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1 Introduction

Nonparametric regression, a powerful tool for exploratory data analysis, ex-
plores unknown nonlinear regression structure underlying data from a flexible
and extensive functional space. It plays an important role in choosing one
appropriate model from some possible models, or diagnosing whether a para-
metric model is valid. The smoothing spline is one of the most useful methods
of the nonparametric regression. It is represented as the optimal solution in
a penalized approach and so it is easy to extend to a variety of models. It is
related to Bayesian approaches and it results in the best prediction for a linear
mixed model, and so it has a good estimation property. Moreover, a number of
programs and softwares for computation on splines have been developed.

If continuous responses are observed with some explanatory variables, we
often try to apply an additive regression model to explore nonlinear regresssion
structure. The additive regression model is discussed in Hastie and Tibshirani
(1986, 1990, 2000) in detail, and is adopted in some statistical packages such as
the S language (Chambers and Hastie, 1992). However, it assumes the following
requirements: (i) additivity among explanatory variables, (ii) homoscedasticity,
(iii) normality (implicitly assumed in penalized least squares estimation), and
(iv) independency. It is difficult to satisfy all these requirements simultaneously,
so these rigid assumption might give poor estimation of regression functions,

Relaxing the assumptions in the additive regression model would be helpful
in diagnosing validity of assuming these requirements. A variety of models in
which the sides of explanatory variables are modified have been developed to
extend from the additivity assumption, especially by adding some interaction
terms, such as SS-ANOVA (Wahba, 1990; Wahba et al., 1995), thin plate splines
(Green and Silverman, 1994; Eubank, 1999), CART (Breiman et al., 1984)
and MARS (Friedman, 1991). However, extremely complicated models might
make interpretation of the models difficult. The assumption of additivity has a
practical advantage that it is easier to interpret. Stone (1985) described that a
statistical model has three fundamental aspects: flexibility, dimensionality and
interpretability, and proved the dimensionality reduction principle in which the
best estimator (in terms of mean square errors) of the additive regression model
is a good approximation to the true regression function.

Transforming response variables is also a useful method to diagnose the va-
lidity of the requirements (i)–(iii). Some nonparametric transformations have
been developed, which estimate the functions transforming responses using
some smoothing methods, such as ACE (Breiman and Friedman, 1985), AVAS
(Tibshirani, 1988), and nonparametric both-sides transformation (Wang and
Ruppert, 1995). However, in practical applications, measured responses often
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have a particular meaning such as the concentration or the mass, so it is desired
that the functions transforming responses should be monotone and meaningful
for themselves. From this point of view, parametric transformations would give
more helpful suggestion in interpreting results of analysis. The power transfor-
mation proposed by Box and Cox (1964),

y(φ) =

{
(yφ − 1)/φ, φ 6= 0,

log y, φ = 0,
(1.1)

is a typical choice of the parametric transformations, where y > 0, and φ is the
power parameter. Hastie and Tishirani (1990) and Linton et al., (1997) assumes
that the responses after the power transformation satisfy the requirements (i)–
(iv) simultaneously. However, it is impossible to obtain a single transformation
that satisfies some different criteria simultaneously (Bartlett, 1947; Draper and
Hunter, 1969), so it is necessary to separate the assumptions before the transfor-
mation from the requirements that should be satisfied after the transformation
(Goto, 1992, 1995).

Sakamoto (2004) proposed the power weighted smoothing spline (PWSS),
which aims the diagnosis of homoscedasticity by assuming it on power-trans-
formed responses. In this paper we aim to diagnose additivity. We extend
the idea of power additive transformation in linear regression models (Draper
and Hunter, 1969; Goto, 1992, 1995). to the nonparametric additive regression
model. We call it a power additive smoothing spline (PASS) model, which
assumes the requirements (ii)–(iv) on original responses and then assumes the
additivity on power-transformed responses in the additive regression model.
The PASS model aims to extract unknown nonlinear regression structure that
is comparatively easy to understand. It includes an additive model (in the case
φ = 1, that is equivalent to the identical transformation)

y ' f1(t1) + · · ·+ fr(tr) + error

and a multiplicative model (in the case φ = 0, that is the log transformation)

y ' g1(t1)× · · · × gr(tr)× error

as special cases, where y is the response variable, fj(tj) and gj(tj) are func-
tions of the explanatory variable tj (j = 1, . . . , r), and ' shows some regres-
sion relationship. Estimation of the power parameter, which gives a response
transformation that influences global regression structure, and the smoothing
parameters, which control smoothness of the functions of explanatory variables,
are very important. We apply the maximum marginal likelihood based on the
empirical Bayes method. In general the marginal likelihood involves a high-
dimensional integral, and so it is impossible to compute it exactly. We use
a Laplace approximation based on the second-order Taylor expansion of the
penalized log-likelihood.

