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1 Introduction

Although general results on necessity of transversality conditions (TVCs)
for deterministic problems are shown in Kamihigashi [4], widely applicable
results for stochastic problems are not available in the literature. As men-
tioned below, the stochastic versions of Weitzman’s [9] theorem shown by
Zilcha [10] and Takekuma [8] are not easily applicable.1 Furthermore the
existing literature does not offer stochastic versions of the results of Michel
[7] and Ekeland and Scheinkman [2].2

We establish three results in this paper. Our first result is a stochastic
version of the necessity part of Michel [7, Theorem 1]. Our second result is a
stochastic version of Kamihigashi’s [4, Theorem 3.3] result, which is a gener-
alization of the TVC results of Weitzman [9] and Ekeland and Scheinkman
[2]. Our second result also generalizes the TVC results of Zilcha [10] and
Takekuma [8]. Our third result is a stochastic version of Kamihigashi’s [4,
Theorem 3.4] result, which is useful particularly in the case of homogeneous
returns.

We follow Ekeland and Scheinkman [2] in using directional derivatives
instead of support prices. The results of Zilcha [10] and Takekuma [8] are
not easily applicable since they use support prices and thus rely heavily on the
infinite-dimensional separation theorem, which requires severe restrictions.3

We do not require such restrictions since, instead of constructing support
prices, we simply use lower Dini directional derivatives, which are well-defined
even if the return functions are discontinuous or nondifferentiable. This
allows us to concentrate on conditions directly related to TVCs.

The proofs of our main results are based on our realization that neces-
sary TVCs for a stochastic problem can be derived from a one-dimensional
deterministic problem. This approach enables us to obtain TVCs for an
extremely general stochastic reduced-form model with very few technical re-
strictions. More specifically, our main results are proved in Appendix B by
simple applications of the general results established in Appendix A for a
one-dimensional deterministic problem. Section 2 presents the main results.
Section 3 concludes the paper.

1See Zilcha [11] for results specific to an undiscounted stationary model.
2For discussions on these and other related results for deterministic problems, see Kami-

higashi [3, 4, 6].
3It should be mentioned that the difficult part in establishing their results is the con-

struction of support prices, not the proof of the necessity of TVCs.
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2 Main Results

Let (Ω,F , P ) be a probability space. Let E denote the associated expectation
operator; i.e., Ez =

∫
z(ω)dP (ω) for any random variable z : Ω → R. When

it is important to make explicit the dependence of z on ω, we write Ez(ω)
instead of Ez. Consider the following problem.





“ max
{xt}∞t=0

∞∑
t=0

Evt(xt(ω), xt+1(ω), ω)”

s.t. x0 = x0, ∀t ∈ Z+, (xt, xt+1) ∈ Xt.
4

(2.1)

For any pair of sets Y and Z, let F (Y, Z) denote the set of all functions from
Y to Z. We assume the following.

Assumption 2.1. There exists a sequence of real vector spaces {Bt}∞t=0 such
that x0 ∈ F (Ω, B0) and ∀t ∈ Z+, Xt ⊂ F (Ω, Bt)× F (Ω, Bt+1).

Assumption 2.2. ∀t ∈ Z+,∀(y, z) ∈ Xt, (i) ∀ω ∈ Ω, vt(y(ω), z(ω), ω) ∈
[−∞,∞), (ii) the mapping vt(y(·), z(·), ·) : Ω → [−∞,∞) is measurable, and
(iii) Evt(y(ω), z(ω), ω) exists in [−∞,∞).

Assumption 2.1 means that xt is a random variable whose realization lies
in a real vector space. Assumption 2.2 simply means that the expression
Evt(xt(ω), xt+1(ω), ω) makes sense.

