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Abstract

We investigate the representative consumer's risk attitude and eÆcient risk-sharing

rules in a single-period, single-good economy in which consumers have homogeneous

probabilistic belief but heterogeneous risk attitudes. If all consumers exhibit non-

increasing relative risk aversion, then so does the representative consumer. If, more-

over, the individual consumers' cautiousness, de�ned as the derivative of the reciprocal

of the Arrow-Pratt measure of absolute risk aversion, are unequal, then the represen-

tative consumer exhibits strictly decreasing relative risk aversion, ranging from the

most risk averse individual consumer's counterpart to the least risk averse consumer's

as the aggregate consumption level increases. When every consumer's risk tolerance is

linear, much sharper results on the curvature of the risk-sharing rules can be obtained.

Extensions of these results to multi-period economies, implications on asset pricing

and portfolio insurance, consequences of background risks, and numerical examples

are also presented.
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1 Introduction

We consider an exchange economy under uncertainty with a single good and a single

consumption period, in which all consumers hold common probability assessments over

the state space and yet di�ering expected utility functions. Two things are well known

for Pareto eÆcient allocations in such an economy. First, every consumer's consumption

level is uniquely determined by the aggregate consumption level. Hence every consumer's

state-contingent consumption levels can be speci�ed as a function, called the risk sharing

rule, of aggregate consumption levels. Second, there exists a representative consumer,

in the sense that the support price of the single-consumer economy consisting solely of

the representative consumer is also the support price for the Pareto eÆcient allocation of

the original, multi-consumer economy. Hence, knowing the representative consumer's risk

attitude is suÆcient to price all assets in �nancial markets.

The benchmark result on this subject matter is the mutual fund theorem: De�ne risk

tolerance as the reciprocal of the Arrow-Pratt measure of absolute risk aversion, and call

its �rst derivative cautiousness. If all consumers have the same, constant cautiousness,

then the representative consumer also has the same constant cautiousness and all indi-

viduals' risk-sharing rules are linear (or, to be more precise, aÆne). In this paper, we

drop the assumption of a constant, common cautiousness and analyze the implication of

heterogeneous cautiousness on the risk-sharing rule and the representative consumer's risk

attitude. As can be inferred from existing results dispersed in the wide range of literature,

the mutual fund theorem would not hold without the assumption of a constant, common

cautiousness. The contribution of this paper is, in short, to provide a detailed description

of the way in which the representative consumer's cautiousness is not constant and the

risk-sharing rules are not linear in this environment. Some of our results require speci�c

functional forms, such as log or power functions for expected utility functions, but others

do not.

We should stress that the investigation of the way in which the mutual fund theorem

fails to hold is no less important than the theorem itself. Also, just like the theorem,

we establish qualitative properties on the representative consumer's risk attitude and the

risk-sharing rules, which are true regardless of the choice of Pareto eÆcient allocations,
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or, equivalently, of utility weights in the maximization problem characterizing the eÆcient

allocations. If �nancial markets are complete, then the equilibrium allocations are Pareto

eÆcient, and hence this is equivalent to saying that the qualitative properties we establish

are true for all speci�cations of initial wealth distributions.

In the rest of this introduction, we list our results and explain how they clarify, gener-

alize, and re�ne the preceding results.

1.1 Representative Consumer's Risk Attitude

We obtain two results on the representative consumer's risk attitude, one local and the

other global. The local result (Theorem 19) is that if every individual consumer exhibits

non-increasing relative risk aversion, then so does the representative consumer. If, more-

over, there is at least one consumer who exhibits decreasing relative risk aversion or there

are two consumers whose cautiousness di�er from each other, then the representative

consumer exhibits strictly decreasing relative risk aversion. In short, even the slightest

heterogeneity in individual consumers' risk attitudes destroys the constancy of the repre-

sentative consumer's relative risk aversion. The global result (Proposition 24) is that the

representative consumer's relative risk aversion converges to the relative risk aversion of

the least risk averse individual in the economy as the aggregate consumption level diverges

to in�nity; and it converges to that of the most risk averse individual as the aggregate

consumption level converges to zero.

Combining these two results, we can say that the representative consumer exhibits

strictly decreasing relative risk aversion, ranging from the most risk averse individual

consumer's counterpart to the least risk averse consumer's as the aggregate consumption

level increases. This result generalizes those obtained by Benninga and Mayshar (2000),

who assumed that all consumers have the same discount rate and constant but di�ering

constant coeÆcients of relative risk aversion in a two-period economy, and by Wang (1998),

who considered a continuous-time economy with two consumers which have the same

properties as assumed by Benninga and Mayshar (2000). Our result is particularly relevant

to the equity premium puzzle of Mehra and Prescott (1985), who tried to reconcile the

U.S. empirical data with the representative consumer model where the representative

consumer exhibits constant relative risk aversion. Often the reason given for adopting this
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assumption is that it seems a moderately reasonable assumption for individual consumers.

The above result, however, demonstrates that the assumption is not at all reasonable

for the representative consumer, since the aggregation tends to induce the representative

consumer to exhibit strictly decreasing relative risk aversion given the heterogeneity in

the individual consumers' risk attitudes.

In terms of the organization of the paper, we �rst establish results on the representative

consumer's cautiousness (Theorem 7 and Propositions 10 to 13), and the results referred

to above (Theorem 19 and Proposition 24) are derived from them. We �nd that the

representative consumer's cautiousness is much easier to work with than his relative risk

aversion. In particular, Theorem 7 shows that if every consumer exhibits non-decreasing

cautiousness (which is equivalent to convex risk tolerance), then so does the representa-

tive consumer; and heterogeneity leads to strictly increasing cautiousness (which implies

strictly convex risk tolerance).

1.2 Asset Pricing

We also investigate what kind of mis-pricing of derivative assets would occur if we erro-

neously assumed that the representative consumer exhibits constant relative risk aversion

or linear risk tolerance, when he in fact exhibits strictly decreasing relative risk aversion

or strictly convex risk tolerance as a result of heterogeneity in consumer's risk attitude.

We concentrate on derivative assets of the aggregate endowment of the economy, whose

state-contingent payo�s are determined by the realization of the aggregate endowment.

We show (Proposition 21) that the approximation by linear risk tolerance would underes-

timate the price, relative to the risk-free bond, of these derivative assets whose payo�s are

increasing functions of the aggregate endowment, such as call options but not put options;

and (Proposition 9) that the approximation by constant relative risk aversion would un-

derestimate the price, relative to the risk-free bond, of those derivative assets which pay

o� only when the aggregate endowment turns out to be very high or very low, such as

call options with very high exercise prices and put options with very low exercise prices.

The approximation of the second type was considered by Benninga and Mayshar (2000)

for the case where all consumers exhibit constant relative risk aversion and the aggregate

endowment is log-normally distributed. The approximation of the �rst type is interesting
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because linear risk tolerance is a weaker requirement than constant relative risk aversion,

and hence the approximation of the �rst type is superior to that of the second type; and

yet the two have opposing directions of mis-pricing for put options.

1.3 Risk-Sharing Rules

The crucial result, which builds on results of Wilson (1968), for analyzing the shape of

risk sharing rules is Proposition 6, which relates the curvature of an individual consumer's

risk-sharing rule to how the individual's cautiousness compares to the cautiousness of the

representative consumer. Indeed a risk-sharing rule is locally convex, concave, or linear if

and only if the individual's cautiousness is locally greater than, smaller than, or equal to

the representative consumer's cautiousness. The result also allows us to rank the curvature

of the individual consumers' risk-sharing rules according to their cautiousness.

The behavior of the risk-sharing rules as the aggregate consumption level diverges

to in�nity or converges to zero (or, more generally, the minimum subsistence level) is

described by Propositions 10 through 13. Roughly, the results state that as the aggregate

consumption level diverges to in�nity, the most cautious consumers' share of consumption

as well as their marginal increment in consumption converge to one; and that as the

aggregate consumption level converges to zero, the same is true for the least cautious

consumers. Hence the distribution of the individual consumers' consumption levels are

more biased when the realization of the aggregate endowment is very large or very small

than when it is of a modest value.

Much stronger results can be obtained when all individual consumers exhibit linear risk

tolerance, or, equivalently, constant cautiousness, and the constants di�er across them.

We show (Theorem 16) that an individual consumer's risk-sharing rule can be only of

three types, depending on the individual's cautiousness. Each least cautious consumer

has an everywhere strictly concave risk-sharing rule. Each most cautious consumer has an

everywhere strictly convex risk-sharing rule. Any of the other consumers has a risk-sharing

rule that is initially convex up to a unique in
ection point and concave thereafter. Such

a risk-sharing rule looks as in Figure 1 but no risk-sharing rule in this economy can be as

in Figure 2, initially concave and eventually convex.

The results for the most and least cautious consumer have been established by Leland
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Figure 1: An example of an intermediately cautious consumer's risk-sharing rule in an

economy consisting of consumers with (possibly heterogeneous) linear risk-tolerance.

(1980) and Brennan and Solanki (1981), who considered the expected-utility maximization

problem of a consumer who chooses over state-contingent claims of a reference portfolio.

Holding the underlying asset and a put option is equivalent to holding cash and a call

option of the same exercise price, often called the call-put parity, but these are also equiv-

alent to having a portfolio insurance. In all of these cases, the generated return is a

convex function of the values of the portfolio. They were thus led to identify conditions

on the consumer's utility function for his optimal choice of return to be a convex function

of the value of the portfolio. Among the di�erences between this work and theirs, the

most important one is that they took the representative consumer's risk aversion as given,

while we derive it as a result of eÆcient risk-sharing among heterogeneous consumers. In

particular, the situation Leland (1980) envisaged on page 589, where the individual and

the representative consumers exhibit constant but di�ering relative risk aversion, is in fact

impossible, if all the other consumers also exhibit constant relative risk aversion. Even if

the representative consumer's relative risk aversion is allowed to decline, the result still

has little theoretical relevance because the risk-sharing rule is everywhere convex only for

the most cautious consumers.
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Figure 2: An example of an impossible risk-sharing rule in an economy consisting of

consumers with (possibly heterogeneous) linear risk-tolerance.

1.4 Background Risks

We also investigate an economy where individuals, in addition to having heterogeneous

risk attitudes, are exposed to additive non-hedgeable background risks. Franke, Staple-

ton, and Subrahmanyam (1998) showed that if all consumers have the common, constant

cautiousness, then it is the size of the background risk which determines the curvature of

the risk-sharing rule. We show that this result is not robust to even a small heterogeneity

in consumers' risk attitudes. More speci�cally (Lemma 30 and Proposition 32), if the

background risk may take only �nitely many values, then it is the di�erence in cautious-

ness that dictates the curvature of the risk-sharing rule, not the di�erence in background

risks, when the aggregate consumption level is very large or very small. While we do

not have any analytical result for continuously distributed background risks, a numerical

exercise in Section 9 indicates that in this case the curvature of the risk-sharing rules is

determined by the di�erence in cautiousness for large aggregate consumption levels, and

by the di�erence in the size of the background risk for small aggregate consumption levels.
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1.5 Multiple Periods

Throughout the paper we establish our results for the static, one-period model. We

give a lemma (Lemma 33) in Section 8 to show that all the results can be extended to

the multi-period case provided all consumers have time-homogeneous and time-separable

expected utility functions and the same time-discount rate. Hence, our results are directly

comparable with dynamic models such as the ones of Mehra and Prescott (1985), Campbell

and Cochrane (1999), Wang (1998), and Benninga and Mayshar (2000), where there are

multiple (possibly continuous and in�nite) consumption periods and the assumption of a

common discount rate is made.

1.6 Organization of the Paper

This paper is organized as follows. Section 2 states the model and gives a few preliminary

results on the representative consumer's risk attitude, most of them due to Wilson (1968).

In Section 3 the curvature of an individual's risk-sharing rule is related to the di�erence

between his cautiousness and the cautiousness of the representative consumer. In addition

it is shown there that convex consumer risk tolerance and heterogeneous cautiousness to-

gether imply strictly convex risk tolerance for the representative consumer. To conclude

the section, we analyze the implication for mis-pricing of derivative assets of erroneously

assuming the representative consumer to have linear risk tolerance, when in fact his risk

tolerance is strictly convex. Section 4 investigates the limiting behavior of the represen-

tative consumer's cautiousness and of the risk-sharing rules when aggregate consumption

tends to in�nity and the minimum subsistence level. In Section 5 sharper results on the

risk-sharing rules and the representative consumer's risk attitudes are obtained for the

case when all consumers exhibit linear risk tolerance, or, equivalently, constant cautious-

ness. General results on the representative consumer's relative risk aversion are gathered

in Section 6. Also the mis-pricing of derivative assets is investigated when the representa-

tive consumer is erroneously assumed to have constant relative risk aversion when in fact

he has strictly decreasing relative risk aversion. Section 7 analyzes the case when the in-

dividual consumers are not only heterogeneous with respect to their risk attitude but also

face non-hedgeable background risks. A case is being made that our results extend to the
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multi-period setting in Section 8, while Section 9 illustrates some of our results graphically

using numerical examples. Section 10 concludes, suggesting directions of future research.

2 Model and Preliminary Results

There are I consumers, i 2 f1; : : : ; Ig : Consumer i has a von-Neumann Morgenstern

(also known as Bernoulli) utility function ui :
�
di; di

�
! IR, where di 2 IR [ f�1g,

di 2 IR [ f1g, and ui is smooth and satis�es u0i(xi) > 0 and u00i (xi) < 0 for every

xi 2
�
di; di

�
. The Arrow-Pratt measure of absolute risk aversion is de�ned as

ai(xi) = �
u00i (xi)

u0i(xi)
> 0:

The uncertainty of the economy is described by a probability measure space (
;F ; P ).