Section 2 overviews the additive regression model and its estimation with
smoothing splines. Section 3 proposes the PASS model and develop its esti-
mation, including the estimation of the power and the smoothing parameters.
Section 4 provides results of application to some data in the literature.
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2 Additive regression model and smoothing spline

2.1 Additive regression model

Suppose that each of the responses yi (i = 1, . . . , n) is independently observed
with the explanatory variables xi = (xi1, . . . , xip)T and ti = (ti1, . . . , tir)T. An
ordinary additive regression model assumes that the response yi has the mean
that is an additive function of xi and ti,

µi ≡ E[yi|xi, ti] = β0 + xT
i β1 + f1(ti1) + · · ·+ fr(tir), i = 1, . . . , n (2.1)

and a constant variance var[yi|xi, ti] = σ2, where β = (β0,β
T
1 )T is a vector

of regression parameters, and f1, . . . , fr are smooth functions, both of which
are unknown and estimated. We give constraints that

∑n
i=1 fj(tij) = 0 (j =

1, . . . , r) to keep uniqueness of the estimates.
The backfitting algorithm (Hastie and Tibshirani, 1986) is well known as a

method of computing estimates of parameters and smooth functions. The esti-
mates are obtained as a set of solutions when the following updating equation
converges:

β̂
new

= (XT
L XL)−1XT

L (y − f̂1 − · · · − f̂ r), (2.2a)

f̂
new

j = Sj(y −XLβ̂ −∑
k 6=j f̂k), j = 1, . . . , r, (2.2b)

where y = (y1, . . . , yn)T, f j = (fj(t1j), . . . , fj(tnj))T, XL = [x̃1, . . . , x̃n]T and
x̃i = (1, xT

i )T (i = 1, . . . , n), and the notation ˆ means estimates. Sj is a
smoother for the j-th nonparametric explanatory variable, which corresponds to
one of different smoothing methods such as kernel smoothing, local smoothing,
and spline smoothing.

It is known that, if we use a spline smoother as Sj , the estimates are optimal
solutions for a penalized approach, that is, we obtain smoothing splines as the
estimates of fj (j = 1, . . . , r) by minimizing the ordinary residual sum of squares
plus penalty terms in the additive regression model (2.1). If we assume that
each original response distributes independently and normally, this is equivalent
to maximizing the penalized log-likelihood

lP(β, f1, . . . , fr;y) = − 1
2σ2

n∑

i=1

(yi − µi)2 − 1
2

r∑

j=1

λjJ(fj) + const. (2.3)

with respect to β and f1, . . . , fr for given σ2 and λj (j = 1, . . . , r). The positive
numbers λj (j = 1, . . . , r) are called smoothing parameters, and they control
smoothness of estimated functions. J(fj) is the roughness penalty for fj . If we
use the squared integral of the m-th derivative of fj , J(fj) =

∫ {f (m)
j (tj)}2dtj

(where the integral is taken over a finite interval including {tij}i=1,...,n), we
obtain natural splines of the degree (2m− 1) as maximum penalized likelihood
estimates (MPLE) (Green and Silverman, 1994; Eubank, 1999). Using natural
cubic splines (m = 2) is a common choice.

