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1 Introduction

The purpose of this note is to clarify the implication of Fudenberg and Levine’s approach

from a “no-regret test” point of view. Fudenberg and Levine (1999) propose the concept

of “conditional consistency” as an optimality criterion, taking into consideration regular-

ities of opponent behaviors, and they show “universal conditional consistency theorem”

(abbreviated to UCC theorem): for any learning rule (under plausible assumptions),

“conditional smooth fictitious play” on the rule passes conditional consistency against

all opposing strategies. Noguchi (1999) develops their approach by constructing optimal

learning rules, on which conditional smooth fictitious play passes stronger optimality cri-

teria against many opposing strategies. Those works evaluate a player’s strategy from an

optimality point of view: they directly check whether a player’s strategy performs well

against opponent strategies.

On the other hand, there is an intimately related research line (Lehrer (2001), (2003),

and Sandroni et al. (2000)) in which the performance of a player’s strategy or prediction

is indirectly evaluated by carrying out tests. They consider that a tester obtains a real-

ized infinite sequence of actions after an infinitely repeated game ends, and then checks

whether the infinite sequence passes a given set of tests.

Especially Lehrer (2003) introduces no-regret test about time-average payoff: a no-

regret test defines periods and alternative actions such that in the defined periods, real-

ized payoffs are compared with alternative payoffs that would have been obtained if the

alternative actions had been played. The test is passed at a realized infinite sequence of

actions if averages of the realized payoffs are eventually at least as good as averages of

the alternative payoffs.
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He insists that Fudenberg and Levine’s approach is quite restrictive from the no-regret

test point of view: their strategy (i.e., conditional smooth fictitious play) can only pass

a finite set of “time-dependent no-regret tests.” The main result in Lehrer (2003) is a

generalization of their theorem in the no-regret test direction: he shows that there exists

a strategy which passes a wide range of no-regret tests in the following sense: a tester

gives any probability distribution over the set of all no-regret tests. Then, after playing

an infinitely repeated game, the tester obtains an infinite sequence of realized actions, and

then stochastically chooses a no-regret test according to the given probability distribution,

so that the sequence of actions always passes the stochastically chosen test. That is, for the

infinite sequence there exists a support of the distribution such that the infinite sequence

passes all tests in the support.

This result does not assure that the strategy almost surely passes all tests in the

support of the distribution against any opposing strategy. An important fact, however,

is that in the case that the distribution over no-regret tests has a countable support, the

result has a strong implication: the strategy passes any countably many no-regret tests

simultaneously against all opposing strategies with probability one. Therefore, his result

is the most significant in the countable support case.

In this note we shall show that conditional smooth fictitious play may be extended to

obtain the significant result by using a method in Noguchi (1999). It may be meaningful

because a simple strategy such as conditional smooth fictitious play has the same property

as the strategy in Lehrer (2003).

Finally, we remark that a general class of adaptive strategies in Hart and Mas-Colell

(2001) may be extended to conditional strategies just in the same way as smooth fic-
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titious play, and those conditional adaptive strategies also have (generalized) universal

conditional consistency (Noguchi (2002, unpublished)). Thus, all results in this paper

also hold for the large class of adaptive strategies.

The paper is organized as follows. In Section 2, we give a model and basic notions. In

Section 3, we show that Fudenberg and Levine approach works for any countably many

no-regret tests. Section 4 concludes.

2 The Model

2.1 The basic model

We focus on one player who plays an infinitely repeated game against one opponent; the

opponent might be a machine, Nature, or multiple players. A player’s payoff at a stage

game is denoted by u(a, y), where a is a player’s action in a finite set A and y is an

opponent action in a finite set Y . The set of all mixed actions over S is given by ∆(S).

Let u(λ, π) denote the player’s expected payoff of mixed actions λ ∈ ∆(A) and π ∈ ∆(Y ):

u(λ, π) :=
∑

a,y u(a, y)λ[a]π[y]. A finite history (up to time T ) in the repeated game is a

sequence of actions, denoted by hT := (a1, y1, · · · , aT , yT ). An infinite history is denoted

by h∞ := (a1, y1, a2, y2, · · · ). We write H for the set of all finite histories including the null

history h0 := ∅, and H∞ is the set of all infinite histories. We denote a behavior strategy

of a player by σ : H → ∆(A) and that of an opponent by ρ : H → ∆(Y ) respectively. Let

µ(σ,ρ) designate the stochastic process over H∞ induced by playing σ and ρ.
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2.2 No-regret test

Following Lehrer (2003), we define a replacing scheme as a function g : H × A → A and

an activeness function as a function I : H × A → {0, 1}. A replacing scheme prescribes

alternative actions, and an active function indicates periods when realized payoffs are

compared with alternative payoffs; if I(hT−1, aT ) = 1 for a realized history (hT−1, aT ), we

say that I is active at time T . A pair (g, I) of replacing scheme and activeness function is

called an alternative or a no-regret test. Let Ī(hT−1, aT ) designate the number of times that

I has been active (up to time T ): Ī(hT−1, aT ) :=
∑T

t=1 I(ht−1, at). We say that a strategy

σ is universally as good as {(gλ, Iλ)}λ∈Λ, or that σ universally passes {(gλ, Iλ)}λ∈Λ, if for

all ρ and all (gλ, Iλ), if Īλ(hT−1, aT ) → ∞,

lim inf
T→∞

∑T
t=1 Iλ(ht−1, at)[u(at, yt) − u(gλ(ht−1, at), yt)]

Īλ(hT−1, aT )
≥ 0, µ(σ,ρ) − a.s.

This inequality means that conditional averages of realized payoffs on Iλ are eventually

at least as good as conditional averages of alternative payoffs on Iλ (with probability one)

if Iλ is active infinitely often. It is not difficult to show that there is no player’s strategy

that is universally as good as an uncountable set of alternatives in general.1

2.3 Conditional smooth fictitious play

We consider conditional (categorical) smooth fictitious play. A classification rule R, which

is a player’s learning rule, is a partition of H ×A.2 An element in R is called a category,

denoted by γ; note that γ may be considered as a subset of H × A. If a realized history

(ht−1, at) ∈ γ, we say that time t is a γ−effective period, or that γ is effective at time t.

Each category has prior samples, which is represented by a vector dγ
0 ; the prior sample
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size for γ is defined by nγ
0 :=

∑
y dγ

0 [y].

When time T is γ−effective, a player collects observed opposing actions in past

γ−effective periods, which is represented by a vector dγ
T−1: each component dγ

T−1[y]

is the number of times that y has occurred in γ−effective periods up to time T − 1.

