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Abstract

This paper studies a one-sector optimal growth model with linear utility in
which the production function is generally nonconvex, nondifferentiable, and
discontinuous. The model also allows for a general form of irreversible invest-
ment. We show that every optimal path either converges to zero or reaches
a positive steady state in finite time (and possibly jumps among different
steady states afterwards). We establish conditions for extinction (conver-
gence to zero), survival (boundedness away from zero), and the existence
of a minimum safe standard of conservation. They extend the conditions
known for the case of S-shaped production functions to a much large class
of technologies. We also show that as the discount factor approaches one,
optimal paths converge to a small neighborhood of the golden rule capital
stock.
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1 Introduction

The aggregative model of optimal economic growth is an important theo-
retical paradigm that is widely used for analyzing economic issues related
to intertemporal allocation of resources and capital accumulation. Much
of the existing literature focuses on “classical” versions of the model where
the underlying technology is smooth and convex. Yet, there exist a large
variety of economic settings where the technology exhibits nonconvexities,
nonsmoothness, and even discontinuities due to various factors such as fixed
costs, threshold effects, increasing returns to scale, economies of scope, and
depensation in biological reproduction processes. This paper presents a com-
prehensive analysis of a one-sector optimal growth model with linear utility
that admits nonconvex, nonsmooth, and discontinuous technology as well as
irreversible investment.1

The literature on optimal growth with nonconvex technology dates back
to Clark (1971), who analyzed the problem of optimal dynamic consumption
of a biological resource where the production function is S-shaped and the
objective function is linear in consumption.2 A full characterization of opti-
mal paths in the context of optimal growth was provided by Majumdar and
Mitra (1983), who showed among other things that if the discount factor is in
an intermediate range, there exists a critical stock (minimum safe standard
of conservation) that determines whether an optimal path converges to zero
or to a positive steady state. Mitra and Ray (1984) studied a more general
model with concave utility in which the production function is only required
to be strictly increasing and continuous.

While various results are known on nonconvex one-sector optimal growth
models with strictly concave utility (e.g., Skiba, 1978; Majumdar and Mitra,
1982; Majumdar and Nermuth, 1982; Dechert and Nishimura, 1983; Kami-
higashi and Roy, 2003),3 many of the arguments used in the case of strictly
concave utility cannot readily be applied to the linear utility case. For exam-
ple, arguments based on the Euler equation cannot directly be applied to the
linear utility case, where optimal paths are often not in the interior of the
feasible set. In addition, though optimal paths are known to be monotone in

1The case of strictly concave utility is studied in Kamihigashi and Roy (2003). This
paper mostly focuses on arguments specific to the linear utility case.

2Optimal growth models with convex technology and linear utility have been studied,
among others, by Srinivasan (1964), Uzawa (1964), Malinvaud (1965), and Shell (1967).

3See Kamihigashi and Roy (2003) for a discussion of this literature.
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the case of strictly concave utility, this is not true in the linear utility case,
as shown in Proposition 3.2 of this paper.

We show however that every optimal path is strictly monotone until it
reaches a steady state. Furthermore, every optimal path either converges
to zero or reaches a positive steady state in finite time (and possibly jumps
among different steady states afterwards). This sharpens, in the linear utility
case, the result by Mitra and Ray (1984) that every optimal path approaches
the set of steady states asymptotically, and extends it to cases with discon-
tinuous production functions and irreversible investment. We also establish
conditions for extinction (convergence to zero), survival (boundedness away
from zero), and the existence of a minimum safe standard of conservation.
These conditions extend those established by Clark (1971) and Majumdar
and Mitra (1983) in the case of S-shaped production functions to a much
larger class of technologies.

Moreover we show that despite the nonclassical features of the model,
as the discount factor approaches one, optimal paths converge to a small
neighborhood of the golden rule capital stock. This result allows us to extend
the turnpike theorem of Majundar and Nermuth (1982) to the case of linear
utility. Though turnpike properties are normally associated with concavity
(e.g., McKenzie, 1986), our model essentially involves no concavity.

Our analysis has a number of applications outside optimal economic
growth. First, it can be used to study the optimal exploitation of renew-
able resources (e.g., Clark, 1971). Second, our model can be viewed as the
problem of a firm that maximizes the discounted sum of retained profits
(dividends), faces a constant rate of interest, and invests part of its current
flow of net revenue that in turn determines next period’s flow of net revenue.
Third, many of the techniques developed in this paper can be applied to a
wider class of models where the objective function is additively separable in
current and future state variables (e.g., Spence and Starrett, 1975; Clark,
1990, Section 7.7).

The rest of the paper is organized as follows. Section 2 describes the
model. Section 3 develops various properties that constitute the essential
tools of our analysis. Section 4 shows results on monotonicity and conver-
gence of optimal paths. Section 5 offers conditions for survival, extinction,
and the existence of a minimum safe standard of conservation. Section 6
establishes turnpike properties of optimal paths.