We say that a sequence {xt}∞t=0 is a feasible path if x0 = x0 and ∀t ∈
Z+, (xt, xt+1) ∈ Xt. Since in applications the objective function is often not
guaranteed to be finite or well-defined for all feasible paths, we use weak
maximality (Brock [1]) as our optimality criterion. We say that a feasible
path {x∗t} is optimal if for any feasible path {xt},

lim
T↑∞

T∑
t=0

[Evt(xt(ω), xt+1(ω), ω)− Evt(x
∗
t (ω), x∗t+1(ω), ω)] ≤ 0.5 (2.2)

Our optimality criterion (i) reduces to the standard maximization cri-
terion whenever the latter makes sense, (ii) applies even when the standard

4Z+ ≡ {0, 1, 2, . . .}.
5To be precise, this inequality requires that the left side is well-defined. This means

that the left side does not involve expressions like “∞−∞” and “−∞+∞.” An implication
of this requirement is that ∀t ∈ Z+, Evt(x∗t , x∗t+1) is finite; for otherwise the left side of
(2.2) is undefined for {xt} = {x∗t }.
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criterion fails, and (iii) is weaker than the similar criterion with lim replacing
lim in (2.2). Our results therefore apply to virtually any problem of the form
(2.1).

In stochastic optimization problems, feasible paths are usually required to
be adapted to a filtration (e.g., xt+1 can depend only on information available
in period t). Though such an information structure could be imposed here,
it is already covered by Assumptions 2.1 and 2.2. To be more specific, let
{Ft} be a filtration; e.g., Ft may be the σ-field generated by all possible
histories of shocks up to period t. Note that since Ft-measurability implies
measurability (i.e., F -measurability), Assumption 2.2 allows vt(y(·), z(·), ·)
to be Ft-measurable. Let Mt be the set of Ft−1-measurable functions from
Ω to Bt (assuming Bt is a measurable space). Then one can require feasible
paths to be adapted to {Ft} by assuming Xt ⊂ Mt×Mt+1, i.e., xt+1(·) is Ft-
measurable. But this is only a special case of Assumption 2.1 since obviously
Mt ⊂ F (Ω, Bt). Likewise other information structures like this are covered
by Assumptions 2.1 and 2.2. The rest of the section assumes the following.

Assumption 2.3. There exists an optimal path {x∗t}.
Since we are only interested in necessary conditions for optimality, this as-

sumption imposes no restriction on the model. For simplicity, for (xt, xt+1) ∈
Xt, let vt(xt, xt+1) denote the random variable vt(xt(·), xt+1(·), ·) : Ω →
[−∞,∞). For t ∈ Z+ and d ∈ F (Ω, Bt+1) such that (x∗t , x

∗
t+1 + εd) ∈ Xt

for sufficiently small ε > 0, we define the random variable vt,2(x
∗
t , x

∗
t+1; d) by

vt,2(x
∗
t , x

∗
t+1; d) = lim

ε↓0

vt(x
∗
t , x

∗
t+1 + εd)− vt(x

∗
t , x

∗
t+1)

ε
, (2.3)

where limε↓0 is applied pointwise (i.e., for each ω ∈ Ω separately). Even if vt

is nondifferentiable or discontinuous, the right side of (2.3), which is a lower
Dini directional derivative, is well-defined (with probability one) as long as
(x∗t , x

∗
t+1+εd) ∈ Xt for sufficiently small ε > 0. Note that if vt is differentiable

in the second argument (in an appropriate sense), then vt,2(x
∗
t , x

∗
t+1; d) =

[∂vt(x
∗
t , x

∗
t+1)/∂x∗t+1]d. Note also that vt,2(x

∗
t , x

∗
t+1; d) reduces to the usual

directional derivative if vt,2 is concave in the second argument.

Remark 2.1. Theorems 2.1–2.3 below hold even if lim replaces lim in (2.3).6

6The working paper version of this paper [5] explains why this remark is true. See
Assumption 2.5 and Remark 2.4 for why we use lim in (2.3).
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Our basic strategy in deriving necessary TVCs for our stochastic problem
is to consider the following deterministic problem of choosing {yt}∞t=0 ⊂ R:





“ max
{yt}∞t=0

∞∑
t=0

Evt(x
∗
t + ytet, x

∗
t+1 + yt+1et+1)”

s.t. y0 = 0, ∀t ∈ Z+, (x∗t + ytet, x
∗
t+1 + yt+1et+1) ∈ Xt,

(2.4)

where ∀t ∈ Z+, et ∈ F (Ω, Bt). For t ∈ Z+, let y∗t = 0. Then {y∗t } is optimal for
(2.4) since {x∗t} is optimal for (2.1). The proofs of our main results are based
on our realization that necessary TVCs for (2.1) can be derived from (2.4)
with {et} appropriately chosen. Indeed our main results are established by
applying the results shown in Appendix A for a one-dimensional deterministic
problem of which (2.4) is a special case.