Let nγ
T−1 :=

∑
y dγ

T−1[y]. Then, the player obtains the augmented empirical distribution

D̃γ
T−1 of observed and prior samples: D̃γ

T−1 := d̃γ
T−1�ñγ

T−1 where d̃γ
T−1 := dγ

0 + dγ
T−1 and

ñγ
T−1 := nγ

0 + nγ
T−1.

An effective category may be endogenous in the sense that which category is effective

in a current period may depend on which player’s action is realized in the current period

while which action is realized may depend on which category is effective. Then, following

Fudenberg and Levine (1999), we define conditional categorical smooth fictitious play σ

on R as follows: suppose hT−1 is a realized past history up to the last period. Let γa

be the category that is effective at time T if a player’s action a is realized at time T :

(hT−1, a) ∈ γa. Then, for each a, a player obtains a smooth approximate best response

BRv(D̃
γa
T−1) to the augmented empirical distribution D̃

γa
T−1.

3 Let Z be a matrix whose

columns consist of the best responses: Z := [BRv(D̃
γa
T−1)]a∈A. It follows from Perron-

Frobenius Theorem that there exists a unique mixed action λ ∈ ∆(A) such that Zλ = λ.

Then, let σ(hT−1) := λ.

2.4 Class

In this paper a subset of H × A will be called a class, generically denoted by β. When a

realized history (ht−1, at) ∈ β, we say that time t is a β−active period, or that β is active

at time t. Especially, if β being active does not depend on player’s current actions at
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all, i.e., β = X × A for some subset X of H, then it will be called an uncalibrated class.

Given a history hT , let nβ
T denote the number of times that β has been active (up to time

T ) and Dβ
T denote the empirical distribution of opposing actions observed in β−active

periods (up to time T ).

3 Implication of Universal Conditional Consistency

3.1 Passing infinitely many replacing schemes

Lehrer (2003) characterizes Fudenberg and Levine’s UCC theorem (1999) (Fudenberg and

Levine no-regret theorem in his terminology) by the following statement: for any finite

partition on the set of all positive integers, say {Bi}i=k
i=1 , there exists a strategy σ (precisely,

conditional smooth fictitious play) such that σ is as good as ((a∗ | Bi), 1) for all a ∈ A and

all 1 ≤ i ≤ k. A replacing scheme (a∗ | Bi) means that a is taken as an alternative action

at periods in Bi, i.e., (a∗ | Bi)(hT−1, aT ) = a if T ∈ Bi, and (a∗ | Bi)(hT−1, aT ) = aT ,

otherwise. An activeness function 1 means checking all times, that is, 1(hs−1, as) = 1 for

all (hs−1, as) ∈ H ×A. But Fudenberg and Levine’s universal conditional consistency has

a much stronger implication. We shall first state Fudenberg and Levine’s UCC theorem

precisely. Given a history hT , let KT be the number of categories that have been effective

(up to time T ), nγ
T denote the number of γ−effective periods (up to time T ), and Dγ

T

denote the empirical distribution of opponent actions observed in γ−effective periods (up

to time T ). The maximum payoff against π is given by V (π) := maxa u(a, π).
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Proposition 1 (Fudenberg and Levine (1999)) Suppose that a classification rule (R, (dγ
0)γ)

satisfies the following two assumptions:

(A1) lim
T→∞

KT

T
= 0 for all h∞ ∈ H∞, (A2) sup

γ
nγ

0 < ∞.

Then, conditional categorical smooth fictitious play σ on R passes conditional consis-

tency for all opposing strategies: for all ρ

lim sup
T→∞

∑

γ∈R

nγ
T

T
V (Dγ

T ) − 1

T

T∑

t=1

u(at, yt) ≤ 0, µ(σ,ρ) − a.s.

Proof. See Fudenberg and Levine (1999).4

In UCC theorem, averages are taken over payoffs in all current and past periods, so

that an activeness function must be 1. However, we never have to restrict replacing

schemes to a type such as finite time-dependent replacements {(a∗ | Bi)}a∈A,1≤i≤k. Pre-

cisely, conditional smooth fictitious play universally passes any countably many replacing

schemes. We shall show this as our first main result.

Theorem 1 Let {gi}i=∞
i=1 be any countable family of replacing schemes. Then, there exists

a classification rule (R0, (d
γ
0)γ) such that conditional categorical smooth fictitious play on

R0 is universally as good as {(gi, 1)}i: for all ρ and all gi,

lim inf
T→∞

∑T
t=1[u(at, yt) − u(gi(ht−1, at), yt)]

T
≥ 0, a.s.

Proof. Our proof is based on that of time-average optimality in Noguchi (1999). Fix

any countable family {gi}i of replacing schemes.

Step 1: Define a finite partition Pi of H ×A for each replacing scheme gi by the following

equivalence relation on H × A:

(hs−1, as) ∼Pi (h′
s′−1, a

′
s′)

def.⇔ gi(hs−1, as) = gi(h
′
s′−1, a

′
s′).
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Thus, any class in Pi is characterized by b ∈ A, so that we denote a class in Pi by βi(b):

βi(b) = {(hs−1, as) ∈ H × A | gi(hs−1, as) = b} and Pi = {βi(b) | b ∈ A}. Further, we

define a finite partition Di of H × A as follows:

(hs−1, as) ∼Di (h′
s′−1, a

′
s′)

def.⇔ (hs−1, as) ∼Pj (h′
s′−1, a

′
s′) for all 1 ≤ j ≤ i.

Di is finer than Pj for all 1 ≤ j ≤ i, and Di+1 is finer than Di for all i.5

Step 2: Based on {Di}i, we construct a classification rule R0, which represents the fol-

lowing player’s behavior: the player takes conditional smooth fictitious play on D1 first,

after some periods he switches to a finer partition D2 and plays conditional fictitious play

on D2 for a while, and again switches to a finer one D3, and so on. That is, he switches to

finer and finer partitions. We introduce an index function i : H×A → N which prescribes

the timing of switching those partitions:6 let i(h0, a1) := 1, and

i(hT , aT+1) := i(hT−1, aT ) + 1, if

∑i(hT−1,aT )+1
j=1 #Dj

T
<

1

i(hT−1, aT )
,

i(hT , aT+1) := i(hT−1, aT ), otherwise,

where # denotes the cardinality of a set. Then, a classification rule R0 is defined as

follows:

(hs−1, as) ∼R0 (h′
s′−1, a

′
s′)

def.⇔ i(hs−1, as) = i(h′
s′−1, a

′
s′) and (hs−1, as) ∼Di0

(h′
s′−1, a

′
s′)

where i0 := i(hs−1, as) = i(h′
s′−1, a

′
s′). Take prior samples {dγ

0}γ arbitrarily such that

supγ nγ
0 < ∞, where nγ

0 :=
∑

y dγ
0 [y].

