
A Sectoral Analysis of Price-Setting Behavior
in US Manufacturing Industries∗

Campbell Leith
University of Glasgow

Jim Malley
University of Stirling

December 15, 2005

Abstract

In this paper we estimate New Keynesian Phillips Curves (NKPC)
for US manufacturing industries defined at the SIC 2-digit level over
the period 1959 to 1996. This enables us to measure the extent of
nominal inertia across industrial sectors. A key innovation in this re-
search is the use of intermediate goods costs rather than labor costs
as a measure of marginal costs. Intermediate goods costs are a more
significant element of costs for the firms populating our sample and
are not subject to the criticism that wage rates are non-allocative.
We find that there is statistically significant variability in estimates
of price stickiness, ranging from 8 months to 2.5 years. We also find
that estimates of backward-looking price-setting behavior vary, with
some industries characterized by 80% of pricing decisions made in
a purely forward-looking manner, while in others only 50% of pric-
ing decisions are made that way. Market power (as captured by the
Herfindahl-Hirschman index ) appears to be associated with increased
price stickiness, but reduced rule-of-thumb behavior in setting prices.
Finally, firms are also more likely to follow simple rules of thumb when
output in their industry is more volatile.
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1 Introduction

The New Keynesian Phillips curve (NKPC ), which links current inflation to
expectations of future inflation and a measure of excess demand in the form
of the output gap, has become a mainstay of modern macroeconomics as
part of the ‘New Neo-Classical Synthesis’ (see Goodfriend and King (1997)
for a discussion). However, until recently, this essential building block of
contemporary macroeconomics has been criticized on empirical grounds (see
Mankiw and Reis (2002), for example), largely because it apparently fails to
capture the degree of inflation inertia many believe to be a feature of the data.
Recent work on the NKPC based on Calvo’s (1983) overlapping contracts
framework (see for example Galí and Gertler (1999), Galí et al. (2001),
Sbordone (2002) and Leith and Malley (2005)) suggests that, as a measure
of inflationary pressures, the output gap is a poor proxy for marginal costs.
Accordingly, when a theoretically coherent NKPC is estimated for the US
and Euro-area, using aggregate log-linearized labor share data as a measure
of marginal costs, the NKPC appears to be a reasonable model of inflation.
In this paper we build on the insight of this approach, but extend the

analysis to take account of sectoral differences in price-setting behavior and
propose an alternative measure of marginal costs based on intermediate goods
costs rather than labor costs, which we argue is likely to be a better proxy for
marginal costs for the industries in our sample1. Several authors have noted
that monetary policy can have significantly diverse impacts on different sec-
tors, with particular attention being paid to the varying responses to mone-
tary policy of durable and non-durable consumer good sectors (see, for exam-
ple, Galí (1993) and Baxter (1996)). Despite these differences, most analyses
of optimal monetary policy undertaken as part of the New Neo-Classical Syn-
thesis utilize single-sector models. An exception to this is Erceg and Levin
(2002) who develop a two-sector sticky-price model and demonstrate that
welfare depends upon inflation and output gaps within each sector, not sim-
ply aggregate variables. In Erceg and Levin (2002) sectoral differences stem
from demand-side variations between durable and non-durable goods, but
a common degree of price-stickiness is assumed across sectors. Aoki (2001)
also develops a sectoral model, but focuses on differences in the degree of
price stickiness across sectors. His analysis suggests that monetary policy
should target inflation in the sticky-price sector rather than focusing on an
aggregate measure. In other words, welfare is maximized by reducing the
distortions associated with price stickiness through targeting a measure of

1Indeed, we find that replicating the regressions of this paper using labor share data as
a measure of marginal costs yields implausible measures of the degree of price stickiness.
These results are available upon request.
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‘core’ inflation which is based on inflation in the sticky price sector. Accord-
ingly, any finding of significant asymmetries in price-setting behavior across
sectors should provide evidence on which to base a ‘core’ measure of infla-
tion. Additionally, Barsky et al. (2005) suggest that whether or not price
stickiness rests in durable or non-durable goods sectors is crucial in defining
the impact of monetary policy on the economy. For these reasons, estimating
the extent of nominal inertia across sectors is an important extension of the
NKPC approach.
To allow for sectoral differences in price-setting, we construct sector spe-

