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ABSTRACT

The paper develops a simple economic model of biological invasion. The natural growth of
the invasion is non-convex and the immediate cost of controlling the invasion depends on the level of
current control as well as the current size of the invasion. Increased current control may not only
escalate control cost today while avoiding potential damage - now and in the future, but may also
increase the marginal cost of control in the future. The optimal path of invasion  is not necessarily
monotonic. When the marginal control cost declines sharply with the size of invasion, it may be
optimal to allow the invasion to grow before reducing its extent. We characterize the conditions
under which it is optimal to eradicate an invasive species (immediately and eventually) and the
condition under which it is optimal to manage the invasion without complete eradication
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1.  Introduction

Throughout history the spread of plants, animals and other organisms has been governed by

natural ecological processes and has accompanied the movement of humans.  As human beings have

become more mobile there has been an increase in the introduction of species to areas outside their

native habitat.  Sometimes such introductions are harmless, or even beneficial.  In other instances,

introduced species become invaders with few natural enemies to limit their growth.

The invasion of ecological systems by non-indigenous species is now recognized as a

growing global problem that imposes significant economic and ecological damages.  In the United

States alone, the total costs of non-indigenous species have been estimated to be at least $137 billion

per year [Pimentel, et. al., 2000].  Approximately one-fourth of the value of the country �s

agricultural output is lost to non-indigenous plant pests or the costs of controlling them [Simberloff,

1996].  Invasive species also cause significant ecological harm.  They can alter ecosystem processes,

act as vectors of disease, and reduce biodiversity [Vitousek, et. al., 1996].   Worldwide, out of 256

vertebrate extictions with an identifiable cause, 109 are known to be due to biological invaders.  In

comparison, 70 such extinctions are known to be caused by human exploitation [Cox, 1993].  It is

estimated that forty percent of the threatened or endangered species in the United States are at risk

due to pressures from invading species [The Nature Conservancy, 1996; Wilcove et. al., 1998].

Although the number of harmful invasive species in the United States is in the thousands

[Pimentel, et. al, 2000] a single invasive species can cause tremendous economic and/or ecological

damage.  For example, the costs of controlling the zebra mussel (Dreissena polymorpha) in the Great

Lakes are expected to reach $5 billion in 2001 [USGS, 2000] while the Russian wheat aphid

(Diuraphis noxia) caused an estimated $600 million (1991$) in crop damages between 1987 and 1989

[OTA, 1993].  The invasion of Guam by the brown tree snake (Boiga irregularis) demonstrates the

ecological harm an invader can cause.  Since its introduction in the mid-twentieth century it has

caused the extinction of 12 of the island �s bird species [Savidge, 1987; Rodda, Fritts and Chiszar,

1997].
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Biological invasions occur almost everywhere.  They comprise a significant component of

global environmental change [Vitousek et. al., 1996] and are viewed by some as one of the most

important issues in natural resource management today [Williams and Meffe, 2000].  As a

consequence, the past decade has seen a sizeable growth in public policy directed toward invasive

species.  In 1990 the U.S. Congress passed the Nonindigenous Aquatic Nuisance Prevention and

Control Act to deal with the increasing problems of invasive species in waterways.  This Act was

subsequently amended in 1996 to become the National Invasive Species Act.  In 1992 the Alien

Species Prevention and Enforcement Act was passed to to protect Hawaii from the introduction of

prohibited plants, plant pests and injurious animals that may be contained in the mail.  On Feb 3.

1999, President Clinton signed Executive Order 13112 which created the National Invasive Species

Council.  Subsequently, the Council drafted the National Invasive Species Management Plan to

develop a national strategy for combating problems of invasive species.  There has also been

increasing concern at the international level. In 1997, the Global Invasive Species Programme was

established by the Scientific Committee for Problems of the Environment (SCOPE), in collaboration

with the United Nations Environment Programme, The World Conservation Union, DIVERSITAS

(an international programme on biodiversity science) and the Commonwealth Agricultural Bureau

International.

In spite of the growing concern with invasive species, scientific understanding of the relation

between economics and ecology in the control of biological invasions is not well-developed.  The

purpose of this paper is to examine the economics of controlling a biological invasion.  We analyze

the optimal control policy in a dynamic model of invasion by a single species.  The aim is to

understand the intertemporal economic and biological tradeoffs that determine the extent to which an

invasion should be controlled at any point of time.  The paper focuses on the conditions under which

it is optimal to eradicate an invasive species and conditions under which eradication is not

optimal.   We characterize both of these possible outcomes using verifiable conditions on the



1In the reaction-diffusion model growth and spread jointly determine the density, n(y,z,t), of a species
at location (y,z) at time t according to the partial differential equation �n/�t = G(n) + D(�2n/�y2 + �2n/�z2). 
Local growth is governed by the growth function G(n) while the coefficient D that determines how fast the
species disperses in space.  Fisher [1937] analyzed the case of logistic growth, G(n) = rn(1-n/K), while Skellam
[1951] considered Malthusian growth, G(n) = rn.  Kolmogorov, Petrovsky, and Piscounov [1937] considered
the general class of growth functions that satisfy G(0) = G(1) = 0, G(n) > 0 for 0 < n < 1, G �(0) > 0, G �(n) < G
�(0) for 0 < n � 1.  The frontal boundary of an invasion is defined to be the radial distance at which the species
density equals a critical threshold, n*.   For example, n*  may define a detection threshold below which the
species density is low enough to avoid detection.  For our purposes it useful to think of n*  as an economic
threshold below which the species density is not sufficient to cause damage.  In what has become a classic
result in the ecological theory of biological invasions Kolmogorov, Petrovsky, and Picounouv [1937] showed
that the frontal boundary of an invasion governed by (3.1) expands asymptotically (as t��) at a constant rate

  For the case of Maltusian growth this was proved by Kendall [1948].  Mollison [1977] provides2 G'(0)D  .

a useful review. 
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biological growth of the invasion, control costs, damages and the social discount rate. This involves a

dynamic cost-benefit analysis.  

Most introductions of non-indigenous species occur as a result of commerce, travel,

agriculture or other human activity.  The majority (between 80 and 95 percent) of non-native species

never become established in their new environment [Williamson, 1996].  Once established, however,

the spread of an invasive species is typically characterized by three distinct phases [Shigeshada and

Kawasaki, 1997, pp 26-27].  The first is an initial establishment phase during which little or no

expansion occurs.  This is followed by an expansion phase where the population and range of the

invasive species increases.  Finally, there is a saturation phase as the invasion approaches

geographical, climatic, or ecological limits to its range.1

The classic ecological model of the spread of an invasion is the reaction-diffusion model of

Kolmogorov, Petrovsky, and Piscounov [1937], Fisher [1937] and Skellam [1951].   The model of a

biological invasion developed in this paper is an aggregate model that abstracts from spatial

considerations inherent in reaction-diffusion models.  The variable that defines the state of the

invasion at each point in time is its size.  Depending on the context, this aggregate variable may be

either the area contained within the frontal boundary of the invasion, or the population or biomass of

the invasive species.  The aggregation adopted here is analogous to the way that the standard

bioeconomic models of resource harvesting aggregate over spatial and other life history
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characteristics that influence resource growth.  At the same time, the model of this paper reflects the

central implications of the ecological theory of invasions and historical evidence on their spread. 