2



2 The Model

Consider the following maximization problem:

max
{ct,xt}∞t=0

∞∑
t=0

δtct(2.1)

s.t. ∀t ∈ Z+, ct + xt+1 = f(xt),(2.2)

ct ≥ 0,(2.3)

xt+1 ≥ r(xt),(2.4)

x0 given,(2.5)

where ct is consumption in period t, xt is the capital stock at the beginning
of period t, δ is the discount factor, f is the production function, and (2.4)
means that capital cannot be decreased below its depreciated level r(xt);
we call r the depreciation function for convenience. Our formulation allows
for nonlinear depreciation. The standard case of reversible investment is a
special case in which r(x) = 0 for all x ≥ 0.4

We use the following standard definitions. A path {ct, xt}∞t=0 is feasible if
it satisfies (2.2)–(2.4). A capital path {xt} is feasible if there is a consumption
path {ct} such that {ct, xt} is feasible. A path from x0 is a path {c′t, x′t} such
that x′0 = x0. A capital path from x0 is defined similarly. A feasible path
{ct, xt} is optimal (from x) if it solves the maximization problem (2.1)–(2.5)
(with x0 = x). A feasible capital path {xt} is optimal (from x) if there is a
consumption path {ct} such that {ct, xt} is optimal (from x). A stationary
(capital) path is a constant feasible (capital) path. A capital stock x ≥ 0
is a steady state if the stationary path from x is optimal. The assumptions
stated below are maintained throughout the paper.5

Assumption 2.1. δ ∈ (0, 1).

Assumption 2.2. (i) f : R+ → R+ is strictly increasing and upper semi-
continuous. (ii) f(0) = 0.

The production function f is not required to be continuous or differen-
tiable. To state our assumption on the depreciation function r, for h : R+ →
R, we define

(2.6) h−(x) = lim
y↑x

h(y), h+(x) = lim
y↓x

h(y),

4See Kamihigashi and Roy (2003) for a more detailed discussion of (2.4).
5Assumptions 2.2 and 2.3 are discussed in more detail in Kamihigashi and Roy (2003).
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provided that the right-hand sides are well-defined.

Assumption 2.3. (i) r : R+ → R+ is nondecreasing and lower semicontin-
uous. (ii) ∀x > 0, r+(x) < x and r(x) < f(x).

Like the production function f , the depreciation function r is not required
to be differentiable or continuous. Part (ii) means that the irreversibility con-
straint (2.4) is never binding at a steady state and that positive consumption
is available from any positive initial capital stock. The following assumption
rules out unbounded growth

Assumption 2.4. ∃x̂ > 0,∀x > x̂, f(x) < x.

Remark 2.1. If ∃x > 0, f(x) ≤ x, then any feasible capital path {xt} from
x0 ∈ [0, x] satisfies ∀t ∈ Z+, xt ≤ x.

Assumption 2.4 together with Remark 2.1 implies that all feasible paths
are bounded. We rule out unbounded growth since it does not seem to be a
robust phenomenon with linear utility.6 The assumptions made above ensure
the existence of an optimal path from any initial capital stock x0 ≥ 0 by a
standard argument (e.g., Ekeland and Scheinkman, 1986, Proposition 4.1).

3 Useful Properties

3.1 The Value Function and Some Definitions

This subsection establishes basic properties of the value function in addition
to defining useful functions and correspondences. Let v : R+ → R+ be
the value function for the maximization problem (2.1)–(2.5).7 The Bellman
equation is given by

(3.1) v(x) = max
y∈F (x)

{f(x)− y + δv(y)},

6For example, suppose f(x) = Ax for some A > 0 and r(x) = 0 for all x ≥ 0. Let
x0 > 0. Then it is easy to see that if A < 1/δ, the unique optimal path is given by xt+1 = 0
for all t ≥ 0; if A > 1/δ, no optimal path exists; and if A = 1/δ, any feasible capital path
satisfying limT↑∞ δT xT+1 = 0 is optimal. Hence unbounded growth is possible, but is
expected only in a knife edge case even for a more general production function.

7Because of the irreversibility constraint (2.4), v need not be nondecreasing, as discussed
in Kamihigashi and Roy (2003, Section 3.1).
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where F (x) = {y ≥ 0 | r(x) ≤ y ≤ f(x)}. Let K denote the optimal policy
correspondence. For x ≥ 0, define

g(x) = f(x)− x,(3.2)

γ(x) = δf(x)− x,(3.3)

λ(x) = δv(x)− x.(3.4)

The function g(x) gives the stationary level of consumption associated with
the capital stock x. We call γ(x) the partial gain function for the following
reason. An investment of x units of capital generates f(x) units of output
in the next period. Hence the “net gain” is δf(x)− x. This gain however is
partial in the sense that it does not take account of future gains obtained by
reinvestment. The “total net gain” is captured by λ(x), which we call the
total gain function.

Lemma 3.1. (i) v is upper semicontinuous. (ii) ∀x > 0, v(x) > 0.