cific versions of the hybrid New Keynesian Phillips curve along the lines of
Gali et al. (2001) or Leith and Malley (2005), where firms can change their
prices after random intervals of time as in Calvo (1983). However, rather
than focus on labor’s share as a measure of marginal cost, as is common in
aggregate studies, we derive a measure of marginal cost largely driven by the
ratio of the value of intermediate goods used in production to gross output.
We do this for several reasons. Firstly, intermediate goods are a significant
part of firm costs within US manufacturing (see Table 1 below). Secondly,
within our dataset, there are only data for the wage costs associated with
production workers, and this may be too narrow a definition of labor input
to accurately capture marginal costs through the conventional labor share
measure. Thirdly, some authors question whether the measured hourly wage
rate really plays an allocative role and as such labor cost based measures of
marginal cost may be inappropriate (see, for example, Blinder et al (1998),
Chapter 1). Finally, intermediate goods are not subject to concerns about
varying effort levels or utilization rates in the same way as labor and capital
inputs.
The importance of material costs within US manufacturing industries is

highlighted in Table 1 below which details the average ratio of production
worker wage costs, W iHi, to gross output, P iyi and the ratio of material
costs, Pm,imi, to gross output. From the first two columns in Table 1 it
is clear that material/intermediate goods costs are a far more significant
part of variable costs than production worker labor costs for all the 2-digit
manufacturing industries considered in the table.
When we econometrically estimate our specification of price-setting be-

havior for the US manufacturing industries at the 2-digit level, we find plau-
sible estimates of the degree of inertia in each sector. The average duration
of price contracts is 15.7 months and durable goods industries are relatively
more sticky than non-durable goods industries. Our econometric work also
suggests that around two thirds of firms set prices optimally, in a forward-
looking manner, rather than following backward-looking rules of thumb. Ad-
ditionally, market power (as captured by the Herfindahl-Hirschman index)
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tends to be associated with stickier prices, but less backward-looking behav-
ior. Finally, our results imply that there are significant asymmetries in the
degree of price-stickiness among industrial sectors as well as asymmetries in
the degree of backward-looking behavior in price setting, which as pointed
out above may be a cause for concern for policy makers in the Fed.

Table 1 - Costs in US Manufacturing Industries

SIC Industry W iHi

P iyi
Pm,imi

P iyi

Aggregate Manufacturing 0.115 0.682
20 Food and Kindred Products 0.063 0.673
21 Tobacco Products 0.071 0.717
22 Textile Mill Products 0.155 0.598
23 Apparel & Other Finished Products 0.185 0.519
24 Lumber & Wood Products (exc. Furniture) 0.168 0.590
25 Furniture & Fixtures 0.187 0.482
26 Paper & Allied Products 0.121 0.557
27 Printing, Publishing & Allied Industries 0.154 0.350
28 Chemicals & Allied Products 0.064 0.485
29 Petroleum Refining & Related Industries 0.025 0.831
30 Rubber & Miscellaneous Plastics Products 0.152 0.493
31 Leather & Leather Products 0.180 0.512
32 Stone, Clay, Glass & Concrete Products 0.163 0.450
33 Primary Metal Industries 0.128 0.617
34 Fabricated Metal Products 0.165 0.499
35 Industrial and Commercial Machinery

& Computer Equipment 0.145 0.462
37 Transportation Equipment 0.114 0.595
39 Miscellaneous Manufacturing Industries 0.154 0.465
The data used in this table are described in Appendix 1. Note that lack of
data for the full sample prevent the use of industries 36 and 38

The rest of the paper is organized as follows. In Section 2 we derive our
sectoral NKPCs in the presence of intermediate/material good inputs. In
Section 3 we describe our data and estimate the model for 18 2-digit US
manufacturing industries. Section 4 contains our conclusions.
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2 The Model

The New Keynesian Phillips Curve (NKPC ) derived under the assumption
that firms can only change prices at random intervals of time (as set out in
Woodford (2003), Chapter 3, for example) implies that current inflation is
related to expectations of future inflation as well as the current value of mar-
ginal costs. In applying this description of inflation dynamics to industrial
sectors, we follow Gali and Gertler (1999) in allowing some firms to set prices
according to a backward-looking rule-of-thumb. Specifically inflation in each
industry, i, obeys,

bπit = βαi
λi
Etbπit+1 + ωi

λi
bπit−1 + (1− ωi)(1− αi)(1− αiβ)

λi
(dMCit) (1)

where λi = ωi + βωiαi + αi − ωiαi . The parameter 1− αi is the probability
of price change in a given period in industry i, ωi are the proportion of firms
that follow a backward-looking rule of thumb which indexes their price to
last-period’s average (sectoral) reset price plus observed inflation and β is
firms’ steady-state discount factor. The variable bπit is the (demeaned) rate
of output price inflation in sector i and dMCit is a log-linearized measure of
marginal costs derived below.