Step 3: It is easy to show that the classification rule (R0, (d
γ
0)γ) satisfies Assumptions

(A1) and (A2) in Proposition 1; its proof is given in Appendix A. Thus, by Proposition
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1, conditional smooth fictitious play on R0 has the universal property of conditional

consistency on R0: for all ρ

lim sup
T→∞

∑

γ∈R0

nγ
T

T
V (Dγ

T ) − 1

T

T∑

t=1

u(at, yt) ≤ 0, a.s.

Step 4: By the definition of R0, R0 is eventually finer than any Pi for all h∞ ∈ H∞: for

all Pi there exists Ti such that for all γ ∈ R0 there exists β ∈ Pi such that for all T ≥ Ti,

if (hT−1, aT ) ∈ γ, then (hT−1, aT ) ∈ β. This, together with the convexity of V (·), implies

that for all i and all h∞ ∈ H∞,

lim sup
T→∞

∑

β∈Pi

nβ
T

T
V (Dβ

T ) −
∑

γ∈R0

nγ
T

T
V (Dγ

T ) ≤ 0.

Step 5: Finally, we prove that conditional categorical smooth fictitious play on R0 is uni-

versally as good as {(gi, 1)}i. Take any (gi, 1). As defined in Step 1, βi(b) = {(hs−1, as) ∈

H × A | gi(hs−1, as) = b} and Pi = {βi(b) | b ∈ A}. Thus, for all h∞ ∈ H∞ and all T ,

∑T
t=1[u(at, yt) − u(gi(ht−1, at), yt)]

T

= − 1

T
[
∑

b∈A

∑

(ht−1,at)∈βi(b)
1≤t≤T

u(b, yt) −
T∑

t=1

u(at, yt)]

= −[
∑

b∈A

n
βi(b)
T

T
u(b, D

βi(b)
T ) − 1

T

T∑

t=1

u(at, yt)]

≥ −[
∑

b∈A

n
βi(b)
T

T
V (D

βi(b)
T ) − 1

T

T∑

t=1

u(at, yt)]

= −[
∑

β∈Pi

nβ
T

T
V (Dβ

T ) − 1

T

T∑

t=1

u(at, yt)].
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Combining this inequality with universal conditional consistency in Step 3 and the

inequality in Step 4, we obtain the desired result. Indeed, for all ρ,

lim inf
T→∞

∑T
t=1[u(at, yt) − u(gi(ht−1, at), yt)]

T

≥ − lim sup
T→∞

∑

β∈Pi

nβ
T

T
V (Dβ

T ) − 1

T

T∑

t=1

u(at, yt)

≥ − lim sup
T→∞

∑

γ∈R0

nγ
T

T
V (Dγ

T ) − 1

T

T∑

t=1

u(at, yt)

≥ 0, a.s.

3.2 Passing infinitely many no-regret tests

In the last subsection, an activeness function must be 1: payoff comparison must take

place all times. Noguchi (1999) gives a classwise generalization of universal conditional

consistency, which may remove the restriction: we may freely select periods when realized

payoffs are compared with alternative payoffs. In other words, we may arbitrarily choose

activeness functions as well as replacing schemes. To do so, we extend categorical smooth

fictitious play to “weighted smooth fictitious play.”

For any countable set Ω of classes, we obtain a weight function wΩ : H → RA
+, which

will be defined precisely in Appendix B.7 Then, conditional weighted smooth fictitious

play σ on R is defined as follows: suppose hT−1 is a realized past history up to the last

period. Let γa be the category that is effective at time T if a is realized at time T :

(hT−1, a) ∈ γa. Then, for each a, we obtain a weighted smooth approximate best response

wΩ(hT−1)[a] · BRv(D̃
γa
T−1). Let Z be a matrix whose columns consist of the weighted

best responses: Z := [wΩ(hT−1)[a] · BRv(D̃
γa
T−1)]a. Moreover, let J be a matrix whose
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diagonal elements are the weights wΩ(hT−1)[a]’s, and whose off-diagonal elements are all

zero. Then, there always exists a mixed action λ∗ ∈ ∆(A) such that Zλ∗ = Jλ∗.8 Finally,

let σ(hT−1) := λ∗. Note that conditional categorical smooth fictitious play is a special

case that all weights are equal at every period.

To obtain a classwise generalization of UCC theorem, we impose several assumptions

on a classification rule (R, (dγ
0)γ) and a countable set Ω of classes. The first assumption

requires that a classification rule be eventually finer than any class.

Assumption (B1) For all h∞ ∈ H∞ and all β ∈ Ω, there exists T0 such that for all

γ ∈ R, either

for all T ≥ T0, if (hT−1, aT ) ∈ γ, then (hT−1, aT ) ∈ β,

or for all T ≥ T0, if (hT−1, aT ) ∈ γ, then (hT−1, aT ) /∈ β.

The second assumption is that the number of effective categories grows quite slowly

in active periods of any class. Given a history hT , let Kβ
T denote the number of categories

that have been effective in β−active periods (up to time T ).

Assumption (B2) For all h∞ ∈ H∞ and all β ∈ Ω, if nβ
T → ∞ as T → ∞, then

lim
T→∞

Kβ
T

T
= 0.

The third one is that prior samples are uniformly bounded.

Assumption (B3) supγ nγ
0 < ∞.

Under the assumptions above, a classwise generalization of UCC theorem obtains

for conditional weighted smooth fictitious play.9 Classwise conditional consistency for a
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countable set Ω of classes requires that conditional consistency hold in active periods of

any class in Ω (if that class is active infinitely many times). To describe it precisely,

we say that time t is a βγ−effective period, if a realized history (ht−1, at) ∈ β
⋂

γ, i.e.,

time t is both β−active and γ−effective. Given a history hT , let nβγ
T denote the number

of βγ−effective periods (up to time T ), and Dβγ
T denote the empirical distribution of

opposing actions observed in βγ−effective periods (up to time T ).

We shall state a classwise generalization of UCC theorem as follows.

Proposition 2 Suppose that a classification rule (R, (dγ
0)γ) and a countable set Ω of

classes satisfy Assumptions (B1), (B2) and (B3). Then, conditional weighted smooth

fictitious play σ on R passes classwise conditional consistency for Ω against all opposing

strategies: for all ρ and all β ∈ Ω, if nβ
T → ∞ as T → ∞, then

lim sup
T→∞

∑

γ∈R

nβγ
T

nβ
T

V (Dβγ
T ) − 1

nβ
T

∑

(ht−1,at)∈β
1≤t≤T

u(at, yt) ≤ 0, µ(σ,ρ) − a.s.

