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Abstract — The multivariate adaptive regression spline
(MARS), proposed by Friedman (1991), estimates regression
structure including interaction terms adaptively with trun-
cated power spline basis functions. However, it adopts the
generalized cross-validation criterion to add and prune ba-
sis functions, and hence it tends to choose such large num-
bers of basis functions that estimated regression structure
may not be easily interpreted. On the other hand, some
Bayesian approaches incorporated in MARS have been pro-
posed, in which the reversible jump MCMC algorithm is
adopted. However, they generate enormous combinations of
basis functions, from which it would be difficult to obtain
clear interpretation on regression structure.

An empirical Bayes method to select basis functions and
knots in MARS is proposed, with taking both advantages of
the frequentist model selection approach and the Bayesian
approach. A penalized likelihood approach is used to es-
timate basis coefficients for given basis functions, and the
Akaike Bayes information criterion (ABIC) is used to deter-
mine the number of basis functions. It is shown that the pro-
posed method gives estimation of regression structure which
is relatively simple and easy to interpret for some example
data sets.

1 Introduction

The multivariate adaptive regression spline
(MARS), proposed by Friedman (1991), estimates
regression structure including interaction terms
adaptively with truncated power spline basis func-
tions. The selected basis functions as well as the
selected positions of knots give suggestive infor-
mation for understanding regression structure in-
cluding interaction terms.

However, Friedman’s MARS adopts the gener-
alized cross-validation criterion to add and prune
basis functions. It has been pointed out that the
cross-validation criterion tends to make estimated
functions relatively rough, because it is intended
to optimize prediction of responses. In some ap-
plications, Friedman’s MARS often choose such
large numbers of basis functions that estimated re-
gression structure may not be easily interpreted.
Moreover, the criterion based on the distance in
the space of responses does not seem to match
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with the original objective of the MARS that is to
explore regression structure. From these points of
view, another criterion should be reconsidered.

Recently, some Bayesian approaches incorpo-
rated in MARS have been proposed (see Denison et
al., 2002). Priors are prescribed on the numbers of
basis functions, the variables involved in each ba-
sis function, the position of knots, basis coefficients
and so on, as well as some hyper-parameters, and
then posterior sampling of the estimated func-
tion is conducted with the reversible jump Markov
chain Monte Carlo (RIMCMC) algorithm (Green,
1995). The Bayesian approaches provide good pre-
diction performance in some applications. How-
ever, they generate enormous combinations of ba-
sis functions, from which it would be difficult to
obtain clear interpretation on regression structure.
Moreover, since the sampling with the RIMCMC is
extremely computer-intensive, the analysis is not
feasible on PC.

In this paper, we propose an empirical Bayes
method to select basis functions and knots in
MARS, with taking both advantages of the
frequentist model selection approach and the
Bayesian approach. We use a penalized likelihood
approach to estimate basis coefficients for given
basis functions, with a prior on the basis coeffi-
cients viewed as a penalty for complexity. We se-
lect the basis functions and the position of knots as
well as the hyper-parameters by maximizing the
Laplace approximation of the marginal likelihood,
and determine the number of basis functions by
minimizing the Akaike Bayes information crite-
rion (ABIC) (Akaike, 1980). We show an applica-
tion of our method to some example data.

2 The MARS model

We suppose that each response y;, i = 1,...,n,
is observed with r explanatory variables x; =
(xit, ..., xi)T. We would like to estimate a func-
tion f that satisfies a regression model such as

E(yi) = f(xi),

i=1,...,n.
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We assume that the regression function f is rep-
resented as a linear combination of basis functions
oe(x), k=1,...,K:

K
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k=1
and the coefficients ag,a1,...,ax are estimated.
Each basis function is the truncated power spline
function
Ly
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where [x], is the positive part of x, that is, [x], = x
if x > 0and [x]+ = 0if x < 0, and a given posi-
tive integer m is the order of splines. The number
of basis functions K, the degree of interaction Ly,
the sign sy, which is +1 or —1, the number of the
variable involved in the basis function v(k, [), and
the position of a knot cy are all selected with some
lack-of-fit criterion based on data.