2.1 Defining Marginal Cost

We now turn to consider the form of the firm’s production function in order to
define marginal cost within each sector. We adopt a CES form for production
where firms combine intermediate goodsmi

t along side another factor f
i
t. This

second factor of production can be thought of as an aggregate of all other
factors of production e.g. labor and capital, which can be disaggregated
and modelled as desired. Our representative firm’s production function is
therefore given by,

yit =
¡
λf,i(f

i
t )
1−ρi + λm,i(m

i
t)
1−ρi

¢ 1
1−ρi (2)

where λf,i and λm,i are distribution parameters within the CES production
function, and 1/ρi is the elasticity of substitution between intermediates and
our second composite factor. The marginal product of materials is,

∂yit
∂mi

t

= λm,i

µ
yit
mi
t

¶ρi

. (3)

Defining the costs share of intermediates as,

sm,it =
Pm,it mi

t

P it y
i
t

(4)
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where Pm,it is the price of intermediate goods and P it the price index asso-
ciated with output in sector i, we can write real marginal cost for sector i
as,

MCit ≡
Pm,it

P it

∂mi
t

∂yit
=

1

λm,i

¡
sm,it

¢ρi ¡pm,it

¢1−ρi (5)

where pm,it =
³
Pm,it

P it

´
is the relative price of materials. Therefore, log-linearized

marginal costs can be written as,

dMCit = ρibsm,it + (1− ρi)bpm,it . (6)

and substituted into our NKPC above.

3 Estimation and Empirical Results

We next briefly discuss some issues pertaining to the data and the economet-
ric estimator prior to presenting our results and analysis.

3.1 Measurement Issues

Survey evidence in the US, suggests that different products are subject to
quite different degrees of price stickiness. For example, Carlton (1986) finds
evidence of price stickiness as low as 4 months. Given this, we must ensure
that the data used in our estimation is at least as frequent as the lowest
estimate of price inertia. This rules out the use of annual data since 1/(1−
αi), the average number of months that prices remained fixed, would be
constrained to be no less than one year.
Given these considerations, to estimate the NKPC developed in the the-

ory requires that we employ data with a minimum of a quarterly frequency for
the following variables: real gross output, yi; implicit gross output deflator,
P i; real intermediate inputs, mi and the implicit price deflator for interme-
diate inputs, Pm,i. Unfortunately, higher frequency industry level data (i.e.
quarterly or monthly) for intermediate inputs and their corresponding prices
is not available. While the Bureau of Labor Statistics (BLS) reports prices
on a sub-aggregate manufacturing basis there are several problems with these
measures in the context of our research. The producer price indices are not
the correct conceptual match for the gross output deflator nor are they pro-
vided in the desired industry breakdown. For example, these data are only
reported on a SIC basis from the mid-1980’s. The longer historical time-series
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published for producer prices are on a commodity basis2.
In contrast, the data provided in the National Bureau of Economic Re-

search (NBER) annual Productivity Database has the major advantage that
its measures provide an very good match with the requirements of the the-
ory, but the data is annual. Therefore, to estimate the unobserved quarterly
movements in the annual NBER data we employ the distribution method de-
veloped by Fernandez (1981). The Fernandez approach generalizes the model
set out Chow and Lin (1971) and relies on estimating the relationship be-
tween the annual NBER data and the related quarterly series obtained from
the BLS and FRB. While the measures from these sources do not provide
the exact conceptual match with the theory, they will nonetheless be highly
correlated with the annual measures and as such will act useful proxies for
quarterly movements in the NBER data. Given there is not a one-to-one
mapping between the series measured by BLS/FRB and the NBER data it
is clearly preferable to use the former data to proxy missing quarterly move-
ments in the NBER data instead of employing these data as direct proxies
for the NBER annual data. Full details of the our application of the ap-
proach are given in the Appendix. Finally note that all of the quarterly data
employed in the estimation of our NKPCs are seasonally adjusted and that
industries 36 and 38 had to be dropped due to insufficient observations.