The probability measure P speci�es the common (objective) belief on the likelihood of the

states. Denote by E the expectation with respect to P . The aggregate endowment of the

economy and each consumer's consumption are both random variables on the probability

measure space.

For each consumer i, we de�ne his consumption set Zi to be�
�i 2 L1(
;F ; P ) j di < �i < di almost surely

	
. De�ne Z�i =

�
�i 2 Zi j ui (�i) 2 L1(
;F ; P )

	
.

Then Z�i is the set of random variables �i for which the expected utility E (ui (�i)) is �nite.

Note that since ui is strictly concave, Z
�
i is a convex set. Moreover, for every xi 2

�
di; di

�
,

ui (�i) � u0i (xi) (�i � xi) + ui (xi). The right hand side of this inequality is integrable, and

hence the positive part ui (�i)
+ of ui (�i) is integrable for every �i 2 Zi. Hence, �i 2 Z�i if

and only if the negative part ui (�i)
� is integrable.

De�ne a binary relation %i on Zi by letting, for each �i 2 Zi and �i 2 Zi, �i %i �i if

and only if either of the following two conditions is met: �i 62 Z�i ; or �i 2 Z�i , �i 2 Z�i ,

and E (ui (�i)) � E (ui (�i)). Then %i is re
exive, transitive, and complete. Denote its

strict part by �i and symmetric part by �i, then �i �i �i for every �i 2 Z�i and every

�i 62 Z�i and �i �i �i for every �i 62 Z�i and every �i 62 Z�i . Thus the random variables �i for

which ui (�i) is not integrable are the least preferable ones. Since ui (�i) is not integrable

if and only if the negative part ui (�i)
� is not integrable, the way we have de�ned %i is

intuitively consistent with the expected utility calculation.
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We say that a consumption allocation (�1; � � � ; �I) 2 Z1 � � � � � ZI is feasible for a

aggregate endowment � if
P

�i = � almost surely. We say that a feasible consumption

allocation (��1 ; � � � ; �
�
I ) 2 Z1�� � ��ZI is eÆcient (in the sense of Pareto) for an aggregate

endowment � if there is no other feasible consumption allocation (�1; � � � ; �I) 2 Z1�� � ��ZI

for � such that �i %i �
�
i for every i, and �i �i �

�
i for some i. While we shall not give a

formal proof, it is easy to check that, for every aggregate endowment �, if there exists a

feasible allocation (�1; � � � ; �I) for � such that �i 2 Z�i for some i and if (��1 ; � � � ; �
�
I ) is an

eÆcient allocation of �, then ��i 2 Z�i for every i. In short, if the aggregate endowment

is suÆciently far away from the aggregate minimum subsistence level d so that some

consumer can attain a �nite utility level, then every consumer attains a �nite utility

level at every eÆcient allocation. This, in particular, implies that when the aggregate

endowment is suÆciently far away from the minimum level d, an allocation is eÆcient if

and only if it is eÆcient when the comparison is restricted to Z�i .

As is well known (Wilson (1968), for example), the assumption of a common prob-

abilistic belief and expected utility allows the eÆcient allocations to be represented in

terms of risk-sharing rules. Write d =
P

di and d =
P

di. A risk-sharing rule is a smooth

function f :
�
d; d
�
!
�
d1; d1

�
�� � ��

�
dI ; dI

�
that satis�es

P
fi(x) = x for every x 2

�
d; d
�
,

where fi is the i-th coordinate function of f . Note that if � is an aggregate endowment

with d < � < d almost surely and if fi(�) 2 L1(
;F ; P ) for every i, then (f1(�); : : : fI(�))

is a feasible consumption allocation for �.

For each � = (�1; � � � ; �I) 2 IRI
++ and each x 2

�
d; d
�
, consider the following maxi-

mization problem:

max
P

�iui(xi);

(x1; � � � ; xI) 2
�
d1; d1

�
� � � � �

�
dI ; dI

�
subject to

P
xi = x:

(1)

By strict concavity for each x, there exists at most one solution to this problem, which we

denote by f�(x). In general, there may not be any solution for some values of x and �,

because the intervals
�
di; di

�
are open. In particular, it is possible that for every � 2 IRI

++

there exist some x for which the maximization problem has no solution. In such a case,

there may not exist any eÆcient allocation at all. However, if the ui satisfy the Inada

condition, that is, u0i (xi) ! 1 as xi ! di and u0i (xi) ! 0 as xi ! di, then, for every
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� and x, there exists a solution. This is proved in Appendix A. Then, for every �, the

mapping f� :
�
d; d
�
!
�
d1; d1

�
� � � � �

�
dI ; dI

�
is well de�ned. We shall assume this

throughout the paper. Since f� is smooth by the implicit function theorem, it is a risk-

sharing rule. It is straightforward to show that, for every �, (��1 ; � � � ; �
�
I ) 2 Z�1 � � � � � Z�I

is a solution to the maximization problem

max
P

�iE (ui(�i)) ;

(�1; � � � ; �I) 2 Z�1 � � � � � Z�I

subject to
P

�i = � almost surely:

(2)

if and only if ��i = f�i(�) for every i. Given this, the following lemma is a standard result,

which is based on the supporting hyperplane theorem and which can be traced back to

Borch (1962, p. 428) and Wilson (1968). The proof is omitted.

Lemma 1 If (��1 ; � � � ; �
�
I ) 2 Z�1 � � � � � Z�I is an eÆcient allocation of the aggregate en-

dowment �, then there exists a � 2 IRI
++ such that ��i = f�i(�) for every i. Conversely,

for every � 2 IRI
++, if f�i(�) 2 Z�i for every i, then (f�1(�); : : : ; f�I(�)) is an eÆcient

allocation of �.

As pointed out earlier, if the aggregate endowment � is suÆciently far away from the

aggregate minimum subsistence level d, then the conditions ��i 2 Z�i and f�i(�) 2 Z�i are

redundant. By virtue of this lemma, we say that a risk-sharing rule f is eÆcient if there

exists a � 2 IRI
++ such that f = f�.

Let f be an eÆcient risk-sharing rule. Denote the maximum attained in the problem

(1), with the same � as corresponds to f , by u(x). We are thereby de�ning a function

u :
�
d; d
�
! IR; which is the value function of the problem. Since

X
�iE (ui(fi(�))) = E

�X
�iui(fi(�))

�
= E (u(�))

if f�i(�) 2 Z�i for every i, the function u can be interpreted as the von-Neumann Morgen-

stern utility function of the representative consumer corresponding to the eÆcient risk-

sharing rule f . Note that the assumption of the common probabilistic belief can be seen

to be crucial for this interpretation of u. By the implicit function theorem, u is smooth

and its induced Arrow-Pratt measure of absolute risk aversion is equal to �u00(x)=u0(x),
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which we denote by a(x). The function a :
�
d; d
�
! IR++ is smooth. Bear in mind that a

depends on the choice of an eÆcient risk-sharing rule f and hence on that of the weights

�, although none of our analytical results depends on the choice of �. To contrast with the

representative consumer, we sometimes refer the I consumers as individual consumers.

As is well known, any positive multiple of the marginal utility u0(�) is a state price

de
ator (also known as the state price density and as the pricing kernel) that may support

the eÆcient allocation f(�) as an equilibrium. Since

u0(x)

u0(y)
= exp

�
�

Z x

y
a(s) ds

�
;

for every x and y, the random variable exp

�
�

Z �

y
a(s) ds

�
is a state price de
ator. If it

is integrable, de�ne

� =

exp

�
�

Z �

y
a(s) ds

�
E

�
exp

�
�

Z �

y
a(s) ds

�� : (3)

Then the relative price of the derivative asset '(�) with respect to the risk-free bond equals

E (�'(�)). Since � > 0 and E(�) = 1, � has the property of a density function.

The subsequent results of this paper are based on the following lemma.

Lemma 2 Let f be a risk-sharing rule. Then it is eÆcient if and only if

f 01(x)a1 (f1(x)) = � � � = f 0I(x)aI (fI(x)) (4)

for every x 2
�
d; d
�
. Moreover, if either (and hence both) condition is satis�ed, then

a(x) = f 0i(x)ai (fi(x)) (5)

for every i and x 2
�
d; d
�
.

This lemma implies that f 0i(x) > 0 for every i and x, so that every individual risk-sharing

rule is strictly increasing.

Proof of Lemma 2 Wilson (1968, Theorem 5) showed that if f is eÆcient, then equality

(4) and (5) hold. Suppose conversely that equality (4) holds. Note that

f 0i(x)ai (fi(x)) = �
d

dx
log u0i (fi(x)) (6)
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for every i and x. Thus, for every i, j, and x,

d

dx
log

u0i (fi(x))

u0j (fj(x))
=

d

dx
log u0i (fi(x))�

d

dx
log u0j (fj(x)) = 0: (7)

Thus the ratio of marginal utilities of consumer 1 and consumer i,
u01 (f1(x))

u0i (fi(x))
, does not

depend on x. Hence, by de�ning � 2 IRI
++ by making this constant number its i-th

coordinate �i, we obtain

�1u
0
1 (f1(x)) = � � � = �Iu

0
I (fI(x)) (8)

for every x. But this is the �rst-order suÆcient condition for the solution of the maxi-

mization problem (1). Hence f is eÆcient. Then (5) follows as well. �

In addition to Wilson's celebrated result, by establishing its converse, we have shown

that equality (4) exhausts all the implications of an eÆcient risk-sharing rule for general

utility functions. As can be seen from the proof, it is equivalent to the better known

�rst-order condition (8). In the following analysis, however, (4) will turn out to be more

convenient than (8), since the former is independent of the utility representations ui, which

are unique only up to positive aÆne transformations, and the utility weights �i, which are

merely a particular parametrization of eÆcient allocations, do not have to be explicitly

incorporated.

The reciprocal of the absolute risk aversion, 1=ai (xi), is called risk tolerance and

denoted by ti (xi). The risk tolerance t of the representative consumer having absolute risk

aversion a is de�ned by t(x) = 1=a(x). Then ti :
�
di; di

�
! IR++ and t :

�
d; d
�
! IR++

are smooth functions. Subsequent results of this paper involve the �rst derivative of

risk tolerances, which Wilson (1962, page 129) called cautiousness. According to this

terminology, if two consumers exhibit constant but di�ering absolute risk aversion, then

they are equally cautious; but if they exhibit constant but di�ering relative risk aversion,

then the one with the smaller relative risk aversion is more cautious. This might sound a

bit confusing, but we stick to Wilson's terminology. Consumer i's and the representative

consumer's cautiousness are t0i (xi) and t0(x).

Lemma 3 (Wilson (1968)) Let f be an eÆcient risk-sharing rule, then

t(x) =
X

ti (fi(x))
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and

t0(x) =
X

f 0i(x)t
0
i (fi(x)) (9)

for every x 2
�
d; d
�
.

Proof of Lemma 3 The �rst result can be proven by taking the reciprocals of both

sides of equality (5), multiplying f 0i(x) on both sides, and taking the summation over i.

The second can be obtained by di�erentiating both sides of the �rst with respect to x. �

Lemma 3 gives the ranges of the risk tolerance and cautiousness of the representative

consumer.

Proposition 4 Let f be an eÆcient risk-sharing rule, then

max

�
max
i

ti (fi(x)) ; I min
i

ti (fi(x))

�
� t(x) � Imax

i
ti (fi(x)) ; (10)

min
i

t0i (fi(x)) � t0(x) � max
i

t0i (fi(x)) : (11)

The two weak inequalities in (10) hold as strict inequalities if there exist i and j such that

ti (fi(x)) 6= tj (fj(x)). The two inequalities in (11) hold as strict inequalities if there exist

i and j such that t0i (fi(x)) 6= t0j (fj(x)).

An immediate corollary of this proposition (in particular, inequality (11)) is a suÆcient

condition for t to be increasing.

Corollary 5 If ti is non-decreasing for every i, then so is t. If, moreover, ti is strictly

increasing for some i, then so is t.

Another corollary of this proposition is the mutual fund theorem, which we will come

back to in Section 5.

3 Convex Risk Tolerance

Throughout this section, we let f :
�
d; d
�
!
�
d1; d1

�
� � � � �

�
dI ; dI

�
be an eÆcient risk-

sharing rule and denote by t :
�
d; d
�
! IR++ the representative consumer's risk tolerance

corresponding to f .

The following proposition is rich in interpretations.
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Proposition 6 For every i and x 2
�
d; d
�
,

f 00i (x)

f 0i(x)
=

1

t(x)

�
t0i (fi(x))� t0(x)

�
: (12)

Proof of Proposition 6 By equality (5),

ti (fi(x)) = t(x)f 0i(x) (13)

for every x 2
�
d; d
�
. Di�erentiating both sides with respect to x, we obtain

t0i (fi(x)) f
0
i(x) = t0(x)f 0i(x) + t(x)f 00i (x): (14)

Rearranging this, we complete the proof. �

Note that equalities (12) and (13) together imply that the �rst two derivatives of con-

sumer i's risk-sharing rule fi is determined by his own and the representative consumer's

risk tolerance and cautiousness.