Proof. See Appendix B.

Remark 1 Let Ω be a countable set of uncalibrated classes; recall that β is an uncalibrated

class if β = X × A for some subset X of H. Then, Proposition 2 holds for conditional

categorical smooth fictitious play because all weights are equal in that case and conditional

weighted smooth fictitious play is reduced to conditional categorical smooth fictitious play.

(See Appendix B for details.)

Making use of the classwise generalization of UCC theorem, we show our second main

result: conditional smooth fictitious play is universally as good as any countably many

alternatives.

12



Theorem 2 Let {(gi, Ii)}i be any countable family of alternatives. Then, there exists a

classification rule (R1, (d
γ
0)γ) such that conditional weighted smooth fictitious play on R1

is universally as good as {(gi, Ii)}i.

Proof. Our proof is based on that of conditioning-class optimality in Noguchi (1999).

Let {(gi, Ii)}i be any countable family of alternatives.

Step 1: For each (gi, Ii), we define a finite partition Pi of H×A by the following equivalence

relation:

(hs−1, as) ∼Pi (h′
s′−1, a

′
s′)

def.⇔ gi(hs−1, as) = gi(h
′
s′−1, a

′
s′) and Ii(hs−1, as) = Ii(h

′
s′−1, a

′
s′).

Thus, any class in Pi is characterized by (b, τ) ∈ A ×{0, 1}, so that we denote a class

in Pi by βi(b, τ): βi(b, τ) = {(hs−1, as) ∈ H × A | gi(hs−1, as) = b, Ii(hs−1, as) = τ} and

Pi = {βi(b, τ ) | b ∈ A, τ ∈ {0, 1}}. Define partitions {Di}i in the same way as in Step 1

in the proof of Theorem 1.

Step 2: We construct a classification rule R1 based on {Di}i; in R1 the player switches

classes, instead of partitions. To define R1 precisely, we introduce functions j : H×A → N

and β : H × A → ⋃
i Di, where

⋃
i Di is the set of all classes in {Di}i. Those functions

describe a player’s selection of classes in {Di}i. To define j(·) and β(·), we introduce two

other functions N : H × A → N, and M : H × A → N. They are all defined recursively

as follows:

• j(h0, a1) := 1 and β(h0, a1) := β, where (h0, a1) ∈ β and β ∈ D1. Further, let

N(h0, a1) := 0 and M(h0, a1) := 0.
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• Suppose that j(hs−1, as), β(hs−1, as), N(hs−1, as), and M(hs−1, as) are defined for 1 ≤

s ≤ T − 1. Then, let

N(hT−1, aT ) := #{(hs−1, as) | (hT−1, aT ) ∈ β(hs−1, as), (hs−1, as) ≤ hT−1}

where (hs−1, as) ≤ hT−1 means that (hs−1, as) is an initial subhistory of hT−1.

If N(hT−1, aT ) = 0, define M(hT−1, aT) := 0. Otherwise, i.e., N(hT−1, aT ) ≥ 1, let

M(hT−1, aT ) := max{j(hs−1, as) | (hT−1, aT ) ∈ β(hs−1, as), (hs−1, as) ≤ hT−1}.

Define j(hT−1, aT) and β(hT−1, aT ) as follows: if N(hT−1, aT ) = 0, let j(hT−1, aT ) := 1,

and

j(hT−1, aT ) := M(hT−1, aT ) + 1, if

∑M (hT−1,aT )+1
i=1 #Di

N(hT−1, aT )
<

1

M(hT−1, aT )
,

j(hT−1, aT ) := M(hT−1, aT ), otherwise.

Finally, let

β(hT−1, aT ) := β, where (hT−1, aT ) ∈ β and β ∈ Dj(hT−1,aT ).

Given j(·) and β(·), we define a classification rule R1 as follows:

(hs−1, as) ∼R1 (h′
s′−1, a

′
s′)

def.⇔ j(hs−1, as) = j(h′
s′−1, a

′
s′) and β(hs−1, as) = β(h′

s′−1, a
′
s′).

Note that each category γ ∈ R1 has its corresponding index i(γ) and class β(γ):

i(γ) := j(hs−1, as) and β(γ) := β(hs−1, as) for all (hs−1, as) ∈ γ; note that γ ⊂ β(γ)

and β(γ) ∈ Di(γ). Further, the correspondence is one to one: γ 
= γ′ ⇒ i(γ) 
= i(γ′) or

β(γ) 
= β(γ′). (Take {dγ
0}γ arbitrarily such that supγ nγ

0 < ∞.)
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Step 3: Define a class β(i) := {(hs−1, as) ∈ H × A | Ii(hs−1, as) = 1}; note that β(i) =

⋃
b∈A βi(b, 1). Let Ω1 := {β(i) | i = 1, 2, · · · }. Then, it is not difficult to show that R1

satisfies Assumptions (B1), (B2) and (B3) with Ω1; its proof is given in Appendix A.

Thus, by Proposition 2, conditional weighted smooth fictitious play on R1 universally

passes classwise conditional consistency for Ω1: for all ρ and all β ∈ Ω1, if nβ
T → ∞, then

lim sup
T→∞

∑

γ∈R1

nβγ
T

nβ
T

V (Dβγ
T ) − 1

nβ
T

∑

(ht−1,at)∈β
1≤t≤T

u(at, yt) ≤ 0, a.s.

Step 4: R1 also satisfies Assumption (B1) with the set
⋃

i Pi of all classes in {Pi}i; see

Appendix A. Recall that β(i) =
⋃

b∈A βi(b, 1) for all i. These, together with the convexity

of V (·), induce that for all i and all h∞ ∈ H∞, if n
β(i)
T → ∞,

lim sup
T→∞

∑

γ∈R1

n
β(i)γ
T

n
β(i)
T

V (D
β(i)γ
T ) − 1

n
β(i)
T

∑

(ht−1,at)∈β(i)
1≤t≤T

u(at, yt)

= lim sup
T→∞

∑

γ∈Rβ(i)
1,T

nγ
T

n
β(i)
T

V (Dγ
T ) − 1

n
β(i)
T

∑

(ht−1,at)∈β(i)
1≤t≤T

u(at, yt)

≥ lim sup
T→∞

∑

b∈A

n
βi(b,1)
T

n
β(i)
T

{V (D
βi(b,1)
T ) − 1

n
βi(b,1)
T

∑

(ht−1,at)∈βi(b,1)
1≤t≤T

u(at, yt)}

where Rβ(i)
1,T is the set of all categories that have been effective in β(i)−active periods (up

to time T ). The first equality holds because R1 satisfies Assumption (B1) with Ω1. The

second inequality holds because β(i) =
⋃

b∈A βi(b, 1) and R1 satisfies Assumption (B1)

with
⋃

i Pi.

