On the formation of Pareto-improving trading club without income transfer

Koji Shimomura
Kobe University

Koichi Hamada
Yale University

Masahiro Endoh
Keio University/Yale University

March 1, 2005

Abstract
Constructing a multi-country general equilibrium model, we show that a Pareto-improving coordinated tariff reforms by a subset of countries (a trading club) is possible without intra-club income transfer, if for each good traded between club member countries there are two groups of members such that one group adjusts a tariff/subsidy on its net import while the other adjusts it on its net export.

1 Introduction

Consider a trading world that consists of an arbitrary number of countries, say $n + 1$, such that there is a tariff-ridden world equilibrium for given tariff vectors imposed by those countries. Suppose that a part of the countries, say n countries, form a trading club by adjusting their tariff rates. This paper studies under what conditions the formation of the trading club be Pareto-improving in the sense that, as a result of the adjustments of their tariffs, (1) at least one member country is better-off and (2) no country, whether it is a member or non-member, is worse-off. We show that it is possible to form a Pareto-improving trading club without any international income transfer if for each good traded between club member countries there are two groups of members such that one group adjusts a tariff/subsidy on its net import while the other adjusts it on its net export.

[We need to review the literature. One recent paper which is closely related to this paper would be]
Section 2 sets up the model. Section 3 shows the main theorem in a general setting. Section 4 applies the theorem to a case such that the Armington Assumption holds in a three-good and three-country framework. Section 5 provides concluding remarks.

2 The Model

We consider a multi-country tariff-ridden general equilibrium model which consists of \(n + 1 \) countries and \(m + 1 \) tradable goods. The countries and goods are indexed as Country 0, Country 1, ..., Country \(n \), and Good 0, Good 1, ..., Good \(m \), respectively. Country 1, ..., and Country \(n \) form a trading club. Good 0 is the numeraire and Country 0 represents "the rest of the world". Using revenue and expenditure functions, we can describe the multi-country model as follows.

\[
E^0(P, u^0) = F^0(P) \tag{1}
\]

\[
E^i(P + \Lambda^i, u^i) = F^i(P + \Lambda^i) + \Lambda^i[E^i_p(P + \Lambda^i, u^i) - F^i_p(P + \Lambda^i)], \quad i = 1, ..., n \tag{2}
\]

\[
-[E^0(P, u^0) - F^0(P)] = \sum_{i=1}^{n} [E^i_p(P + \Lambda^*, u^*) - F^i_p(P + \Lambda^*)], \tag{3}
\]

where \(P \equiv (p_1, ..., p_m)^T \) and \(\Lambda^i \equiv (\tau^1_i, ..., \tau^m_i)^T \) are the international price vector and the import tariff/export tax vector imposed by country \(i \), respectively. \(P^i = P + \Lambda^i \), where \(P^i \equiv (p^i_1, ..., p^i_m)^T \) is the domestic price vector in country \(i \). \(u^i, i = 0, 1, ..., n \), is the community utility level of Country \(i \). The above system determines the international price of each good and the community utility level for given tariff rates, \(\tau^j_i, i = 1, ..., n, j = 1, ..., m \), are given. \(E^i_p(P + \Lambda^i, u^i) \equiv (E^i_{p_1}, ..., E^i_{p_m})^T \) and \(F^i_p(P + \Lambda^i) \equiv (F^i_{p_1}, ..., F^i_{p_m})^T \), where \(E^i_{p_j} \equiv \frac{\partial}{\partial p^i_j} E^i \) and \(F^i_{p_j} \equiv \frac{\partial}{\partial p^i_j} F^i, j = 1, ..., m. \)

The superscript \(T \) attached to vectors denotes the transpose of them. We assume that vectors without the super-script are column vectors.
3 The Main Theorem

First, let us list the main assumptions.