The algorithm of Friedman’s (1991) MARS is
composed of the following two sections:

e Forward stepwise:
Set the basis for a constant term as ¢ = 1.
Supposing that we have K + 1 basis functions
®o, P1(x), ..., Px(x), add new two basis func-
tions

Pr+1(x) = Pr()[+(xo ) — ci)]T,
Pr+2(x) = Pr(2)[—(xok) — cx)],

where ¢i(x) is a parent basis function, X,y
is a variable that is not included in ¢x(x) and
cx is a knot position (cy € {Xivgnti=1,..n), all
of which are selected so that they minimize a
lack-of-fit criterion.

The addition of basis functions is continued
until K becomes greater than Kmax.

e Backward stepwise:
Select one basis function (except ¢g) and
prune it so that the lack-of-fit criterion is min-
imized.
The pruning is continued until the lack-of-fit
criterion does not become decreasing even if
a basis function is deleted.

Friedman (1991) uses a version of the general-
ized cross-validation score, originally proposed by
Craven and Wahba (1979), in which he also sug-
gests using a cost complexity function proposed
by Friedman and Silverman (1989).

For given basis functions ¢«(x), k = 0,1,...,K,
we obtain the least square estimate of a =
(ao,a1,...,ax)"%, ds = (CDECDK)‘“DE]/, where y =
(yl,...,yn)T and @k is the matrix with the (i, k)
component ¢x(x;). However, the problem of multi-
colinearity must occur in the matrix @k as K in-
creases. The fact motivates the use of some regu-
larization method such as the ridge regression.

3 Empirical Bayes method for MARS

3.1 Estimation of basis coefficients

We assume (2) and (3) as in Section 2. Supposing
that the basis functions ¢ (x), k = 0,1,...,K, are
given, we consider a normal prior on the coeffi-
cient a,

p(aldr, A) = (A/20) K2 exp (—%aTa), (4)

where the positive number A is a hyper-parameter,
which controls the complexity of the function. The
prior is also adopted in some Bayesian approaches
(for example, Denison et al., 2002).

Under the prior (4), the posterior density of a is
obtained, from Bayes’ theorem, as

plaly, ©k, 0%, A) o« p(ylPk, a,6*)p(al®k, A),  (5)

where p(y|P, a, 0?) is the density of y for given @k
and a, and ¢? is the variance component of the dis-
tribution of y. In the case of normal responses with
the error variance ¢?, the posterior distribution of
a becomes normal with the mean
a=(Drox + A'T) DLy (6)
and the variance matrix o?(®}®k + A'I)!, where
A* = Ag?, and I is the identical matrix.
Finding the mode, 4, of the posterior density of

a, is equivalent to maximizing the penalized log-
likelihood

Ie(aly, Pk, 0%, M)
= log p(ylPx, a,0%) — a"a + £ log A + const. (7)

with respect to a. In the normal distribution case,
we can compute the maximum penalized likeli-
hood estimate (MPLE) (6) directly. In non-normal
distribution case, we can obtain the MPLE via
an iterative algorithm such as the Fisher scoring
method (see, for example, McCullagh and Nelder,
1989; Green and Silverman, 1994).



3.2 Selection of basis functions and knots

To estimate the knot position ¢ = {cy}, the vari-
ance component 02 and the hyper parameter A,
we consider the marginal likelihood as a lack-of-
fit criterion. The marginal likelihood, in which a is
integrated-out from the posterior density of a (5),
is written as

p(yICDK,GZ, A) = fp(yICDK, a,az)p(aICDK,/\)da

= f exp{lp(aly, @k, 0%, A)}da. (8)

The method of maximizing the marginal likeli-
hood (8) can be regarded as a kind of the empirical
Bayes method in which non-informative priors are
assumed to ¢ and A,

The exact computation of the integral included
in (8) is not generally feasible except in the nor-
mal response case. Using the Laplace approxima-
tion (Tierney and Kadane, 1986; Davison, 1986),
that is, the Taylor expansion of the penalized log-
likelihood (7) around its maximum d, we obtain
an approximated marginal log-likelihood

v, o2, Aly) = log p(y|Pk, a2, A)
~ Ip(aly, Pk, 02, A) — § log |Hp(a)| + const., (9)

where Hp(a) is the negative Hessian of the penal-
ized log-likelihood

 Ph
dada" ),

In the normal response case, the expression (9) is
exact, and Hp(a) = 0~2(P P + A*T). We can obtain
a similar expression in non-normal response case.