3.2 Estimator

Using the data described above, we jointly estimate the parameters of the
model derived in Section 2 for 18 2-digit manufacturing industries over the
period 1958(2) to 1996(3). This implies the estimation of 54 parameters (i.e.
3x18 ‘deep’ parameters) 3. These parameters include the probability that a
firm in sector i cannot reset their price in period t, αi, the proportion of firms
following rule-of-thumb pricing behavior in time t, ωi and the parameter
determining the elasticity of substitution between intermediate goods and
other factors, ρi, for each industry. We compare the estimates across sectors
and this allows us to draw a number of conclusions of direct relevance to
policy makers.

2Further note that the Federal Reserve Board (FRB) monthly indices of industrial
production are also not a precise match for gross output since these are value-added based
indices.

3Although the theory allows us to estimate the steady-state discount factor, β, we find
that this is implausibly low if estimated freely. This is a common problem in estimating
models of this type (see for example, Ireland (2004)). Therefore we choose, following
Rotemberg and Woodford (1998) to calibrate the discount factor as β = 0.99 which is
consistent with an annualised risk-free real interest rate of 3%.

7



Given that our model incorporates forward-looking rational expectations
(RE), we employ Hansen’s (1982) generalized method of moments (GMM)
estimator which easily handles the system of orthogonality conditions sug-
gested by the RE hypothesis applied to each sectoral Phillips curve4. The
instruments we employ are specific to each industry and include a constant
term, one period lags of industry-specific inflation, the share of intermediate
goods in output and the real price of intermediate goods. In line with our
theory the instruments are all demeaned. To obtain standard errors which
are robust to heteroscedasticity and autocorrelation of unknown form, we
calculate the covariance matrix of sample moments using the Newey and
West (1987) estimator5. Finally to test the validity of our overidentifying
restrictions we calculate Hansen’s J−statistic which is distributed χ2(r−a)
where r and a denote the number of orthogonality conditions and parameters
respectively.

3.3 Interpretation of Results

The results of estimating the system of 18 2-digit industries are detailed in
Table 2. The first three columns give parameter estimates with the associated
standard error in brackets. The fourth column calculates the average length
of time in months it takes to adjust all prices in a given industry,

³
1

1−αi

´
× 3

based on our estimates of the probability of not being able to change prices in
a given quarter, αi. The final column measures the adjusted R2 for each equa-
tion. Descriptions of the industries corresponding to the SIC codes can be
found in Table 1 in the Introduction. There are several things to note about
these results. Firstly, with the exception of industry 24 (Lumber & Wood
Products (exc. Furniture)) all estimates of the degree of price-stickiness are
statistically significant and plausible. Of the remaining industries, the most
flexible industry is 29 (Petroleum Refining and Related Industries) and the
least flexible, 33 (Primary Metal Industries). In all industries, other than
24, there is also a significant degree of backward-looking behavior, although
around two thirds of prices are set in a profit-maximizing manner.

4Although several recent papers question the robustness of GMM in this context (see
Rudd and Whelan (2005) and Lindé (2005)), Galí et al., (2005) convincingly refute these
claims.

5In the estimations reported in Table 2, the lag truncation parameter is equal to 4.
Note that we use the Bartlett spectral density kernal to insure the positive definiteness of
the covariance matrix of the orthogonality conditions (see Newey and West, 1987). Further
note that these results are robust to alternative values of the lag truncation parameter,
e.g. we examined values ranging from 2 to 12. To preserve space, these results are not
reported but will be made available on request.
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Table 2 - Estimation Results
Sic Code αi ωi ρi

³
1

1−αi

´
× 3 R

2

20
0.820
[0.000]

0.250
[0.016]

0.416
[0.259]∗

16.6 0.31

21
0.866
[0.000]

0.249
[0.046]

0.893
[0.595]∗

22.3 0.37

22
0.751
[0.000]

0.399
[0.027]

1.080
[0.000]

12.1 0.57

23
0.799
[0.000]

0.484
[0.000]

0.723
[0.025]

14.9 0.79

24
1.011
[0.771]∗

0.375
[0.776]∗

5999.3
[1.000]∗

NA 0.47

25
0.805
[0.000]

0.466
[0.003]

0.950
[0.000]

15.4 0.84

26
0.889
[0.000]

0.445
[0.011]

1.373
[0.360]∗

27.1 0.49

27
0.808
[0.000]

0.280
[0.000]

0.994
[0.000]

15.6 0.63

28
0.768
[0.000]

0.442
[0.001]

1.152
[0.000]

12.9 0.82

29
0.634
[0.000]