The �rst implication of Proposition 6 is that for every x 2
�
d; d
�
and every i, f 00i (x) > 0

if t0i (fi(x)) > t0(x); f 00i (x) = 0 if t0i (fi(x)) = t0(x); and f 00i (x) < 0 if t0i (fi(x)) < t0(x). This

is similar to Proposition II of Leland (1980) but di�ers from it in that the risk tolerance t

is derived from the eÆcient risk-sharing rule f rather than exogenously given. Its message

is otherwise the same: an individual consumer's risk-sharing rule is (locally) convex if he is

more cautious than the representative consumer; (locally) concave if he is less cautious; and

(in�nitesimally) linear if they are equally cautious. In the context of portfolio insurance

of Leland (1980) and Brennan and Solanki (1981), it implies that only those who are more

cautious at every level x of aggregate consumptions than the representative consumer

would purchase portfolio insurances.

The second, �ner, implication of the proposition is that for every x 2
�
d; d
�
and all i

and j,

t0i (fi(x)) R t0j (fj(x))

if and only if
f 00i (x)

f 0i(x)
R

f 00j (x)

f 0j(x)
:

To appreciate this, recall that the ratios of the �rst and second derivatives, such as

f 00i (x)=f
0
i(x) and f 00j (x)=f

0
j(x), often appear in expected utility theory. They measure the
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curvatures of the individual risk-sharing functions fi and fj. For example, f 00i (x)=f
0
i(x) �

f 00j (x)=f
0
j(x) for every x if and only if fi is a convex function of fj. The above implication

then means that the degree of convexity of fi is positively related to cautiousness. That is,

the marginal consumption that consumer i receives as the aggregate endowment increases

grows at a rate higher than its counterpart for consumer j if consumer i is more cautious

than consumer j. What it means in the context of portfolio insurance is that consumer i

purchases more portfolio insurance (or options) relative to the size of the reference portfo-

lio he holds than consumer j does. Although both Leland (1980) and Brennan and Solanki

(1981) were concerned with the second derivatives f 00i (x) and f 00j (x), rather than the ratios

f 00i (x)=f
0
i(x) and f 00j (x)=f

0
j(x), we believe that the latter is a better notion of convexity. In

addition, our result provides a complete ordering of all consumers' curvatures according to

their cautiousness. In particular, it shows that the levels of risk tolerance do not matter

for the curvatures of the risk-sharing rules, although they do matter for the slopes.1 This

is an important point, especially in the analysis of the background risk in Section 7.

The following theorem is the main result of this section. It establishes that if every

consumer exhibits non-decreasing risk cautiousness, then so does the representative con-

sumer. Moreover, even the slightest heterogeneity in their cautiousness would cause the

representative consumer's counterpart to be strictly increasing.

Theorem 7 Let x 2
�
d; d
�
. If t00i (fi(x)) � 0 for every i, then t00(x) � 0. If, moreover,

either there exists a consumer i such that t00i (fi(x)) > 0 or there exist two consumers i

and j such that t0i (fi(x)) 6= t0j (fj(x)), then t00(x) > 0.

This theorem tells us how his cautiousness varies within this range as the aggregate

consumption level increases. Note that his risk-tolerance may well be decreasing while

cautiousness is increasing. Note also that the representative consumer may well exhibit

increasing cautiousness, while every individual consumer exhibits constant cautiousness.

This latter case will be elaborated on in Section 5.

It is perhaps useful to put on record an immediate, simple corollary of this proposition,

albeit ignoring the heterogeneity consequence of the theorem.

1We thank Christian Gollier for clarifying this point.
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Corollary 8 If ti is a convex function for every i, then so is t.

Proof of Theorem 7 Di�erentiate both sides of equality (9), then we obtain

t00(x) =
X

f 00i (x)t
0
i (fi(x)) +

X�
f 0i(x)

�2
t00i (fi(x)) :

Use equality (14) to eliminate t0i (fi(x)), then we obtain

t00(x) =
X

f 00i (x)t
0(x) +

X
t(x)

(f 00i (x))
2

f 0i(x)
+
X�

f 0i(x)
�2
t00i (fi(x))

= t(x)
X (f 00i (x))

2

f 0i(x)
+
X�

f 0i(x)
�2
t00i (fi(x))

because
P

f 00i (x) = 0. Since both terms of the far right hand side are non-negative, we

have t00(x) � 0.

If there exists a consumer i such that t00i (fi(x)) > 0, then the second term of the

far right hand side is strictly positive and hence t00(x) > 0. On the other hand, if there

exist two consumers i and j such that t0i (fi(x)) 6= t0j (fj(x)), then, by equality (12), either

f 00i (x) 6= 0 or f 00j (x) 6= 0. Thus the �rst term is strictly positive and hence t00(x) > 0. �

The proof of the theorem reveals that even if all consumers exhibit concave, rather than

convex, risk tolerance, the representative consumer may exhibit convex risk tolerance. We

can therefore say that the aggregation over heterogeneous consumers tends to induce the

representative consumer to exhibit convex risk tolerance.

We now give an implication of convex risk tolerance on derivative asset pricing. By a

derivative asset, we mean a derivative asset of the random aggregate endowment �, which

promises to pay some amounts of the good contingent on the realization of �. It can

therefore be characterized by a Lebesgue measurable function ' :
�
d; d
�
! IR, so that

the derivative asset pays '(�). We analyze how derivative assets are mis-priced when the

risk tolerance t is approximated by a linear (or, to be precise, aÆne) risk tolerance. This

is similar to but di�erent from the approximation considered by Benninga and Mayshar

(2000). Speci�cally, for any choice of y 2
�
d; d
�
, if we de�ne bt : �d; d� ! IR by bt(x) =

t0(y)(x� y)+ t(y), then bt is the best linear approximation of t at y. Let � be as in (3) and

de�ne

b� =

exp

�
�

Z �

y

dsbt(s)
�

E

�
exp

�
�

Z �

y

dsbt(s)
�� : (15)
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This would be the state-price de
ator if the representative consumer's risk tolerance werebt. The following proposition states that this linear approximation b� underestimates the

price of every derivative asset '(�) whenever ' is an increasing function and all individual

consumers exhibit convex risk tolerance.

Proposition 9 Suppose that ti is convex for every i and that either there exists a con-

sumer i such that t00i (fi(x)) > 0 or there exist two consumers i and j such that t0i (fi(x)) 6=

t0j (fj(x)). If a derivative asset ' :
�
d; d
�
! IR is non-constant and non-decreasing, then

E (�'(�)) > E (b�'(�)) : (16)

This proposition provides a suÆcient condition for the estimate of the price of the

derivative asset using bt to be strictly less than its true price. The derivative asset '(�)

can be a call option or indeed the aggregate endowment � itself. Since a put option is

non-increasing and non-constant, the proposition implies that its price is overestimated

by bt.
Proof of Proposition 9 By Theorem 7, t00(y) > 0 and hence bt(x) < t(x) for every

x 6= y. Note that

�b� =

E

�
exp

�
�

Z �

y

dsbt(s)
��

E

�
exp

�
�

Z �

y

ds

t(s)

�� exp

�Z �

y

�
1bt(s) � 1

t(s)

��
: (17)

Thus �=b� is a strictly increasing function of �. Hence the distribution of � with respect

to the probability measure whose Radon-Nikodym derivative is � �rst-order stochastically

dominates the distribution of � with respect to the probability measure whose Radon-

Nikodym derivative is b�. Then the strict inequality (16) follows from the assumption that

' is non-constant and non-decreasing. �

4 Limit Behavior

In this section, we investigate the limit behavior of the representative consumer's cau-

tiousness and the risk-sharing rules. More speci�cally, we show that the representative
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consumer's cautiousness converges to the limit of the most cautious consumers' counter-

part as the aggregate consumption level diverges to in�nity, if the limit indeed exists; and,

moreover, these consumers' share of both the consumption levels, out of the aggregate

consumption level, and of marginal consumptions converges to one. We also provide an

analogous result when the aggregate consumption level converges to the minimum subsis-

tence level, but the dominant consumers are then the least cautious ones. This result is

useful for the analysis of the qualitative properties of the limit behavior of the representa-

tive consumer's cautiousness and the risk-sharing rule when all consumers exhibit linear

risk tolerance, which will be formally de�ned in the next section.

De�ne I to be the set of consumers i for whom di =1 and there is no other consumer

j such that dj =1 and

lim sup
xi!1

t0i (xi) < lim inf
xj!1

t0j (xj) :
2 (18)

Since there are only �nitely many consumers, if di = 1 for some i, then I 6= ;. The

consumers in I are those who are not unambiguously less cautious than any other when

the consumption levels are very large. The �rst proposition of this section states that

those consumers' share in the aggregate consumption level, as well as in the marginal

consumptions, converges to one as the aggregate consumption level diverges to in�nity,

and that the representative consumer's cautiousness eventually lies between the minimum

and maximum of those consumers' cautiousness.

Proposition 10 If di = 1 for some i, then
P

i2I fi(x)=x ! 1 and
P

i2I f
0
i(x) ! 1 as

xi ! 1. If, moreover, the set
n
t0j (xj) j dj < xj < dj

o
is bounded for every consumer j,

then

min
i2I

lim inf
xi!1

t0i (xi) � lim inf
x!1

t0(x) � lim sup
x!1

t0(x) � max
i2I

lim sup
xi!1

t0i (xi) :

De�ne I to be the set of the consumers i for whom di > �1, ti (xi) ! 0 as xi ! di,

and there is no other consumer j such that dj > �1, tj (xi)! 0 as xj ! dj , and

lim sup
xj!dj

t0j (xj) < lim inf
xi!di

t0i (xi) : (19)

2As a convention of this paper, we allow lim sup and lim inf to be 1 or �1, while lim is always �nite.
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Since there are only �nitely many consumers, if di > �1 and ti (xi) ! 0 as xi ! di for

some i, then I 6= ;. Consumers in I have the following two characteristics. First, their risk-

tolerance converges to zero as the consumption levels converge to the minimum subsistence

levels. And second, for consumption levels very close to the minimum subsistence levels,

they are not unambiguously more cautious than any other consumer whose risk tolerance

also converges to zero as the consumption levels converge to the minimum subsistence

levels. The following proposition states that, if the zero convergence assumption on the risk

tolerance holds for every consumer, then the following is true: The same consumers' (in I)

share in the extra consumption level in excess of the minimum subsistence level converges

to one as the aggregate consumption level converges to the minimum subsistence level.

Also the representative consumer's cautiousness eventually lies between the minimum and

maximum of those consumers' cautiousness.

Proposition 11 If, for every consumer j, dj > �1 and tj (xj) ! 0 as xj ! dj, thenP
i2I (fi(x)� di)

x� d
! 1 and

P
i2I f

0
i(x) ! 1 as x ! d. Moreover, if the setn

t0j (xj) j dj < xj < dj

o
is bounded for every j, then

min
i2I

lim inf
xi!di

t0i (xi) � lim inf
x!d

t0(x) � lim sup
x!d

t0(x) � max
i2I

lim sup
xi!di

t0i (xi) : (20)

The proofs of these two propositions are given in Appendix B. Although we shall not

prove them, we can obtain similar results on the boundary behavior for the cases where

di <1 for every i and where di = �1 for some i. These results are useful for the analysis

of the limit behavior of the representative consumer's cautiousness and the risk sharing

rule when consumers have utility functions exhibiting decreasing and linear risk tolerance,

such as quadratic ones.

De�ne H to be the set of the consumers i for whom di < 1, ti (xi) ! 0 as xi ! di,

and there is no other consumer j such that dj <1, tj (xj)! 0 as xj ! dj, and

lim sup
xi!di

t0i (xi) < lim inf
xj!dj

t0j (xj)

Proposition 12 If, for every consumer j, dj < 1 and tj (xj) ! 0 as xj ! dj, thenP
i2H

�
di � fi(x)

�
d� x

! 1 and
P

i2H f 0i(x) ! 1 as x ! d. If, moreover, the set
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n
t0j (xj) j dj < xj < dj

o
is bounded for every j, then

min
i2H

lim inf
xi!di

t0i (xi) � lim inf
x!d

t0(x) � lim sup
x!d

t0(x) � max
i2H

lim sup
xi!di

t0i (xi) :

De�ne H to be the set of the consumers i for whom di = �1 and there is no other

consumer j such that dj = �1 and

lim sup
xj!�1

t0j (xj) < lim inf
xi!�1

t0i (xi) :

Proposition 13 If di = �1 for some i, then
P

i2H fi(x)=x! 1 and
P

i2H f 0i(x)! 1 as

xi ! �1. If, moreover, the set
n
t0j (xj) j dj < xj < dj

o
is bounded for every consumer j,

min
i2H

lim inf
xi!�1

t0i (xi) � lim inf
x!�1

t0(x) � lim sup
x!�1

t0(x) � max
i2H

lim sup
xi!�1

t0i (xi) :

5 Linear Risk Tolerance

Combining the results from the last two sections, we provide more informative results on

the risk-sharing rule and the representative consumer's risk aversion when all consumers'

utility functions exhibit linear risk tolerance. The additional property that we can establish

with the assumption of linear risk tolerance is that an individual consumers' risk-sharing

rule is either everywhere concave, everywhere convex, or has a unique in
ection point

below which it is convex and above which it is concave.

Mathematically, a utility function ui :
�
di; di

�
! IR exhibits linear risk tolerance if,

for the corresponding risk tolerance ti, there exist two numbers �i and 
i such that

ti (xi) = �i + 
ixi: (21)

for every xi 2
�
di; di

�
: Equality (21) can also be written as

ai (xi) =
1

�i + 
ixi

and hence ui is often said to exhibit hyperbolic absolute risk aversion. Yet another equiv-

alent condition for equality (21) is that

t0i(xi) = 
i;
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and hence the cautiousness t0i is constant over the entire range
�
di; di

�
of consumption

levels.