Consequently, the growth and spread of an invasion is assumed to be governed by a nonconvex

biological growth function.  Initially, as the invasion grows in size it expands at a faster rate; but

eventually, the expansion rate slows down as the invasion approaches its environmental carrying

capacity.  A nonconvex invasion growth function is consistent with invasions that follow a pattern of

establishment, expansion, and saturation.  

Control of an invasive species takes the form of reducing the size of the invasion by

chemical, biological, manual, or other means.  The evidence from historical attempts to eradicate

invasive species suggests that unit control costs often escalate as the size of the invasion becomes

smaller and that it may cost as much to remove the last one to ten percent of an invasion as it does to

control the initial ninety to ninety-nine percent [Myers, et. al., 1998].  Hence, it is assumed that the

costs of control depend on the amount of control as well as the size of the invasion at the time control

is undertaken.

The nonconvex nature of invasion growth and the fact that control costs may depend on the

size of the invasion have important consequences for solving the optimal control problem and the

resulting policy implications.  Nonconvex growth makes the feasible set for the dynamic optimization

problem non-convex.  From a technical standpoint this means that the “ first order conditions”  may

not define a global optimum and corner solutions are more likely to emerge.  From a policy

perspective, the optimal control of invasion under nonconvex growth is not necessarily increasing in

the size of invasion and there may be multiplicities or discontinuities in the optimal policy.

When control costs depend on the size of the invasion, an increase in the current control has

two opposing effects on future net benefits.  At the margin it reduces future damages, but it also

increases future control costs due to the stock effect that reductions in the size of the invasion have

on costs. The latter creates an economic incentive to postpone control and can lead to outcomes

where the invasion follows a nonmonotonic time path under an optimal policy.  As a result, there are
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circumstances where the optimal management of an invasion exhibits cyclical or complex dynamics,

as happens when the optimal policy is one that allows an invasion to grow unchecked for a number of

periods and only after it becomes large enough is it reduced or eradicated. 

In contrast, if the cost of control is independent of the size of the invasion (as with some

forms of chemical control), then along every optimal path the size of the invasion is monotonic over

time and convergent.  This implies that if eradication is optimal from one invasion size, it must

necessarily be optimal for any invasion of smaller size.

The analysis in this paper is related to the literature on optimal management of renewable

resources (see, Clark, 1990) where the objective is to maximize the discounted sum of social welfare

obtained from harvesting a useful biological resource. Particularly relevant to our problem is the

analysis of conservation and extinction of renewable resources on optimal paths. The literature

includes models where the growth function is non-concave (non-convex feasible set for the

optimization problem) as well as models where the utility depends not only on the size of the harvest

but also on the total stock size  (see, for example, Olson and Roy, 1996).  More generally, the

literature on optimal economic growth has also analyzed related dynamic optimization problems

including ones where the feasible set is non-convex (among others, Majumdar and Mitra, 1982,

Dechert and Nishimura, 1983) as well as models where the utility function depends on both

consumption and capital stock (see, for example, Nyarko and Olson, 1991, and the collection of

papers in Majumdar, Mitra, and Nishimura, 2000).  There is a key distinction between our analysis

and the literatures on economic growth and renewable resources.   In the latter, the physical or

biological capital stock contributes to the production of a good that yields positive social welfare.

Hence, conservation of the resource is positively correlated with productivity and extinction is not

optimal if the productivity of the resource is higher than the discount rate.  With a biological

invasion, the capital stock or size of the invasion contributes in a negative way to social welfare. 

This difference has the effect of reversing the relationship between productivity and incentives to
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preserve the invasive species.  As our analysis shows, the faster the growth rate of an invasion, the

greater is the incentive to eradicate it.

The paper is organized as follows.  Section two develops the model.  The basic properties of

a controlled invasion are discussed in section three.  Section four studies the economic and ecological

conditions under which it makes sense to eradicate an invasive species.  Circumstances under which

eradication does not make sense are examined in section 5.  All proofs are given in the appendix.

2.  The model

Let yt represent the size of the biological invasion at the beginning of time t and let at

represent the amount of control at time t.  The invasion that remains at the end of period t is given by

xt = yt - at.  The invasion is assumed to grow and spread according to an invasion growth function yt+1

= f(xt).  The invasion growth function is assumed to satisfy the following properties:

A1. f(x) has a continuous derivative, fx(x).

A2. f(0) = 0.

A3. fx(x) � 0.

A4. fx(0) > 1.

A5. (a) There exists a k > 0 such that f(x) is convex on [0,k].  

(b) There exists an K � (k,�) such that f(x) < x for all x > K, f(x) is concave on (k,K),

and fx(K) > 0.

Assumption A2 implies that once an invasion is eradicated it cannot recur.  This paper does

not address situations where re-invasion is a serious concern.  Assumption A3 says that the invasion

growth function is increasing in the size of the invasion.  To be successful an invasive species must

necessarily be able to sustain an invasion.  Assumption A4 implies that an invasion can be sustained

from an isolated occurrence of the species.  Assumption A5 is the main assumption about the



2This model is isomorphic to a model of radial spread, provided the relation between the area of
invasion and the radial distance to the frontal boundary is known.  For example, if x is the area contained
behind the frontal boundary of an invasion in a homogenous space, and r is the radial distance from the point of
invasion to the frontal boundary then the spread of the invasion can be expressed as rt+1 =  F(rt), where F(r) =

.  In this case, A5 is equivalent to assuming that the elasticity of marginal radial growth is greater2f ( r ) /π π
than one when the radius of invasion is small, and less than one when the radius of invasion is large.   In other

words, F"(r)r/F �(r) � 1 for all r in some interval  while F"(r)r/F �(r) � 1 for all r � k[0,r ], k[ r , r ].

3Derivatives are indicated by relevant subscripts, e.g. Ca represents the partial derivative of C with
respect to a.
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behavior of an invasion.2   The first part implies that the growth function governing the spread of an

invasion is convex when the size of the invasion is between zero and some positive neighborhood of

the minimum size required to sustain the invasion.  The second part implies that the spread of the

invasion is bounded by climatic, geological or ecological factors and that the growth function

eventually becomes concave as it approaches this upper bound.