Theorem 2.1. Assume Assumptions 2.1–2.3. Suppose ∀t ∈ Z+, Xt is convex
and ∀ω ∈ Ω, vt(·, ·, ω) is concave. Then

lim
t↑∞

Evt,2(x
∗
t , x

∗
t+1; xt+1 − x∗t+1) ≤ 07 (2.5)

for any feasible path {xt} such that

lim
T↑∞

T∑
t=1

[Evt(xt, xt+1)− Evt(x
∗
t , x

∗
t+1)] > −∞, (2.6)

{ ∀t ∈ Z+,∃ε > 0,
ζt(ε) ≡ (x∗t , x

∗
t+1 + ε(xt+1 − x∗t+1)) ∈ Xt, Evt(ζt(ε)) > −∞.

(2.7)

Theorem 2.1 is a stochastic version of the necessity part of Michel [7,
Theorem 1]. Condition (2.7) is needed here for Evt,2(x

∗
t , x

∗
t+1; xt+1− x∗t+1) to

be well-defined. The rest of this section assumes the following.

Assumption 2.4. ∀t ∈ Z+, ∃λt ∈ [0, 1),∀λ ∈ [λt, 1), (x∗t , λx∗t+1) ∈ Xt and
∀τ ≥ t + 1, (λx∗τ , λx∗τ+1) ∈ Xτ .

Remark 2.2. Assumption 2.4 holds if ∀t ∈ Z+, Xt is convex and (x∗t , 0), (0, 0) ∈
Xt.

7By this inequality, we also mean that the mapping vt,2(x∗t , x∗t+1; xt+1−x∗t+1) : Ω → R
is measurable and Evt,2(x∗t , x∗t+1; xt+1 − x∗t+1) exists in R. The same remark applies to
(2.10).
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Assumption 2.4 means that the optimal path {x∗t} can be shifted pro-
portionally downward starting from any period. The assumption is common
to most results on the standard TVC, which basically means that no gain
should be achieved by shifting the optimal path proportionally downward.

For t ∈ N ≡ {1, 2, 3, . . .} and λ ∈ R \ {1} with (λx∗t , λx∗t+1) ∈ Xt, define

wt(λ) =
Evt(x

∗
t , x

∗
t+1)− Evt(λx∗t , λx∗t+1)

1− λ
, (2.8)

ŵt(λ) = sup
λ̃∈[λ,1)

wt(λ̃), (2.9)

where ŵt(λ) is defined for λ < 1 such that ∀λ̃ ∈ [λ, 1), (λx∗t , λx∗t+1) ∈ Xt.
Note from Assumption 2.4 that ŵt(λ) is defined at least for λ ∈ [λ0, 1).

Remark 2.3. If vt(λx∗t , λx∗t+1) is concave in λ ∈ [λ0, 1],8 then ∀λ ∈ [λ0, 1), ŵt(λ) =
wt(λ).

Assumption 2.5. ∀t ∈ Z+,

Evt,2(x
∗
t , x

∗
t+1;−x∗t+1) ≤ lim

ε↓0
E

vt(x
∗
t , x

∗
t+1 − εx∗t+1)− vt(x

∗
t , x

∗
t+1)

ε
. (2.10)

Remark 2.4. (2.10) holds by Fatou’s lemma (recall (2.3)) if the mapping
vt,2(x

∗
t , x

∗
t+1;−x∗t+1) : Ω → R is measurable and if vt(x

∗
t , λx∗t+1) is nonincreas-

ing in λ ∈ [λt, 1] (which is the case in most economic models).

Remark 2.5. (2.10) holds with equality by the monotone convergence theo-
rem if vt(x

∗
t , λx∗t+1) is concave in λ ∈ [λt, 1] and if ∃λ ∈ [λt, 1), Evt(x

∗
t , λx∗t+1) >

−∞.