Proof. Part (i) can be shown by a standard argument (e.g., Kamihigashi and
Roy, 2003, Lemma 3.3). To see (ii), let {ct, xt} be the path from x such that
∀t ∈ Z+, xt+1 = r(xt). Since this path is feasible and ∀t ∈ Z+, ct ≥ 0,

(3.5) v(x) ≥ c0 = f(x)− r(x) > 0,

where the last inequality holds by Assumption 2.3(ii). Now (ii) holds.

3.2 Properties Based on γ(x)

This subsection shows some basic results using the partial gain function γ(x).
Our first result here reduces the maximization problem (2.1)–(2.5) to one
in which the discounted sum of γ(xt+1) is to be maximized. This type of
reduction was used by Spence and Starrett (1975) and Clark (1990) to study
optimality of “most rapid approach” paths. We use it here for more general
purposes.

Lemma 3.2. A feasible capital path {xt} is optimal iff it solves the following
maximization problem:

(3.6) max
{xt}∞t=0

∞∑
t=0

δtγ(xt+1) s.t. ∀t ∈ Zt, xt+1 ∈ F (xt), x0 given.
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Proof. For any feasible capital path {xt},
∞∑

t=0

δt[f(xt)− xt+1](3.7)

= f(x0)− x1 + δf(x1)− δx2 + δ2f(x2)− δ2x3 + · · ·(3.8)

= f(x0) +
∞∑

t=0

δtγ(xt+1),(3.9)

where the last sum exists since {γ(xt+1)} is bounded by boundedness of {xt}
and monotonicity of f . The lemma now follows.

Though Lemma 3.2 may seem rather obvious, it does not necessarily hold
if Assumption 2.4 is dropped.8 The following result generalizes Mitra and
Ray (1984, Theorem 4.2) in the case of linear utility.9

Proposition 3.1. (i) Any x̃ ∈ argmaxx≥0 γ(x) is a steady state.10 (ii) If
∃y > 0, γ(y) ≥ 0, then there exists a nonzero steady state.

Proof. Immediate from Lemma 3.2 and upper semicontinuity of γ.

Proposition 3.2. Let x1, x2 > 0 be steady sates such that x1 ∈ F (x2) and
x2 ∈ F (x1). Then any capital path {xt} such that ∀t ∈ Z+, xt ∈ {x1, x2} is
optimal.

Proof. Since x2 ∈ F (x1), γ(x2) ≤ γ(x1) by Lemma 3.2. Likewise γ(x1) ≤
γ(x2). Thus γ(x1) = γ(x2). The conclusion now follows from Lemma 3.2.

By Proposition 3.1(i), the hypothesis of Proposition 3.2 holds if there are
two maximizers x1, x2 of γ(x) and if x1 ∈ F (x2) and x2 ∈ F (x1). In this case,
cycles of any period as well as nonperiodic paths are possible by Proposition
3.2. The result can easily be extended to any number of steady states with
more complicated transition patterns (e.g., Kamihigashi, 1999, Figure 2).

The following result is useful in determining the direction in which an
optimal capital path possibly moves.

8For example, suppose f(x) = x/δ. Then γ(x) = 0 for all x ≥ 0. Hence any feasible
capital path trivially solves (3.6). In particular, the capital path {xt} from x0 > 0 given
by xt+1 = f(xt) for all t ≥ 0 solves (3.6). But in this case, ct = f(xt) − xt+1 = 0 for all
t ∈ Z+, so this is in fact the worst feasible path.

9See Kamihigashi and Roy (2003, Propositions 3.3, 3.4) for the case of strictly concave
utility.

10The maximum exists since γ is upper semicontinuous and γ(x) < 0 for x > x̂, where
x̂ is given by Assumption 2.4.
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Lemma 3.3. Let {xt} be an optimal capital path from x0 ≥ 0. Then either
(i) ∃t ∈ Z+, γ(xt+1) > γ(x0) or (ii) ∀t ∈ Z+, γ(xt+1) = γ(x0).

Proof. Suppose both cases (i) and (ii) are false. Then ∀t ∈ Z+, γ(xt+1) ≤
γ(x0) and ∃t ∈ Z+, γ(xt+1) < γ(x0). Thus

0 ≤ f(x0) +
∞∑

t=0

δtγ(xt+1) < f(x0) +
γ(x0)

1− δ
=

g(x0)

1− δ
.(3.10)

Hence the stationary path from x0 is feasible. But then by the above strict
inequality and Lemma 3.2, {xt} cannot be optimal, a contradiction.

Lemma 3.3 means that an optimal capital path must achieve a higher
partial gain γ(xt+1) at some point unless partial gains are constant over time.
In other words, it never moves in a direction in which only lower partial gains
are available.11

3.3 Properties Based on λ(x)

This subsection shows some basic results using the total gain function λ(x).
The following result characterizes the policy correspondence by a single static
maximization problem.

Lemma 3.4. Let x, y ≥ 0. Then y ∈ K(x) iff y ∈ argmaxz∈F (x) λ(z).

Proof. Note from (3.1) and (3.4) that

(3.11) v(x) = max
z∈F (x)

{f(x) + λ(z)} = f(x) + max
z∈F (x)

λ(z).

