into itself.
Clearly, F(u) is non-decreasing in u. Hence, by Tarski´s fixed point theorem
[1955], there exists u(·)=(u1(·), u2(·),...)∈ U such that for every x and t, ut(x)
= Gt(x, u−t(x)). By MON, ut satisfies the desired monotonicity properties. ¥

Example 1: To see how crucial PB is in Theorem 1, let us consider the
following profile of aggregators G = (G1, G2, G3, ...): G1(x1, u−1) = p·x1 +
αu2, G2(x2, u−2) = p·x2 +β u1, Gt(xt, u−t) = p·xt (t = 3, 4, ...), where p is an
l-dimensional vector with strictly positive components, and α and β are positive
constants satisfying αβ>1. Clearly G satisfies MON but violates PB. Suppose
G possesses a system of utility functions u = (u1, u2, u3, ...). Then, u1(x) =
p·x1 + αu2(x) and u2(x) = p·x2 +β u1(x) for all x. Hence, u1(x) = p·x1+αp·x2

1−αβ .

Since 1 − αβ <0, u1(x) cannot be strictly increasing in own consumption x1

(or non-decreasing in x2 for that matter). A contradiction obtains. Therefore,
there is no paternalistic representation.

4. The Contraction Approach

In this section, we obtain a unique paternalistic representation of a given
profile of aggregators.

To this end, we add a few more assumptions on the aggregators. For sim-
plicity, we put a restriction on the domains of the aggregators: For each t, Ut

is equal to l∞. For u∈ l∞, ||u||∞ denotes the sup norm of u. 1 denotes the
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constant sequence (1, 1,...). Note that the domain of the aggregator, Xt×Ut is
a subset of R∞. We equip Xt×Ut with the relative product topology. From
now on, we refer it as the product topology.

Continuity(CONT): For each t, the aggregator Gt is product continuous.

Uniform Boundedness(UB): For every α ∈ R, suptsupxt∈Xt |Gt(xt,
α1)|<∞.

Lipschitz Condition(LC): There exists δ ∈ (0, 1) such that for every t,
xt, u−t and v−t, |Gt(xt, u−t) − Gt(xt, v−t)|≤ δ||u−t − v−t||∞.

CONT is standard. UB may be weakened at the cost of elaborating the
choice of relevant function spaces (Boyd [1990]), which we do not pursue in this
paper. LC expresses the idea that the utility level of each generation does not
depend too much on those of other generations.

Theorem 2: Under CONT, UB, and LC, there uniquely exists a paternal-
istic representation of a given profile of aggregators.

Proof. We set up different function spaces from those in the previous sec-
tion. Let U= {u =(u1, u2,...)| For each t, ut is a product continuous, real-
valued function on X, and supx∈Xsupt|ut(x)|<∞}. For u=(u1, u2,...)∈ U , let
||u||∞=supx∈Xsupt|ut(x)|. By the standard argument, U is a Banach space
under the norm ||u||∞.

Let U inc={u =(u1, u2,...)∈ U| For each t, ut is non-decreasing.}. Clearly,
U inc is a closed subset of U so that it is a complete metric space.

Now, we define a operator T on U inc. For u =(u1, u2,...)∈ U inc and
x∈X, let T(u)(x)=(G1(x1, u−1(x)), G2(x2, u−2(x)),...), where u−t(x)=(u1(x),
u2(x),...,ut−1(x),ut+1(x),...) for every t. To see that T maps U inc into itself, for
every x∈X, u =(u1, u2,...)∈ U inc,and t,Gt(xt, -||u||1)≤Gt(xt, u−t(x)) ≤Gt(xt,
||u||1) by MON.

Thus, for every t,
|Gt(xt, u−t(x))|≤max{supx∈Xsupτ |Gτ (xτ , ||u||1)|, supx∈Xsupτ |Gτ (xτ , -||u||1)|}.

Thus, by UB, supx∈Xsupt|Gt(xt, u−t(x))|<∞. Clearly, for every t, Gt(xt,u−t(x))
is non-decreasing in x and product continuous in x. Hence, T maps U inc into
itself.

By LC, T is a contraction. Hence, by the contraction mapping theorem,
there exists a unique u∗ =(u∗1, u∗2,...)∈ U inc such that u∗ = T(u∗), i.e. for every
x∈X and t, ut(x) = Gt(xt, u−t(x)). By MON, ut(x) is strictly increasing in xt.