The costs of control and damages caused by the invasion are denoted by C(a,y) and D(x),

respectively.  Let 
�

 � 	2
+ be the set defined by { (a,y)|0�a�y�K} .  Costs and damages are assumed to

satisfy the following:

B1.  C and D are twice continuously differentiable.3

B2.  C(0,y) = 0 for all y and D(0) = 0.

B3.  Ca(a,y) � 0, Cy(a,y) � 0, and Ca(a,y) + Cy(a,y) � 0 on 
�

. Dx(x) � 0.

B4.  C and D are convex.  C(y-x,y)+D(x) is strictly convex in x.

Assumption B2 rules out fixed costs and it also implies that Cy(0,y) = 0.  Assumption B3 implies that

damages are increasing in the size of the invasion, the costs of control increase as control increases,

and that a given amount of control is cheaper to achieve from larger invasions.  The assumption that

Ca(a,y) + Cy(a,y) � 0 means that if y � y' it is less costly to reduce the size of the invasion from y to x

that it is to reduce the size of the invasion from y' to x. Throughout the paper it is assumed that A1-

A5 and B1-B4 hold.
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A policy, �  = (� 1,� 2,...), is a sequence of decision rules, � t, that specify a plan for controlling

the biological invasion as a function of the previous history, ht = (y0,a0,x0,...,at-1,xt-1,yt).  That is, at =

� t(ht) and xt = yt - � t(ht).  A stationary Markov policy is associated with a pair of decision rules that

specify the control and the size of the invasion that remains at the end of each period as a function of

the size of the invasion at the beginning of the period.  Associated with each initial state, y0, and each

policy is a discounted sum of social costs V � (y0) = , where the sequencet-1
t t t

t 0

 [C(a ,y ) + D(x )]
∞

=
δ�

{ at,xt}  is generated by the invasion growth function, f, and the policy, � , in an obvious manner.  The

objective of the dynamic optimization problem is to minimize the discounted sum of costs and

damages over time subject to the transition equation that governs the growth and spread of the

invasion. The optimal value satisfies:

V(y0) = subject to yt = at+xt and yt+1 = f(xt). (2.1)Min �
�

t�0

� t�1 C(at,yt) � D(xt)

Under A1-A5 and B1-B4, standard dynamic programming arguments imply that there exists a

stationary optimal value that satisfies the recursion V(yt) = Min C(at,yt) + D(xt) + 
�
V(f(xt)) subject to

yt = at+xt and yt+1 = f(xt), and that there exists a stationary Markov optimal policy whose decision

rules are X(y) = Arg Min C(y-x,y) + D(x) + 
�
V(f(x)) and A(y) = y - X(y).  A sequence (yt,xt,at)0

� that

solves (2.1) is an optimal program from y0.  Given an initial invasion of size y0 = y and a selection

from the stationary optimal policy X(y), an optimal program is defined recursively by yt = f(X(yt-1)),

xt = X(yt), at = A(yt), t = 1,2,...

3.  Controlled Invasions and their  Basic Proper ties 

This section characterizes the basic properties of an optimal policy and the optimal value. 

The initial results characterize the sensitivity of the optimal value V(y) and optimal policy X(y) to the

size of the invasion.
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Lemma 1. V(y) is continuous and non-decreasing.

Lemma 1 formalizes the intuitive notions that incremental changes in the size of an invasion are

associated with small changes in social cost and that larger invasions involve higher social costs.

Sensitivity of the optimal policy depends on how the costs of control vary with control and

the invasion size.   Our characterization is based on the following properties of a correspondence.  

Let x � X(y) and x' � X(y') where y � y'. 

Definition.  A correspondence X(y) is an ascending correspondence if min[x,x'] � X(y) and

max[x,x'] � X(y').  X(y) is descending if max[x,x'] � X(y) and min[x,x'] � X(y').

Lemma 2.  (a)  If Caa(a,y) + Cay(a,y) � 0 on 
�

, then X(y) is an ascending correspondence and the

maximal and minimal selections from X are non-decreasing functions.  If the inequality is strict then

every selection from X is non-decreasing.  (b)  Assume Caa(a,y) + Cay(a,y) � 0 on int 
�

.  If there

exists some y < K such that 0 < X(y) < y then there is a neighborhood N(y) of y such that X(
) is

descending on N(y) and the maximal and minimal selections from X are non-increasing functions on

N(y).

The economic requirement of the first part of Lemma 2 is that a change in control has a larger

effect on marginal costs than a change in the size of the invasion.  This provides an economic

criterion for the optimal size of the invasion to evolve monotonically over time.  Since the optimal

invasion size is bounded, every invasion with a monotonic time path must necessarily converge to a

positive steady state or zero (eradication).  If two invasions differ only in their initial size, then the

invasion that is larger today will be (weakly) larger at all points in the future. 

When the size of the invasion has a large effect on the marginal cost of control, as in part (b),

this may result in a non-monotonic optimal policy for the size of the invasion.  An example of this
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occurs when the marginal costs of control for a small invasion are sufficiently high that the optimal

policy involves no control while the invasion is small.  At the invasion grows larger, marginal costs

decrease and at some point it may become optimal to reduce the invasion back to very small levels,

from which no control is once again optimal.

Some invasions cause minimal damage and control is not cost effective.  As a consequence,

we first try to identify the circumstances under which control makes sense.  There are different ways

to view the control of an invasion.  One may be is interested in control from an invasion of a

particular size or control of an invasion of any size, or one may be concerned about control of the

invasion immediately or at some future date.  This motivates the following definitions.

Definition.  (a)  An invasion is a controlled invasion from y if there exists some t such that A(yt) > 0,

where yt is optimal from y.  (b)  An invasion is currently controlled from y if A(y) > 0.  (c)  An

invasion is controlled globally if A(y) > 0 for all y.  (d)  An invasion is interior if it is controlled

globally and X(y) > 0 for all y.

Each successive definition of control is more restrictive in the sense that (d) � (c) � (b) � (a).

The next result characterizes the economic conditions that are sufficient for each of these

types of control.  Define the tth iterate of f(
) and its derivative by f0(y) = y, f t(y) = f t-1(f(y)), t = 1,...

and f t
x(y) = df t(x)/dx.

Lemma 3.  a.  If there is an n � 0 such that Ca(0,fn(y)) < then the invasion isi i i
x x

i n

D (f (y))f (y)
∞

=
δ�

a controlled invasion from y.

b.  If Ca(0,y) < Dx(y) then the invasion is currently controlled from y.

c.  If Ca(0,y) < Dx(y) + 
�
[infa { Ca(a,f(y)) + Cy(a,f(y))} ]fx(y) for all y > 0 then the invasion is controlled

globally.
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Two special cases of Lemma 3c are worth noting.  First, if Ca(0,y) = 0 and Dx(y) > 0 for all y > 0,

then the optimal policy is to control the invasion from any size.  Second, when a change in control

has a larger effect on marginal costs than a change in the invasion size, the requirement of Lemma 3c

simplifies to Ca(0,y) < Dx(y) + 
�
Ca(0,f(y))fx(y).  