Assumption 1: All revenue and expenditure functions satisfy the standard textbook properties. Income effects are always normal in the sense that

\[E_i^uP \equiv (E_i^{u_{P_1}}, \ldots, E_i^{u_{P_m}})^T > 0 \]

Moreover, for any \(i = 1, \ldots, n \), the second derivatives

\[E_{P_iP}^i(P + \Lambda^i, u^i) - F_{P_iP}^i(P + \Lambda^i) \]

are non-singular, where

\[E_i^{P_{p_jp_h}} \equiv \frac{\partial^2 E_i}{\partial p_j \partial p_h} \]

and

\[F_{P_iP}^i(P + \Lambda^i, u^i) \equiv \left[\begin{array}{ccc} F_{1P1}^i & \cdots & F_{1Pm}^i \\ \vdots & \ddots & \vdots \\ F_{nP1}^i & \cdots & F_{nPm}^i \end{array} \right], \quad E_i^{P_{p_jp_h}} \equiv \frac{\partial^2 E_i}{\partial p_j \partial p_h} \]

Assumption 2: There exists a unique pre-club equilibrium, \((\bar{P}, \bar{u}^j, j = 0, 1, \ldots, n)\) for given tariff rates, \(i = 1, \ldots, n \), where

\[\bar{P} \equiv (\bar{p}_1, \ldots, \bar{p}_m)^T > -\Lambda^i, \]

\(i = 1, \ldots, n \). Moreover, a pre-club equilibrium uniquely exists for any tariff rates in a neighborhood of the given tariff rates.

Assumption 3: In the pre-club equilibrium, for any good \(j, j = 1, \ldots, m \), there are two types of club countries such that the first type, say Country \(i(j) \), is to impose a positive tariff \(\tau_{i}^{i(j)} > 0 \) on the net import of Good \(j \) and the second type, say Country \(i^*(j) \), is to impose a non-negative tariff, \(\tau_{i^*}^{i*(j)} \leq 0 \) on the net export of it\(^2\).

In what follows, we denote the sets of the first type countries and the second type countries by \(\Delta \) and \(\Delta^* \), respectively.

Let us state the main theorem.

Theorem 1 Under Assumptions 1-3, if the negative tariff rates in the pre-club equilibrium are not very large in their absolute values, \(|\tau_{j}^{i*(j)}|, j = 1, \ldots, m \), then it is possible for \(n \) countries to form a trading club that undertakes a differential and non-discriminatory reform of tariffs in such a way that at least some club countries are better off without hurting all other club countries and the rest of the world.

\(^2\)Thus, if the net import is negative, a positive (resp. negative), \(\tau_{i}^{i(j)} > 0 \) (resp. \(\tau_{i^*}^{i*(j)} < 0 \)), means export (import) subsidy.
Proof. Let us consider the following tariff policies.

\[\Lambda^i(\varepsilon^i) \equiv \Lambda^i - \{ E_{PP}^i(\bar{P} + \Lambda^i, \bar{u}^i) - F_{PP}^i(\bar{P} + \Lambda^i) \}^{-1} \times \{ E_u^i(\bar{P} + \Lambda^i, \bar{u}^i) - (\Lambda^i)^T E_{pu}^i(\bar{P} + \Lambda^i, \bar{u}^i) \} \varepsilon^i, \quad (4) \]

where \(\varepsilon^i = (\varepsilon_1^i, ..., \varepsilon_m^i)^T \). Totally differentiating (2) and (3) with respect to \(\Lambda^i \) and \(u^i \), \(i = 1, ..., n \), around the pre-club equilibrium in such a way that both \(P \) and \(u^0 \) are left unchanged, and considering (4), we have.

\[du^i = \frac{(\Lambda^i)^T [E_{PP}^i(\bar{P} + \Lambda^i, \bar{u}^i) - F_{PP}^i(\bar{P} + \Lambda^i)]d\Lambda^i}{E_u^i(\bar{P} + \Lambda^i, \bar{u}^i) - (\Lambda^i)^T E_{pu}^i(\bar{P} + \Lambda^i, \bar{u}^i)}, \quad i = 1, ..., n, \quad (5a) \]

\[0_m = \sum_{s=1}^{n} \{ [E_{PP}^s(\bar{P} + \Lambda^s, \bar{u}^s) - F_{PP}^s(\bar{P} + \Lambda^s)]d\Lambda^s + E_{uP}^s(\bar{P} + \Lambda^s, \bar{u}^s)du^s \} \]

\[+ \frac{E_{uP}^s(\bar{P} + \Lambda^s, \bar{u}^s)(\Lambda^i)^T [E_{PP}^i(\bar{P} + \Lambda^i, \bar{u}^i) - F_{PP}^i(\bar{P} + \Lambda^i)]}{E_u^i(\bar{P} + \Lambda^i, \bar{u}^i) - (\Lambda^i)^T E_{pu}^i(\bar{P} + \Lambda^i, \bar{u}^i)}d\Lambda^s(\varepsilon^s)^{(6)} \]