The conclusion now follows.

Corollary 3.1. x ≥ 0 is a steady state iff x ∈ argmaxz∈F (x) λ(z).

Proof. Immediate from Lemma 3.4.

For x ≥ 0, define

(3.12) K(x) = min{y | y ∈ K(x)}, K(x) = max{y | y ∈ K(x)}.
The above minimum and maximum exist since K(x) is compact by Lemma
3.4 and upper semicontinuity of λ. The next result follows from Topkis (1978,
Theorem 6.1), but can easily be shown by using the total gain function λ.

11A slightly different version of Lemma 3.3 holds in the case of strictly concave utility
(Kamihigashi and Roy, 2003, Lemma 3.5).
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Lemma 3.5. (i) Let x, y ≥ 0, y ∈ K(x), and y′ ∈ K(x′). Then min{y, y′} ∈
K(min{x, x′}) and max{y, y′} ∈ K(max{x, x′}). (ii) K and K are nonde-
creasing.

3.4 Implications of Lemma 3.5

This subsection shows two lemmas that require only the properties of K
stated in Lemma 3.5. The first one shows that an optimal capital path can
change direction only at a steady state, and that if it changes direction, there
is a “shortcut.”

Lemma 3.6. Let x ≥ 0, y ∈ K(x), and z ∈ K(y). Suppose (a) x ≤ y ≥ z or
(b) x ≥ y ≤ z. Then (i) y is a steady state and (ii) z ∈ K(x).

Proof. In case (a), y = max{y, z} ∈ K(max{x, y}) = K(y) and z = min{y, z} ∈
K(min{x, y}) = K(x) by Lemma 3.5(i). Case (b) is similar.

The next result shows that two different capital stocks achieved along an
optimal capital path can always be connected by a monotone path that is
also optimal. It allows us to simplify some of our arguments.

Lemma 3.7. Let n ≥ 2. Let

(3.13) x1 ≥ 0, x2 ∈ K(x1), . . . , xn ∈ K(xn−1).

Then there exists a monotone (i.e., nondecreasing or nonincreasing) path
{yi}m

i=1 with m ≥ 2 such that y1 = x1, ym = xn, and y2 ∈ K(y1), . . . , ym ∈
K(ym−1).

Proof. If {xi}n
i=1 is monotone, the conclusion is obvious. So suppose it is not

monotone, which requires n ≥ 3. Then ∃j ∈ {1, . . . , n−2}, xj ≤ xj+1 ≥ xj+2

or xj ≥ xj+1 ≤ xj+2. By Lemma 3.6(ii), xj+2 ∈ K(xj). For i = 1, . . . , n− 1,
define x̃i = xi if i ≤ j and x̃i = xi+1 if i > j (i.e., remove xj+2). Then {x̃i}n−1

i=1

satisfies (3.13) with appropriate modifications. If {x̃i} is not monotone, apply
the same procedure to remove another element. The procedure can be applied
at most n − 2 times since each application removes one element. Since x1

and xn are never removed, this process yields a desired monotone path.
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3.5 Euler Inequalities

For h : (a, b) → R with a < b, define

(3.14) h′−(x) = lim
ε↓0

h(x)− h(x− ε)

ε
, h′+(x) = lim

ε↓0
h(x + ε)− h(x)

ε
.

These generalized derivatives allow us to obtain “Euler inequalities” instead
of an Euler equation. Lemmas 3.8 and 3.9 below are adapted from Kamihi-
gashi and Roy (2003, Lemmas 3.6, 3.7); the proofs are omitted.

Lemma 3.8. Let {ct, xt} be an optimal path. Let t ∈ Z+. If ct > 0 and
xt+2 > r+(xt+1), then

(3.15) 1 ≥ δf ′+(xt+1).

If xt+1 > r(xt) and ct+1 > 0, then

(3.16) 1 ≤ δf ′−(xt+1).

Lemma 3.9. If x > 0 is a steady state, then g(x) > 0 and

(3.17) δf ′+(x) ≤ 1 ≤ δf ′−(x).

The following result provides a link between the generalized derivatives
of f and the monotonicity properties of γ.

Lemma 3.10. Let 0 ≤ a < b. (i) If δf ′+ > 1 on [a, b), γ is strictly increasing
on [a, b]. (ii) If δf ′− < 1 on (a, b], γ is strictly decreasing on [a, b].

Proof. Since γ′+ = δf ′+− 1 and γ′− = δf ′−− 1, the lemma follows from Giorgi
and Kolmósi (1992, Theorem 1.13).

4 Monotonicity and Convergence

In the case of strictly concave utility, optimal capital paths are known to be
monotone (Kamihigashi and Roy, Lemma 3.2). As shown in Proposition 3.2,
this property does not carry over to the linear utility case. The following
result however shows that an optimal capital path is strictly monotone until
it reaches a steady state.
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Proposition 4.1. Let {xt} be an optimal capital path. Suppose ∃T ∈ N, ∀t ≤
T, xt is not a steady state. Then {xt}T+1

t=0 is strictly monotone.