Note that the right hand side of equality (21) is of course positive for every xi 2
�
di; di

�
but �i and 
i may be positive, zero, or negative. However, if 
i = 0, then �i > 0 and we

take di = �1 and di = 1. On the other hand, if 
i > 0 then we take di = ��i=
i and

di =1 and hence ti(xi) = 
i (xi � di) and ti(xi)! 0 as xi ! di. If 
i < 0, then di = �1

and di = ��i=
i and hence ti(xi) = �
i
�
di � xi

�
and ti(xi) ! 0 as xi ! di. Indeed,

although we do not provide the proof here, these choices of di and di are the only ones

that allows ui to satisfy the Inada condition.

The celebrated mutual fund theorem is documented in, for example, Wilson (1968),

Huang and Litzenberger (1988, Sections 5.15 and 5.26), Magill and Quinzii (1996), Gollier

(2001, Section 21.3.3), and LeRoy and Werner (2001, Section 15.6)) and can be stated in

our notation as follows:

Theorem 14 (Mutual Fund Theorem) Suppose that 
1 = � � � = 
I and write 
 =


1 = � � � = 
I and � =
PI

i=1 �i, then t(x) = � + 
x for every x 2
�
d; d
�
. If 
 = 0, then

there exist I numbers n1; : : : ; nI such that
P

ni = 0 and

fi(x) =
�i
�
x+ ni

for every i and x. If 
 > 0, then there exist I positive numbers m1; : : : ;mI such thatP
mi = 1 and

fi(x) = mi(x� d) + di

for every i and x. Finally, if 
 < 0, then there exist I positive numbers m1; : : : ;mI such

that
P

mi = 1 and

fi(x) = �mi(d� x) + di

for every i and x.

This theorem can be proved by applying Lemma 4. Throughout this section, we assume

that every consumer i has a utility function (21) de�ned on the range
�
di; di

�
satisfying
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the Inada condition. Denote


 = max f
1; : : : ; 
Ig ;


 = min f
1; : : : ; 
Ig :

Then, according to the notation in the previous section,

I = fi j 
i = 
g ;

I =
�
i j 
i = 


	
:

Then I is the set of the most cautious consumers and I is the set of the least cautious

consumers. All consumers are equally cautious if and only if 
 = 
. Of course, this case

has been fully dealt with by the mutual fund theorem, and we thus assume in the rest of

this section that 
 > 
. Some of our results, such as part 3 of Theorem 16, are vacuous

unless I [ I 6= f1; : : : ; Ig, that is, there is some \intermediate" consumer who is neither

the most nor the least cautious. One result, part 4 of Theorem 16, is relevant only if there

are at least two intermediate consumers having di�ering cautiousness.

As in Section 3, let f :
�
d; d
�
!
�
d1; d1

�
�� � ��

�
dI ; dI

�
be an eÆcient risk-sharing rule,

and denote by a :
�
d; d
�
! IR++ the representative consumer's absolute risk aversion, by

t :
�
d; d
�
! IR++ his risk-tolerance, and by b :

�
d; d
�
! IR++ his relative risk aversion, all

corresponding to f .

Below is the �rst result for the case of linear risk tolerance.

Proposition 15 For every x 2
�
d; d
�
, t00(x) > 0. As x ! d, t0(x) ! 
. As x ! d,

t0(x)! 
.

Proof of Proposition 15 The �rst part of this proposition follows from Theorem 7.

The second part follows from Proposition 10 or 12, depending on whether 
 � 0 or not.

The third part follows from Proposition 11 or 13, depending on whether 
 � 0 or not. �

The next result is the central one of this section.

Theorem 16

1. f 00i (x) > 0 for every i 2 I and x 2
�
d; d
�
.
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2. f 00i (x) < 0 for every i 2 I and x 2
�
d; d
�
.

3. For every i =2 I [ I; there exists a unique yi 2
�
di; di

�
such that f 00i (x) > 0 for every

x < yi and f 00i (x) < 0 for every x > yi.

4. For the yi de�ned as in part 3, yi < yj if 
i < 
j; yi = yj if 
i = 
j; and yi > yj if


i > 
j.

Proof of Theorem 16 By Proposition 15, 
 < t0(x) < 
 for every x 2
�
d; d
�
. Parts 1

and 2 then follow from part 1 of Proposition 6. As for part 3, note that Proposition 15

implies that t0 :
�
d; d
�
!
�

; 


�
is strictly increasing and onto. Hence, for every i =2 I [ I;

there exists a unique yi 2
�
di; di

�
such that 
i = t0(yi). Since 
i = t0i (fi(x)) for every

x, Proposition 6 implies that yi has the property of part 3. Part 4 also follows from this

property of yi and the fact that t0 is strictly increasing. �

The importance of part 3 of the above proposition cannot be overemphasized. It is

exactly the point that was being missed in the analysis of Leland (1980) and Brennan and

Solanki (1981): When individual consumers have di�ering cautiousness, the representative

consumer's counterpart is strictly increasing, ranging from the smallest to the largest. If

an individual consumer has neither the smallest nor the largest cautiousness, then his

cautiousness must be caught up with by the representative consumer's counterpart at

some aggregate consumption level. Below this level, his risk-sharing rule is convex, and,

above this level, it is concave. An important implication of this result in the context of

portfolio insurance, is that no consumer other than those with the largest cautiousness

would buy portfolio insurance, as their risk-sharing rules would eventually become concave.

In particular, say, even the consumers with the second largest cautiousness would not buy

portfolio insurance. This signi�cantly undermines the applicability of the results of Leland

(1980) and Brennan and Solanki (1981). They are valid in a two-consumer economy, but

do not generalize much to an economy with a large number of consumers with diverse

degrees of cautiousness.

The last proposition of this section is concerned with the total proportion of consump-

tion levels consumed by those consumers with the largest or smallest cautiousness. They

immediately follow from Propositions 10, 11, 12, and 13. We thus omit the proof.
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Proposition 17

1. If 
 � 0, then, as x!1,
X
i2I

fi(x)

x
! 1.

2. If 
 > 0, then, as x! d,
P

i2I

fi(x)� di
x� d

! 1:

3. If 
 � 0, then, as x! �1,
X
i2I

fi(x)

x
! 1.

4. If 
 < 0, then as x! d,
P

i2I

di � fi(x)

d� x
! 1:

6 Relative Risk Aversion

Based on the preceding results on the representative consumer's risk tolerance, we now give

similar results on his relative risk aversion. After introducing the notation and presenting

preliminary results, we show that if every consumer exhibits non-increasing relative risk

aversion, so does the representative consumer, and that if there is some heterogeneity in

individual consumer's risk tolerance, then his relative risk aversion is strictly decreasing.

This is in the same spirit as Theorem 7. We then provide a result analogous to Propositions

10 and 11, which is concerned with the limit behavior of the representative consumer's

relative risk aversion as the aggregate consumption level diverges to in�nity or converges to

the minimum subsistence level. As we did in the preceding section, we then combine these

two sets of results to obtain a result for the case of linear risk tolerance. Although there

is not much new insight involved in these propositions and proofs, it is still worthwhile to

present these results to illustrate how our results are related to many existing contributions

on the representative consumer's risk attitude, such as those in A��t-Sahalia and Lo (2000),

Benninga and Mayshar (2000), Brennan and Solanki (1981), and Leland (1980), which are

stated in terms of relative risk aversion.

For each consumer i and xi 2
�
di; di

�
, if xi > 0, then the Arrow-Pratt measure of

relative risk aversion is de�ned by

bi (xi) = �
u00i (xi)xi
u0i (xi)

> 0:
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Since bi (xi) = ai (xi)xi = xi=ti (xi),

b0i (xi) =
1

ti (xi)

�
1�

t0ixi (xi)

ti (xi)

�
:

Hence b0i (xi) Q 0 if and only if
t0i (xi) xi
ti (xi)

R 1. That is, an individual's relative risk aversion

is strictly decreasing if and only if his elasticity of risk tolerance is greater than one.

Throughout the rest of this section, let f be an eÆcient risk-sharing rule. For every

x 2
�
d; d
�
, if x > 0 and fi(x) > 0, we de�ne

ei(x) =
f 0i(x)x

fi(x)
> 0:

This is the elasticity of consumer i's consumption level with respect to the aggregate

consumption. Let u be the representative consumer's utility function corresponding to f .

For every x 2
�
d; d
�
, if x > 0, then the representative consumer's Arrow-Pratt measure of

relative risk aversion is de�ned by

b(x) = �
u00(x)x

u0(x)
:

Then b0 (x) Q 0 if and only if
t0 (x) x

t (x)
R 1. The following proposition relates the individual

consumers' relative risk aversion to the representative consumer's counterpart. This is

analogous to Lemma 2 and Proposition 4.

Proposition 18 Let x 2
�
d; d
�
and x > 0. For every i with fi(x) > 0,

b(x) = ei(x)bi (fi(x)) : (22)

If fi(x) > 0 for every i; then

b(x) =

IX
i=1

f 0i(x)bi (fi(x)) (23)

and hence

min
i

bi (fi(x)) � b(x) � max
i

bi (fi(x)) : (24)

These two inequalities hold as strict inequalities if there exist two consumers i and j such

that bi (fi(x)) 6= bj (fj(x)).
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The inequalities (24) generalize Proposition 1 of Benninga and Mayshar (2000), which

was shown for the special case where all consumers exhibit constant relative risk aversion.

Proof of Proposition 18 By multiplying x to both sides of equality (5), we obtain

a(x)x =
f 0i(x)x

fi(x)
fi(x)ai (fi(x)) :

This is nothing but equality (22). Multiply fi(x)=x to both sides of this equality, then

fi(x)

x
b(x) = f 0i(x)bi (fi(x)) :

Summing both sides over i and using
P

fi(x)=x = 1, we obtain equality (23). The last

part follows from f 0i(x) > 0 for every i and
P

f 0i(x) = 1. �

If di � 0 for every i, then the condition that fi(x) > 0 for every i is automatically met.

Hence equality (4) is equivalent to

e1(x)b1 (f1(x)) = � � � = eI(x)bI (fI(x)) :

This is therefore an equivalent condition for a risk-sharing rule to be eÆcient.

6.1 Decreasing Relative Risk Aversion

The following theorem is the main result on relative risk aversion for the general case. It

establishes that if every consumer exhibits non-increasing relative risk aversion, then so

does the representative consumer. Moreover, even the slightest heterogeneity in their cau-

tiousness would cause the representative consumer's counterpart to be strictly decreasing.

Note that neither of the negativity of the second derivative of the risk tolerance nor its

elasticity being greater than unity implies the other. For example, even if a utility function

ui exhibits increasing, linear risk tolerance, then we have di R 0 if and only if b0i(x) Q 0

for every x > max fdi; 0g. The following theorem thus neither implies nor is implied by

Theorem 15.

Theorem 19 Let x 2
�
d; d
�
and assume that fi(x) > 0 for every i. If b0i (fi(x)) � 0

for every i, then b0(x) � 0. If, moreover, either there exists a consumer i such that
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b0i (fi(x)) < 0 or there exist two consumers i and j such that t0i (fi(x)) 6= t0j (fj(x)), then

b0(x) < 0.

While inequalities (24) provide the range of the representative consumer's relative risk

aversion, this theorem tells us how his relative risk aversion varies within this range as

the aggregate consumption level increases. It generalizes Proposition 2 of Benninga and

Mayshar (2000), which was shown for the special case where all consumers exhibit constant

relative risk aversion.

The important implication of this theorem is that if the representative consumer is

interpreted as representing the entire economy of heterogeneous consumers rather than

it literally is a single consumer, then the assumption that he has a constant relative risk

aversion is implausible, as it is not compatible even with a slight heterogeneity in the

individual consumers. This point is particularly relevant to the equity premium puzzle

of Mehra and Prescott (1985). They showed that the classical, representative consumer

model cannot explain the large expected equity premium observed in the U.S. stock mar-

ket during the last one hundred years unless the representative consumer unreasonably

risk-averse. There has since been a large body of literature, as surveyed, for example,

by Kocherlakota (1996), that attempts to explain the large premium by introducing non-

expected utility functions; transaction costs; incomplete �nancial markets; and other types

of market imperfections. To be precise, what Mehra and Prescott showed is that, in the

Lucas (1978) model, if an economic modeler wishes to match the observed equity premium

by choosing a value for the constant relative risk aversion for the representative consumer,

then the value must be chosen so high as to be incompatible with casual introspection and

laboratory experiments (of individual behavior). This result, however, does not automat-

ically negate the possibility of reconciling the observed data with the Lucas model with a

utility function exhibiting reasonable, decreasing relative risk aversion.3

It is perhaps helpful to put on record a simple, immediate corollary of this theorem,

without involving the heterogeneity result.

3But this might actually deepen the puzzle. We have heard this sort of argument at Kazuya Kamiya's

presentation at Kobe University, Japan, in April 1999. Note also that by inequalities (24), the level of the

relative risk aversion must still be within the range of the individual counterparts, which may signi�cantly

limit the extent of solvability of the equity premium puzzle.
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Corollary 20 If di � 0 and bi is a non-increasing function for every i, then so is b.

The proof of Theorem 19 is given in Appendix C.