0.196
[0.016]

1.029
[0.000]

8.2 0.19

30
0.747
[0.000]

0.473
[0.003]

1.039
[0.000]

11.9 0.83

31
0.720
[0.000]

0.427
[0.000]

1.181
[0.000]

10.7 0.56

32
0.804
[0.000]

0.240
[0.016]

1.180
[0.000]

15.3 0.72

33
0.901
[0.000]

0.522
[0.001]

4.622
[0.819]∗

30.2 0.63

34
0.692
[0.000]

0.316
[0.002]

1.042
[0.000]

9.7 0.78

35
0.856
[0.000]

0.288
[0.007]

2.140
[0.139]∗

20.8 0.63

37
0.890
[0.000]

0.240
[0.053]

0.726
[0.300]∗

27.4 0.58

39
0.751
[0.000]

0.421
[0.000]

1.059
[0.000]

12.0 0.81

Notes: (1) p− values are in square brackets; (2) a star indicates not significant
at the 5% level; (3) NA is not applicable; (4) N = 153, J-stat with 18 df is 17.6
with a p− value of 0.483; (5) column 5 is measured in months.
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With the exception of industry 24 - Lumber & Wood Products (exc.
Furniture), which has an implausibly large (but insignificant) estimated ρi,
implying a near Leontief production function, the estimates of ρi are also
plausible and often do not differ much from the Cobb-Douglas case of ρi = 1.
However for some industries (20, 21, 24, 26, 33, 35 and 37 at the 5% level)
this elasticity is not well determined in the sense that it is not statistically
significant. Further note that application of a series of unit root tests (e.g.
Dickey-Fuller, Weighted Symmetric and Phillip-Perron) indicated that the
errors for each industry were stationary. This finding was not only robust
across the various tests employed but also across lag lengths chosen to con-
duct the test (e.g. 1 to 12)6.
We next assess the extent to which these results are statistically signif-

icantly different across industries. To do so, we first test for equality of
each parameter across industries in our sample (as well as for durable goods
industries (SIC 24, 25, 32-39) and non-durable goods (SIC 20-23, 26-31) in-
dustries). This suggests that there are significant differences in estimates
of price-stickiness, αi, and the extent of rule-of-thumb behavior, ωi, across
industries which is also present when looking at durable/non-durable sub-
groups of industries. These asymmetries across industries are likely to be of
concern to monetary policy makers for the reasons discussed in the Introduc-
tion. The ρi parameters (which define the elasticity of substitution between
intermediate goods and other factors of production, 1/ρi) are only found to
be statistically significantly different within the durable goods industries.

Table 3 - Parameter Differences
Sic Code χ2(1) p− val
Equality of αi’s 622.74 [0.000]
Equality of ωi’s 45.68 [0.000]
Equality of ρi’s 0.894 [0.344]
Equality of durable αi’s 275.57 [0.000]
Equality of durable ωi’s 28.62 [0.000]
Equality of durable ρi’s 0.227 [0.634]
Equality of non-durable αi’s 371.27 [0.000]
Equality of non-durable ωi’s 35.10 [0.000]
Equality of non-durable ρi’s 13.490 [0.000]
Notes:(1) durables=24-25, 32-39; non-durable=20-23, 26-31;
(2) industry 24 has been excluded from these calculations;
(3) the null of equality for the ρi’s & the durable ρi’s can be
rejected if the insignificant ρi’s from Table 1 are excluded.

6These results are not reported here to preserve space but will be made available on
request.
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We next compare results in aggregate by constructing a weighted-average
of parameter estimates across industries in Table 4. The weighted average
estimate of α of 0.81 implies that prices remain fixed for, on average, 15.7
months in US manufacturing, with just under one third of pricing decisions
following a backward-looking rule-of-thumb. Blinder et al. (1998) finds, in
a survey of 430 firms, that the median frequency of price change is around
one year7. Our weighted average estimate of an average probability of price
stickiness across all manufacturing industries implies an average duration of
15.7 months which is slightly higher than this survey evidence, although not
statistically significantly so. The next two columns calculate the averages for
the durable goods industries and non-durable goods industries, respectively.
The final column assesses the extent to which these weighted averages differ
across the durable and non-durable industry subgroups 8.