Proof. Since x0 is not a steady state, x0 6= x1. Assume x0 < x1 without
loss of generality. If x1 ≥ x2, then x1 is a steady sate by Lemma 3.6(i), a
contradiction. Thus x1 < x2. By induction, ∀t ≤ T, xt < xt+1.

It can be expected from Proposition 4.1 that an optimal capital path
reaches a steady state either in finite time or asymptotically. The next result
shows that an optimal capital path either (i) converges to zero or (ii) reaches
a positive steady state in finite time and possibly jumps among different
steady states afterwards. Let S be the set of steady states.

Proposition 4.2. Let {xt} be an optimal capital path. Then one of the
following holds:

lim
t↑∞

xt = 0;(4.1)

∃T ∈ Z+, ∀t ≥ T, xt ∈ S.(4.2)

The proof appears in Subsection 4.1. Mitra and Ray (1984, Theorem 6.1)
showed that every optimal capital path approaches the set of steady states
asymptotically in the case of concave utility and reversible investment with a
continuous production function. Proposition 4.2 offers a sharper characteri-
zation in the case of linear utility and irreversible investment with a generally
discontinuous production function.

Proposition 4.2 shows that there are only two possibilities for the asymp-
totic behavior of an optimal capital path. One might wonder if the first
case (4.1) could be combined into the second, but convergence to zero simply
cannot occur in finite time if r(x) is strictly increasing near x = 0. Hence
an additional assumption is needed to ensure that convergence to zero also
occurs in finite time.

4.1 Proof of Proposition 4.2

Lemma 4.1. Let x > 0 be such that g−(x) ≤ 0.12 Then for every feasible
capital path {xt} from x0 ∈ [0, x), ∀t ∈ Z+, xt < x.

12By upper semicontinuity, g−(x) ≤ g(x) (= g+(x)).
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Proof. Since x1 ≤ f(x0) < f−(x), x1 − x < g−(x) ≤ 0. By induction,
∀t ∈ N, xt < x.

Lemma 4.2. Let x > 0 be such that g−(x) ≤ 0. Then ∃x ∈ (0, x), ∀y ∈
[0, x), K(y) < x.

Proof. Suppose g(x) = g−(x) ≤ 0. Then ∀y ∈ F (x), y ≤ x by Remark 2.1,
and x 6∈ K(x) by Lemma 3.9; thus x ≡ K(x) < x. Hence the conclusion
holds by Lemma 3.5(ii).

Now suppose g(x) > 0. Let f̃ be a production function satisfying As-
sumptions 2.2–2.4 such that ∀y ∈ [0, x), f̃(y) = f(y) and f̃(x) = f−(x). Let
K̃ be the corresponding policy correspondence. By Lemma 4.1, every feasi-
ble capital path {xt} from y ∈ [0, x) satisfies ∀t ∈ Z+, xt < x for the original
problem. This implies ∀y ∈ [0, x), K(y) = K̃(y). Hence the argument in the
previous case applies.

For the rest of the proof, we take an optimal capital path {xt} as given.

Lemma 4.3. Suppose there exists a subsequence {xti}∞i=1 of {xt} such that
x ≡ limi↑∞ xti > 0. Then (i) limi↑∞ g(xti) > 0. Furthermore, (ii) ∀I ∈
N,∃i ≥ I, x ∈ F (xti).

Proof. Taking a further subsequence, we may assume {xti} is monotone. To
show (i), suppose

(4.3) lim
i↑∞

g(xti) ≤ 0,

where the limit exists by monotonicity. Since g−(x) ≤ limi↑∞ g(xti) ≤ 0,
{xti} is nonincreasing by Lemma 4.2. Applying Lemma 3.7 to each pair of
the form (xti , xti+1

), we see that there is a nonincreasing optimal capital path
{yt} from xt1 with limt↑∞ yt = x. If ∃T ∈ Z+, yt = x, then x is a steady state
and g(x) ≤ 0 by (4.3), contradicting Lemma 3.9. It follows that

(4.4) ∀t ∈ Z+, x < yt.

We have

(4.5) lim
t↑∞

[f(yt)− yt+1] = lim
t↑∞

[f(yt)− yt] = lim
t↑∞

g(yt) ≤ 0,
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where the last inequality holds by (4.3). Let a = − limt↑∞ g(yt). Suppose
a > 0. Let b ∈ (0, a). Then yt+1 − yt ≤ f(yt) − yt < −b for large t,13 which
implies limt↑∞ yt = −∞, a contradiction. Thus

(4.6) 0 = lim
t↑∞

g(yt) = g+(x) = f(x)− x,

where the last equality holds by upper semicontinuity. By Fatou’s lemma,

lim
t↑∞

v(yt) = lim
t↑∞

∞∑
i=0

δi[f(yt+i)− yt+i+1](4.7)

≤
∞∑
i=0

δi lim
t↑∞

[f(yt+i)− yt+i+1] ≤ 0,(4.8)

where the last inequality uses (4.5). On the other hand, by (3.5), (4.4), (4.6),
and Assumption 2.3(ii).

lim
t↑∞

v(yt) ≥ lim
t↑∞

[f(yt)− r(yt)](4.9)

= f(x)− r+(x) = x− r+(x) > 0,(4.10)

contradicting (4.7) and (4.8).
To show (ii), suppose ∃I ∈ N,∀i ≥ I, x 6∈ F (xti). Since r+(x) < x by

Assumption 2.3(ii), r(xti) < x for large i. Thus x > f(xti) for large i. But
then limi↑∞ g(xti) = limi↑∞ f(xti)− x ≤ 0, contradicting part (i).