It is convenient to introduce expression with basis functions for computation
(and sometimes for approximation) of smoothing splines. Suppose that each fj
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(j = 1, . . . , r) is represented as a linear combination of qj basis functions ϕjk(tj)
(k = 1, . . . , qj) such as the B-splines, that is, fj(tj) =

∑qj

k=1 ξjkϕjk(tj). Defining
the matrix Bj = {ϕjk(tij)}i=1,...,n; k=1,...,qj and the vector ξj = (ξj1, . . . , ξjqj ),
we can write as f j = Bjξj , Moreover, suppose that the roughness penalty for
fj is given by a quadratic form J(fj) = ξT

j Kjξj , where Kj is a non-negative
definite symmetric matrix depending on (t1j , . . . , tnj). In the case J(fj) =∫ {f (m)

j (tj)}2dtj , the (k, l)-th component of Kj is
∫

ϕ
(m)
jk (tj) ϕ

(m)
jl (tj) dtj . See

also Eubank (1999). (In the case of cubic smoothing splines, we can also use
incidence matrices in place of Bj , and the penalty matrices Kj as defined in
Green and Silverman (1994).) Then the penalized log-likelihood (2.3) becomes

lP(β, ξ1, . . . , ξr; y) = − 1
2σ2

(y − µ)T(y − µ)− 1
2

r∑

j=1

λjξ
T
j Kjξj + const., (2.4)

where y = (y1, . . . , yn)T and µ = XLβ + B1ξ1 + · · · + Brξr. By putting
∂lP/∂β = 0 and ∂lP/∂ξ = 0, we obtain the updating equations (2.2) for the
backfitting algorithm, where Sj = Bj(BT

j Bj + λ∗jKj)−1BT
j (λ∗j = σ2λj) is the

spline smoother matrix.

2.2 Bayesian approaches for smoothing splines

We introduced the penalized likelihood approach in the frequentist’s context
in the previous subsection, and it is also explained in the Bayesian context.
Introducing the roughness penalty is equivalent to considering the prior density
of fj which is proportional to exp{−1

2λjJ(fj)}, and the smoothing parameter
λj shows prior variability of fj (Silverman, 1985).

We illustrate the Bayesian approach using the basis function representa-
tion. Suppose that the prior density of ξj is p(ξj ;λj) ∝ exp(−1

2λjξ
T
j Kjξj)

(j = 1, . . . , r), where the density is defined only over Dj = {ξj : 1TBjξj = 0}
(1 is the vector with all components 1) because of the constraint

∑
i fj(tij) =

0, and that β has an improper prior p(β) ∝ 1. Let the conditional den-
sity of y for given β and ξ1, . . . , ξr be denoted by p(y|β, ξ1, . . . , ξr;σ2) =
(2πσ2)−n/2 exp

{− 1
2σ2 (y − µ)T(y − µ)

}
. By using the Bayes theorem, the joint

posterior density of β, ξ1, . . . , ξr is proportional to the joint density of y, β and
ξ1, . . . , ξr:

p(β, ξ1, . . . , ξr|y; λ, σ2) ∝ p(y|β, ξ1, . . . , ξr;σ
2)p(β)

r∏

j=1

p(ξj ; λj)

∝ exp lP(β, ξ1, . . . , ξr; y), (2.5)

where λ = (λ1, . . . , λr)T. Hence obtaining the mode of the joint posterior
density of β, ξ1, . . . , ξr is equivalent to maximizing the penalized log-likelihood.

Another useful idea related to the Bayesian approach is to represent the
smoothing spline as a linear mixed model. If the prior distribution of fj is
represented as

f j = XSjδj + ZSjaj , (2.6)
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the posterior mean and mode of fj is a smoothing spline of the degree (2m−1)
(Green, 1987), where XSj is a n× (m−1) matrix, ZSj is a n× (qj −m) matrix,
δj is a (m− 1)-vector of fixed effect parameters, and aj is a (qj −m)-vector of
random parameters whose components distribute independently and normally
with the mean 0 and the variance λ−1

j . It should be noted that, because of the
constraint

∑
i fj(tij) = 0, XSj has no column corresponding to the constant

term. The additive regression model is then represented as a linear mixed
model

y = XLβ + XSδ + ZSa + ε, aj ∼ N(0, λ−1
j Iqj−m), ε ∼ N(0, σ2In), (2.7)

where XS = [XS1 · · · XSr], ZS = [ZS1 · · · ZSr], δ = (δT
1 , . . . , δT

r )T, a =
(aT

1 , . . . ,aT
r )T, ε = (ε1, . . . , εn)T, and Ik is a k-dimensional unit matrix. The

MPLEs (β̂, δ̂, ã) give the best linear unbiased predictors (BLUP) of (β, δ,a)
(Robinson, 1991; Speed, 1991; Zhang et al., 1998).