Step 5: Take any (gi, Ii). By the definition of βi(b, τ ) in Step 1, gi(hs−1, as) = b and

Ii(hs−1, as) = 1 ⇔ (hs−1, as) ∈ βi(b, 1). From this it follows that for all h∞ ∈ H∞ and all

15



T ,

∑T
t=1 Ii(ht−1, at)[u(at, yt) − u(gi(ht−1, at), yt)]

Īi(hT−1, aT )

= −
∑

b∈A

n
βi(b,1)
T

Īi(hT−1, aT )
{ 1

n
βi(b,1)
T

∑

(ht−1,at)∈βi(b,1)
1≤t≤T

[u(b, yt) − u(at, yt)]}

= −
∑

b∈A

n
βi(b,1)
T

Īi(hT−1, aT )
{u(b, D

βi(b,1)
T ) − 1

n
βi(b,1)
T

∑

(ht−1,at)∈βi(b,1)
1≤t≤T

u(at, yt)}

≥ −
∑

b∈A

n
βi(b,1)
T

Īi(hT−1, aT )
{V (D

βi(b,1)
T ) − 1

n
βi(b,1)
T

∑

(ht−1,at)∈βi(b,1)
1≤t≤T

u(at, yt)}.

Step 6: Finally we show that conditional weighted smooth fictitious play on R1 is uni-

versally as good as {(gi, Ii)}i. Fix any (gi, Ii). Note that Īi(hT−1, aT ) = n
β(i)
T . Then, from

Steps 3, 4 and 5 it follows that for all ρ, if Īi(hT−1, aT ) → ∞, then

lim inf
T→∞

∑T
t=1 Ii(ht−1, at)[u(at, yt) − u(gi(ht−1, at), yt)]

Īi(hT−1, aT )

≥ − lim sup
T→∞

∑

b∈A

n
βi(b,1)
T

Īi(hT−1, aT )
{V (D

βi(b,1)
T ) − 1

n
βi(b,1)
T

∑

(ht−1,at)∈βi(b,1)
1≤t≤T

u(at, yt)}

≥ − lim sup
T→∞

∑

γ∈R1

n
β(i)γ
T

n
β(i)
T

V (D
β(i)γ
T ) − 1

n
β(i)
T

∑

(ht−1,at)∈β(i)
1≤t≤T

u(at, yt)

≥ 0, a.s.

If an activeness function I does not depend on player’s current actions, i.e., I(hs, a) =

I(hs, a
′) for all a, a′ ∈ A and all hs ∈ H, we say that I is uncalibrated. Then, we obtain

the following corollary of Theorem 2.
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Corollary 1 Let {(gi, Ii)}i be any countable family of replacing schemes and uncalibrated

activeness functions. Then, there exists a classification rule (R1, (d
γ
0)γ) such that condi-

tional categorical smooth fictitious play on R1 is universally as good as {(gi, Ii)}i.

Proof. Define R1 and Ω1 in the same way as in the proof of Theorem 2. Since Ii is

uncalibrated, β(i) is an uncalibrated class. Thus, Ω1 is a countable set of uncalibrated

classes. Then, as mentioned in Remark 1, conditional weighted smooth fictitious play on

R1 is degenerated to conditional categorical smooth fictitious play on R1. The remaining

may do just in the same way as the proof of Theorem 2.

4 Conclusion

By using Fudenberg and Levine’s no-regret approach we have shown that conditional

categorical smooth fictitious play universally passes any infinitely many no-regret tests as

far as activeness functions are uncalibrated. Furthermore, even in the case that activeness

functions may depend on player’s current actions, we have extended categorical smooth

fictitious play to weighted smooth fictitious play, so that conditional weighted smooth

fictitious play is universally as good as any countably many alternatives. Finally, we

remark that we can extend conditional smooth fictitious play further to obtain exactly

the main result in Lehrer (2003).
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Appendix A

• R0 satisfies Assumptions (A1) and (A2).

(A2) is obvious. To show (A1), we first show the following claim.

Claim A1 i : H × A → N is a non-decreasing function in time such that for all

h∞ ∈ H∞, (1) i(h0, a1) = 1, (2) 0 ≤ i(hT , aT+1) − i(hT−1, aT ) ≤ 1 for all T , and

(3) limT→∞ i(hT−1, aT ) = ∞.

Proof. All are obvious except that limT→∞ i(hT−1, aT ) = ∞. Suppose limT→∞ i(hT−1, aT ) <

∞ for some h∞. It means that there exists T0 such that i(hT0−1, aT0) = i(hT−1, aT ) for all

T ≥ T0. It, in turn, implies that

∑i(hT0−1,aT0
)+1

j=1 #Dj

T
≥ 1

i(hT0−1, aT0)
for all T ≥ T0.

But then, 1
i(hT0−1,aT0

)
and

∑i(hT0−1,aT0
)+1

j=1 #Dj are positive constants. Thus, for large T

∑i(hT0−1,aT0
)+1

j=1 #Dj

T
<

1

i(hT0−1, aT0)
.

This is a contradiction.

Lemma A1 shows that R0 satisfies Assumption (A1).

Lemma A1 For all h∞ ∈ H∞,

lim
T→∞

KT

T
= 0.

Proof. Note that KT ≤ ∑i(hT−1,aT )
j=1 #Dj . Let m(T ) := max{t | i(ht−1, at) =

i(hT−1, aT ) − 1}. Then, for all T , switching occurs at time m(T ) + 1: i(hm(T ), am(T )+1) =
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i(hm(T )−1, am(T )) + 1. Thus,

KT

T
≤

∑i(hT−1,aT )
j=1 #Dj

m(T )
=

∑i(hm(T )−1,am(T ))+1

j=1 #Dj

m(T )
<

1

i(hm(T )−1, am(T ))
=

1

i(hT−1, aT ) − 1
.

Therefore, limT→∞ KT

T
= 0 because limT→∞ i(hT−1, aT ) = ∞ by Claim A1.

• R1 satisfies Assumptions (B1), (B2) and (B3) with both Ω1 and
⋃

i Pi.

(B3) is obvious. Further, it suffices to prove that R1 satisfies Assumptions (B1) and

(B2) with
⋃

i Di. (From this it immediately follows that R1 also satisfies (B1) and (B2)

with Ω1 and
⋃

i Pi.) We first show the following claim.

Claim A2 (1) For all h∞ ∈ H∞, limT→∞ N(hT−1, aT ) = ∞. (2) For all h∞ ∈ H∞,

limT→∞ j(hT−1, aT ) = ∞.