Lemma 4.4. If g(xt) ≤ 0 infinitely often, then limt↑∞ xt = 0.

Proof. Let {xti}∞i=1 be a subsequence of {xt} such that ∀i ∈ N, g(xti) ≤ 0.
Taking a further subsequence, we may assume {xti} is convergent. Since
limi↑∞ g(xti) ≤ 0, limt↑∞ xt = 0 by Lemma 4.3(i). By Remark 2.1, ∀i ∈
N,∀t ≥ ti, xt ≤ xti . Hence limt↑∞ xt = 0.

Lemma 4.5. Suppose ∀t ∈ Z+, g(xt) ≥ 0. Then λ(xt) is nondecreasing in t.

Proof. Let t ∈ Z+. Since g(xt) ≥ 0, xt ∈ F (xt). Thus by Lemma 3.4,
λ(xt) ≤ λ(xt+1).

13“For large t” means “for t ∈ Z+ sufficiently large.” Similar conventions apply to similar
expressions.
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Lemma 4.6. Suppose limt↑∞ xt > 0. Then ∃T ≥ 0, ∀t ≥ T, (i) λ(xt+1) =
limt↑∞ λ(xt) ≡ λ and (ii) xt+1 ∈ S.

Proof. By Lemma 4.4, g(xt) > 0 for large t. Hence we may assume ∀t ∈
Z+, g(xt) > 0 without loss of generality. By Lemma 4.5, λ(xt) is nonde-
creasing in t. Since limt↑∞ xt > 0, there is a subsequence {xti} of {xt} with
x ≡ limt↑∞ xti > 0. By monotonicity and upper semicontinuity,

(4.11) λ = sup
t∈Z+

λ(xt) = lim
t↑∞

λ(xt) ≤ λ(x).

By Lemma 4.3(ii), there is i ∈ N with x ∈ F (xti). Let T = ti. Then by
(4.11), Lemma 3.4, and monotonicity of λ(xt), ∀t ≥ T, λ ≤ λ(x) ≤ λ(xT+1) ≤
λ(xt+1) ≤ λ; thus (i) follows. To see (ii), let t ≥ T . Suppose xt+1 6∈ S. Then
by Corollary 3.1, λ(xt+2) > λ(xt+1), contradicting part (i).

Proposition 4.2 now follows from Lemma 4.6.

5 Survival, Extinction, and a Minimum Safe

Standard of Conservation

This section gives conditions for survival, extinction, and the existence of a
“minimum safe standard of conservation.” Our first result here provides a
condition for survival, i.e., for an optimal capital path to be bounded away
from zero. Together with Proposition 4.2, it extends Majumdar and Mitra
(1983, Propositions 2, 3) to our general setting.

Proposition 5.1. Suppose

(5.1) ∃x > 0, ∀x ∈ (0, x), δf ′+(x) > 1.

Then every optimal capital path {xt} from x0 > 0 satisfies xt ≥ x for large t.

Proof. By (5.1) and Lemma 3.9, there is no steady state in (0, x). Let x ∈
(0, x). We claim K(x) > x. Suppose K(x) ≤ x. Since x is not a steady
state, K(x) < x. By Lemma 3.5(ii), there is an optimal capital path {xt}
from x with ∀t ∈ N, xt ≤ K(x) < x. By Lemma 3.10, γ is strictly increasing
on [0, x],14 so ∀t ∈ Z+, γ(xt+1) < γ(x0), contradicting Lemma 3.2. We have
shown that ∀x ∈ (0, x), K(x) > x. Since there is no steady state in (0, x),
the conclusion holds by Proposition 4.2.

14The origin is included since γ is continuous at 0 by Assumption 2.2.
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The next result offers a condition for global extinction, i.e., for every
optimal capital path to converge to zero. It extends Majumdar and Mitra
(1983, Proposition 1) to our general setting.

Proposition 5.2. Suppose

(5.2) ∀x > 0, δf ′−(x) < 1.

Then every optimal capital path converges to zero.

Proof. By (5.2) and Lemma 3.10, γ is strictly decreasing on [0,∞). Thus
every optimal capital path is nonincreasing by Lemma 3.3. It converges to
zero by Proposition 4.2 since there is no steady state in (0,∞) by (5.2) and
Lemma 3.9.

The next result gives a condition for local extinction, i.e., for any optimal
capital path starting below a certain level to converge to zero. It generalizes
Majumdar and Mitra (1983, Lemma 4) to our general setting.