2.3 Selecting the smoothing parameters

The most popular and standard procedure of choosing smoothing parameter in
the context of smoothing splines is cross-validation, represented by the gener-
alized cross-validation (Craven and Wahba, 1979). However, the idea of cross-
validation is to optimize on predicting responses, which does not match to a
primary objective of nonparametric regression, that is, to explore nonlinear re-
gression structure. Moreover, a distance between response variables might be
difficult to take information on complicated regression structure into account.
Some authors indicate that cross-validation often lead to undersmoothing (Dig-
gle and Hutchinson, 1989; Simonoff, 1996, Wang, 1998). Optimization of some
information criteria have been also considered (Hastie and Tibshirani, 1990;
Eilers and Marx, 1996; Imoto and Konishi, 1999).

Another procedure of selecting the smoothing parameters is to maximize the
marginal likelihood, which is proposed and called type-II likelihood by Good
(1965). The marginal density of y is defined by integrating out the parameters
β, ξ1, . . . , ξr constructing the additive regression model (2.7) from the joint
density of (y, β, ξ1, . . . , ξr):

p(y; λ, σ2) =
∫
· · ·

∫

D
p(y|β, ξ1, . . . , ξr;σ

2)p(β)
r∏

j=1

p(ξj ; λj)dβ dξ1 · · · dξr,

where D = Rp+1 ×D1 × · · · ×Dr. Then we obtain estimates of λ and σ2 that
maximize the marginal log-likelihood lM(λ, σ2) = log p(y;λ, σ2). We call the
procedure maximum marginal likelihood (MML). The procedure is also called
empirical Bayes approach, and is discussed in Akaike (1980), Ishiguro and Ara-
hata (1982), Kitagawa and Gersch (1984), Hastie and Tibshirani (2000) and
so on. A specific form of the marginal log-likelihood has a special one for the
PASS model, described in the next section. If we assume that the responses fol-
low a normal distribution, the generalized maximum likelihood (GML) (Wahba,
1985) and the restricted maximum likelihood (REML) (Patterson and Thomp-
son, 1971; Zhang et al., 1998; Sakamoto, 2002) are equivalent to the MML.
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3 Power additive smoothing splines

3.1 Power additive transformation in linear regression models

Here we describe the power additive transformation for linear regression models.
Suppose that each response yi (i = 1, . . . , n) is independently observed with
xi = (xi1, . . . , xip)T. We assume that yi is normally distributed with a mean
µi and a constant variance σ2, and that the power-transformed response y

(φ)
i

defined by (1.1) has a linear form

ηi ≡ E[y(φ)
i |xi] = β0 + xT

i β1, i = 1, . . . , n. (3.1)

Draper and Hunter (1969) considered choosing φ that attain the maximum
mean square ratio in linear regression models. Goto (1992, 1995) called the
method power additive transformation (PAT), in which the transformed expec-
tation µ

(φ)
i is considered to approximate ηi given by (3.1), that is,

µi ≈
{

(φηi + 1)1/φ, φ 6= 0
exp(ηi), φ = 0,

(3.2)

and the parameters β = (β0,β
T
1 )T, φ and σ2 are estimated with the maximum

likelihood.
The estimates are computed using the Newton–Raphson or the Fisher scor-

ing algorithm. For given φ and σ2, the updating equation for β in the Fisher
scoring algorithm (see, for example, McCullagh and Nelder (1989)) is given by

β̂
new

= (XT
L WXL)−1XT

L Wz, (3.3)

where XL is the same as in Section 2.1, W = diag(w1, . . . , wn) is the diagonal
matrix composed of working weights wi = µ̂2−2φ

i , and z = (z1, . . . , zn)T is the
vector of working responses zi = (yi − µ̂i)/

√
wi + η̂i.