Proof. (1) Suppose not: lim infT→∞ N(hT−1, aT ) = n0 < ∞ for some h∞. Then,

there exist infinitely many Tm such that N(hTm−1, aTm) = n0. By the definition of j(·)

and N(·), j(hT−1, aT ) ≤ N(hT−1, aT ) + 1 for all T . Hence, j(hTm−1, aTm) ≤ n0 + 1 for all

Tm. It means that β(hTm−1, aTm) ∈ ⋃n0+1
i=1 Di for all Tm, where

⋃n0+1
i=1 Di is the set of all

classes in {Di}i=n0+1
i=1 . Since the number of classes in

⋃n0+1
i=1 Di is finite, j(hTm−1, aTm) =

j(hTm′−1, aTm′ ) and β(hTm−1, aTm) = β(hTm′−1, aTm′) for some Tm, Tm′ with Tm < Tm′.

But then, by the definition of N(·) this means that N(hTm−1, aTm) < N(hTm′−1, aTm′). It

contradicts that N(hTm−1, aTm) = N(hTm′−1, aTm′ ) = n0.

(2) Suppose not: lim infT→∞ j(hT−1, aT ) = i0 < ∞ for some h∞. It implies that j(hTm−1, aTm) =

i0 for infinitely many Tm. Since Di0 only has finite classes, there exists β0 ∈ Di0 such that

β(hTl−1, aTl
) = β0 for some infinite subsequence {Tl}l of {Tm}m; clearly j(hTl−1, aTl

) = i0
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for all Tl. It means that M(hTl−1, aTl
) = i0 for all Tl. But then, N(hTl−1, aTl

) → ∞ from

(1). Therefore, for large Tl

∑M (hTl−1,aTl
)+1

i=1 #Di

N(hTl−1, aTl
)

<
1

M(hTl−1, aTl
)
.

This, together with the definition of j(·), implies that j(hTl−1, aTl
) = M(hTl−1, aTl

) + 1 =

i0 + 1. This is a contradiction.

Lemmas A2 and A3 show that R1 satisfies Assumptions (B1) and (B2) with
⋃

i Di.

Lemma A2 For all h∞ ∈ H∞ and all β ∈ ⋃
i Di, there exists T0 such that for all γ ∈ R1,

either

for all T ≥ T0, if (hT−1, aT ) ∈ γ, then (hT−1, aT ) ∈ β,

or for all T ≥ T0, if (hT−1, aT ) ∈ γ, then (hT−1, aT ) /∈ β.

Proof. Take any infinite history h∞ and any class β. Then, β ∈ Di0 for some i0. Since

limT→∞ j(hT−1, aT ) = ∞ from Claim A2 (2), there exists T0 such that j(hT−1, aT ) ≥ i0

for all T ≥ T0. Recall i(γ) and β(γ) are the corresponding index and class to γ (see

Step 2 in the proof of Theorem 2). Therefore, for any effective category γ from time T0

on, i(γ) ≥ i0. Further, γ ⊂ β(γ) and β(γ) ∈ Di(γ). Since Di(γ) is finer than Di0 , either

β(γ) ⊂ β, or β(γ)
⋂

β = ∅. Hence, either γ ⊂ β when β(γ) ⊂ β, or γ
⋂

β = ∅ when

β(γ)
⋂

β = ∅.

Lemma A3 For all h∞ ∈ H∞ and all β ∈ ⋃
i Di, if nβ

T → ∞ as T → ∞, then

lim
T→∞

Kβ
T

nβ
T

= 0.
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Proof. Fix any infinite history h∞ and any class β with nβ
T → ∞. Then, β ∈ Di0

for some i0. Let {Ts}s be the calendar of β−active periods: (hTs−1, aTs) ∈ β for all

s = 1, 2, · · · . Define jβ(hT−1, aT) := maxTs≤T j(hTs−1, aTs). Clearly, jβ(hT−1, aT ) → ∞ as

T → ∞ because of Claim A2 (2). Furthermore, let Nβ(hT−1, aT ) := N(hn(T )−1, an(T ))

where n(T ) := min{Ts | j(hTs−1, aTs) = jβ(hT−1, aT )}. Obviously, n(T ) → ∞ and

Nβ(hT−1, aT ) → ∞ as T → ∞ because of Claim A2. Let T0 be a calendar time for h∞

and β in Lemma A2. Then, nβ
T ≥ N(hn(T )−1, an(T ))− T0 for all T . Moreover, there exists

T1 such that jβ(hT−1, aT ) ≥ i0+1 for all T ≥ T1. Thus, for all T ≥ T1, switching to a finer

class occurs at time n(T ): j(hn(T )−1, an(T )) = M(hn(T )−1, an(T )) + 1. By the definition of

n(T ), j(hn(T )−1, an(T )) = jβ(hT−1, aT ) for all T . Thus jβ(hT−1, aT ) = M(hn(T )−1, an(T ))+1

for all T ≥ T1. Recall that categories have the following properties: γ ⊂ β(γ) and

β(γ) ∈ Di(γ), and γ 
= γ′ ⇒ i(γ) 
= i(γ′) or β(γ) 
= β(γ′). Further, for any effective

category γ in β−active periods up to time T , i(γ) ≤ jβ(hT−1, aT ). These induce that

Kβ
T ≤ ∑jβ(hT−1,aT )

i=1 #Di =
∑M (hn(T )−1,an(T ))+1

i=1 #Di for all T ≥ T1. Thus, for all T ≥ T1

Kβ
T

nβ
T

≤
∑M (hn(T )−1,an(T ))+1

i=1 #Di

N(hn(T )−1, an(T ))

N(hn(T )−1, an(T ))

N(hn(T )−1, an(T )) − T0

≤ 1

M(hn(T )−1, an(T ))

Nβ(hT−1, aT )

Nβ(hT−1, aT ) − T0

=
1

jβ(hT−1, aT ) − 1

Nβ(hT−1, aT )

Nβ(hT−1, aT ) − T0
.