where \(0_m \equiv (0, ..., 0)^T \), an \(m \)-dimensional zero vector, and, from (4),

\[d\Lambda^i(\varepsilon^i) = \frac{[E_{PP}^i(\bar{P} + \Lambda^i, \bar{u}^i) - F_{PP}^i(\bar{P} + \Lambda^i)]^{-1} \times \{ E_u^i(\bar{P} + \Lambda^i, \bar{u}^i) - (\Lambda^i)^T E_{pu}^i(\bar{P} + \Lambda^i, \bar{u}^i) \} d\varepsilon^i}{E_u^i(\bar{P} + \Lambda^i, \bar{u}^i) - (\Lambda^i)^T E_{pu}^i(\bar{P} + \Lambda^i, \bar{u}^i)} \]

The substitution of (7) into (5a) and (6) yields, respectively,

\[du^i = -(\Lambda^i)^T d\varepsilon^i \]

(8)
and

\[0 = -\sum_{s=1}^{n} [(E^s_u(\bar{P} + \Lambda^s, \bar{u}^s) - (\Lambda^s)^T E^s_u(\bar{P} + \Lambda^s, \bar{u}^s))] I_{m,m} + E^s_u(\bar{P} + \Lambda^s, \bar{u}^s)(\Lambda^s)^T] \epsilon^s \]

\[= -\sum_{s=1}^{n} \left[\begin{array}{cccc} E^s_u - \Sigma_{j \neq 1,j=2}^m E^s_{uP} & \tau^s_1 E^s_{uP1} & \cdots & \tau^s_m E^s_{uPm} \\ \tau^s_1 E^s_{up2} & \cdots & \cdots & \cdots \\ \vdots & \ddots & \ddots & \vdots \\ \tau^s_1 E^s_{upm} & \cdots & \cdots & E_u - \Sigma_{j=1,j \neq m}^m \tau^s_m E^s_{uP} \end{array} \right] \epsilon^s \]

\[= -\sum_{s=1}^{n} \sum_{h=1}^{m} \sum_{s=1}^{m} \left[\begin{array}{c} E^s_u - \Sigma_{j=1,j \neq h}^m \tau^s_j E^s_{uP} \\ \tau^s_h E^s_{up1} \\ \vdots \\ \tau^s_h E^s_{upm} \end{array} \right] \epsilon^s_h \]

where \(I_{m,m} \) is the \(m \)-dimensional identity matrix.

Let us assume that for Good \(j, j = 1, \ldots, m, \) a club country \(i(j) \) in \(\Delta \) that imports Good \(j \) reduces \(\epsilon_{i(j)}^j(t) \) (i.e., \(\epsilon_{i(j)}^j(t) < 0 \)) and a club country \(i^*(j) \) in \(\Delta^* \) that exports Good \(j \) raises \(\epsilon_{i^*(j)}^j(t) \) (i.e., \(\epsilon_{i^*(j)}^j(t) > 0 \)), while all other \(\epsilon_{i(j)}^j \)’s are kept to be zero. It follows from (8) and Assumption 3 that \(du^i > 0 \) for any \(i \in \Delta \cup \Delta^* \), while \(du^i = 0 \) for any \(i \in \{0, 1, \ldots, n\} - \Delta \cup \Delta^* \).

Thus, what remains is to show that there exists two vectors,

\[d\Xi^T = (d\epsilon^1_1, d\epsilon^2_2, \ldots, d\epsilon^m_m)^T < 0_m \text{ and } (d\Xi^*)^T = (d\epsilon^1_1, d\epsilon^2_2, \ldots, d\epsilon^m_m)^T > 0_m, \]

that satisfy (9), i.e.,

\[\Gamma d\Xi + \Gamma^* d\Xi^* = 0, \]

where

\[\Gamma \equiv \left[\begin{array}{cccc} E^1_u - \Sigma_{j \neq 1}^m \tau^1_j E^1_{uP} & \tau^1_1 E^1_{uP1} & \cdots & \tau^1_m E^1_{uPm} \\ \tau^2_1 E^2_{uP1} & \cdots & \cdots & \cdots \\ \vdots & \ddots & \ddots & \vdots \\ \tau^m_1 E^m_{uPm} & \cdots & \cdots & E_u - \Sigma_{j=1,j \neq m}^m \tau^m_m E^m_{uP} \end{array} \right] \]