3.2 Power additive smoothing splines

We return to the situation where each responses yi (i = 1, . . . , n) is indepen-
dently observed with xi = (xi1, . . . , xip)T and ti = (ti1, . . . , tir)T. We assume
that yi is normally distributed with a mean µi and a constant variance σ2, and
that the power-transformed response y

(φ)
i has an additive form

ηi ≡ E[y(φ)
i |xi, ti] = β0 + xT

i β1 + f1(ti1) + · · ·+ fr(tir), i = 1, . . . , n, (3.4)

where, as in Section 2, we give constraints
∑n

i=1 fj(tij) = 0 (j = 1, . . . , r) for
uniqueness. Both the parameters β = (β0,β

T
1 )T and the smooth functions

f1, . . . , fr are estimated together with the power parameter φ.
As in the PAT for the linear regression models (3.1), µ

(φ)
i is considered to

approximate ηi given by (3.4), and β and f1, . . . , fr are estimated by maximizing
the penalized log-likelihood

lP(β, f1, . . . , fr;y) = − 1
2σ2

n∑

i=1

(yi − µi)2 − 1
2

r∑

j=1

λjJ(fj) + const. (3.5)
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for given φ, λ = (λ1, . . . , λr)T and σ2, where J(fj) =
∫ {f (m)

j (tj)}2dtj is the
roughness penalty for fj as in Section 2. We call the MPLEs of f1, . . . , fr power
additive smoothing splines (PASS), which are natural splines of the degree
(2m− 1).

We introduce the basis function expression for fj as in section 2.1. Then
the penalized log-likelihood has the same form as (2.4), where µ(φ) = XLβ +
B1ξ1 + · · · + Brξr. The updating equation for the MPLEs β̂ and f̂j in the
Fisher scoring are given by

β̂
new

= (XT
L WXL)−1XT

L W (z − f̂1 − · · · − f̂ r), (3.6a)

f̂
new

j = SWj(z −XLβ̂ −∑
k 6=j f̂k), j = 1, . . . , r, (3.6b)

where W = diag(w1, . . . , wn), wi = µ̂2−2φ
i , z = (z1, . . . , zn)T, zi = (yi −

µ̂i)/
√

wi + η̂i, and SWj is the weighted spline smoother SWj = Bj(BT
j WBj +

λ∗jKj)−1BT
j W . For given φ and λ∗j = σ2λj , the working weights wi and the

working responses zi are updated in each time β̂ and f̂ j are once updated, and
the updating iteration is continued until these values converge. The algorithm
is a reweighted version of the backfitting algorithm, which is also called local
scoring by Hastie and Tibshirani (1986, 1990). In the case φ = 1, where W = I
and z = y, it results in the ordinary backfitting (2.2).

3.3 Selecting the power and the smoothing parameters

An objective of the PASS model (3.4) is to diagnose additivity, that is, to
find the most appropriate power transformation that satisfies the requirement
of additivity. The power parameter φ indicates the additive transformation
directly, and so its estimation is essential. Box and Hill (1974) applied the
maximum marginal likeihood to select a power parameter for power weighted
transformation (PAT) in linear regression models to diagnose homoscedasticity.
As we have seen in Section 2.3, the maximum marginal likelihood is also applied
to the selection of the smoothing parameter, and Sakamoto (2004) proposed to
estimate the power and the smoothing parameters jointly in power weighted
smoothing spline models (PWSS). Here, we propose to estimate the power
and the smoothing parameters jointly in the PASS model with the maximum
marginal likelihood.

We introduce the prior density of β and ξj (j = 1, . . . , r) as in Section 2.2.
Then the marginal density of y becomes

p(y; φ,λ, σ2) =
∫
· · ·

∫

D
p(y|β, ξ1, . . . , ξr; φ, σ2)p(β)

r∏

j=1

p(ξj ; λj)dβ dξ1 · · · dξr

∝
∫
· · ·

∫

D
exp lP(β, ξ1, . . . , ξr; y)dβ dξ1 · · · dξr. (3.7)

We consider (3.7) as a function of (φ,λ, σ2) and maximize it with respect to
these parameters. However, it is impossible to compute the integral in the
right-hand side exactly except when φ = 1.
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Some approaches of computing the marginal density of y approximately
have been discussed. One approach is to use the Markov chain Monte Carlo
methods, such as the Gibbs sampling (Zeger and Karim, 1991) and the Monte
Carlo filter (Kitagawa, 1996). However, the numerical results with them de-
pend on random numbers and so they require numerous time of computation.
Another approach is to derive approximation forms without using the integral.
We adopt a Laplace approximation (Tierney and Kadane, 1986; Davison, 1986)
because of its easy computation.