The first inequality and the third equality are obvious. The second inequality holds

because switching occurs at time n(T ). Since jβ(hT−1, aT ) → ∞ and Nβ(hT−1, aT ) → ∞,

the desired result follows.
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Appendix B

The proof of Proposition 2 is based on that of universal classwise conditional con-

sistency in Noguchi (1999). Before proving Proposition 2, we shall describe several def-

initions. Let V v(π) := maxλ∈∆(A) u(λ, π) + v(λ). Then, we make payoff perturbations

as follows: First of all, let a family {vm}m of payoff perturbations be such that (1)

‖vm‖ → 0 as m → ∞, (2) m‖vm − vm−1‖ → 0 as m → ∞, and (3) maxπ,π′,π′′∈∆(Y ) ‖(π′ −

π′′)∂2V vm(π)(π′ − π′′)‖ ≤ C0 ·m 1
2 , where C0 is a positive constant. (For example, we can

do so with the logistic function v(λ; κ) = − 1
κ

∑
a∈A λ(a) log λ(a) by changing κ.) Then, let

vnγ
0+n−1 be the payoff perturbation in the nth γ−effective period. In other words, payoff

perturbations depend only on augmented sample sizes ñγ
T−1 = nγ

T−1 + nγ
0 .

Next, we define a random variable XT (h∞)[β] as

XT (h∞)[β] := ñγ
T V v(D̃γ

T ) − ñγ
T−1V

v(D̃γ
T−1) − u(aT , yT ) − ‖vñγ

T−1
‖ − C0

(ñγ
T )

1
2

, if (hT−1, aT ) ∈ β,

XT (h∞)[β] := 0, otherwise,

where v = vñ
γ
T−1

and γ is the effective category at time T : (hT−1, aT ) ∈ γ. Let X̄T [β] :=

1

nβ
T

∑T
t=1 Xt[β] and [X̄T ]+(h∞)[β] := max{0, X̄T (h∞)[β]}. Take any probability distribu-

tion p = (pβ)β on Ω such that pβ > 0 for all β ∈ Ω. Then, we define a weight function

wΩ : H → RA
+ as follows:

wΩ(hT )[a] :=
∑

β�(hT ,a)

pβ · [X̄T ]+[β] · 1

nβ
T+1

, if (hT , a) ∈ β for some β ∈ Ω,

wΩ(hT )[a] := 0, otherwise.

Let 〈, 〉 denote an inner product on L2: 〈X, Y 〉 :=
∑

β pβ ·X[β] · Y [β] and L2 := {Y ∈

R∞ | ∑
β pβ · (Y [β])2 < ∞}. Define ‖ · ‖ :=

√〈·, ·〉. Let µ be the stochastic process on
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H∞ induced by conditional weighted smooth fictitious play σ and any opposing strategy

ρ, and the product measure of µ and p is denoted by µ × p. Let ey be the unit vector in

which all coordinates are zero except that the y−coordinate is one.

Proof of Proposition 2.

Step 1: By Envelope Theorem, ∂V v(D̃γ
T ) = [u(BRv(D̃γ

T ), y)]y, where v = vñγ
T
. When

(hT , aT+1) ∈ β, this and Taylor Theorem induce that

XT+1(h∞)[β] ≤ ñγ
T+1∂V v(D̃γ

T )(
1

ñγ
T+1

(eyT+1
− D̃γ

T )) +
C0 · (ñγ

T )
1
2

ñγ
T+1

+ V v(D̃γ
T )

−u(aT+1, yT+1) − ‖vñγ
T
‖ − C0

(ñγ
T+1)

1
2

≤ u(BRv(D̃γ
T ), yT+1) − u(aT+1, yT+1)

where γ is the effective category at time T + 1: (hT , aT+1) ∈ γ. Let δβ
T := nβ

T − nβ
T−1;

δβ
T = 1 if β is active at time T , and δβ

T = 0 otherwise. Let Eµ[· | hT ] be conditional

expectation on hT with respect to µ. Then, it follows from the inequality above that for

all hT ∈ H,

Eµ[〈[X̄T ]+,
δβ

T+1

nβ
T+1

XT+1〉 | hT ]

= Eµ[
∑

β

pβ · [X̄T ]+[β] · δβ
T+1

nβ
T+1

XT+1[β] | hT ]

≤
∑

a

σ(hT )[a](
∑

β�(hT ,a)

pβ · [X̄T ]+[β] · 1

nβ
T+1

{u(BRv(D̃
γa
T ), ρ(hT )) − u(a, ρ(hT ))})

= u(Zσ(hT ), ρ(hT )) − u(Jσ(hT ), ρ(hT ))

= 0.

Step 2: Define [X̄T ]− := X̄T − [X̄T ]+ and projL2
−(X̄T )(h∞) := arg minY ∈L2

− ‖X̄T (h∞)−Y ‖,

where L2
− := {Y ∈ L2 | Y [β] ≤ 0 for all β ∈ Ω}. Then, [X̄T ]−(h∞) = projL2

−(X̄T )(h∞)
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and 〈[X̄T ]+(h∞), [X̄T ]−(h∞)〉 = 0. Thus, letting Eµ×p[·] be expectation with respect to

µ × p, the second inequality in Step 1 implies that

∞∑

t=1

Eµ×p[(X̄t − projL2−(X̄t)) · ( δβ
t+1

nβ
t+1

(Xt+1 − projL2−(X̄t)))]

=
∞∑

t=1

Eµ[〈X̄t − projL2
− (X̄t),

δβ
t+1

nβ
t+1

(Xt+1 − projL2
− (X̄t))〉]

=
∞∑

t=1

Eµ[〈[X̄t]+,
δβ

t+1

nβ
t+1

Xt+1〉]

≤ 0.

Therefore, we can apply Theorem 4 (and Corollary 1) in Lehrer (2002), so that for all

β ∈ Ω, if nβ
T → ∞, [X̄T ]+(β) → 0, µ − a.s.

Step 3: Given h∞ and β, let T0 be a calendar time for h∞ and β in Assumption (B1).

For notational simplicity, without loss of generality we may assume T0 = 1. Then, given

h∞, let Rβ
T denote the set of all categories that have been effective in β−active periods

up to time T , and let Rβ
T (n) := {γ ∈ Rβ

T | nβγ
T ≥ n}. Assumption (B2) implies the

following: (∗) if nβ
T → ∞, then for all ε > 0 and all n, there exists Tε,n such that for

all T ≥ Tε,n,
∑

γ∈Rβ
T (n)

nβγ
T

nβ
T

≥ 1 − ε. Furthermore, by Assumption (B1), for all T and all

γ ∈ Rβ
T , nγ

T = nβγ
T (recall T0 = 1). Therefore, (∗) implies that for all h∞ ∈ H∞ and all

β ∈ Ω, if nβ
T → ∞, then

lim
T→∞

∑

γ∈Rβ
T

nγ
T

nβ
T

[
1

nγ
T

(
1

(nγ
0 + 1)

1
2

+ · · · + 1

(ñγ
T )

1
2

)] = 0.