In many instances the marginal costs of control will be decreasing in y and the conditions for

controlling an invasion in Lemma 3 will be more likely to hold, the larger the invasion.

In the following let (yt,xt,at)0
� be an optimal program from y0.  The next result characterizes

the intertemporal tradeoffs between marginal costs and damages along an optimal program.

Lemma 4.  a.  If at > 0 then Ca(at,yt) � Dx(xt) + 
�
[Ca(at+1,yt+1)+Cy(at+1,yt+1)]fx(xt).

b.  If xt > 0 and at+1 > 0 then Ca(at,yt) � Dx(xt) + 
�
[Ca(at+1,yt+1)+Cy(at+1,yt+1)]fx(xt).

c.  If 0 < xt < yt and at+1 > 0 then 

Ca(at,yt) = Dx(xt) + 
�
[Ca(at+1,yt+1)+Cy(at+1,yt+1)]fx(xt). (3.1)

Since the value function in nonconvex models may not be differentiable, Lemma 4 cannot be

obtained by applying standard envelope theorem arguments such as those of Benveniste and

Scheinkman [1979].  Majumdar and Mitra [1982] use a variational approach to obtain the Euler

equation.  Here, we develop an alternative approach based on the principle of optimality and the fact

that Dini derivatives of V exist everywhere.

Corollary to Lemma 4c.  If 0 < xt < yt and 0 < xt+1 < f(xt) for all t then

i 1
i

a t t x t x t i y t i t i x t j
i=1 j 0

C (a ,y ) = D (x ) + D (x ) + C (a ,y ) f (x ).
−∞

+ + + +
=

� �δ � �� ∏

This has a simple interpretation when the costs of control are independent of the size of the

invasion.  For an interior policy the optimal control equates the marginal costs of control with the

discounted sum of marginal damages over time multiplied by the compounded marginal growth of the
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invasion.  This is a simple cost-benefit criterion which balances the cost of removing a unit of the

invasion against the discounted sum of current and future damages associated with that increment of

the invasion.  When the costs of control depend on the size of the invasion, the stream of future

damages must be adjusted to account for the influence of the invasion size on future control costs.

The diagram below illustrates the tradeoffs involved in the dynamic cost-benefit analysis. 

Points along the horizontal axis represent feasible amounts of control, ranging between 0 and yt.  As

control increases, so do marginal control costs.  At the same time, more control lowers the current

and future marginal damages caused by the invasion.  The point at
0 represents the static optimum that

equates marginal control costs with current marginal damages.  The point at
* is the dynamic optimum

that equates marginal control costs with current marginal damages plus the marginal effect of the

invasion on future damages and costs.  Given that it is less costly to reduce the size of the invasion to

x from y than it is from y' > y (see A3), the dynamic optimum always involves at least as much

control as the static optimum and at
* � at

0.
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3.b.  The Convex Model

This subsection considers the modified dynamic optimization problem where the non-convex

growth function f is replaced by its convex hull defined as follows: 

= f(x) for x � (0,k]
F(x) 

= f(k) + fx(k)(x-k) for x > k.

Note that F is continuously differentiable and satisfies A1-A4 and A5(a).  This modified dynamic

optimization problem is well defined and has a unique stationary optimal policy.  Let W(y) be the

value function in the modified problem.  That is, W solves the functional equation W(yt) = Min

C(at,yt) + D(xt) + 
�
W(F(xt)) subject to yt = xt + at and yt+1 = F(xt).   It can shown that W(y) is non-

decreasing, continuous and strictly convex.  Define � (y) to be the optimal future size of the invasion

from the current state x, i.e., xt = � (yt), and let � (y) = y - � (y) be the optimal control in state y.  The

next lemma summarizes the basic properties of the optimal solution to the modified problem of

controlling an invasion with a convex growth function.

Lemma 5.  In the modified convex dynamic optimization problem where f is replaced by F:

a.  the optimal value W(y) is continuous, nondecreasing and convex in y, and the optimal policies

� (y) and � (y) are single-valued and continuous in y.

b.  given y0, if the optimal program, (yt,xt,at)0
� in the modified problem is feasible in the original

problem under the invasion growth function f, then it is the unique optimal program from y0 in the

original problem.

c.  if � (y) > 0, then W(y) is differentiable and Wy(y) = Ca(a,y) + Cy(a,y).

d.  given y0, if (yt,xt,at)0
� is an optimal program then dynamic optimality conditions in Lemma 4 hold

and (3.1) can be expressed as

Wy(yt) = Dx(xt) + Cy(at,yt) + 
�
Wy(F(xt))Fx(xt). (3.2

)
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e.  if (yt,xt,at)0
� is a feasible program in the modified problem such that { xt}  is bounded, 0 < xt < F(xt-

1), and (3.1) holds for all t �0, then (yt,xt,at)0
�  is the optimal program from y0 in the modified

problem.

Lemma 5b provides conditions for the existence of an equivalence between an optimal program in the

modified problem and an optimal program in the original problem.  Since the modified problem is

easier to solve, such an equivalence is useful in characterizing the optimal policy for the original

problem.  This is done in the next two sections.  

4.  The Economics of Eradication. 

In this section, we consider the conditions under which it makes sense to eradicate an

invasive species.  The term eradication can have two meanings.  In general it applies when the

species is eradicated in the long run and the invasion is controlled in a manner that reduces its size to

zero in the limit.  It can also have a narrower meaning in cases where the species is fully exterminated

in the current period. Eradication in the general sense includes both immediate eradication and the

possibility that the species is fully eliminated within a finite number of periods.

Before beginning a formal analysis it is useful to think about the possibilities for eradication. 

First, whether eradication is optimal or not may depend on the size of the invasion.  For example, the

conventional wisdom from historical eradication efforts is that it is best to attempt eradication when

an invasion is small.  Eradication may prove too costly if an invasion becomes large.  This was the

rationale behind the recent, widely publicized effort by the state of Maryland to eradicate the

snakehead fish from a pond near Baltimore.  Less intuitive, but within the realm of possibilities

allowed by our model, is an outcome where eradication is optimal for small invasions, but not for

medium size invasions.  If the invasion grows large enough eradication may become optimal once

again.  Such an outcome requires a nonmonotonic optimal policy.
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We now characterize the economic and biological conditions under which eradication is

optimal in the general sense where the size of invasion is reduced to zero in the long run.