\[\Gamma^* \equiv \left[\begin{array}{cccc} E^1_u - \Sigma_{j \neq 1}^m \tau^1_j E^1_{uP} & \tau^1_1 E^1_{uP1} & \cdots & \tau^1_m E^1_{uPm} \\ \tau^2_1 E^2_{uP1} & \cdots & \cdots & \cdots \\ \vdots & \ddots & \ddots & \vdots \\ \tau^m_1 E^m_{uPm} & \cdots & \cdots & E_u - \Sigma_{j=1,j \neq m}^m \tau^m_m E^m_{uP} \end{array} \right] \]
Since we assume away inferior goods, it is clear from \(\sigma_i^{(j)} > 0 \) that \(\sigma_i^{(j)} E^{(j)}_{i} > 0 \) for any \(j, h = 1, \ldots, m \). Moreover, we see from the linear homogeneity of \(E_u^i(p_0, p_1 + \tau_1^i, \ldots, p_m + \tau_m^i, u_i) \) with respect to \((p_0, p_1, \ldots, p_m) \) that

\[
E_u^i = \sum_{j \neq h, j=1}^m \tau_j^{(h)} E_{upj}^i = \begin{pmatrix} p_0 E_{up0} \sum_{j=1}^m (\bar{p_j} + \tau_j^{(h)}) E_{upj}^i \end{pmatrix} - \sum_{j \neq h, j=1}^m \tau_j^{(h)} E_{upj}^i
\]

Next, let us consider the matrix \(\Gamma^* \). It is clear that all the diagonal elements are positive while all off-diagonal elements are negative. Now, take the \(h \)th column of the matrix and sum all its elements.

\[
\left| E_u^i(h) - \sum_{j \neq h, j=1}^m \tau_j^{(h)} E_{upj}^i \right| + \tau_h \sum_{j \neq h, j=1}^m E_{upj}^i
\]

which is positive if \(\tau_h^{(i)} \) is smaller than \(\bar{p_j} \) for any \(j, h = 1, \ldots, m \). It follows from the Frobenius Theorem (e.g., Takayama (1984), Theorem 4.C.9 on page 387) that \(\Gamma^* \) is non-singular with the positive inverse matrix \((\Gamma^*)^{-1} \) > 0 for any \(m, m \). Therefore, for any negative vector \(d \Xi \),

\[
d \Xi^* = -\Gamma^{-1} \Gamma d \Xi > 0
\]

That is, there exists a pair \((-d \Xi, d \Xi^*) > (0_m, 0_m) \) that satisfies (10), as was to be proved. (QED)

4 An Example: 3 X 3 Model

4.1 The Assumptions

Let me construct a 3 by 3 model satisfying the following assumptions.

Assumption 4: Country A and Country B are going to form a trading club and Country C is the rest of the world.

Assumption 5: There are three goods, a, b, c, and good c serves as the numeraire good. Country A exports good a and imports good b and good c. Country B exports good b and imports good a and good c. Country C exports good c and imports good a and good b.
Assumption 6: Initially, Country A imposes tariff on imports of good b and Country B imposes tariff on imports of good a. More specifically, we assume that at the pre-club equilibrium
- Country A imposes positive import tariffs on good b. Let us denote the tariff rate by t^A_b. Country B imposes positive import tariffs on good a. Let us denote the tariff rate by t^B_a.
- Country A and Country B impose zero tax/subsidy on their exports, i.e., $t^A_a = t^B_b = 0$.
- Country C is assumed to be a free-trade country.

Assumption 7: The income effect of each good is positive.

4.2 The Model

Let us describe the model as.

$$E^A(p_a + t^A_a, p_b + t^A_b, 1, u^A) - F^A(p_a + t^A_a, p_b + t^A_b, 1) = t^A_a[E^A - F^A_A] + t^A_b[E^A - F^A_B]$$ (11)

$$E^B(p_a + t^B_a, p_b + t^B_b, 1, u^B) - F^B(p_a + t^B_a, p_b + t^B_b, 1) = t^B_a[E^B - F^B_A] + t^B_b[E^B - F^B_B]$$ (12)

$$E^C(p_a, p_b, 1, u^C) = F^C(p_a, p_b, 1)$$ (13)

$$E^A_a - F^A_a + E^B_a - F^B_a + E^C_a - F^C_a = 0$$ (14)

$$E^A_b - F^A_b + E^B_b - F^B_b + E^C_b - F^C_b = 0$$ (15)

where $E^i_j = \frac{\partial E^i}{\partial p_j}$, $F^i_j = \frac{\partial F^i}{\partial p_j}$. The five equations (11)-(15) determine the five unknowns, $u^i, i = A, B, C$, and $p_j, j = a, b$, for given initial tariff rates, $t^A_a, t^A_b, t^B_a,$ and t^B_b.