5. Linear Representation Problem

We call a real-valued, increasing function νt on Xt a felicity function
of generation t. ν = (ν1, ν2, ...) denotes a profile of felicity functions. Let
ν = (ν1, ν2, ...) be a profile of felicity functions and let {atj}∞∞t=1j=1 be a double
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sequence such that for each t and j, atj ≥ 0 and att=0, and {atj}∞j=1 is summable.
We say that the aggregator Gt(·, ·) is linear if it is of the form Gt(xt, U−t) =
νt(xt)+

∑∞
j=1atjUj .

Linear Representation Problem (LRP): Given a profile of linear ag-
gregators, find a paternalistic representation.

Two immediate questions arise.

Question 3: Does LRP possess a solution?

Question 4: Is a solution to LRP unique?

To give a positive answer to each question, we propose a condition which
generalizes Hori´s [2001]. To this end, let B be the infinite matrix defined by



1 −a12 −a13 · ·
−a21 1 −a23 · ·
−a31 −a32 1 · ·
· · ·
· · ·




Let bij be the (i, j)-element of the matrix B, i. e. bij = 1 if i = j, and bij

= −aij otherwise. Let n be a positive integer and let I1 = {1, 2, ..., n},..., Ik
= {n(k−1)+1, n(k−1)+2, ...,n(k−1)+n} (k = 2, 3, ...). Then, the set {Ik}∞k=1

partitions the set N of all positive integers. For every i and j ∈N, let Bij be the
sub-matrix [blm]l∈Ii,m∈Ij

.

Dominant Diagonal Blocks (DDB): The matrix B has a dominant diag-
onal blocks, i.e. there exists n ∈ N such that for all i, Bii satisfies the Hawkins-
Simon condition, and there exists a norm ||·|| on Rn

such that supi supx∈Rn:||x||=1||B−1
ii x||<∞ and supisupx∈Rn:||x||=1Σ∞j 6=i||B−1

ii Bijx||<1.3

DDB means that off-diagonal blocks are small in terms of some norm. This
intuition may easily be seen in a special case n = 1. In this case,all the diagonal
blocks Bii degenerate into 1×1 matrix 1.

Dominant Diagonal (DD): supt

∑∞
j 6=tatj <1.

The series Σ∞j6=t
atj may be regarded as the degree of intergenerational altru-

ism. Then, DD clearly expresses the idea that the degree of intergenerational
altruism is small.

To see the relevance of DDB, let us look at the system of simultaneous
equations:

Ut = Gt(xt, U−t) = νt(xt)+
∑∞

j=1atjUj (t=1,2,...).

3Araujo and Scheinkman [1979] applied this version of diagonal dominance assumption to
deliver comparative dynamics results in infinite horizon optimization problems.
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We search for a bounded sequence U = (U1, U2,...) that solves the simul-
taneous equation. This immediately raises a question of invertibility of the
continuous linear operator T:l∞ → l∞ represented by the infinite matrix B.

Let I:l∞ → l∞ be the identity operator. By DDB, ||T - I|| <1. Hence, T is
invertible and T−1 =

∑∞
j=0(I - T)j . See Lang[1969, Ch.5], for example. The last

formula shows the inverse operator T is represented by a non-negative infinite
matrix. Thus, by DDB, the system has the unique solution:

U(x) = T−1ν(x)=ν(x)+
∑∞

j=1(I - T)jν(x).

Let U(x) =(U1(x1, x−1), U2(x2, x−2),...). Since each νt(xt) is strictly in-
creasing in xt, each Ut(xt, x−t) is strictly increasing in xt. Since

∑∞
j=1(I - T)j

is non-negative,
∑∞

j=1(I - T)jν(x) is non-decreasing in x. Hence, U(x) gives the
unique solution to LRP.

Now, we discuss diagonal dominance introduced by Bergstrom [1999].

Bergstrom Dominant Diagonal (BDD): There exists a bounded se-
quence d = (d1, d2,...) such that for all t, dt > 0, and inft (dt -

∑∞
j=1

atj dj) >
0.