The case where every consumer has constant relative risk aversion is thus a special case

of this. We now give an implication of Theorem 19 to the derivative asset pricing. Our

exercise here is similar to Proposition 9, but di�ers from it in that we approximate the

representative consumer's utility function, which exhibits decreasing relative risk aversion,

by a utility function exhibiting constant relative risk aversion. The following proposition

is therefore closer to the approximation considered by Benninga and Mayshar (2000). Its

conclusion is accordingly di�erent from that of Proposition 9: While the call options prices,

with suÆciently large exercise prices, are still underestimated, the next proposition also

states that the put options prices are also underestimated, unlike Proposition 9.

In the rest of this subsection, we assume that di = 0 for every i and di =1 for some i.

We de�ne � as in equality (3). We, however, re-de�ne bt by bt(x) = x=b(y) = xt(y)=y for a

�xed y > 0. That is, we use the approximation bt by taking the representative consumer's

relative risk aversion as constant at its true level at y. De�ne b� in the same manner as for

equality (15), but using this bt.
Proposition 21 Suppose that bi is non-increasing for every i and that either there exists

a consumer i such that b0i (fi(y)) < 0 or there exist two consumers i and j such that

t0i (fi(y)) 6= t0j (fj(y)). Then there exist two aggregate consumption levels x and x, with

x < x, having the following property: If a derivative asset ' : IR++ ! IR satis�es '(�) � 0

almost surely, '(�) > 0 with strictly positive probability, and '(�) = 0 almost surely

conditional on x < � < x, then

E (�'(�)) > E (b�'(�)) : (25)

This proposition establishes the existence of two aggregate consumption levels x and

x such that if a derivative asset pays o� only if the aggregate consumption consumption

level turns out to fall outside the range (x; x), then its price is underestimated by bt.
Hence the prices of both call and put options, with suÆciently high and low exercise

prices respectively, are underestimated by an approximation taking the representative

consumer's relative risk aversion as constant.
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Proof of Proposition 21 We �rst prove thatZ x

y

�
1bt(x) � 1

t(s)

�
ds!1 (26)

as x ! 1 or as x ! 0. Indeed, by Theorem 19, b0(y) < 0. Hence b0(x) < 0 for

every x in a neighborhood of y. But this is equivalent to xt0(x)=t(x) > 1 and hence the

function x 7! t(x)=x is strictly increasing in the neighborhood. So let y and y be in the

neighborhood and satisfy y < y < y. Since, by Corollary 20, b0(x) � 0 for every x > 0,

the function x 7! t(x)=x is non-decreasing over the entire IR++. Thus, for every s > y,

t(s)=s > t (y) =y and hence

1bt(s) � 1

t(s)
=

y

t(y)s
�

1

t(s)
>

y

t(y)s
�

y

t (y) s
=

�
y

t(y)s
�

y

t (y)

�
1

s
:

Thus Z x

y

�
1bt(x) � 1

t(s)

�
ds >

�
y

t(y)
�

y

t (y)

�Z x

y

ds

s
;

and the right hand side diverges to in�nity as x goes to in�nity. Thus (26) is shown for

the case where x goes to in�nity. On the other hand, for every s < y, t(s)=s < t
�
y
�
=y

and hence
1bt(s) � 1

t(s)
<

 
y

t(y)
�

y

t
�
y
�! 1

s
: Thus

Z x

y

�
1bt(x) � 1

t(s)

�
ds >

 
y

t
�
y
� � y

t(y)

!Z y

x

ds

s
;

and the right hand side diverges to in�nity as x goes to zero. Thus (26) is shown for the

case where x goes to zero.

Now, by (17) and (26), there are x and x, with x < x, such that if � < y or if � > y,

then �=b� > 1. Then x and x have the properties in the proposition. �

6.2 Limit Behavior

The key observation for the analysis of the limit behavior of the representative consumer's

relative risk aversion is that limxi!1 bi(xi) = limxi!1 x=ti(xi) = limxi!1 1=t0i(xi), when

the limits indeed exist, due to L'Hopital's rule; and an analogous relation holds for limits

as xi ! 0. This allows us to apply Proposition 10 and 11 to the relative risk aversion. To

simplify the analysis, we use the following assumption.
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Assumption 22 For every consumer j, dj � 0, dj =1, tj is a convex function, tj (xj)!

0 as xj ! dj, and lim supxj!1
bj(xj) is �nite.

This assumption can be satis�ed by utility functions exhibiting strictly increasing, linear

risk tolerance, with di � 0. It implies that t0i is a non-decreasing function. Thus t0i(xi)

does not diverge to in�nity as xi ! di. Since ti(xi) > 0 for every xi and ti(xi) ! 0 as

xi ! di, t
0
i(xi) does not converge to any negative number or diverge to negative in�nity

as xi ! di. It thus converges to a non-negative number and hence limxi!di
t0i(xi) is well

de�ned and non-negative.

The following lemma is necessary to make sure that the statement of the main result

of this subsection is well de�ned. The proof is given in Appendix D.

Lemma 23 Under Assumption 22, bi (xi) and 1=t0i (xi) converge to the same (�nite) non-

negative number as xi ! 1. If, moreover, di = 0 and limxi!di t
0
i (xi) > 0, then bi(xi) !�

limxi!di
t0i (xi)

��1
as xi ! di. Otherwise, bi(xi)!1.

With this lemma, we can now state the main result on the limit behavior of the rep-

resentative consumer's relative risk aversion. This generalizes Proposition 3 of Benninga

and Mayshar (2000).

Proposition 24 Under Assumption 22, let consumer i be such that limxi!1 bi (xi) �

limxj!1 bj (xj) for every j, then b (x) ! limxi!1 bi (xi) as x ! 1. If, moreover, for

every j, bj(xj) converges to a non-negative (�nite) number as xi ! dj, and if consumer i

is such that limxi!di bi (xi) � limxj!dj bj (xj) for every j, then b (x)! limxi!di bi (xi) as

x ! d. If, on the other hand, bj(xj) diverges to in�nity as xj ! dj for some j, then so

does b(x) as x! d.

The proof of Proposition 24 is also given in Appendix D.

6.3 Linear Risk Tolerance

In this subsection, as in Section 5, we assume that

ti (xi) = �i + 
ixi
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for every i and xi 2
�
di; di

�
. In addition, we assume that �i � 0 and 
i > 0 for every i.

This sign restriction is equivalent to di � 0, and implies that di =1. Note that

bi (xi) =
xi

�i + 
ixi
=

xi

i (xi � di)

:

Thus if �i = di = 0, then bi (xi) equals 1=
i and ui exhibits constant relative risk aversion.

If not, then bi (xi) > 1=
i, b
0
i (xi) < 0, bi (xi) ! 1=
i as xi ! 1, and bi (xi) ! 1 as

xi ! di.

The following result is a straightforward application of Propositions 19 and 24 to the

case of linear risk tolerance. We omit the proof.

Proposition 25

1. b0(x) � 0 for every x 2 (d;1), and b(x)! 1=
 as x!1.

2. If �1 = � � � = �I = 0 and 
1 = � � � = 
I , then d = 0 and b(x) = 
i for any i and

x 2 (0;1). Otherwise, b0(x) < 0 for every x 2 (0;1).

3. If �1 = � � � = �I = 0, then d = 0 and b(x)! 1=
 as x! 0. Otherwise, b(x)!1 as

x! 0.

7 Background Risks

7.1 Setup and Preliminary Results

In this section, we investigate how the presence of background risks will a�ect the indi-

vidual consumers' risk tolerance and risk-sharing rules. Speci�cally, we show that if an

individual consumer's utility function exhibits non-decreasing risk tolerance (so that his

absolute risk aversion is non-increasing and his cautiousness is non-negative), then the

introduction of background risk induces him to be more cautious. According to Proposi-

tion 6, this result suggests that consumers with background risks have convex risk-sharing

rules while those without them have concave risk-sharing rules. We can only give a formal

result to this e�ect for consumers without any background risk in an economy in which

all consumers' utility functions exhibit a common constant cautiousness. This is nothing

but Theorem 3 of Franke, Stapleton, and Subrahmanyam (1998). The main point of our

32



analysis is, however, that this sort of results cannot be obtained if consumers' degrees of

cautiousness are even only slightly di�erent. This is substantiated by Proposition 32.

We �rst give a formal framework for the discussion of background risk. For each

consumer i, let 
i be a probability measure space describing his idiosyncratic risks. The

realization of states in 
i should be interpreted to a�ect consumer i but not the others.

In addition to the consumption levels we have considered so far, consumer i has another

source of consumptions, characterized by a random variable �i : 
i ! IR, which is his

background risk. The distribution function of �i is denoted by Gi : IR ! [0; 1]. For

simplicity, we impose the following assumptions.

1. The support of the distribution of Gi is bounded, that is, there are two numbers ei

and ei such that Gi (ei) = 0 and Gi (ei) = 1.

2. �i has zero mean, that is,

Z ei

ei

yi dGi(yi) = 0.

The �rst assumption guarantees that all the expected values that we consider in the

subsequent analysis are well de�ned and Leibnitz's rule is applicable, so that the order

of integration and di�erentiation for smooth functions can be swapped. The second is a

normalization and implies that ei � 0 and ei � 0.

The underlying story here is that, unlike the aggregate random consumption � that we

have formulated in Section 2, the background risk �i cannot be shared with other consumers

and thus consumer i alone must absorb all of it. Hence, when he receives the random

consumption �i, then his �nal consumption is �i + �i, from which he obtains the expected

utility level E (ui (�i + �i)) : We assume that �i is always stochastically independent of �i

for every i. This, in particular, implies that the aggregate endowment � is independent of

the �i, and is true when the redistribution that de�ned the welfare maximization problem

(1) is restricted to those random variables de�ned on a probability space independent of

the �i, because, for example, the realization of �i can be observed by consumer i but not

by the others.

By the law of iterated expectation, the above expected utility equals

E (E (ui (�i + �i) j �i)) : (27)
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Hence, if we de�ne his induced utility function

vi (xi) = E (ui (xi + �i)) ;

then the expected utility level (27) equals E (vi (�i)). Hence identifying properties of the

eÆcient allocations of the aggregate endowment � with respect to the original utility func-

tions ui in the presence of the background risks �i is equivalent to identifying those with

respect to the induced utility functions vi without any background risk. Given the earlier

results of this paper, to characterize eÆcient allocations in the present context, all we

need is to �nd implications of the background risks �i on the tolerance and cautiousness

of the induced utility functions vi. In this reformulation, the realized consumption level,

inclusive of the realized background risk, must of course be in the domain
�
di; di

�
almost

surely. To guarantee this, we concentrate on the consumption levels xi in
�
di � ei; di � ei

�
.

Hence this interval is the domain of vi. Denote the corresponding risk tolerance by

si :
�
di � ei; di � ei

�
! IR++. By Leibnitz's rule,

si (xi) = �
E (u0i (xi + �i))

E (u00i (xi + �i))
:

Propositions 2 and 3 of Gollier and Pratt (1996) give conditions under which, if �i has

positive variance, then si (xi) > ti (xi), that is, the background risk makes the consumer

less risk tolerant (or more risk averse). They called utility functions having this property

as \risk vulnerable". The following result is an analogous result for cautiousness, s0i (xi)

and t0i (xi), and useful for our subsequent analysis.

Proposition 26 If there exists an m � 0 such that t0i (xi) � m for every xi 2
�
di; di

�
,

then s0i (xi) � m for every xi 2
�
di � ei; di � ei

�
. If, moreover, m > 0, then s0i (xi) > m

for every xi 2
�
di � ei; di � ei

�
.

This proposition says that if the cautiousness of the original utility function ui is

never less than a non-negative constant m, then the cautiousness of the induced utility

function vi has the same property. Moreover, if the lower bound m can be taken to

be strictly positive, then the cautiousness of vi is strictly larger than m. Note that the

condition m � 0 corresponds to non-increasing absolute risk aversion, and the case of

m > 0 corresponds to strictly decreasing absolute risk aversion, which have been known

34



to be a crucial condition to derive plausible comparative statics results in choice under

uncertainty with background risks.

An immediate corollary of Proposition 26 is dealing with the case of linear risk toler-

ance. The proof is given in Appendix E.

Corollary 27 If ui exhibits linear risk tolerance with positive cautiousness 
i, then

s0i (xi) > 
i for every xi 2
�
di � ei; di � ei

�
.

To identify the curvature of eÆcient risk-sharing rules, we need to know the limit

behavior of the cautiousness s0i (xi) as xi ! di and as xi ! di. The properties that we

are going to obtain would hold for a wider class of utility functions exhibiting increasing

risk tolerance (decreasing absolute risk aversion), but, to simplify the proofs, in the rest

of this section, we concentrate on the case of strictly increasing linear risk tolerance.

Assumption 28 There are a �i 2 IR and a 
i 2 IR++ such that ti (xi) = �i + 
ixi for

every xi > di.

This implies that di > �1 and di =1. Moreover, we impose the following assumption

on the background risk �i.

Assumption 29 The support of �i consists of �nitely many values and ei equals the

minimum of these values.

This assumption implies that the induced utility function vi : (di � ei;1) ! IR also

satis�es the Inada condition. Note that the Inada condition need not hold if �i can take

in�nitely many values. For example, if ui has constant cautiousness greater than one and

if �i is uniformly distributed over some bounded interval, then fu0 (xi) j xi > di � eig is

bounded from above. The crucial aspect of this assumption is that there is a suÆciently

high probability given around the lower bound ei.

Lemma 30 Under Assumptions 28 and 29, s0i (xi) ! 
i as xi ! di � ei and also as

xi !1.