Proposition 1. If there exists a �  � (0,k] such that the invasion is currently controlled from every

y � (0,f( � )), and if
 

0 ( )

( , ( ))
( ( ) - , ( )) ( ) ( ) ( ( ) , ( )) 1 inf

( , ( ))
y

a x x a
a f x x a

C a f x
C f x x f x D x f x C f x x f x

C a f x
δ

≤ ≤ −

� �
< + − +� �

� �

for all x � (0, f-1( � )], then eradication is optimal from any invasion of size y0 � (0, � ].

To interpret this result, first consider the static case where 
�
 = 0.  From any small invasion, if the

marginal marginal damages from the invasion exceed the cost of marginal cost of reducing the

invasion size then it is optimal to reduce the size of the invasion.  Since this holds for every invasion

that is small, the optimal program eventually leads to eradication.  In the dynamic case, the marginal

costs of controlling the invasion are compared to the current and future marginal damages, adjusted

for the effect of the invasion size on future control costs.  The second term on the right hand side of

the inequality in Proposition 1 is a lower bound on the effect that a reduction in the invasion today

has on future damages and control costs.  Hence, the condition implies that for any small invasion, it

is less costly to reduce the size of the invasion than to incur the current and future damages should

the invasion be allowed to grow.  When discounted growth of all small invasions exceeds one then

eradication is optimal even if marginal damages are low.  The rational is that if a fast growing

invasion increases future damages and control costs more rapidly that the rate of discount then it

makes sense not to allow the invasion to grow and to eradicate it when it is small.

The next lemma provides a condition under which it is economic for the current control to

reduce the size of the invasion.

Lemma 6.  Suppose that for any y0 = y > 0, the invasion is currently controlled from y' � [y, f(y)]



18

and for all x � (f-1(y),y)

0 ( )
( - , ) ( ) inf ( , ( )) ( , ( )) ( ).a x a y x

a f x x
C y x y D x C a f x C a f x f xδ

≤ ≤ −

� �< + +� �
� �

Then every optimal program (yt,xt,at)0
� satisfies y1 = f(x0) < y0.

The inequality in Lemma 6 is somewhat stronger than that in Proposition 1.  This is because Lemma

6 applies to either small or large invasions whereas Proposition 1 applies only to small invasions

whose size is in the region where growth in the invasion is convex.  Our next result combines the two

sets of conditions and provides a criterion for eradication to be optimal from an invasion of any size.

Proposition 2.  Assume that the invasion is globally controlled.  Further suppose that 

(i) 
0 ( )

( , ( ))
( ( ) - , ( )) ( ) ( ) ( ( ) , ( )) 1 inf

( , ( ))
y

a x x a
a f x x a

C a f x
C f x x f x D x f x C f x x f x

C a f x
δ

≤ ≤ −

� �
< + − +� �

� �

for all x � (0,f  -1(k)], and

(ii) 
0 ( )

( - , ) ( ) inf ( , ( )) ( , ( )) ( )a x a y x
a f x x

C y x y D x C a f x C a f x f xδ
≤ ≤ −

� �< + +� �
� �

for every y � (k,K] and for all x � (f  -1(y),y). Then, eradication is globally optimal. 

Proposition 2 applies to invasions of any size. The stronger requirement in part (ii) only needs to hold

for invasions larger than k.  This is precisely the region where it is more likely to hold due to the fact

that marginal damages are increasing in x.  When the optimal policy for controlling the invasion is

monotone, the conditions for global eradication can be simplified.

Proposition 3.  If Caa(a,y) + Cay(a,y) � 0 on 
�

 and if 

Ca(f(x)-x,f(x)) < Dx(x) + 
�
[Ca(f(x)-x,f(x))+Cy(f(x)-x,f(x))]fx(x) 

for all x � (0,K], then every optimal program converges to zero and eradication is globally optimal. 
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Next, we characterize the circumstances under which it immediate eradication is optimal, i.e.,

where the invasion is fully eradicated in the current period. 

Proposition 4. a.  Suppose that for some y � (0,k], the invasion is currently controlled from every

y0 � (0,f(y)) and that 

0 ( ) , 0
( , ) (0) inf ( , ( )) ( , ( )) (0).a x a y x

a f x x x y
C y y D C a f x C a f x fδ

≤ ≤ − ≤ ≤

� �< + +� �
� �

Then, immediate eradication is optimal from y. 

b.  Suppose that for some y � (k,K], the invasion is currently controlled from every y0  � (0,f(y)) and

that 

0 ( ) , 0
( , ) (0) inf ( , ( )) ( , ( )) min{ (0), ( )} .a x a y x x

a f x x x y
C y y D C a f x C a f x f f Kδ

≤ ≤ − ≤ ≤

� �< + +� �
� �

Then, immediate eradication is optimal from y.

The criterion for immediate eradication balances the costs of removing the last unit of the invasion

against the current and future damages that would be caused should the invasion be allowed to

remain.  The second term on the right hand side of the inequalities is a lower bound on the future

damages associated with an arbitrarily small invasion.

These results on the economics of eradication lead to the following insights.  First,

eradication is more likely to be an optimal policy for invasions that have a higher discounted growth

rate than it is for invasions that grow slowly.  This is because the benefits from control today are

higher when an invasion expands rapidly.  In addition, the benefits from control today are magnified

further into the future when the discount rate is lower.  Second, for some invasions economic

considerations may favor eradication when the invasion is small, but not when the invasion is large. 

Finally, in the special case where the marginal costs of control at a=0 are insignificant, the criteria for

eradication in Proposition 2, part ii, and in Proposition 4 essentially involve static benefit cost

considerations. This is a consequence of the fact that Ca(0,y) = 0 implies inf0�a�f(x)-x Ca(a,f(x)) +



4Recall that Ca(a,y) + Cy(a,y) � 0.
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Cy(a,f(x)) = 0.4  Hence, the lower bound on future marginal social costs is relatively weak when

marginal control costs are insignificant.

5.  The Economics of Noneradication.

In this section we characterize the economic and biological environments under which it is

optimal for society to allow the invasion to be sustained.  Under these conditions eradication is

incomplete.  

Proposition 5.  a.  If Dx(0) + 
�
Ca(0,0)fx(0) < Ca(y,y) then X(y) > 0.  

b.  If Caa(a,y) + Cay(a,y) � 0 on 
�

 and Dx(0) < Ca(0,0)[1-
�
fx(0)] then X(y) > 0 for all y and, in

addition, for all y sufficiently close to zero A(y) = 0 and X(y) = y.

c.  If Caa(a,y) + Cay(a,y) < 0 on 
�

 and Dx(y) + 
�
sup0�x�y Ca(0,f(x))fx(x) < Ca(0,y) then X(y) = y.