Proposition 5.3. Suppose

(5.3) lim
x↓0

δf ′−(x) < 1.

Then ∃x > 0, any optimal capital path from x ∈ (0, x] converges to zero.

Before proving Proposition 5.3, let us show the existence of a “minimum
safe standard of conservation” (e.g., Clark, 1971) under an additional condi-
tion. The following result along with Proposition 4.2 extends the analysis of
Majumdar and Mitra (1983, Section 3c) to our general setting.

Proposition 5.4. Assume (5.3). Suppose maxx≥0 γ(x) > 0. Then there
exists x > 0 such that from any x ∈ (0, x) there exists an optimal capital
path converging to zero, and from any x > x there exists no optimal capital
path converging to zero.

Proof. Let x = sup{x > 0 | there is an optimal capital path from x converging
to zero}. By Proposition 5.3, x > 0. Note from Lemma 3.5 that if there is an
optimal capital path from x > 0 converging to zero, then from any x′ ∈ (0, x)
there is an optimal capital path converging to zero. It follows that x has the
desired property except for its finiteness. Since maxx≥0 γ(x) > 0, there exists
a steady state x̃ > 0 by Proposition 3.1. Since no optimal capital path from
x̃ converges to zero by Lemma 3.3, we obtain x ≤ x̃.
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5.1 Proof of Proposition 5.3

Note that (5.3) implies

(5.4) ∃z > 0,∃ε > 0,∀x ∈ (0, z], δf ′−(x) < 1− ε.

Lemma 5.1. Under (5.4), ∃x ∈ (0, z], any optimal capital path from x ∈
(0, x] is bounded above by z, where z is given by (5.4).

Proof. If ∃x ∈ (0, z], g(x) ≤ 0, then the conclusion follows from Remark 2.1.
So suppose

(5.5) ∀x ∈ (0, z], g(x) > 0.

Suppose the conclusion is false. Then ∀x ∈ (0, z], ∃x ∈ (0, x], there is an
optimal capital path {xt} from x with the property that ∃t ∈ N, xt > z. By
Lemma 3.5, this means that ∀x ∈ (0, z], there is an optimal capital path
with the same property. For i ∈ N, define xi = f−i(z); this is well-defined
since f is strictly increasing, (5.4) implies that f is continuous on [0, z], and
f(z) > z by (5.5). By definition and (5.5),

(5.6) ∀i ∈ N, (a) f i(xi) = z, (b) z > xi = f(xi+1) > xi+1.

Fix i ∈ N for the moment. Let {xi
t} be an optimal capital path from xi

such that ∃t ∈ N, xi
t > z. Let s ∈ N be the first t ∈ N with xi

t > z. Then

(5.7) (a) s > i, (b) z < xi
s ≤ f(z).

Since there is no steady state in (0, z] by (5.4) and Lemma 3.9, {xi
t}s

t=0 is
strictly increasing by Proposition 4.1. Thus ∀t ∈ {0, 1, . . . , s − 1}, xi

t+1 >
xi

t > r(xi
t), where the last inequality holds by Assumption 2.3(ii). Hence by

Lemma 3.8 and (5.4),

(5.8) ∀t ∈ {1, . . . , s− 1}, xi
t+1 = f(xi

t) (i.e., ci
t = 0).

Since the stationary path from xi is feasible by (5.5), it follows that

(5.9)
g(xi)

1− δ
≤ v(xi) = f(xi)− xi

1 + δsv(xs) < g(xi) + δsv,

where v = maxx∈[z,f(z)] v(x), the equality follows from (5.8), and the last
inequality holds by (5.7)(b) since xi

1 > xi. From (5.5), (5.9), and (5.7)(a),

(5.10) 0 <
δg(xi)

1− δ
< δsv ≤ δi+1v.
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Thus δ−ig(xi) ≤ (1 − δ)v. Since the right-hand side is finite and does not
depend on i, to obtain a contradiction it suffices to show

(5.11) lim
i↑∞

δ−ig(xi) = ∞.

Note that ∀i ∈ N,

δ−ig(xi)

δ−(i+1)g(xi+1)
= δ

f(xi)− xi

f(xi+1)− xi+1
(5.12)

= δ
f(xi)− f(xi+1)

xi − xi+1
(5.13)

≤ δf ′−(x̃i) ≤ 1− ε,(5.14)

where (5.13) uses (5.6)(b), the first inequality in (5.14) holds for some x̃i ∈
[xi+1, xi] by the generalized mean value theorem (Giorgi and Kolmósi, 1992,
Theorem 1.8), and the last inequality holds by (5.4). Now (5.11) follows.

To complete the proof of Proposition 5.3, let x be as given by Lemma 5.1.
Since there is no steady state in (0, z] by (5.4) and Lemma 3.9, any optimal
capital path from x ∈ (0, x] converges to zero by Proposition 4.2.

6 Turnpike Properties

This section shows that for any ε > 0, for δ close to one, any optimal capital
path from x0 ≥ ε “converges” to a small neighborhood of the golden rule
capital stock. We start by assuming that maximum sustainable consumption
is strictly positive.