Table 4 -Weighted Coefficient Estimates and Standard Errors

Aggregate
(1)

Durables
(2)

Non-Durables
(3)

(2)-(3)

α

ω

ρ

months

0.810
(0.026)
0.332
(0.041)
1.323
(1.660)∗

15.9

0.841
(0.022)
0.324
(0.024)
1.801
(1.629)∗

18.9

0.782
(0.016)
0.339
(0.029)
0.884
(0.098)
13.8

0.059
(0.027)
−0.015
(0.038)∗

0.917
(1.631)∗

5.1

Notes (1) industry 24 has been excluded from these calculations; (2) the

standard errors (in brackets) allow for non-zero covariances in the weighted

covariance matrix; (3) a star indicates not significant at the 5% level.

We construct Table 4 to explore the extent of systematic differences in
price-setting behavior between the durable/non-durable goods industry sub-
groups, since various structural differences between these groups were em-
phasized as being important for monetary policy in the studies cited in the
Introduction. We find that the average degree of price stickiness in durable
and non-durable goods industries is statistically significantly different, with

7It should be noted that Bils and Klenow (2002) estimate the frequency of price changes
to be higher. However, as noted by the authors themselves, their sample differs from other
surveys by focusing on final consumer goods. The Blinder et al. (1998) survey, for example,
focuses on the pricing behaviour of firms more likely to be producing intermediate goods.
These are similar to the kinds of firms populating our data.

8Here we exclude the implausible results for industry 24.
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durable goods industries featuring more nominal inertia than non-durable
goods industries. However, for other parameters there are no significant dif-
ferences in the weighted average parameters across the two groups9.
A key advantage of our sectoral approach is that we can also assess the

correlations between the cross-section of estimated parameters and other rel-
evant industry-specific data. This is done in Table 5 which computes corre-
lation coefficients between the sectoral parameter estimates, the Herfindahl-
Hirschman index of industry concentration10 and the extent of output and
inflation variability11. Here several interesting patterns emerge. Firstly, there
is no clear correlation between the degree of price-stickiness and the extent
of backward-looking behavior. However, market-power, as measured by the
Herfindahl-Hirschman index, is clearly positively correlated with the esti-
mated measure of price-stickiness, and negatively related to the estimated
proportion of rule-of-thumb price-setting firms. In other words, the less com-
petitive an industry the more sticky its price-setting behavior and the more
likely it is to set prices in a forward-looking manner. This positive correla-
tion between price stickiness and industry concentration is also found in the
study by Bils and Klenow (2002). However, it is difficult to map between
our two modes of price-setting and the firm-level questionnaire of Blinder et
al. (1998). They find (see page 307) that firms often delay price increases
until after costs have risen, even when they can predict future cost increases,
but that when they do change prices they do so in one go. While our profit-
maximizing price-setters should anticipate future cost increases, the time
dependent nature of the Calvo rule may imply that costs have changed be-
fore they are able to adjust prices. Our modelled pricing behavior is also
consistent with the absence of gradual adjustment in individual prices. As
might be expected, there is a positive correlation between output variability
and the extent of price stickiness, and a negative relationship between infla-

9It should be noted, as shown in Table 3, that this is consistent with significant differ-
ences in parameter estimates between individual industries.
10The data for the industry concentration ratios and the HH indices were obtained

from the 2001 U.S. Census Bureau publication Concentration Ratios in Manufacturing
EC97M31S-CR, Table 2. The data reported in this publication are based on the 1997
NAICS system. Compared to the 1987 2-digit SIC system which we employ in our es-
timations, the major changes include: (i) the creation of a new computer and electronic
product manufacturing sector; (ii) publishing and logging were moved to other sectors;
and (iii) bakeries and custom manufacturing moved were into manufacturing. Aside from
these there is a reasonable degree of correspondence between the two systems at the major
product level. Note that (i) above does not create any difficulties for our comparisons since
SIC 36 and SIC 38 have been excluded from our estimations due to data unavailability.
11Output variability is measured as the average squared deviation of gross output from

a logarithmic trend. Inflation variability is the same measure for demeaned inflation.
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tion variability and price stickiness. Finally, it appears that greater volatility
in output is associated with firms adopting backward-looking rules of thumb
in price-setting, possibly reflecting the difficulties in forecasting demand in
such an environment.