We maximize the approximated marginal log-
likelihood (9) with respect to the knot position
¢ = {cy}, the variance component 02 and the hy-
per parameter A, as well as the variables {v(k, )}
involved in basis functions and even the combi-
nation of basis functions. However, the marginal
log-likelihood (9) seems to increase as the number
of basis functions K increase. Our idea is to select
K and the combination of basis functions that min-
imize Akaike’s Bayes information criterion (ABIC)
(Akaike, 1980)

ABIC = —2lp(c, 0%, Aly) + 2( + 2)

Hp(a) = (

in the forward stepwise section, where g is the
number of knots ¢ = {cy} involved in the ba-
sis functions. In the backward stepwise section,
we only maximize the marginal log-likelihood
Iv(c, 02, Aly), as the knots c are already estimated.

4 Example

We applied our empirical Bayes method to the
kyphosis data set, which is also analyzed by Hastie
and Tibshirani (1990) and Chambers and Hastie
(1992). We fitted the logistic regression model, in-
stead of (1),

pi

log 7 . fxi),

i=1,...,n,
where p; = Pr(y; = 1), y; is the binary variable for
the i-th patient that indicates whether the kypho-
sis remains after the surgery, and x; = (i, Xi2, Xi3) "
are [1] the age (in month), [2] the starting verte-
brae level of the surgery and [3] the number of the
vertebrae levels involved, respectively. The order
of the spline was set to m = 1 for simplicity.

Table 1 shows the stepwise process of the Em-
pirical Bayes MARS applied to the kyphosis data.
The rightmost column indicates the numbers of the
variable involved in the additional basis functions.
In the forward stepwise section, the ABIC score is
maximized when seven basis functions are used.
In the backward stepwise section, two basis func-
tions are pruned out of the seven. The resulting
estimated function becomes

f(x) = 1.02 - 0.369[x; — 6] — 0.105[6 — x2]+
—0.00285[96 — x1], — 0.00191[96 — x1],+[14 — x3].,

which suggests that the risk of kyphosis is the high-
est if the age is greater than 96 months, the starting
level is around 6 and the number of the level is
around 14. The result is similar to those obtained
in some literature such as Chambers and Hastie
(1992).

K+1 Im ABIC log, A (k)
Forward stepwise:

1 —44.725 91.450

3 —-37.841 79.682 -1.16 2

5 -36.289 78.578 -143 1

7 -34.713 77426* -168 1,3

9 —-34.186 78.372 -1.67 1,3

11 -33.918 79.836 -1.76 1,3
Backward stepwise:

6 -34.713 -1.68

5 -34.136 -1.43

Table 1: Empirical Bayes MARS applied to the
kyphosis data: the stepwise process.
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Figure 1: Empirical Bayes MARS applied to the
kyphosis data: the estimated probability.

Figure 1 shows the estimated probability as
functions of x,. The solid line is drawn at x; = 84.7
and x3 = 4.2 (both are the mean values), the dashed
line is drawn at x; = 1 (minimum) and x3 = 4.2,
The dotted line is drawn at x; > 96 and x3 = 4.2.
The figure suggests that both the age and the start
level are highly related to the risk of kyphosis.

5 Concluding Remarks

We have proposed the empirical Bayes approach
for the MARS model. The proposed method pro-
vides estimation of regression structure which is
relatively simple and easy to interpret in the case
of the data set we applied.

We are studying the performance of the empir-
ical Bayes MARS about how to extract regression
structure including interaction terms rightly. Al-
though we used a simple prior on basis coefficients
in this paper, but we could use more elaborate pri-
ors in connection with the roughness penalty. We
are considering the extension to apply to hierar-
chical data, longitudinal data, functional data and
so on, and some application to classification and
discrimination problems. Furthermore, we will
be able to develop an empirical Bayes method for
classification and regression tree (CART) (Breiman
et al., 1984).
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