Starting from a given set of tariffs $\{t^A_a, t^A_b, t^B_a, t^B_b\}$, where $t^A_a = t^B_b = 0$ initially (See Assumption 6), we can derive the above system. The above system is the starting point of our tariff reform analysis.

In order to avoid a possible confusion, we shall denote the initial levels of tariffs and equilibrium prices before forming a trading club by

$$t^A_a, t^A_b, t^B_a, t^B_b, p^A_a, p^A_b$$
4.3 A Pareto-Improving Trading Club

Since Assumption 6 means that
\[t_{a}^{Ae} = 0, \quad t_{b}^{Ae} > 0, \quad t_{a}^{Re} > 0, \quad t_{b}^{Re} = 0, \]

Given the pre-club equilibrium, Country A and Country B form a club and adjust their import and export tariffs. The tariff adjustment scheme is as follows
\[
\begin{bmatrix}
 t_{a}^{i}(\varepsilon_{a}^{i}, \varepsilon_{b}^{i}) \\
 t_{b}^{i}(\varepsilon_{a}^{i}, \varepsilon_{b}^{i})
\end{bmatrix} = \begin{bmatrix}
 t_{a}^{ic} \\
 t_{b}^{ic}
\end{bmatrix}
\]
\[
-(E_{a}^{i} - t_{a}^{ic}E_{ua}^{i} - t_{b}^{ic}E_{ub}^{i}) \left(\begin{array}{cc}
 E_{aa}^{i} - F_{aa}^{i} & E_{ab}^{i} - F_{ab}^{i} \\
 E_{ba}^{i} - F_{ba}^{i} & E_{bb}^{i} - F_{bb}^{i}
\end{array} \right)^{-1} \begin{bmatrix}
 \varepsilon_{a}^{i} \\
 \varepsilon_{b}^{i}
\end{bmatrix}
\]
\[i = A, B, \]

(16)

Totally differentiating \(t_{b}^{i}(\varepsilon_{a}^{i}, \varepsilon_{b}^{i}) \) and \(t_{b}^{i}(\varepsilon_{a}^{i}, \varepsilon_{b}^{i}) \) with respect to \(\varepsilon_{a}^{i} \) and \(\varepsilon_{b}^{i} \) at \((\varepsilon_{a}^{i}, \varepsilon_{b}^{i}) = (0, 0) \), we derive
\[
\begin{bmatrix}
 dt_{a}^{i} \\
 dt_{b}^{i}
\end{bmatrix} = -(E_{a}^{i} - t_{a}^{ic}E_{ua}^{i} - t_{b}^{ic}E_{ub}^{i}) \left(\begin{array}{cc}
 E_{aa}^{i} - F_{aa}^{i} & E_{ab}^{i} - F_{ab}^{i} \\
 E_{ba}^{i} - F_{ba}^{i} & E_{bb}^{i} - F_{bb}^{i}
\end{array} \right)^{-1} \begin{bmatrix}
 d\varepsilon_{a}^{i} \\
 d\varepsilon_{b}^{i}
\end{bmatrix}
\]
\[i = A, B, \]

(17)

Remark 1: Note that both the inverse matrix
\[
\left(\begin{array}{cc}
 E_{aa}^{i} - F_{aa}^{i} & E_{ab}^{i} - F_{ab}^{i} \\
 E_{ba}^{i} - F_{ba}^{i} & E_{bb}^{i} - F_{bb}^{i}
\end{array} \right)^{-1}
\]
and the term \((E_{a}^{i} - t_{a}^{ic}E_{ua}^{i} - t_{b}^{ic}E_{ub}^{i}) \) are evaluated at the pre-club equilibrium domestic prices and utilities. Therefore, those terms do not depend on \(\varepsilon_{a}^{i} \) and \(\varepsilon_{b}^{i} \), which means that the tariff adjustment mechanism of Country X, (16), is a linear function of \(\varepsilon_{a}^{i} \) and \(\varepsilon_{b}^{i} \).