Table 5 - Patterns in the Estimates - All Industries

αi ωi ρi Var(yi) Var(πi) HHi
αi 1
ωi 0.094 1
ρi 0.369 0.382 1
Var(yi) 0.111 0.193 0.788 1
Var(πi) -0.509 -0.358 0.016 0.067 1
HHi 0.308 -0.458 -0.177 -0.084 0.169 1

4 Conclusions

In this paper we estimated a sectoral version of the New Keynesian Phillips
Curve based on Calvo (1983) contracts, which yielded measures of the degree
of price stickiness in each industry. Our specification also discriminated be-
tween firms which set prices in a manner consistent with profit-maximization
and firms which follow simpler, backward-looking, rules of thumb in adjust-
ing the prices they set. A key innovation in our approach was basing our
measure of marginal costs on the costs of intermediate goods, which we ar-
gue are likely to be a better proxy for marginal costs than labor cost data for
the industries in our sample. In the econometric estimation we also obtained
a measure of the elasticity of substitution between this and other factors in
production.
Estimating these Phillips curves for 18 2-digit manufacturing industries

in the US over the period 1959 to 1996, yields industry-specific estimates of
the average length of price contracts which range from 8 months to 2.5 years,
with an average duration of 15.7 months. There was statistically significant
variation between individual industries, which implies that the sectoral re-
sponse to monetary policy is likely to be quite different. We also found that
the majority of firms’ set prices in a forward-looking manner consistent with
profit-maximization, although, almost all industries also had a significant
degree of backward-looking behavior (typically one third of prices were set
in a backward-looking way) in price-setting, especially when output in that
industry was more volatile. Finally, sectors with greater industrial concen-
tration were found to face more inertia in price setting, but to be less likely
to change prices in a backward-looking manner.
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These results are of interest to policy makers for a number of reasons. The
first is that significant asymmetries in price-setting behavior across industries
will affect the construction of a ‘core’ measure of inflation, the targeting of
which would minimize the distortions due to staggered price-setting behavior
(see Aoki (2001)). Evolving industrial composition and sectoral differences
are also likely to affect the monetary policy transmission mechanism over
time. Aside from these points, the estimates also imply significant sectoral
differences in response to monetary policy which are important in and of
themselves if policy makers are concerned about the composition of industrial
structure.
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Appendix 1 - Data Appendix
ARandomWalkModel forDistributingAnnual toQuar-
terly Observations
To estimate the unobserved quarterly movements in the annual NBER

data we employ the method developed by Fernandez (1981). The Fernadez
approach generalizes the model set out Chow and Lin (1971) by allowing
for non-stationary errors in the linear stochastic relationship generating the
missing observations. More specifically given n annual observations, for a
variable ya1 , y

a
2 , ..., y

a
n, we will estimate quarterly values, yt,1, yt,2, yt,3, yt,4 for

each t = 1..., n so that the within year average of the quarterly series is equal
to the observed annual value provided by the NBER, e.g.

yat =
(yt,1 + yt,2 + yt,3 + yt,4)

4
. (7)

When estimating the quarterly values it is assumed that the unobserved
quarterly series follows a linear stochastic relationship with a set of k related
observed quarterly series and the error term follows a random walk. For
example, the stochastic relation for each quarter i of year t can be written
as follows:

yt,i = x
1
t,iβ1 + x

2
t,iβ2 + ...+ x

k
t,iβk + ut,i (8)

where ut,i = ut,i−1 + εt,i.
The 4nx1 vector U = (u1,1 u1,2... un,4) is assumed to have a zero mean

and a covariance matrix (D0D)−1, where the 4nx4n D matrix is given by

D =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 . . . . 0 0
−1 1 0 0 . . . . 0 0
0 −1 1 0 . . . . 0 0
. . . . . .
. . . . . .
0 0 0 0 . . . . −1 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (9)
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Finally the errors εt,i are assumed to be white noise with a zero mean
and constant variance σ2. Given these assumptions the Fernandez estimator
is BLUE since var(U) = (D0D)−1σ2.
To estimate the β0s in (8) we require a nx4n distribution matrix B, .e.g

B = (1/4)

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1 0 0 0 0 . . . . 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
0 0 0 0 0 0 0 0 . . . . 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (10)

If we next denote the nx1 vector of annual observations as Ya = (ya1 ,
ya2 , ..., y

a
n)
0 and the 4nx1 vector of unobserved quarterly observations as

Y = (y1,1, y1,2, ..., yn,4)
0 then from (10) it follows that,

Ya = BY = BXβ +Bu = Xaβ + ua. (11)