Theorem 2.2. Assume Assumptions 2.1–2.5. Suppose

∃{bt}∞t=1 ⊂ R,∃λ ∈ [λ0, 1),∀t ∈ N, ŵt(λ) ≤ bt. (2.11)

Then (i) (2.12) ⇒ (2.13) and (ii) (2.14) ⇒ (2.15), where (2.12)–(2.15) are

8To be precise, by “vt(λx∗t , λx∗t+1) is concave in λ,” we mean that with probability
one, vt(λx∗t , λx∗t+1) is a concave function of λ. Likewise any condition involving random
variables is understood to hold with probability one.
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given by

lim
T↑∞

T∑
t=1

bt < ∞, (2.12)

lim
t↑∞

Evt,2(x
∗
t , x

∗
t+1;−x∗t+1) ≤ 0, (2.13)

∞∑
t=1

bt exists in [−∞,∞), (2.14)

lim
t↑∞

Evt,2(x
∗
t , x

∗
t+1;−x∗t+1) ≤ 0. (2.15)

Conclusion (ii) of Theorem 2.2 generalizes the TVC results of Zilcha [10]
and Takekuma [8] except that our result uses lower Dini directional deriva-
tives instead of support prices. Theorem 2.2 is also a stochastic version of
Kamihigashi’s [4, Theorem 3.3] result, which is a generalization of the TVC
results of Weitzman [9] and Ekeland and Scheinkman [2]. Our last result
uses the following assumption.

Assumption 2.6. ∃µ > 1,∀µ ∈ (1, µ], (i) (x∗0, µx∗1) ∈ X0, (ii) ∀t ∈ N, (µx∗t , µx∗t+1) ∈
Xt, (iii) Ev0(x

∗
0, µx∗1) > −∞, and (iv) ∀t ∈ N, Evt(µx∗t , µx∗t+1) ≥ Evt(x

∗
t , x

∗
t+1).

Assumption 2.6 means that the optimal path can be shifted proportionally
upward ((i) and (ii)) and that a sufficiently small such shift entails a finite loss
in period 0 and nonnegative gains in the subsequent periods ((iii) and (iv)).
The assumption is innocuous at least for standard models with homogeneous
returns.

Theorem 2.3. Assume Assumptions 2.1–2.6. Suppose

∃λ ∈ [λ0, 1),∃µ ∈ (1, µ],∃θ ≥ 0,∀t ∈ N, ŵt(λ) ≤ θwt(µ). (2.16)

Then TVC (2.15) holds.

Theorem 2.3 is similar to Kamihigashi’s [4, Theorem 3.4] result, but the
proof here is quite different. Basically Kamihigashi’s [4, Theorem 3.4] result
uses limµ↓1 wt(µ) in (2.16) instead of wt(µ) and its proof relies on differentia-
bility and the Euler equation. The proof of Theorem 2.3 by contrast verifies
(2.11) and (2.14) using (2.16) and Assumption 2.6. Theorem 2.3 is useful
particularly in the case of homogenous returns.
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3 Concluding Remarks

This paper has shown stochastic versions of (i) Michel’s [7, Theorem 1] ne-
cessity result, (ii) a generalization of the TVC results of Weitzman [9] and
Ekeland and Scheinkman [2], and (iii) Kamihigashi’s [4, Theorem 3.4] re-
sult, which is useful particularly in the case of homogeneous returns. These
stochastic extensions have been established for an extremely general stochas-
tic reduced-form model that assumes neither differentiability nor continuity.

Our results are significant as well as useful, not only because the previous
literature does not provide widely applicable results on necessity of TVCs for
stochastic problems, but also because our results require very few technical
restrictions in addition to those needed for the corresponding deterministic
results. Our results suggest that as far as necessity of TVCs is concerned,
there is little difference between deterministic and stochastic cases.

A General Results

This appendix establishes two general results for a one-dimensional deter-
ministic problem. By applying those results, Appendix B proves Theorems
2.1–2.3. Consider the following problem.





“ max
{yt}∞t=0

∞∑
t=0

rt(yt, yt+1)”

s.t. y0 = y0, ∀t ∈ Z+, (yt, yt+1) ∈ Yt.

(A.1)

Assumption A.1. y0 ∈ R and ∀t ∈ Z+, Yt ⊂ R× R.

Assumption A.2. rt : Yt → [−∞,∞).

Assumption A.1 says that yt is one-dimensional. Feasible paths and op-
timal paths are defined as in Section 2.