This lemma states that the consumer's cautiousness, in the presence of the background

risk, is closer to the cautiousness he would have were he to have no background risk, when
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his consumption level is suÆciently high or low. It therefore implies that the discrep-

ancy between the cautiousness of the original utility function ui and the induced one vi

would be largest in the intermediate region of consumption levels but negligible when the

consumption level is very high or very low. The proof is given in Appendix E.

7.2 Risk-Sharing Rules with Background Risks

We are now ready to state the implications of our results on cautiousness with background

risk (Corollary 27 and Lemma 30) on individuals' risk-sharing rules. In the rest of this

section, f : (d� e;1) ! (d1 � e1;1) � � � � � (dI � eI ;1) is an eÆcient risk-sharing rule

with respect to the induced utility functions vi, with background risks already incorporated

into the vi.

Proposition 31 (Franke, Stapleton, and Subrahmanyam (1998)) Under Assump-

tion 28, suppose that 
1 = � � � = 
I and that some of the �i have strictly positive variances.

Then, for each i, if the variance of �i equals zero, then f 00i (x) < 0 for every x.

This proposition was proved by Franke, Stapleton, and Subrahmanyam (1998). We

give an alternative proof based on Corollary 27 and Proposition 6.

Proof of Proposition 31 If �i has zero variance, then, by Proposition 6 and Corollary

27, f 00i (x)=f
0
i(x) � f 00j (x)=f

0
j(x) for every j, and strict inequality for some j, as some

consumers assumed to have background risk with strictly positive variance. We cannot

have f 00i (x) � 0 for any x, because, if we had, then f 00j (x) � 0 for every j, with strict

inequality for some j, which would contradict
P

f 00j (x) = 0. Hence f 00i (x) < 0 for every x.

�

Franke, Stapleton, and Subrahmanyam (1998) inferred that consumers with no back-

ground risk would sell options to replicate their concave risk-sharing functions. We claim,

however, that their result is concerned only with the degenerate case of common cau-

tiousness across all consumers, and that even the slightest deviation from this assumption

would invalidate their inference. The following proposition makes this point precise by

looking at a two-consumer case.
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Proposition 32 Under Assumptions 28 and 29, suppose that I = 2 and that the variance

of �1 is strictly positive but the variance of �2 is zero. Then there exists a 
 > 
1 such that

if 
2 2 (
1; 
), then there exist an x, a y, and a y such that f 001 (x) > 0 and f 001 (y) < 0 for

every y � y and for every y � y.

This proposition can be read as follows. The economy consists of two consumers, both

having linear, strictly increasing risk tolerance. Only the �rst one has a background risk. If

the second consumer's cautiousness is only slightly higher than the �rst (
 being an upper

bound on the second consumer's cautiousness), then the �rst consumer's risk-sharing rule

is convex around some intermediate aggregate consumption level x, but it is concave if the

aggregate consumption level is very small (smaller than y) or very large (larger than y).

In short, even if the consumer without any background risk is only slightly more cautious

than the other, then Franke, Stapleton, and Subrahmanyam's result remains valid only for

intermediate aggregate consumption levels. The upper and lower tail behavior of individual

risk-sharing rules are governed by the cautiousness of the (original) utility functions, not

by the degree of exposure to background risks. We should also note that there are at least

two in
ection points of f1. It is therefore inappropriate to say that the �rst consumer's

risk-sharing rule is even remotely convex over the entire range of aggregate consumption

levels. We can also see that for large aggregate consumption levels, the curvature of

the risk-sharing rules is determined by the individual consumers' risk attitudes, not by

background risks; and, in particular, consumers with larger background risks need not buy

portfolio insurance.

Proof of Proposition 32 By Corollary 27, let x1 > d1 � e1, then s01 (x1) > 
1. So

let 
 2 (
1; s
0
1 (x1)). Since v1 and v2 = u2 satisfy the Inada condition, as shown in

Appendix A, there exists an x > d � e such that x1 = f1(x). Thus, if 
2 < 
, then

s01 (f1 (x)) > t02 (f2 (x)). Hence, by Proposition 6, f 001 (x) > f 002 (x) and thus f 001 (x) > 0. By

Lemma 30, if 
2 > 
1, there exists an y
1
> d1�e1 such that s01 (y1) < 
2 for every y1 � y

1
.

Again as shown in Appendix A, there exists an y > d � e1 such that f1(y) = y
1
. Hence

s01 (f1(y)) < t02 (f2 (y)) for every y � y. Hence f 001 (y) < 0 for every y�y. The existence of

y such that f 001 (y) < 0 for every y � y can be similarly established. �
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Our result depends crucially on Assumption 29, that there are �nitely many outcomes

of the background risk. In Section 9, we give an example in which the background risk is

uniformly distributed over an interval and the risk-sharing rules have only one in
ection

point, rather than two.

8 Multi-Period Models

We have been looking into the eÆcient risk-sharing rules and the representative consumer's

risk aversion in the model of a single consumption period. We now claim that our results

can be extended to models with multiple, even in�nitely many, periods if all consumers

have time-separable and time-homogeneous expected utility functions and the same discount

rate, by giving a purely mathematical result to show how the multi-period models can be

reduced to the single-period model under this assumption. It is very important to establish

the validity of our results in multi-period models, as many results on eÆcient risk-sharing

rules and the representative consumer's risk attitudes, such as those in Wang (1998),

A��t-Sahalia and Lo (2000), and Benninga and Mayshar (2000), have been obtained in

multi-period models; and we can establish more general or sharper results in those models

by extending our previous results to the multi-period case.

As formulated in Section 2, the uncertainty of the economy is described by a probability

measure space (
;F ; P ). We now introduce the time span T , a subset of the non-negative

half line IR+, which represents the timings at which consumption can take place. We

shall concentrate on the continuous-time case of T = IR+ and the discrete-time case

T = f0; 1; : : :g, both of which extend to in�nity. But the case of �nite time length, such

as T =
�
0; t
�
and T =

�
0; 1; : : : ; t

	
for some �nite t, and even cases where the continuous

and discrete times are mixed, can be incorporated in the same manner. The gradual

information revelation is described by the �ltration
�
F t
�
t2T

. Note that the timing t is

speci�ed by a superscript. Denote by B(�) the Borel �-�eld. Let L be the linear space of all

real-valued, progressively measurable processes with respect to the �ltration
�
F t
�
t2T

, that

is, the set of functions � : T�
! IR such that the restriction of � onto fs 2 T j s � tg�


is
�
B (fs 2 T j s � tg)
F t;B(IR)

�
-measurable for every t 2 T . We shall assume that all

consumption processes under consideration are progressively measurable. This is not a
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stringent requirement because progressive measurability is implied by adaptivity if all

sample paths are right continuous or if they are left continuous (Theorem 1 of Section

1.5 of Chung (1980), for example), and Brownian motion and the most commonly used

stochastic integrals in �nance have this property. For each t 2 T , denote by �t the partial

function �(t; �) : 
 ! IR, which is the F t-measurable random variable representing the

value that the process � takes at time t.

Let r be a positive number, representing the compounded interest rate, common for

all consumers. For each i, we have a utility function ui :
�
di; di

�
! IR just as in Section

2. In place of the consumption set Zi of integrable random variables in that section, we

now let the consumption set Yi be a subset of L such that di < �i < di almost surely

and the function (t; !) 7! exp(�rt)�i(t; !) is integrable on the product measure space

(T � 
;B(T )
F ; �
 P ), where � denotes the Lebesgue measure restricted to T when

T = IR+, and the counting measure when T = f0; 1; : : :g. By Fubini's theorem, this is

equivalent to saying that for almost all ! 2 
, the sample path t 7! exp(�rt)�i(t; !) is

integrable with respect to � and the random variable ! 7!

Z
T
exp(�rt)�i(t; !)�(dt) is

integrable with respect to P . For the continuous-time case T = IR+, the integral could be

written as E

�Z 1

0
exp(�rt)�ti dt

�
. In the discrete-time case T = f0; 1; : : :g, the integral

is nothing but E

 
1X
t=0

�t�ti

!
, where � = exp(�r). To simplify the subsequent exposition,

we shall use only the integral expression but the results are of course applicable to the

discrete-time case as well. Denote by Y �i the subset of Yi that consists of those �i such

that ui (�i) is (�
 P )-integrable.

De�ne a binary relation %i on Yi by letting, for each �i 2 Yi and �i 2 yi, �i %i �i if

and only if either of the following two conditions is met: �i 62 Y �i ; or �i 2 Y �i , �i 2 Y �i , and

E

�Z 1

0
exp(�rt)ui

�
�ti
�
dt

�
� E

�Z 1

0
exp(�rt)ui

�
�ti
�
dt

�
.

We say that a consumption allocation (�1; � � � ; �I) 2 Y1� � � � �YI is feasible for an ag-

gregate endowment � if
P

�i = � (�
P )-almost surely. An eÆcient allocation (��1 ; � � � ; �
�
I )

is de�ned in terms of the binary relation %i de�ned in the preceding paragraph in the same

manner as in Section 2. The characterization of an eÆcient allocation in terms of the max-

imization problem and a suÆcient condition for �i 2 Y �i stated in that section remain true

in the current context, with appropriate modi�cations.
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Our assertion that a multi-period model can be reduced to a single-period model hinges

on the following lemma. It draws heavily on Section 1.5 of Chung (1980).

Lemma 33 There exists a �-�eld F� on T �
 and a probability measure P � on F� such

that:

1. The space L of all progressively measurable functions coincides with the space of all

F�-measurable functions on T � 
.

2. For every � 2 L, the function (t; !) 7! exp(�rt)�(t; !) is integrable with respect to

� 
 P (so that E

�Z 1

0
exp(�rt)�t dt

�
is �nite) if and only if � is integrable with

respect to P �. Moreover, if either (and hence both) of the conditions is met, then

E� (�) = rE

�Z 1

0
exp(�rt)�t dt

�
; (28)

where E� is the expectation with respect to P �.

The underlying idea of this lemma is to treat the time span T as if it were another

state space. The �rst part of the lemma says that the set of all progressively measurable

processes can be identi�ed with the set of all measurable functions once we introduce

an appropriate �-�eld F� on the product of two state spaces T and 
. Its second part

claims that, once an appropriate probability measure P � is introduced on the new �-�eld

F�, the integrability is preserved under these probability measures. It also shows that

the integral under one probability measure is always a constant multiple of the other;

and hence, by putting � = ui (�i), which is the utility process of consumer i from the

consumption process �i, we can see that the expected utility ordering over consumption

paths is identical between the two. As can be seen clearly in the proof, the discrete case

poses no diÆculty; indeed, it has been known and mentioned in Gollier (2001). The only

diÆculty arises in the continuous-time case, since it is necessary to induce an appropriate

�-�eld on the new product space.

Proof of Lemma 33 Following Section 1.5 of Chung (1980), we let F� be the set of

all subsets H of T �
 such that H \ ([0; t]� 
) 2 B ([0; t])
F t for every t 2 T . It is easy

to check that F� is indeed a �-�eld.
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A function � : T � 
 ! IR is progressively measurable if and only if
�
�t
��1

(B) 2

B ([0; t]) 
 F t for every B 2 B (IR) and every t 2 T , where �t denotes the restriction of

� on [0; t] � 
. But
�
�t
��1

(B) = ��1(B) \ ([0; t] � 
). The progressive measurability is

thus equivalent to saying that ��1(B) \ ([0; t] � 
) 2 F t for every B 2 B (IR) and every

t 2 T , which is in turn equivalent to ��1(B) 2 F� for every B 2 B (IR). That is, � is

F�-measurable. This completes the proof of part 1.

To de�ne another probability measure P � on T � 
, note �rst that, according to

Section 1.5 of Chung (1980), for each subset H of T � 
, H 2 F� if and only if �H 2 L,

where �H : T � 
 ! f0; 1g is the indicator function of H. Hence the function (t; !) 7!

exp(�rt)�H(t; !) is integrable with respect to � 
 P . So de�ne P � : F� ! IR+ by

P �(H) = rE

�Z 1

0
exp(�rt)�tH dt

�
. It is easy to show that P � is �-additive and satis�es

P �(T � 
) = rr�1 = 1. Hence P � is a probability measure on F�.

It remains to prove equality (28). But, by the de�nition of P �, it is true for every simple

function of F�. Hence, by continuity of the integral, it is true for every P �-integrable �.

�

By this lemma, the time-separable, time-homogeneous intertemporal expected utility

function E

�Z 1

0
exp(�rt)ui

�
�ti
�
dt

�
on Yi can be identi�ed with the expected utility

function E� (ui (�i)) on a single consumption period with �-�eld F� and probability mea-

sure P �. Since Lemma 1 is applicable to the probability measure space (T � 
;F�; P �),

the eÆcient allocations of the multi-period models can be expressed by means of the same

risk-sharing rules as de�ned in Section 2, which is now regarded as time-separable and

time-homogeneous. This implies that the representative consumer has a time-separable,

time-homogeneous intertemporal expected utility function with the same discount rate r,

and all the results in the preceding sections apply to the multi-period models with appro-

priate modi�cations. Some of its economic interpretations, however, need some care. For

example, a risk-free asset in the new probability space (T �
;F�; P �) would be the per-

petual bond, which pays one unit under any circumstance at any point in time, rather than

just at a point in time. As another example, the mutual fund theorem in (T � 
;F�; P �)

would also imply that the intertemporal sharing rule is linear.

41



9 Numerical Examples

This section serves to illustrate some of our results graphically. Throughout this section

all individual consumers' utility functions are assumed to exhibit constant relative risk

aversion, and are of the form

ui(xi) =
x1��i

i

1� �i
;

where �i = 1=
i > 0. Their risk tolerance is then given by ti(xi) = 
ixi = xi=�i.