Based on the Chow and Lin (1971) analysis it can be easily shown that
the optimal linear unbiased estimator for the unobserved higher frequency
movements in Y is given by

bY = Xbβ + (D0D)−1B0(B(D0D)−1B0)−1 bUa (12)

where bβ = [X
a0(B(D0D)−1B0)−1Xa]−1Xa0(B(D0D)−1B0)−1Ya, Xa = BX

and bUa = Ya −Xabβ.
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Principle Components of the Related Regressors
The next issue which needs to be confronted when applying the estimator

given by (12) pertains to the choice of the appropriate k quarterly related
regressors which make up the columns of X. As discussed above, since the
available higher frequency BLS/FRB data is not an exact match with the
measures required by the theory and in some cases with the required indus-
try breakdown, we need to make use of an extended information set in an
effort to maximize the fit with our annual NBER measures. For example,
to distribute N i to a quarterly frequency there are 24 employment related
variables available from the BLS. The BLS also provides another 21 hours
related variables to distribute Hi and 43 producer prices to distribute P iand
Pm,i. Finally, the FRB provides 23 industrial production indices which we
will use to distribute yi and mi. The obvious advantage of having access to
such a large set of related regressors for each variable is that they will not only
capture within industry correlations but also the cross industry correlations
arising from underlying complementarities and substitutabilities in produc-
tion. The disadvantage however is that it is impossible to know apriori which
regressors to include and which to exclude. Variable exclusion is necessary
to conserve degrees of freedom and to avoid the problems associated with
multicollinearity.
To reduce the dimensionality of our various related regressor sets we apply

the technique of principal components. For example, the regression given by
(11) above can be transformed as follows

Ya = BXβ +Bu = (BXP)(P0β) +Bu = BZθ +Bu (13)

where Ya is an annual nx1 vector from the NBER dataset; BX (= Xa) is
an annualized nxk matrix of related regressors; B is the nx4n distribution
matrix; X is the 4nxk matrix of quarterly related regressors; Bu is the
annualized nx1 vector of errors; u is the 4nx1 vector of quarterly errors; P
is an orthogonal kxk matrix whose columns are the characteristic vectors
of XX0;BZ = BXP is the annualized nxk matrix of principal components;
θ=P0β is the kx1 vector of coefficients; and bθ = (BZ0BZ)−1BZ0Ya.
Note that the above transformation has not yet provided the dimension-

reduction we require since the size of the Z matrix of orthogonal principle
components is the same as the related regressor matrix X. Hence we next
briefly describe the procedure and decision criteria by which the number
of columns of Z are reduced to a smaller set which still contain most of
the information from the larger set. We start by calculating the correlation
matrix R of the normalized columns of X. The normalization undertaken
is to divide the deviation of each variable from its mean by its standard
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deviations. Thus the total variance of the normalized X matrix is equal to k
or the number of variables. When the dimension of Z is the same as X the
orthogonal vectors comprising Z explain all of the variance in normalized X.
Accordingly the objective of principle components is to explain as much of the
total variance as possible with the least number of principle components or
factors. The manner in which the principle factors are calculated, extracting
consecutive factors accounts for less and less variance. For example, the
fraction of variance explained by each additional factor, FVi is calculated
by first obtaining the characteristic equation of R which is a polynomial
of degree k resulting from expanding the determinant of |R− λI| = 0 and
solving for the eigenvalues λi (i = 1..k),where

P
λi = tr(R) = k. The kx1

vector FV vector is then calculated as FV = T0λ/k, where λ is arranged in
the order of the largest to smallest eigenvalue and T is an upper triangular
matrix with zeros below the diagonal and ones on and above the diagonal.
The decision rule we employ with respect to how many principle components
to retain is that they must explain 99% of the variance of normalizedX. This
results in our various related regressor sets being reduced to the following
number of principle factors: employment=7; hours=7; producer prices=3
and indices of industrial production=4. Finally note that when estimating
the elements of bθ both a constant and linear time trend are included in the
various Z matrices.

Data Sources and Definitions12
Two-Digit SIC Codes and Definitions are given in Table 1.

NBER Annual Two-Digit Data

N i Number of production workers (thous.)
Hi Number of production worker hours (mill of hours)
yi Real total value of shipments ($mill.1987)
mi Real total cost of materials ($mill.1987)
Y v,i Nominal total value added ($mill.)
P i Deflator for yi (1987=1)
Pm,i Deflator for mi (1987=1)

BLS Quarterly Two-Digit Data

W i Ave hourly earning of production workers

12Further detail on the related regressors is available on request.

19