Part a of the proposition rules out immediate eradication as an optimal strategy.  If the

damages from an arbitrarily small invasion are less than the marginal costs of removing the entire

invasion, then it is always optimal to allow some of the invasion to remain.  The second part of the

proposition is the counterpart of Proposition 1.  For an arbitrarily small invasion, if the damages

compounded indefinitely at the discounted expected intrinsic growth rate are less than the marginal

costs of eradicating the invasion then the optimal policy is not to control the invasion at all when it is

sufficiently small.  This in turn, implies that eventual eradication is not an optimal strategy from an

invasion of any size.
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Appendix.

Proof of Lemma 1.  The cost functions C and D are bounded continuous functions on their relevant

domains.  Define the operator � V(y) = inf C(a,y) + D(x) + 
�
V(f(x)) subject to y = x + a.  By the

contraction mapping theorem �  maps the set of bounded continuous functions into itself.  Hence, V is

continuous.  We now show that V maps non-decreasing functions into non-decreasing functions. 

Suppose V is non-decreasing.  Let x and x' be optimal from y and y', respectively where y < y'. 

Suppose x' < y.  Then x' is feasible from y and � V(y) = C(y-x,y) + D(x) + 
�
V(f(x)) � C(y-x',y) + D(x')

+ 
�
V(f(x')) � C(y'-x',y') + D(x') + 

�
V(f(x')) = � V(y'), where the first inequality is due to optimality

while the second is due to B3.  Now suppose that x' � y.  Then � V(y) = C(y-x,y) + D(x) + 
�
V(f(x)) �

C(0,y) + D(y) + 
�
V(f(y)) = C(0,y') + D(y) + 

�
V(f(y)) � C(y'-x',y') + D(x') + 

�
V(f(x')).  The first

inequality is due to optimality, the equality follows from B2, and the second inequality is implied by

B3 and the fact that V is nondecreasing.  �

Proof of Lemma 2.  a.  Let x � X(y) and x' � X(y') for y � y'.  Then max[x,x'] � y' and min[x,x'] � y. 

Note that D(max[x,x']) + D(min[x,x']) = D(x) + D(x'), and likewise V(f(max[x,x']))+V(f(min[x,x'])) =

V(f(x))+V(f(x')).  Since Caa(a,y) + Cay(a,y) � 0 it follows that C(y-x,y) - C(y-min[x,x'],y) �

C(y'-max[x,x'],y') - C(y'-x',y').  Hence, 0 �C(y-x,y) + D(x) + 
�
V(f(x)) - [C(y-min[x,x'],y) +

D(min[x,x']) + 
�
V(f(min[x,x'])] � C(y'-max[x,x'],y') + D(max[x,x']) + 

�
V(f(max[x,x'])) - [C(y'-x',y') +

D(x') + 
�
V(f(x'))] � 0, where the first and last inequalities follow from the principle of optimality. 

This sequence of inequalities implies that min[x,x'] � X(y) and max[x,x'] � X(y').

b.  The argument is similar to the proof of part a.  Let x � X(y) and x' � X(y') < y' for y � y'.  We want

to show that max[x,x'] � X(y) and min[x,x'] � X(y').  This follows immediately if x � x' so suppose

that x < x'.  Since x' < y'  it must be the case that that x' � y for all y sufficiently close to y'.  The

assumption Caa(a,y) + Cay(a,y) � 0 implies C(y-x,y) + C(y'-x',y') � C(y'-x,y') + C(y-x',y).  This is turn

yields 0 � C(y-x,y) + D(x) + 
�
V(f(x)) - [C(y-x',y) + D(x') + 

�
V(f(x'))] � C(y'-x,y') + D(x) + 

�
V(f(x')) -

[C(y'-x',y') + D(x') + 
�
V(f(x'))] � 0, where the first and last inequalities follow from optimality.  This
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sequence of inequalities implies that x' � X(y) and x � X(y').  Hence max[x,x'] � X(y) and min[x,x'] �

X(y').  The assumption that X(y') < y' is necessary to insure that x' is feasible from y � N(y').  �

Proof of Lemma 3.  a.  Without loss of generality we can take n = 0.  Let { xt,at} , t = 0,... be optimal

from y0 = y.  We first show that there exists some t � 0 for which at > 0.  If not, then at = 0 for all t

and xt = yt = f t(y).   It follows that for all y � (0,K), f t(y) � (0,K), f t(y) > y, and f t
x(y) � fx(K)t for all t �

1.  Consider an alternative sequence { x̂t,ât}  where â0 = �  and ât = 0 for all t � 1.  Then x̂t = ŷt = f t(y- � )

for all t � 1.  As { xt,at}  is optimal,

{ } { }t t t t t t

t 0 t=1

0   C(0,f (y)) +D(f (y))  C( ,y) + D(y- ) + C(0,f (y ))+D(f (y- ))
∞ ∞

=

� � � �
≥ δ  − ε ε δ − ε ε� � � �

� � � �
� �

t t t t t t

t=1 t=0

 C(0,y) - C( ,y) + C(0,f (y)) C(0,f (y ))  + D(f (y))  - D(f (y- )) .
∞ ∞

� � � �= ε δ − − ε δ ε� � � �� �

Dividing by �  and taking the limit as � �0 implies:

Ca(0,y) � Dx(y) + .t t t t
y x x

t 1

C (0,f (y)) D (f (y)) f (y)
∞

=

� �δ +� ��

Since Cy(0,f t(y)) = 0 this contradicts the condition of the proposition.  Thus, there exists some t for

which at > 0.

b.  Since infa Ca(a,f(y)) + Cy(a,f(y)) � Ca(0,f(y)) + Cy(0,f(y)) = Ca(0,f(y)) it follows from the condition

in part b that Ca(0,y) < Dx(y) + 
�
Ca(0,f(y))fx(y) for all y.  Since the condition is part b holds for all y,

Ca(0,f(y)) < Dx(f(y)) + 
�
[infa { Ca(a,f2(y)) + Cy(a,f2(y))} ]fx(f(y)).  Substituting this in the previous

inequality yields Ca(0,y) < Dx(y) + 
�
[Dx(f(y)) + 

�
[infa { Ca(a,f2(y)) + Cy(a,f2(y))} ]fx(f(y))]fx(y). 

Iterating forward and repeating a similar substitution yields Ca(0,y) < Dx(y) +

, which is the condition in part a.  Hence, the condition int t t t
y x x

t 1

C (0,f (y)) D (f (y)) f (y)
∞

=

� �δ +� ��

part b implies part a and the invasion is a controlled invasion from y.