Since ‖vm‖ → 0 as m → ∞, (∗) also induces that for all h∞ ∈ H∞ and all β ∈ Ω, if

nβ
T → ∞,

lim
T→∞

∑

γ∈Rβ
T

nγ
T

nβ
T

[
1

nγ
T

(‖vnγ
0
‖ + · · · + ‖vñγ

T−1
‖)] = 0.
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Note that ñγ
t ‖V v

ñ
γ
t (D̃γ

t )−V
v

ñ
γ
t−1 (D̃γ

t )‖ ≤ ñγ
t ‖vñγ

t
−vñγ

t−1
‖, and that m‖vm−vm−1‖ → 0

as m → ∞. These, together with (∗), imply that for all h∞ ∈ H∞ and all β ∈ Ω, if

nβ
T → ∞, then

lim
T→∞

∑

γ∈Rβ
T

nγ
T

nβ
T

[
1

nγ
T

T∑

t=1

ñγ
t (V

v
ñ

γ
t (D̃γ

t ) − V
v

ñ
γ
t−1 (D̃γ

t ))]

≤ lim
T→∞

∑

γ∈Rβ
T

nγ
T

nβ
T

[
1

nγ
T

nγ
T∑

m=1

(nγ
0 + m)‖vn

γ
0+m − vn

γ
0+m−1‖]

= 0.

Furthermore, (∗) and (B3) imply that for all h∞ ∈ H∞ and all β ∈ Ω, if nβ
T → ∞,

lim
T→∞

∑

γ∈R

nβγ
T

nβ
T

V (Dβγ
T ) −

∑

γ∈Rβ
T

ñγ
T

nβ
T

V (D̃γ
T ) = 0,

and since payoff perturbations decrease as time proceeds, (∗) induces that for all h∞ ∈ H∞

and all β ∈ Ω, if nβ
T → ∞, then

lim
T→∞

∑

γ∈Rβ
T

ñγ
T

nβ
T

V (D̃γ
T ) −

∑

γ∈Rβ
T

ñγ
T

nβ
T

V
vñ

γ
T (D̃γ

T ) = 0.

Step 4: Let Zβ
T := nβ

T Sβ
T−nβ

T−1S
β
T−1, where Sβ

T :=
∑

γ∈Rβ
T

ñγ
T

nβ
T

V
v

ñ
γ
T (D̃γ

T )− 1

nβ
T

∑
(ht−1,at)∈β

1≤t≤T

u(at, yt).

If β is active at time T , then Zβ
T = ñγ

TV
v

ñ
γ
T (D̃γ

T ) − ñγ
T−1V

v
ñ

γ
T−1 (D̃γ

T−1) − u(aT , yT ), where

γ is the effective category at time T . By Assumption (B1), without loss of generality we

may assume that if β is not active at time T , then Zβ
T = 0. Finally, from this and Steps
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2 and 3 it follows that for all β ∈ Ω, if nβ
T → ∞,

lim sup
T→∞

∑

γ∈R

nβγ
T

nβ
T

V (Dβγ
T ) − 1

nβ
T

∑

(ht−1,at)∈β
1≤t≤T

u(at, yt)

= lim sup
T→∞

∑

γ∈Rβ
T

ñγ
T

nβ
T

V
vñ

γ
T (D̃γ

T ) − 1

nβ
T

∑

(ht−1,at)∈β
1≤t≤T

u(at, yt)

= lim sup
T→∞

1

nβ
T

T∑

t=1

Zβ
t

= lim sup
T→∞

{ 1

nβ
T

T∑

t=1

Zβ
t −

∑

γ∈Rβ
T

nγ
T

nβ
T

[
1

nγ
T

T∑

t=1

ñγ
t (V

v
ñ

γ
t (D̃γ

t ) − V
v

ñ
γ
t−1 (D̃γ

t ))]

−
∑

γ∈Rβ
T

nγ
T

nβ
T

[
1

nγ
T

(‖vnγ
0
‖ + · · · + ‖vñγ

T−1
‖)] − C0

∑

γ∈Rβ
T

nγ
T

nβ
T

[
1

nγ
T

(
1

(nγ
0 + 1)

1
2

+ · · · + 1

(ñγ
T )

1
2

)]}

= lim sup
T→∞

X̄T (β)

≤ lim sup
T→∞

[X̄T ]+(β)

= 0, a.s.

�
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Footnotes

1. Lehrer (2003) obtains the main result for an uncountable case because he uses a weaker

concept of goodness than universal goodness.

2. Fudenberg and Levine (1999) define a classification rule as a function from H × A to

a countable set of categories. But their definition is equivalent to ours.

3. Let v : int(∆(A)) → R be a payoff perturbation such that v is smooth and strictly

concave, and ‖∂v(λ)‖ → ∞ as λ approaches to the boundary of ∆(A). Define ‖v‖ :=

supλ | v(λ) |. Then, a smooth approximate best response to π is defined by BRv(π) :=

arg maxλ u(λ, π) + v(λ), where ‖v‖ is very small.

4. Strictly speaking, Fudenberg and Levine (1999) show universal ε−conditional consis-

tency for all ε > 0. But we can make ε = 0 by changing payoff perturbations as time

proceeds. See Appendix B.

5. We say that a partition P is finer than a partition Q if for all β ∈ P there exists β̂ ∈ Q

such that β ⊂ β̂. Further, when β ⊂ β̂ we say that β is a finer class than β̂.

6. The set of all natural numbers is denoted by N.

7. A also denotes the cardinality of itself. RA is an A−dimensional Euclidean space.

RA
+ := {x ∈ RA | x[a] ≥ 0 for all a ∈ A}.

8. Let f(λ) := J−1Zλ�
b∈A(J−1Zλ)[b]

. It is a continuous function from ∆(A) to ∆(A). By the

fixed point theorem, there exists a fixed point λ∗ of f . Then, Zλ∗ = αJλ∗, where α =

28



∑
b∈A(J−1Zλ∗)[b]. Note that

∑
b∈A(Zλ∗)[b] =

∑
b∈A

∑
a∈A wΩ(hT−1)[a] · BRv(D̃

γa
T−1)[b] ·

λ∗[a] =
∑

a∈A wΩ(hT−1)[a] · λ∗[a] =
∑

b∈A(Jλ∗)[b]. Thus, α = 1. Therefore, Zλ∗ = Jλ∗.

9. The uniform boundedness of prior sample sizes is imposed to make our argument

simple. Indeed, we only need the following weaker assumption instead of Assumptions

(B2) and (B3): for all h∞ ∈ H∞ and all β ∈ Ω, if nβ
T → ∞ as T → ∞, then

lim
T→∞

∑
γ∈Rβ

T
nγ

0

nβ
T

= 0

where Rβ
T is the set of all categories that have been effective in β−active periods up to

time T .
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