Now, making a parallel argument to the calculations for the \(n \) by \(m \) case, we obtain
\[
du^{A} = - \left(\begin{bmatrix}
 t_{a}^{Ae} \\
 t_{b}^{Ae}
\end{bmatrix} \begin{bmatrix}
 d\varepsilon_{a}^{A} \\
 d\varepsilon_{b}^{A}
\end{bmatrix}
\right)
\]
\[\quad (19) \]
\[
du^{B} = - \left(\begin{bmatrix}
 t_{a}^{Re} \\
 t_{b}^{Re}
\end{bmatrix} \begin{bmatrix}
 d\varepsilon_{a}^{B} \\
 d\varepsilon_{b}^{B}
\end{bmatrix}
\right)
\]
\[\quad (20) \]
\[
\begin{pmatrix}
E_u^A - t_b^a E_{ub}^A \\
\lambda_A E_u^A - t_a^a E_{ua}^A
\end{pmatrix}
=
\begin{pmatrix}
\frac{\partial}{\partial d_{ca}} \\
\frac{\partial}{\partial d_{cb}}
\end{pmatrix}
+ \begin{pmatrix}
E_b^A - t_b^b E_{ub}^A \\
\lambda_B E_u^A - t_a^a E_{ua}^A
\end{pmatrix}
\]

Note that the adjustments \(d\epsilon_i \), \(i = A, B, j = a, b \), has to satisfy (21) in order that the adjustments keep the trade volumes of three goods with Country C unchanged, in which case the international prices are also unchanged and so is the welfare level of Country C.

Lemma 1: If
\[
p_i^e + t_j^e > 0 \text{ and } p_j^e + t_k^e > 0, \quad i = A, B, j, k = a, b, j \neq k,
\]
then each diagonal element and column sums of the two matrices in (21) are positive,
\[
E_u^i - t_j^e E_{uj}^i > 0, \quad i = A, B, j, k = a, b, j \neq k.
\]

Proof: Since \(E_u^i \) is linearly homogeneous in three prices, we have
\[
E_u^i = (p_j^e + t_j^e) E_{ju}^i + (p_k^e + t_k^e) E_{ku}^i + 1 \cdot E_{cu}^i
\]
Therefore,
\[
E_u^i - t_j^e E_{uj}^i = (p_j^e + t_j^e) E_{ju}^i + (p_k^e + t_k^e) E_{ku}^i + 1 \cdot E_{cu}^i - t_j^e E_{uj}^i
\]
\[
= p_j^e E_{ju}^i + (p_k^e + t_k^e) E_{ku}^i + 1 \cdot E_{cu}^i,
\]
which is positive as long as positive income effects prevail and under (22). (QED)

Now, we know that in the present case
\[
t_b^Be > 0, \quad t_b^Ae > 0,
\]
and
\[
t_a^Ae = 0, \quad t_b^Be = 0
\]
Having these sign patterns in mind, let me rearrange (21) in the following way,

\[
\begin{pmatrix}
E^A_a - t_b^A E^A_{ub} & 0 \\
0 & d^A_a
\end{pmatrix} d^A_B + \begin{pmatrix}
t_b^A E^A_{ua} & E^A_a \\
E^B_a - t_b^B E^B_{ua} & 0
\end{pmatrix} d^B_B
= \begin{pmatrix}
E^B_a & t_b^B E^B_{ub} \\
t^A_a E^A_{ub} & E^A_a
\end{pmatrix}
d^A_a + \begin{pmatrix}
t^B_e E^A_{ua} & 0 \\
E^B_a - t_b^B E^B_{ua} & 0
\end{pmatrix} d^B_B
= \begin{pmatrix}
E^B_a - t_b^A E^A_{ub} & 0 \\
t^A_a E^A_{ub} & E^A_a
\end{pmatrix}
d^A_a + \begin{pmatrix}
0 & E^B_a - t_b^B E^B_{ua} \\
E^B_a - t_b^B E^B_{ua} & 0
\end{pmatrix} d^B_B
\]