Let θ = (βT, ξT
1 , . . . , ξT

r )T for simplicity of notation. We consider Taylor ex-
pansion of the penalized log-likelihood lP(θ; y) around its maximum point, that
is, the MPLEs θ̂, and approximate the Hessian of the penalized log-likelihood
to its expectation. Then we obtain the Laplace approximation

lP(θ; y) ≈ lP(θ̂; y)− 1
2
(θ − θ̂)TIP(θ̂)(θ − θ̂), (3.8)

where

IP(θ̂) =
{

E
(
− ∂2lP

∂θ∂θT

)}

„̂

.

By substituting (3.8) into (3.7), an approximated marginal density of y becomes

p(y; φ,λ, σ2) ≈ exp lP(θ̂;y)
∫
· · ·

∫

D
exp

{
−1

2
(θ − θ̂)TIP(θ̂)(θ − θ̂)

}
dθ

∝ |IP(θ̂)|−1/2
+ exp lP(θ̂;y),

where |IP(θ̂)|+ is the product of non-zero eigenvalues of IP(θ̂). The approxima-
tion is exact if φ = 1. Hence we obtain an approximated marginal log-likelihood

lM(φ, λ, σ2; y) = lP(θ̂; y)− 1
2

log |IP(θ̂)|+const., (3.9)

and we maximize (3.9) with respect to (φ,λ, σ2) to obtain MML estimates.
After reparametering as λ∗ = σ2λ and some computation, we obtain the

MML estimate of σ̂2 explicitly as

σ̂2 =
1

n− d
zTW (z − η̂), (3.10)

where d = 1 + p + r(m − 1), z and W are working responses and working
weights, respectively, when the Fisher scoring algorithm (3.6) converges, and
η̂ = XLβ̂ + f̂1 + · · · + f̂ r. By substituting (3.10) into (3.9) and conducting
some matrix operation using a BLUP equation in the linear mixed model (2.7),
we obtain a specific form of the approximated marginal likelihood

lM(φ,λ∗, σ̂2; y) = −n− d

2
(1 + log σ̂2) +

r∑

j=1

qj −m

2
log λ∗j −

1
2

log |CW |+ const.,

(3.11)
where

CW =




XT
L WXL XT

L WXS XT
L WZS

XT
S WXL XT

S WXS XT
S WZS

ZT
S WXL ZT

S WXS ZT
S WZS + Λ∗
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and

Λ∗ =




λ∗1Iq1−m O
. . .

O λ∗rIqr−m


 .

In the case r = 1, we obtain its more specific form

lM(φ, λ∗, σ̂2;y) = −n− (p + m)
2

(1 + log σ̂2) +
q1 −m

2
log λ∗1

− 1
2

log |BT
1 WB1 + λ∗1K1| − 1

2
log |XT

L W (I − S1)XL|+ const.,

which is also derived in the case φ = 1 (W = I) by Tanabe and Sagae (1992)
as the improper prior Bayes information criterion (IPBIC).

3.4 The algorithm of PASS

The algorithm of PASS is summarized as follows.

1. For given φ,

(a) Setting initial weights:

(i) Consider the PAT model yi ∼ N(µi, σ
2), µ

(φ)
i = β0+xT

i β1+tT
i β2.

First set the initial weights as wi = y2−2φ
i , for example, and find

regression estimates (β̂0, β̂1, β̂2) in the way described in Section
3.1.

(ii) Set the initial weights in (b) as wi = µ̂2−2φ
i , where µ̂

(φ)
i = β̂0 +

xT
i β̂1 + tT

i β̂2.

(b) For given λ∗, fit the PASS model (3.4) in the way described in Section
3.2.

(i) Update the weights as wi = µ̂2φ−2
i .

(ii) Update β̂ with (3.6a).
(iii) For j = 1, . . . , r, update f̂ j with (3.6b).
(iv) Decide whether the estimates have converged or not. If con-

verged go to (c), otherwise return to (i).

(c) Compute the MML estimate of σ2 with (3.10), and the approximated
log-likelihood lM(φ,λ∗, σ̂2) with (3.11), described in Section 3.3.

2. Find (φ,λ∗) that maximizes lM(φ, λ∗, σ̂2) in the following way.

• Grid search, or

• Newton–Raphson algorithm, in which the derivarives of lM are ap-
proximated by its differences.