The weights �i in the maximization problem (1) are all set equal to one. Re-scaling the

individual utility functions or choosing a di�erent set of the weights �i would change the

quantitative results but not much of the qualitative results, except that the individual risk-

sharing rules all intersect at exactly the same point in Figures 3 and 4. The �gures below

are numerically calculated and then plotted using the constrained optimization package

in GAUSS. The values of the risk tolerance and weights are chosen to enhance graphical

e�ects, not to �t to empirical �ndings.

Figure 3 shows the risk-sharing rules of an economy with three consumers having

di�ering constant coeÆcients �i of relative risk aversion. The most and the least risk

averse consumers have a concave and a convex risk-sharing rule, respectively, just as

suggested by Leland (1980) and Brennan and Solanki (1981). The risk-sharing rule of

the, in terms of risk aversion, intermediate consumer is convex for the lower range of total

consumption levels and becomes concave after the in
ection point. This is precisely part

3 of Theorem 16.

The risk-sharing rules of a four-consumer economy are depicted in Figure 4. Their �rst

and second derivatives are also given. Figure 5 shows the curvature, the ratio of second

to �rst derivative, of risk-sharing rules for the same economy. Again, as in the three-

consumer economy, the risk-sharing rules of the most and least risk averse consumers

are concave and convex, respectively. Intermediately risk averse consumers have sharing

rules which turn from convex for lower aggregate consumption levels to concave for higher

ones. The validity of part 4 of Proposition 16 is con�rmed: the in
ection point of the

individual risk sharing rule is higher for the less risk-averse intermediate consumer. This

is better seen in the graphs of the two derivatives of the risk-sharing rules. Note also that

while the rankings of the �rst and second derivatives change as the aggregate consumption
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Figure 3: The risk-sharing rules in a three-consumer economy. Consumers have di�ering

constant coeÆcients of relative risk aversion.

level varies, the ranking of the curvature never does. This is exactly what is implied by

Proposition 6.

Figure 6 contains a collection of graphs of the second derivative of the risk-sharing

rules in a two-consumer economy, where they have possibly di�ering constant coeÆcients

�i of relative risk aversion and a background risk "i, which can take ��i and �i, each with

probability 1=2. We assume that �i = 1 for one consumer and �i = 0 for the other, that

is, only one consumer is exposed to the background risk. The consumers' induced utility

function is therefore given by

vi(xi) = E (ui(xi + "i)) =
1

2(1� �i)

�
(xi � �i)

1��i + (xi + �i)
1��i

�
:

The top picture of Figure 6 is the case considered by Franke, Stapleton and Subrahmanyam

(1998), where the two consumers have the same constant coeÆcient �i of relative risk

aversion. The consumer with a background risk has a risk-sharing rule that is convex

everywhere. The consumer without any background risk necessarily has an everywhere

concave risk-sharing rule. The next two pictures in Figure 6 show the second derivatives of

the risk-sharing rules, where the consumer with the background risk is also slightly more

risk averse than the other consumer, who has no background risk. The resulting risk-
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sharing rule is concave for low (� y) and for high (� �y) levels of aggregate consumption

levels and convex for intermediate levels. This is a particular instance of Proposition

32. The dominant force which shapes the risk-sharing rules is then the di�erence in the

coeÆcients of risk aversion rather than in the background risks.

Figure 7 explores the second derivatives of the risk-sharing rules in a two-consumer

economy, which di�ers from the preceding one, only in that the background risk "i is now

uniformly distributed on the interval [��i; �i]. The consumers' induced utility function is

then given by

vi(xi) = E (ui(xi + "i)) =
1

2�i(1� �i)(2� �i)

�
(xi + �i)

2��i � (xi � �i)
2��i

�
: (29)

The top picture of Figure 7 is again the case considered by Franke, Stapleton and Subrah-

manyam (1998), where the two consumers have the same degree of risk-aversion in their

original utility. Just as in the discrete case, the consumer with a background risk has

a convex risk-sharing rule and the consumer without any background risk has a concave

one. The next two pictures in Figure 7 shows the second derivatives of the risk-sharing

rules, where the consumer with the background risk is also slightly more risk averse than

the other. The resulting risk-sharing rule is convex for low levels and concave for high

levels of the aggregate consumption levels, with exactly one in
ection point to separate

the two regions. The di�erence in the second derivatives of the risk-sharing rules between

the discrete and continuous cases is striking. It seems that even a slight di�erence in the

tail behavior of the distribution of the background risk may lead to a large qualitative

di�erence in the risk-sharing rules.

10 Conclusion

We have presented detailed properties of the eÆcient risk-sharing rules and the represen-

tative consumer's risk attitude in an economy under uncertainty where consumers have a

homogeneous probabilistic belief over the state space but heterogeneous risk attitudes. In

particular, we showed that heterogeneity in the consumers' cautiousness, the derivative of

the reciprocal of the Arrow-Pratt measure of absolute risk aversion, is a key factor for the

curvature of the risk-sharing rules and the speed at which the representative consumer's

risk aversion decreases as the aggregate consumption level increases.
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Although our results are mostly theoretical and qualitative, they have strong coherence

with empirical �ndings. For example, A��t-Sahalia and Lo (2000) found from option prices

that the representative consumer exhibits strictly decreasing relative risk aversion. The

result by Ogaki and Zhang (2001) highlights the importance of identifying the qualitative

properties of the eÆcient risk-sharing rules for a wide class of utility functions: Using a

three-year data set on the food consumption in rural villages in India and Pakistan and an

eÆciency condition equivalent to our equality (22), they showed that the hypothesis that

the intra-village risk-sharing is eÆcient is rejected if the utility functions are constrained

to exhibit constant relative risk aversion, but not if they are allowed to exhibit decreasing

relative risk aversion, albeit retaining linear risk tolerance. To estimate how large the

consumers' risk aversions are and test whether the equilibrium allocation is eÆcient in a

heterogeneous group of consumers, our results will serve as a useful theoretical foundation.

Exploration of such empirical facts should be an interesting direction of future research.

A Existence of a Solution to the Maximization Problem (1)

In this appendix, we prove that for every � and x, there exists a solution to the maximiza-

tion problem (1), that is, f� :
�
d; d
�
!
�
d1; d1

�
� � � � �

�
dI ; dI

�
is well de�ned.

Indeed, for each i, the function �iu
0
i :
�
di; di

�
! IR++ is strictly decreasing and onto.

Hence it has an inverse, which we denote by 'i : IR++ !
�
di; di

�
. Then 'i is also strictly

decreasing and onto. De�ne ' : IR++ !
�
d; d
�
by ' =

P
'i. Then ' is also strictly

decreasing and onto. Then the composite mapping ' Æ (�iu
0
i) :

�
di; di

�
!
�
d; d
�
is well

de�ned. It is easy to check that the inverse of this mapping equals f�i. Note that we have

also shown that f 0�i (x) > 0 for every x and f�i (x)! d as x! d and f�i (x)! d as x! d.

B Proof of Propositions 10 and 11

To prove Propositions 10 and 11, we need two lemmas. The �rst one is concerned with

the ratio of two individual consumers' risk-sharing rules and their derivatives.

Lemma 34 Let i and j be two consumers such that di =1, dj =1, and inequality (18)

holds. Then fi(x)=fj(x)! 0 and f 0i(x)=f
0
j(x)! 0 as x!1.
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Proof of Lemma 34 Let two real numbers Æi and Æj be such that

lim sup
xi!1

t0i (xi) < Æi < Æj < lim inf
xj!1

t0j (xj) :

Since di = 1 and ti(xi) > 0 for every xi, lim sup
xi!1

t0i (xi) � 0. Hence Æi > 0 and Æj > 0.

Then let x > d be such that t0i (xi) < Æi < Æj < t0j (xj) for every xi � fi (x) and xj � fj (x).

Then, for such xi and xj ,

ti(xi) <Æi (xi � fi (x)) + ti (fi(x)) ;

tj(xj) >Æj (xj � fj (x)) + tj (fj(x)) :

By equality (4), Z x

x
ai (fi(s)) f

0
i(s) ds =

Z x

x
aj (fj(s)) f

0
j(s) ds

for every x � x. By integration by parts, this is equivalent toZ fi(x)

fi(x)
ai (s) ds =

Z fj(x)

fj(x)
aj (s) ds: (30)

Thus Z fi(x)

fi(x)

ds

Æi (s� fi (x)) + ti (fi (x))
<

Z fj(x)

fj(x)

ds

Æj (s� fj (x)) + tj (fj (x))
:

Take the integral and then the exponential of both sides, then we obtain�
Æi (fi(x)� fi (x)) + ti (fi (x))

ti (fi (x))

�1=Æi

<

�
Æj (fj(x)� fj (x)) + tj (fj (x))

tj (fj (x))

�1=Æj

;

because 0 < Æi < Æj . Thus

fi(x)� fi (x) +
ti (fi (x))

Æi
< k

�
fj(x)� fj (x) +

tj (fj (x))

Æj

�Æi=Æj

;

where

k =
ti (fi (x))

Æi

�
Æj

tj (fj (x))

�Æi=Æj

> 0:

Since 0 < Æi=Æj < 1,

fi(x)� fi (x) +
ti (fi (x))

Æi

fj(x)� fj (x) +
tj (fj (x))

Æj

! 0 (31)

as x!1. Hence fi(x)=fj(x)! 0 as x!1.
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By equality (2),

f 0i(x)

f 0j(x)
=

ti (fi(x))

tj (fj(x))
<

Æi
Æj

fi(x)� fi (x) +
ti (fi (x))

Æi

fj(x)� fj (x) +
tj (fj (x))

Æj

:

By (31), the far right hand side converges to 0. Hence f 0i(x)=f
0
j(x)! 0. �

The next lemma is concerned with the limit behavior of the risk-sharing rules when

the aggregate consumption levels converge to the minimum subsistence level.

Lemma 35 Let i and j be two consumers such that di > �1, dj > �1, ti (xi) ! 0 as

xj ! dj, tj (xj) ! 0 as xj ! dj, and inequality (19) holds, then

(fi(x)� di) =
�
fj(x)� dj

�
! 0 and f 0i(x)=f

0
j(x)! 0 as x! d.

Proof of Lemma 35 Let two real numbers Æi and Æj be such that

lim sup
xj!dj

t0j (xj) < Æj < Æi < lim inf
xi!di

t0i (xi) :

Since tj (xj) � 0 for every xj and tj (xj) ! 0 as xj ! dj, we have lim sup
xj!dj

t0j (xj) � 0.

Hence Æj > 0 and Æi > 0. Then let x > d be such that t0j (xj) < Æj < Æi < t0i (xi) for

every xi � fi (x) and xj � fj (x). Thus, for such xi and xj, ti (xi) > Æi (xi � di) and

tj (xj) < Æj
�
xj � dj

�
. Since, for every x 2 (d; x),Z fj(x)

fj(x)

ds

tj (s)
=

Z fi(x)

fi(x)

ds

ti (s)
;

we have Z fj(x)

fj(x)

ds

Æj
�
s� dj

� < Z fi(x)

fi(x)

ds

Æi (s� di)
(32)

Thus �
fj (x)� dj
fj (x)� dj

�1=Æj

<

�
fi (x)� di
fi (x)� di

�1=Æi

:

Hence there exists a positive number k such that

fi (x)� di < k
�
fj (x)� dj

�Æi=Æj : (33)

Recall that both fi :
�
d; d
�
!
�
di; di

�
and fj :

�
d; d
�
!
�
dj ; dj

�
are smooth, one-to-one,

and onto, and have strictly positive derivatives. Hence there exists a ' :
�
0; dj � dj

�
!
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�
0; di � di

�
that is smooth, one-to-one, and onto, has strictly positive derivatives, and

satis�es fi (x)� di = '
�
fj (x)� dj

�
. Thus, also by inequality (33), 0 < '(z) < kzÆi=Æj for

every z 2
�
0; dj � dj

�
. Hence, by Æj=Æi > 1, '(z)=z ! 0 and '0(z)! 0 as z ! 0. If z and x

satisfy z = fi(x)�di, then z ! 0 if and only if x! d. Hence (fi(x)� di) =
�
fj(x)� dj

�
!

0 as x! d. Moreover, since '0(z) = f 0j(x)=f
0
i(x), f

0
j(x)=f

0
i(x)! 0 as x! d. �

We can now turn to the proofs of Propositions 10 and 11

Proof of Proposition 10 Let J be the set of those consumers i for whom di = 1,

then J � I 6= ;. For every j 62 J , fj(x)=x ! 0 and f 0j(x) ! 0 as x ! 1. For every

j 2 J n I, there exists a consumer i 2 J for whom inequality (18) holds. Since there are

only �nitely many consumers, this implies that there exists a consumer i 2 I for whom

inequality (18) holds. Since lim supx!1 fi(x)=x � 1,

0 � lim sup
x!1

fj(x)

x
� lim sup

x!1

fj(x)

fi(x)
lim sup
x!1

fi(x)

x
� lim sup

x!1

fi(x)

fj(x)
:

By Lemma 34, the far right hand side equals zero. Thus fj(x)=x ! 0. Since this is true

for every j 62 J and
PI

i=1 fi(x)=x = 1, we must have
P

i2I fi(x)=x! 1 as x!1.