That is, we derive

\[
\begin{pmatrix}
E^B_a - t_b^B E^B_{ub} & t_b^A E^A_{ub} \\
t^A_a E^A_{ub} & E^A_a
\end{pmatrix}
d^A_a + \begin{pmatrix}
t^B_e E^A_{ua} & 0 \\
E^B_a - t_b^B E^B_{ua} & 0
\end{pmatrix} d^B_B
= \begin{pmatrix}
E^B_a & t_b^B E^B_{ub} \\
t^A_a E^A_{ub} & E^A_a
\end{pmatrix}
d^A_a + \begin{pmatrix}
0 & E^B_a - t_b^B E^B_{ua} \\
E^B_a - t_b^B E^B_{ua} & 0
\end{pmatrix} d^B_B
\]

which corresponds to (10). It follows Lemma 1 that all elements of the matrix at the LHS of (26) are positive, and all elements of the inverse matrix

\[
\begin{pmatrix}
E^A_a - t_b^A E^A_{ub} & 0 \\
0 & E^B_a - t_b^B E^B_{ua}
\end{pmatrix}^{-1}
\]

are also non-negative. Since

\[
\begin{pmatrix}
d^A_a \\
d^B_B
\end{pmatrix} = - \begin{pmatrix}
E^A_a - t_b^A E^A_{ub} & 0 \\
0 & E^B_a - t_b^B E^B_{ua}
\end{pmatrix}^{-1} \begin{pmatrix}
E^B_a & t_b^B E^B_{ub} \\
t^A_a E^A_{ub} & E^A_a
\end{pmatrix}
\begin{pmatrix}
d^A_a \\
d^B_B
\end{pmatrix}
\]

it follows that if \(d^A_a\) and \(d^B_B\) are chosen so that (27) is satisfied for any \(d^A_a < 0\) and \(d^B_B < 0\), then \(d^A_a > 0\) and \(d^B_B > 0\) and the tariff adjustments leave the club’s trade volumes with Country C unchanged and the international prices do not change, which means that Country C’s welfare is not affected by the tariff adjustments. Moreover, combining

\[
d^A_a < 0, \quad d^B_B < 0, \quad d^A_a > 0, \quad d^B_B > 0
\]

with

\[
t^B_e > 0, \quad t^A_a > 0, \quad t^A_e = 0, \quad t^B_e = 0,
\]

10
we see that

\[du^A = -[t_a^A d\varepsilon_a^A + t_b^A d\varepsilon_b^A] \]
\[= -[(0)(+) + (+)(-)] > 0 \]

\[du^B = -[t_a^B d\varepsilon_a^B + t_b^B d\varepsilon_b^B] \]
\[= -[(+)(-) + (0)(+)] > 0 \]

Hence both \(du^A \) and \(du^B \) are positive.

Proposition: If the initial tariff-ridden equilibrium satisfies (??) and (??), then the implementation of the tariff adjustment scheme (??) (or one could say (17)) makes Country A and Country B better off without hurting Country C.

Remark 2: Since

\[
\begin{pmatrix}
\varepsilon_a^i (0, 0) \\
\varepsilon_b^i (0, 0)
\end{pmatrix} = \begin{pmatrix}
\varepsilon_a^i \\
\varepsilon_b^i
\end{pmatrix}
\]

the tariff adjustments are expressed by a small change in tariffs \((d\varepsilon_a^i, d\varepsilon_b^i)\) from their pre-club levels.

Remark 3 Consider the direction of tariff adjustment, determined by

\[
\begin{pmatrix}
dt_a^i \\
dt_b^i
\end{pmatrix} = \begin{pmatrix}
dt_a^i (\varepsilon_a^i, \varepsilon_b^i) \\
dt_b^i (\varepsilon_a^i, \varepsilon_b^i)
\end{pmatrix}
\]

\[= -(E_a^i - t_a^i E_{aa} - t_b^i E_{ab})(E_{ba} - F_{bb})^{-1} \begin{pmatrix} d\varepsilon_a^i \\ d\varepsilon_b^i \end{pmatrix} \]

If

\[
\begin{pmatrix} E_a^i - F_{aa} \\ E_{ba} - F_{ba} \end{pmatrix}^{-1} = \begin{pmatrix} (-) & (+) \\ (+) & (-) \end{pmatrix}
\]

then we find \(dt_a^A > 0, dt_a^B < 0, dt_b^A < 0, dt_b^B > 0 \), that is, tariffs are adjusted in the direction to level them (recall that \(t_a^A = 0, t_b^A > 0, t_a^B > 0, t_b^B = 0 \)).

However, in general, the signs of elements in this inverse matrix are ambiguous, and so the signs of \(d\varepsilon_j^i \) \((i = A, B; j = a, b)\).