The Bayesian posterior covariance matrix of (β̂, ξ̂1, . . . , ξ̂r) is obtained as
σ̂2IP(θ̂)−, where IP(θ̂)− is the generalized inverse of IP(θ̂). Especially, the
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posterior covariance matrices of β̂ and f̂ j are

var(β̂) = σ̂2C
(L)
W ,

var(f̂ j) = σ̂2[XSj ZSj ]C
(j)
W

[
XT

Sj

ZT
Sj

]
, j = 1, . . . , r,

where C
(L)
W and C

(j)
W are corresponding linear and the j-th smooth components

of C−1
W , respectively.

4 Application to some data

We describe some application of the PASS models (3.4) to four data sets listed in
Table 1, comparing with the power additive transformation in linear regression
(PATLR) models (3.1) and the ordinary additive regression models (2.1). If we
set φ = 1 in PASS, we get the ordinary additive model, whie if the smoothing
parameters are taken to infinity, the PASS model tends to the PATLR model.
For the PASS and the additive regression models we also compute the equivalent
degree of freedom (EDF) for each f̂j (Hastie and Tibshirani, 1990), where we
define it as the trace of the smoother matrix Sj (or SWj) minus 1. If it is close
to 1, f̂j is almost linear, whie if it is larger, f̂j becomes rough. The results of
analysis are shown in Table 2.

For the data set (1), the estimate of the power parameter φ with PASS
indicates almost log transformation, which suggests multiplicative relationship.
There is small difference between PASS and the additive model in the smooth-
ness of f̂1 and f̂2. For the data sets (2) and (3), extremely large values of
φ are indicated with PASS, which suggests that the data might involve some
complicated relationship that can not be explained by the additive model. For
the data set (4), we could not obtain convergence in the backfitting algorithm
if φ is larger than 1. Most of the failure in convergence is caused by obtaining
non-positive µ̂i with the relation (3.2).

Table 1. Four data sets.
Data Variables Sample size
(1) Engine exhaust for y : NOx concentration n = 88

burnings of ethanol t1: compression ratio
Chambers and Hastie (1992) t2: equivalence ratio

(2) Volume of cherry blossom y : volume n = 31
Bowman and Azzalini (1997) t1: diameter
Schimek and Turlach (2000) t2: height

(3) Diabetes data y : log concentration of C-peptide n = 43
Hastie and Tibshirani (1990) t1: age

t2: base deficit (acidity)
(4) New York ozone concentration y : ozone concentration n = 111

Chambers and Hastie (1992) t1: solar radiation
t2: temperature
t3: wind speed
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Table 2. Result of analysis with PASS and so on.
データ PATLR (3.1) PASS (3.4) Additive (2.1)

φ̂ φ̂ EDF EDF
(1) (3.515) 0.228 f̂1 : 2.44 f̂1 : 2.74

f̂2 : 9.06 f̂2 : 10.03
(2) 0.521 (5.139) f̂1 : 8.26 f̂1 : 3.41

f̂2 : 1.04 f̂2 : 1.01
(3) (4.000) (10.00) f̂1 : 2.38 f̂1 : 2.52

f̂2 : 2.97 f̂2 : 2.02
(4) (0.400) (1.000) f̂1 : 1.72

f̂2 : 3.54
f̂3 : 3.47

Note: each estimate in parantheses indicates that the maximum of the marginal likelihood
was found at the boundary of the region where we obtained convergence in the backfitting
algorithm.

5 Concluding remarks

We have proposed the PASS model to diagnose validity of assuming additivity in
the additive regression model. The regression parameter and smooth functions
are estimated with the penalized likelihood, in which we have constructed the
backfitting algorithm based on Fisher scoring. The power and the smoothing
parameters, which govern global nonlinear regression structure, are estimated
with the maximum marginal likelihood, in which we have considered the Laplace
approximation of the marginal likeihood. We have examined application of the
PASS model to some data sets. One problem is to investigate how we obtain
convergence in the backfitting algorithm easily.

We intend to evaluate the performance of the PASS model through some
simulation experiment, both when an additive relationship holds and when non-
additive components exist. Moreover, from a practical point of view, we should
examine application to longitudinal data, functional data and so on.
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