Also, since 0 < f 0i(x) < 1,

0 < f 0j(x) <
f 0j(x)

f 0i(x)

and, for such i and j as in the preceding paragraph, the far right hand side converges to

zero as x!1. Hence f 0j(x)! 0 as x!1. If
n
t0j (xj) j dj < xj < dj

o
is bounded, then

t0j (fj(x)) f
0
j(x)! 0 as x!1 for every j 62 I. Thus, by Lemma 3 and 0 <

P
i2I f

0
i(x) � 1,

we have

lim sup
x!1

t0(x)

= lim sup
x!1

IX
i=1

t0i (fi(x)) f
0
i(x)

= lim sup
x!1

X
i2I

t0i (fi(x)) f
0
i(x)

� lim sup
x!1

max
i2I

t0i (fi(x))

�max
i2I

lim sup
xi!1

t0i (xi) :
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The other inequality,

min
i2I

lim inf
xi!1

t0i (xi) � lim inf
x!1

t0(x);

can be shown analogously. �

Note that the above proposition also implies that if di > �1 for every i, thenP
i2I (fi(x)� di)

x� d
! 1 as x!1.

Proof of Proposition 11 Let j 62 I, then there exists a consumer i 2 I for whom

inequality (19) holds. Since 0 <
fi(x)� di
x� d

< 1 for every x,

0 � lim sup
x!d

fj(x)� dj
x� d

� lim sup
x!d

fj(x)� dj
fi(x)� di

lim sup
x!d

fi(x)� di
x� d

� lim sup
x!d

fj(x)� dj
fi(x)� di

:

By Lemma 35, the far right hand side equals zero. Thus lim supx!d

fj(x)� dj
x� d

= 0. HenceP
i2I (fi(x)� di)

x� d
! 1 as x! d.

Inequalities (20) can be shown in the same manner as in the proof of Proposition 10.

�

C Proof of Theorem 19

We need the following lemma to establish Theorem 19.

Lemma 36 Let x 2
�
d; d
�
and assume that fi(x) > 0 for every i. If b0i (fi(x)) = 0 and

ei(x) = 1 for every i, then

t01 (f1(x)) = � � � = t0I (fI(x)) : (34)

Proof of Lemma 36 Since, for every i, t0i (fi(x)) fi(x)=ti (fi(x)) = 1 and ti (fi(x)) =

t(x)f 0i(x),
t0i (fi(x)) fi(x)

t(x)f 0i(x)
= 1:

Since fi(x)=f
0
i(x) = x, the left hand side equals

t0i (fi(x)) x

t(x)
:

Hence t0i (fi(x)) = t(x)=x. The conclusion of the lemma thus follows. �

49



Proof of Theorem 19 By equalities (9) and (13),

t0(x)x

t(x)
=
X

f 0i(x)t
0
i (fi(x))

x

t(x)
(35)

=
X

f 0i(x)t
0
i (fi(x)) x

f 0i(x)

ti (fi(x))
(36)

=
X

f 0i(x)ei(x)
t0i (fi(x)) fi(x)

ti (fi(x))
: (37)

We now show that X
f 0i(x)ei(x) � 1: (38)

Indeed, note that X
f 0i(x) (ei(x))

�1 =
X fi(x)

x
= 1:

Since the weighted harmonic mean does not exceed the weighted arithmetic mean,�X
f 0i(x) (ei(x))

�1
��1

�
X

f 0i(x)ei(x):

Inequality (38) is thus proved. Since, as noted just before Theorem 19,

t0i (fi(x)) fi(x)=ti (fi(x)) � 1, it implies that t0(x)x=t(x) � 1. Hence, b0(x) � 0.

As for the second part, if there exists a consumer i such that b0i (fi(x)) < 0, then

t0i (fi(x)) fi(x)=ti (fi(x)) > 1. Hence, by (37) and (38), t0(x)x=t(x) > 1. Suppose, on the

other hand, that b0i (fi(x)) = 0 for every i. If, in addition, ei(x) = 1 for every i, then

Lemma 36 implies equality (34), which contradicts our hypothesis that there exist two

consumers i and j such that t0i (fi(x)) 6= t0j (fj(x)). Hence ei(x) 6= 1 for some i. SinceP
(fi(x)=x) ei(x) = 1 and

P
fi(x)=x = 1, this implies that ei(x) < 1 < ej(x) for some i

and j. Hence the weighted harmonic mean is strictly less than the weighted arithmetic

mean: �X
f 0i(x) (ei(x))

�1
��1

<
X

f 0i(x)ei(x):

Since the left hand side equals one,
P

f 0i(x)ei(x) > 1. Since t0i (fi(x)) fi(x)= ti (fi(x)) � 1

for every i, this implies that t0(x)x=t(x) > 1 and hence b0(x) < 0. �

D Proof of Lemma 23 and Proposition 24

Proof of Lemma 23 If t0i(xi) � 0 for every xi � di, then ti(xi) is non-increasing and

hence bi(xi) = xi=ti(xi) diverges to in�nity as xi !1, which contradicts the assumption
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that the set lim supxi!1
bi(xi) is �nite. Hence t0i(xi) > 0 for some xi. Since t0i is a

non-decreasing function, this implies that limxi!1 1=t0i(xi) exists (and is �nite) and ti(xi)

diverges to in�nity as xi ! 1. Thus, by L'Hopital's rule, limxi!1 xi=ti(xi) exists and

equals limxi!1 1=t0i(xi). Since bi(xi) = xi=ti(xi), this completes the proof of the �rst part.

As for the second part, if di = 0 and limxi!di
t0i(xi) > 0, then we can apply L'Hopital's

rule as in the proof of the �rst part to limxi!di
x=ti(xi) to show that

bi(xi)!
�
limxi!di

t0i(xi)
��1

. The divergence to in�nity when di = 0 and limxi!di
t0i(xi) =

0 can be obtained by extending ti to xi = 0 by letting ti(0) = 0 and noticing then that

t0i(0) = 0. The divergence when di > 0 follows immediately from ti(xi)! 0 as xi ! di. �

Proof of Proposition 24 By Lemma 23, if limxj!1 bj(xj) > 0 for every j, then t0j(xj)

converges to a positive (�nite) number for every i. If consumer i is such that

lim
xi!1

bi(xi) � lim
xj!1

bj(xj) (39)

for every j, then limxi!1 t0i(xi) � limxj!1 t0j(xj) for every j. If, on the other hand, con-

sumer i is such that limxi!1 bi(xi) = 0, then t0i(xi) ! 1 and hence lim infxi!1 t0i(xi) �

lim infxj!1 t0j(xj) for every j. Thus, by Proposition 10, regardless of whether

limxj!1 bj(xj) > 0 for every j, f 0i(x)! 0 as x!1 unless inequality (39) is satis�ed for

every j. Since limxj!1 bj(xj) is well de�ned (�nite), for every j,

lim
x!1

b(x) = lim
x!1

IX
i=1

f 0i(x)bi (fi(x))

= lim
x!1

X
i2I

f 0i(x)bi (fi(x))

= lim
x!1

bi (xi)

for every i satisfying (39).

As for the limit as x! d, note �rst that, by Lemma 23, if, for every j, bj(xj) converges

to a (�nite) non-negative number as xj ! dj , then t0j(xj) !
�
limxj!dj

bj(xj)
��1

. Hence

lim infxi!1 bi(xi) � lim infxj!1 bj(xj) if and only if lim infxi!1 t0i(xi) � lim infxj!1 t0j(xj).

On the other hand, again by Lemma 23, if consumer i is such that bi(xi) diverges to in�nity

as xi ! di, then

lim
xi!1

t0i(xi) = 0 � lim
xj!1

t0j(xj)
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for every j. Thus, by Proposition 11, regardless of whether bj(xj) converges to a (�nite)

non-negative number for every j, f 0i(x) ! 0 as x ! 1 unless inequality (39) is satis�ed

for every j. Thus, if bj(xj) converges to a (�nite) non-negative number for every j, then

b(x)! limxi!di
bi(xi) as x! d; otherwise b(x)!1. �

E Proof of Proposition 26 and Lemma 30

Proof of Proposition 26 De�ne hi : (ei; ei)�
�
di � ei; di � ei

�
! IR++ and ki : (ei; ei)��

di � ei; di � ei
�
! IR++ by

hi (zi; xi) =
u0i (xi + zi)

E (u0i (xi + �i))
;

ki (zi; xi) =
u00i (xi + zi)

E (u00i (xi + �i))
;

then Z ei

ei

hi (zi; xi) dG (zi) =

Z ei

ei

ki (zi; xi) dG (zi) = 1 (40)

and hence the partial functions hi (�; xi) and ki (�; xi) have the property of a density function

with respect to the distribution function Gi. Since

ki (zi; xi)

hi (zi; xi)
= si (xi) ai (xi + zi) ;

the fraction of the left hand side is a non-increasing function of zi and in fact strictly

decreasing if m > 0. Hence either hi (�; xi) = ki (�; xi) or hi (�; xi) �rst-order stochastically

dominates ki (�; xi).
4

Denote by pi (xi) the prudence of ui of Kimball (1990):

pi (xi) = �
u000i (xi)

u00i (xi)
:

Also denote by qi the prudence of the induced utility function vi, then we have

qi (xi) = �
E (u000i (xi + �i))

E (u00i (xi + �i))
:

4To be exact, we should say that the distribution whose Radon-Nikodym derivative with respect to

the probability measure on IR having the distribution function Gi is equal to hi is equal to or �rst-

order stochastically dominates the distribution whose Radon-Nikodym derivative with respect to the same

probability measure on IR is equal to ki.
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Moreover,

1

si (xi)
=

Z ei

ei

ai (xi + zi) hi (zi; xi) dGi (zi) ; (41)

qi (xi) =

Z ei

ei

pi (xi + zi) ki (zi; xi) dGi (zi) : (42)

Since s0i (xi) = si (xi) qi (xi)� 1, it suÆces to show that 1=si (xi) � qi (xi) =(m + 1), with

a strict inequality if m > 0. On the other hand, since t0i (xi + zi) =
pi (xi + zi)

ai (xi + zi)
� 1,

ai (xi + zi) �
pi (xi + zi)

m+ 1
. Hence, by the �rst-order stochastic dominance,

1

si (xi)
�

Z ei

ei

ai (xi + zi) ki (zi; xi) dGi (zi) ;

�
1

m+ 1

Z ei

ei

pi (xi + zi) ki (zi; xi) dGi (zi)

=
1

m+ 1
qi (xi) ;

where the �rst weak inequality holds as a strict inequality if m > 0. This completes the

proof. �

It is clear from the proof that we can guarantee s0i (xi) � m if only t0i (xi + zi) � m

for every zi 2 (ei; ei). That is, the latter inequality needs to hold only over the range of

possible consumption levels.

Proof of Lemma 30 By equations (41), si (xi) � ti (xi + ei) and, since the prudence

pi is a strictly decreasing function, qi (xi) � pi (xi + ei). Thus

s0i (xi) = si (xi) qi (xi)� 1

� ti (xi + ei) pi (xi + ei)� 1

=
ti (xi + ei)

ti (xi + ei)

�
t0i (xi + ei) + 1

�
� 1

=
�i + 
i (xi + ei)

�i + 
i (xi + ei)
(
i + 1)� 1:

Since the fraction of the far right hand side converges to one as xi ! 1, along with

Corollary 27, we obtain s0i (xi)! 
i.

As for the limit of s0i (xi) as xi ! di � ei, we �rst denote the �nitely many values

that �i can take by z1i ; z
2
i ; : : : ; z

N
i and their probabilities by �1i ; �

2
i ; : : : ; �

N
i . Without loss of

53



generality, we can assume that z1i is the minimum value that �i can take, so that z1i = ei

by Assumption 29. Then

s0i (xi) = si (xi) qi (xi)� 1 (43)

=

0@X
n�1

�ni u
0
i (xi + zni )

1A0@X
n�1

�ni u
000
i (xi + zni )

1A
0@X

n�1

�ni u
00
i (xi + zni )

1A2 � 1: (44)

Divide the denominator and numerator of the fraction in equality (44) by both sides of

u0i
�
xi + z1i

�
u000i
�
xi + z1i

�
t0i
�
xi + z1i

�
+ 1

=
�
u00i
�
xi + z1i

��2
;

then we obtain

s0i (xi) =
�
t0i (xi + zi) + 1

�
0@X

n�1

�ni
u0i (xi + zni )

u0i
�
xi + z1i

�
1A0@X

n�1

�ni
u000i (xi + zni )

u000i
�
xi + z1i

�
1A

0@X
n�1

�ni
u00i (xi + zni )

u00i
�
xi + z1i

�
1A2 � 1: (45)

It is easy to show by the Inada condition that u00i
�
xi + z1i

�
! �1 and u000i

�
xi + z1i

�
!1

as xi ! di � ei. Hence the ratios of the derivatives of the same order in equality (45)

converges to 0 for every n 6= 1. Thus its right hand side converges to

(
i + 1)

�
�1i
�2�

�1i
�2 � 1 = 
i:

This completes the proof. �
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Figure 4: The risk-sharing rules and their �rst and second derivatives in a four-consumer

economy. Consumers have di�ering constant coeÆcients of relative risk aversion.
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Figure 5: The curvature (ratio of second to �rst derivative) of risk-sharing rules in a

four-consumer economy. Consumers have di�ering constant coeÆcients of relative risk

aversion.
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Figure 6: Second derivatives of risk-sharing rules in a two-consumer economy. They have

possibly di�ering constant coeÆcients of relative risk aversions and only one of them has

a discrete background risk.
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Figure 7: Second derivatives of risk-sharing rules in a two-consumer economy. They have

(possibly) di�ering constant coeÆcients of relative risk aversion and only one of them has

a continuous background risk.
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