Let T be the first t such that at > 0 and suppose that T > 0.  Then at = 0 for t = 0,...,T-1, while

0 < aT �yT = f(xT-1) = fT(y) and xT = yT - aT = fT(y) - aT.  Since aT > 0 there exists an �  > 0 such that
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f(yT-1) - f(yT-1 - � ) < aT.  Consider the alternative feasible sequence âT-1 = � , âT = aT - [f(yT-1) - f(yT-1- � )],

and ât = at for all other t.  Then x̂T-1 = yT-1 - �  and x̂t = xt for t �T-1.  Since the sequence { xt,at}  is

optimal,

 [ ]t
t t t t t t

t 0

ˆ ˆ ˆ0   C(a ,y ) + D(x ) - C(a ,y ) - D(x )
∞

=
≥ δ�

=  
� T-1[ C(0,yT-1) + D(yT-1) - C( � ,yT-1) - D(yT-1- � ) ] 

+ 
� T [C(aT,f(yT-1)) + D(xT) - C(aT+f(yT-1- � )-f(yT-1),f(yT-1- � )) - D(xT) ]

Dividing by �  and letting �  
 0 implies

0 � -Ca(0,fT-1(y)) + Dx(f
T-1(y)) + 

�
[Ca(aT,fT(y)) + Cy(aT,fT(y))]fx(f

T-1(y))

Since this contradicts the condition in the proposition it must be that T = 0 and A(y) > 0 for all y.  �

Proof of Lemma 4.  For purposes of exposition the proof is divided into a sequence of subsidiary

lemmas.  Define the lower, right and left Dini derivatives of V at y by

D
�
V(y) � liminf �

�0
V(y� � )�V(y)

�
and D

�
V(y) � liminf �

�0
V(y)�V(y� � )

�
.

Lemma 4.1.  -Ca(y0-x0,y0) + Dx(x0) + 
�
 D-V(f(x0)) � 0.

Proof.  Since x0- �  is feasible from y0, the principle of optimality implies C(y0-x0+ � ,y0) + D(x0- � ) +

�
V(f(x0- � )) - C(y0-x0,y0) - D(x0) - 

�
V(f(x0)) � 0.  Dividing by �  and taking liminf � �0 establishes the

result.  �

Lemma 4.2.  If x0 < y0 then -Ca(y0-x0,y0) + Dx(x0) + 
�
 D+V(f(x0)) � 0.

Proof.  If x0 < y0 then x0+ �  is feasible from y0 for sufficiently small � .  By the principle of optimality

it follows that liminf � �0 [C(y0-x0- � ,y0) + D(x0+ � ) + 
�
V(f(x0+ � )) - C(y0-x0,y0) - D(x0) - 

�
V(f(x0))]/ �  � 0. 

The result follows immediately.  �



5The term “negative”  comes from the equivalent problem of maximizing a sum of negative rewards
over time.
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Lemma 4.3.  D+V(f(x0)) � [Ca(a1,y1)+Cy(a1,y1)]fx(x0).

Proof.  Since x1 is feasible from f(x0+ � ) the principle of optimality implies V(f(x0+ � ))-V(f(x0)) �

C(f(x0+ � )-x1,f(x0+ � )) + D(x1) + 
�
V(f(x1)) - C(f(x0)-x1,f(x0)) - D(x1) - 

�
V(f(x1)).  Dividing by �  and

taking the liminf � �0 on both sides and simplifying completes the proof.  �

Lemma 4.4.  If a1 > 0 then D-V(f(x0)) � [Ca(a1,y1)+Cy(a1,y1)]fx(x0).

Proof.  Since a1 > 0, x1 is feasible from f(x0- � ) for sufficiently small � .  By the principle of optimality

it follows that V(f(x0)) - V(f(x0- � )) � C(f(x0)-x1,f(x0)) + D(x1) + 
�
V(f(x1)) - C(f(x0- � )-x1,f(x0- � )) -

D(x1) - 
�
V(f(x1)).  Once again, dividing by �  and taking the liminf � �0 on both sides and simplifying

completes the proof.  �

The proof of part a of Lemma 4 follows from Lemmas 4.2 and 4.3 while combining Lemmas 4.1 and

4.4 yields part b.  Part c is a joint implication of all four lemmas.  �

Proof of Lemma 5.  a.  As F is convex it is not bounded and the modified problem is a classical

negative5 dynamic programming problem, a time stationary dynamic cost minimization problem with

costs bounded from below [Strauch, 1966].  The existence of a stationary optimal policy follows from

standard arguments in this literature (e.g. Schäl [1975]).  As in the proof of Lemma 1 define the

operator � W(y) = inf C(a,y) + D(x) + 
�
W(F(x)) subject to y = x + a.  The proof that W is

nondecreasing follows identical arguments to those in the proof of Lemma 1.  That �  maps the set of

convex functions into itself follows from the convexity of C, D, and F, and the fact that { x | 0�x�y}

is convex.  The fact that an optimal policy is single-valued and continuous follows from the

convexity of the cost and transition functions and the strict convexity in assumption B4.
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b.  The proof follows from the fact that the from any initial state, the set of feasible paths in the

modified optimization problem includes all feasible paths in the original problem.

c.  Let (x,a)  be optimal from y in the modified, convex problem.  Then x is feasible from y+ �  for � >0. 

By the principle of optimality, Wy+(y) = lim� �0 [W(y+ � ) - W(y)]/ �  �  lim� �0 [C(y+ � -x,y+ � ) -C(y-x,y)]/ �

= Ca(a,y)+Cy(a,y).  As a > 0, x is feasible from y- �  for �  sufficiently close to zero.  It follows that

Wy-(y) = lim� �0 [W(y) - W(y- � )]/ �  � [C(y-x,y)-C(y- � -x,y- � )]/ �  = Ca(a,y)+Cy(a,y).  Since W is convex

Wy+(y) � Wy-(y).  Hence W is differentiable at y and Wy(y) = Ca(a,y)+Cy(a,y).

d.  Since W is differentiable the first order necessary conditions can be expressed as Ca(at,yt) = Dx(xt)

+ 
�
Wy(F(xt))Fx(xt).  Adding Cy(at,yt) to each side and then substituting Wy(yt) for the left hand side

gives the result.

e.  The proof follows from the fact that the modified problem is convex and the size of the invasion is

bounded.

Proof of Proposition 1.  Consider invasions of initial size lying in (0, � ] and the modified dynamic

optimization problem where we replace f by its convex hull F.  Note that f coincides with F on [0, � ].

Recall that from any invasion of size y, there is a unique optimal invasion size in the next period

given by F(� (y)). We claim that F(� (y)) < y for all y �(0, � ] so that in this modified dynamic

optimization problem, the unique optimal program from y0 �(0, � ] lies below �  and converges to zero. 