Suppose that the infinite matrix B satisfies BDD. Then, the continuous linear
operator T: l∞ → l∞ represented by the infinite matrix B is invertible. The
infinite matrix representing the inverse operator of T is of the following form:
DC

−1
D
−1

, where D = diag(d1, d2, ...),C = (ctj ), ctj = (atdj)/dt. Note that the
existence of the inverse matrix of C follows from ||C - I|| <1, where I denotes
the identity matrix and ‖ · ‖ denotes the sup-norm. Since C−1 =

∑∞
j=0(I - C)j

, C−1 is nonnegative. Hence, DC
−1

D
−1

is nonnegative also. Hence, under BDD
, LRP has a unique solution.

6. Link between the Contraction Approach and DDB

In this section, we consider the logical implications of differentiable aggre-
gators. To be more specific, we extend Hori´s result [2001] by means of the
contraction approach.

Smoothness(S):For each t and xt, Gt(xt, u−t) is continuously Fréchet dif-
ferentiable with respect to u−t.

Let Du−tGt(xt, u−t) be the derivative of Du−tGt(xt, u−t) with respect to
u−t. Note that Du−tGt(xt, u−t) is a sup norm continuous, linear functional on
l∞. By MON, it is nonnegative. By definition of the dual norm, ||Du−tGt(xt,
u−t)||=suph∈l∞:||h||∞=1|Du−tGt(xt, u−t)(h)|. Since Du−tGt(xt, u−t) is nonneg-
ative, ||Du−tGt(xt, u−t)|| can be written as Du−tGt(xt, u−t)(1). To see the
link between the contraction approach in the previous section and the condition
developed by Hori [2001], it is useful to consider the following condition.
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Limited Utility Dependence (LUD): supu∈Uincsuptsupxt∈Xt
||Du−t

Gt(xt,
u−t(x))||<1.

By the mean value theorem (see Lang [1969, Corollary 1, Ch.5] for example),
for every t, x, u−t and v−t,

|Gt(xt, u−t)−Gt(xt, v−t)|≤ supw−t
||Du−tGt(xt, w−t)||||u−t − v−t||∞, where

the supw−t
is taken over any w−t on the line segment between u−t and v−t. Let

δ = supu∈Uincsuptsupxt∈Xt
||Du−t

Gt(xt, u−t(x))||. Then, by LUD, δ<1. Since
supw−t

||Du−t
Gt(xt, w−t)|| ≤ δ , we have |Gt(xt, u−t) − Gt(xt, v−t)|≤ δ ||u−t

− v−t||∞. Thus, LUD implies LC.
In order to see the link between our results and Hori´s[2001], we need to in-

voke the Yosida-Hewitt decomposition theorem (see Yosida and Hewitt [1952]):
Du−tGt(xt, u−t) can be expressed as

Du−tGt(xt, u−t)(h)=
∑∞

j 6=t ptj(xt, u−t)hj + λt(xt, u−t)(h) for every h∈l∞,
where {ptj(xt, u−t)}∞j 6=t is an absolutely summable, nonnegative sequence and
λt(xt, u−t) is a purely finitely additive, nonnegative linear functional on l∞.

Let j0 6=t, and let ej0 = {ej0
j }∞j 6=t be the sequence defined by ej0

j0
=1 and

ej0
j =0 for j6=t, j0. Then, Du−tGt(xt, u−t)(ej0)= ptj0(xt, u−t). Since Du−tGt(xt,

u−t)(ej0) is the partial derivative of Gt(xt, u−t) with respect to uj0 ,denoted by
Gtj0(xt, u−t), {Gtj(xt, u−t)}∞j 6=t is absolutely summable and nonnegative.

Let atj = supu∈Uincsupx∈XGtj(xt, u−t)(t 6=j). Clearly, supu∈Uincsuptsupx∈X{
∑∞

j 6=t

Gtj(xt, u−t)} ≤ supt

∑∞
j 6=tatj . Now, let us consider the following two condi-

tions.

Exclusion(EX): For each t, x∈X, and u−t, the purely finitely addtive part
λt(xt, u−t) of the Fréchet derivative Du−tGt(xt, u−t) vanishes.

Uniformly Dominant Diagonal Blocks(UDDB): There exists a non-
negative infinite matrix A =[atj ]∞∞t=1j=1 such that for each t, j, and (xt, u−t),
att = 0, atj ≥ ∂Gt(xt, u−t)/∂uj and that the infinite matrix I-A satisfies DDB.

It follows from the above discussions that UDDB, along with EX, imply
LUD. This explains why UDDB, the analogue of Hori´s condition ((4.1) in
Hori[2001]), is useful in obtaining the unique solution to RP.
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