Assumption 6.1. g∗ ≡ maxx≥0 g(x) > 0.

If g∗ ≤ 0, extinction occurs from every initial capital stock by Lemma 3.9
and Proposition 4.2. Assumption 6.1 rules out this trivial case.

Assumption 6.2. There exists a unique x∗ ≥ 0 such that g(x∗) = g∗.15

We call x∗ the golden rule capital stock. The following is our last assump-
tion.

15Along the lines of Kamihigashi and Roy (2003, Section 8) it is possible to deal with
cases in which there are more than one capital stock at which g(x) is maximized.
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Assumption 6.3. ∀x ∈ (0, x∗], g−(x) > 0.

If g−(x) ≤ 0 for some x ∈ (0, x∗], no feasible capital path from x0 ∈ (0, x)
can reach x∗ by Lemma 4.1. Assumption 6.3 ensures that it is possible to
reach x∗ from any x ∈ (0, x∗]. We are now ready to state the main result of
this section.

Proposition 6.1. Let ε∗ ∈ (0, x∗) and ε ∈ (0, x∗ − ε∗). Then for δ close to
one, any optimal capital path {xt} from x0 ∈ [ε,∞) satisfies

(6.1) ∃T ∈ Z+, ∀t ≥ T, xt ∈ (x∗ − ε∗, x∗ + ε∗).

Before proving this result, let us show a simple consequence that extends
Majumdar and Nermuth (1982, Theorem 3.4) to the case of linear utility.16

Corollary 6.1. Let ε∗ ∈ (0, x∗). Suppose

(6.2) lim
x↓0

f ′+(x) > 1.

Suppose there exists a unique steady state x(δ) in (x∗ − ε∗, x∗ + ε∗) for δ
close to one. Then for δ close to one, every optimal capital path {xt} from
x0 ∈ (0,∞) converges to x(δ).

Proof. By (6.2), ∃µ > 1,∃x > 0,∀x ∈ (0, x), f ′+(x) > µ. Hence for δ close to
one, ∀x ∈ (0, x), δf ′+(x) > 1. Thus the conclusion follows from Propositions
5.1, 6.1 (with ε = x), and 4.2.

6.1 Proof of Proposition 6.1

Lemma 6.1. ∀ε ∈ (0, x∗− ε∗), for δ close to one, there exists no steady state
in [ε, x∗ − ε∗].

Proof. It is easy to see that ∃T ∈ N,∀x0 ∈ [ε, x∗ − ε∗], there is a feasible
capital path from x0 such that ∀t ≥ T, xt = x∗.17 Let g = maxy∈[ε,x∗−ε∗] g(y).
By Assumption 6.2, for δ close to one, g/(1 − δ) < δT g∗/(1 − δ), so the
stationary path from any x ∈ [ε, x∗ − ε∗] is not optimal.

16For extensions of their result in the case of strictly concave utility, see Kamihigashi
and Roy (2003, Section 8).

17Let T ∈ N be such that there is a feasible capital path from ε with ∀t ≥ T, xt = x∗.
This T works for all x0 ∈ [ε, x∗ − ε∗].
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Lemma 6.2. For δ close to one, there exists no steady state in [x∗ + ε∗,∞).

Proof. By Assumption 2.4, there is no steady state in [x̂,∞) for any δ ∈
(0, 1). The argument of the proof of Lemma 6.1 shows that there is no
steady state in [x∗ + ε, x̂] for δ close to one.

Lemma 6.3. Let x ∈ (0, x∗ − ε∗) be such that

(6.3) f(x) < g∗.18

Then for δ close to one, K(x) > x.19

Proof. Let T ∈ N be such that there is a feasible capital path from x with
∀t ≥ T, xt = x∗. Then

(6.4) ∀δ ∈ (0, 1), v(x) ≥ δT g∗/(1− δ).

Let δ ∈ (0, 1) be such that

(6.5) f(x) < δT g∗.

This inequality holds for δ close to one by (6.3). Suppose K(x) ≤ x. Then
by Lemma 3.5(ii), there is an optimal capital path {xt} from x such that
∀t ∈ Z+, xt ≤ x. Hence

(6.6) v(x) =
∞∑

t=0

δt[f(xt)− xt+1] ≤ f(x)/(1− δ),

which together with (6.5) contradicts (6.4).

Let us now complete the proof of Proposition 6.1. If f(ε) ≥ g∗, make ε
smaller so that f(ε) < g∗. From Lemmas 6.1–6.3, for δ close to one, there is
no steady state in [ε, x∗− ε∗]∪ [x∗+ ε∗,∞), and K(ε) > ε. Hence any optimal
capital path {xt} from x0 ≥ ε satisfies ∀t ∈ Z+, xt ≥ K(ε) > ε by Lemma
3.5(ii), and thus satisfies (6.1) by Proposition 4.2.

18Such x exists since limx↓0 f(x) = 0 by Assumption 2.2 and g∗ > 0 by Assumption 6.1.
19For simplicity, we do not express the dependence of K and v on δ.
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