To see this, suppose there exists y �(0, � ] such that F(� (y)) � y. Let x � (0,f-1( � )] be defined by y =

f(x) = F(x). Then, � (y) � x > 0 and f(x)-� (y) � f(x)-x.  Note that F(� (y)) � f(y) � f( � ), so that the

invasion is currently controlled from both y and F(� (y)).  Lemma 5 implies Ca(f(x)-� (y),f(x)) =

Dx(� (y)) +  
�
Wy(F(� (y)))Fx(� (y)).  The convexity of F, D, and W and the fact that k � � (y) � x and

F(� (y)) � y implies

Ca(f(x)-� (y),f(x)) � Dx(x) +  
�
Wy(y)Fx(x) = Dx(x) + 

�
Wy(f(x))fx(x) 

= Dx(x) + 
�
fx(x)[Ca(f(x)-� (y),f(x)) + Cy(f(x)-� (y),f(x))].

This yields
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( ( ) ( ), ( ))( )
1 ( ) 1

( ( ) ( ), ( )) ( ( ) ( ), ( ))
yx

x
a a

C f x y f xD x
f x

C f x y f x C f x y f x

η
δ

η η
−� �

≥ + +� �− −� �

0 ( )

( ( ) ( ), ( ))( )
( ) 1 inf

( ( ) , ( )) ( ( ) ( ), ( ))
yx

x
a f x xa a

C f x y f xD x
f x

C f x x f x C f x y f x

η
δ

η≤ ≤ −

−� �
≥ + +� �− −� �

a contradiction. Thus, in the modified dynamic optimization problem, every optimal path from y0

�(0, � ] lies below �  and converges to zero.  

Every feasible path in the original optimization problem is also feasible in the modified

problem. Since the unique optimal path from any initial state y0 �(0, � ] in the modified problem is also

feasible in the original problem, it must be the unique optimal path from every such y0 in the original

problem.  �

Proof of Lemma 6.  Suppose not. Then there exists an optimal program (yt,xt,at)0
� where y1 = f(x0) �

y, i.e., x0 �f-1(y). Since, y1 � [y,f(y)], it follows that x1<y1. Therefore, using Lemma 4, we have 

Ca(y-x0, y) �Dx(x0) +  
�
[Ca(f(x0)-x1,f(x1))+Cy(f(x0)-x1,f(x1))]fx(x0)

which violates the inequality in the statement of the lemma.  �

Proof of Proposition 2.  The proof follows from Proposition 1 and Lemma 6.  �

Proof of Proposition 3.  Suppose not. Then there is an optimal program bounded away from zero that

converges to a strictly positive optimal steady state y*  = f(x* ).  At this optimal steady state there is an

optimal program where the size of the invasion is managed at a constant level every period.  Note that

y0 � (0,K) implies that every optimal program is bounded above by K so that x*  and y*  lie in [0,K]. If

x*  � (0,K) then equation (3.1) implies Ca(f(x* )-x* ,f(x* )) = Dx(x* ) +

�
[Ca(f(x* )-x* ,f(x* ))+Cy(f(x* )-x* ,f(x* ))]fx(x* ) which contradicts the inequality in the proposition.

Also, y*= K = f(K) is not an optimal steady state as the inequality in the proposition implies Ca(0,K))

< Dx(K) + 
�
[Ca(0,K))+Cy(0,K)]fx(K) = Dx(K) + 

�
Ca(0,K))fx(K) which implies Ca(0,K)) < [Dx(K)/(1-
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�
fx(K))].  The latter can be used to show that a program where the control is infinitesimal but greater

than zero in period 0 and equal to zero every period thereafter dominates a program where at=0 in

every period. Hence, K is not an optimal steady state. Thus, it must be the case that every optimal

path converges to 0.  �

Proof of Proposition 4.  a.  Suppose not. Then there exists an optimal program (yt,xt,at)0
�, y0 = y,

where x0 > 0 so that y1 = f(x0) > 0. Since the invasion is currently controlled from every y0 � (0,f(y)),

it follows from Lemma 3 that Ca(y-x0, y) �Dx(x0) +  
�
[Ca(f(x0)-x1,f(x0))+Cy(f(x0)-x1,f(x0)]fx(x0). 

Hence, the convexity of C and D imply

Ca(y, y) � Dx(0) +  
�
[Ca(f(x0)-x1,f(x0))+Cy(f(x0)-x1,f(x0))]fx(x0)

�Dx(0) +  
�
[Ca(f(x0)-x1,f(x0))+Cy(f(x0)-x1,f(x0))]fx(0)

where the last inequality follows from the fact that x0  � (0,k). This contradicts the inequality in the

antecedent of the proposition. The proof of part b is almost identical except that in the last inequality

min{ fx(0),fx(K)} acts as a lower bound on fx(x0).  �

Proof of Proposition 5. a.  Suppose X(y) = { 0} .  Consider the alternative of increasing the remaining

invasion to �  and then eradicating it in the following period.  By the principle of optimality

C(y,y)+D(0)+
�
[C(0,0)+D(0)]+

� 2V(0) � C(y- � ,y) + D( � ) + 
�
C(f( � ),f( � )) + D(0)+

� 2V(0).  This implies

Ca(y,y) � Dx(0) + 
�
[Ca(0,0)+Cy(0,0)]fx(0) = Dx(0) + 

�
Ca(0,0)fx(0), where the equality follows from

B3.  This is a contradition to the condition in Xa.

b. Caa + Cay � 0 implies Ca(0,0) � Ca(y,y) for all y.  Hence the condition in Xa holds for all y and X(y)

> 0 for all y.  To prove the second part we want to show that there exists a 
�
 sufficiently close to zero,

such that X(y) = y for all y � (0,
�
).  Let x � X(y) and suppose that x < y.  By Lemma 4a

0 � -Ca(y-x,y) + Dx(x) + 
�
[Ca(A(f(x)),f(x))+Cy(A(f(x)),f(x))]fx(x) 

� -Ca(0,x) + Dx(x) + 
�
[Ca(f(x),f(x))+Cy(f(x),f(x))]fx(x). (using Caa + Cay � 0 twice)
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Define H(x) � -Ca(0,x) + Dx(x) + 
�
[Ca(f(x),f(x))+Cy(f(x),f(x))]fx(x) � 0.  The condition in Xb implies

H(0) < 0 and by the continuity of H one can pick an 
�
 sufficiently close to 0 such that H(x) < 0.  This

yields a contradiction.

c.  The second condition in Xc implies 0 > -Ca(0,y) + Dx(y) + 
�
sup0�x�y [Ca(0,f(x))+Cy(0,f(x))]fx(x) � 

-Ca(y-x,y) + Dx(x) + 
�
[Ca(A(f(x)),f(x))+Cy(A(f(x),f(x))]fx(x) where the last inequality is due to the

convexity of C and D, and Caa(a,y) + Cay(a,y) < 0.  This is the contrapositive of Proposition 2a.  �
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