Assumption A.3. There exists an optimal path {y∗t }.
Assumption A.4. ∀t ∈ Z+, ∃εt > 0,∀ε ∈ (0, εt], (y

∗
t , y

∗
t+1 − ε) ∈ Yt and

∀τ ≥ t + 1, (y∗τ − ε, y∗τ+1 − ε) ∈ Yτ .

Assumption A.4 means that the optimal path can be shifted uniformly
downward starting from any period. For t ∈ Z+, define

qt = rt,2(y
∗
t , y

∗
t+1;−1), (A.2)
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where the right side is defined as in (2.3). For t ∈ N and ε ∈ R \ {0} with
(y∗t − ε, y∗t+1 − ε) ∈ Yt, define

mt(ε) =
rt(y

∗
t , y

∗
t+1)− rt(y

∗
t − ε, y∗t+1 − ε)

ε
, (A.3)

m̂t(ε) = sup
ε̃∈(0,ε]

mt(ε̃), (A.4)

where m̂t(ε) is defined for ε > 0 such that ∀ε̃ ∈ (0, ε], (y∗t − ε, y∗t+1 − ε) ∈ Yt.
Note from Assumption A.4 that m̂t(ε) is defined at least for ε ∈ (0, ε0]. Define

Ψ = {{ft}∞t=1 ⊂ R | limT↑∞
∑T

t=1 ft ∈ [−∞,∞)}, (A.5)

Φ = {{ft}∞t=1 ⊂ R | limT↑∞
∑T

t=1 ft exits in [−∞,∞)}. (A.6)

The following result can be shown by the argument of Kamihigashi [4,
Theorem 3.2]. The working paper version of this paper [5] contains the
details.

Theorem A.1. Assume Assumptions A.1–A.4. Suppose

∃{bt}∞t=1 ⊂ R,∃ε ∈ (0, ε0], ∀t ∈ N, m̂t(ε) ≤ bt. (A.7)

Then (i) {bt} ∈ Ψ ⇒ limt↑∞ qt ≤ 0 and (ii) {bt} ∈ Φ ⇒ limt↑∞ qt ≤ 0.

The following assumption means that the optimal path can be shifted
uniformly upward with a finite loss in period 0 and nonnegative gains in the
subsequent periods.

Assumption A.5. ∃δ > 0,∀δ ∈ (0, δ], (i) (y∗0, y
∗
1 + δ) ∈ Y0, (ii) ∀t ∈ N, (y∗t +

δ, y∗t+1+δ) ∈ Yt, (iii) r0(y
∗
0, y

∗
1+δ) > −∞, and (iv) ∀t ∈ N, rt(y

∗
t +δ, y∗t+1+δ) ≥

rt(y
∗
t , y

∗
t+1).

Theorem A.2. Assume Assumptions A.1–A.5. Suppose

∃ε ∈ (0, ε0],∃δ ∈ (0, δ],∃θ ≥ 0,∀t ∈ N, m̂t(ε) ≤ θmt(−δ). (A.8)

Then limt↑∞ qt ≤ 0.

Proof. 9 By the optimality of {y∗t } and Assumption A.5,

r0(y
∗
0, y

∗
1 + δ)− r0(y

∗
0, y

∗
1) +

∞∑
t=1

[rt(y
∗
t + δ, y∗t+1 + δ)− rt(y

∗
t , y

∗
t+1)] ≤ 0, (A.9)

9The proof of Kamihigashi [4, Theorem 3.4], which assumes differentiability and an
interior optimal path, does not apply to Theorem A.2.
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where the infinite sum exists by Assumption A.5(iv). By Assumption A.5(iii)
(and footnote 5), for (A.9) to hold, we must have

∞∑
t=1

[rt(y
∗
t + δ, y∗t+1 + δ)− rt(y

∗
t , y

∗
t+1)] < ∞. (A.10)

Dividing through by δ and recalling (A.3), we get
∑∞

t=1 mt(−δ) < ∞. Thus
by (A.8) and Theorem A.1(ii), limt↑∞ qt ≤ 0.

B Proofs of Theorems 2.1–2.3

Consider (2.1). Assume Assumptions 2.1–2.3. For t ∈ Z+, let et ∈ F (Ω, Bt)
and define

rt(yt, yt+1) = Evt(x
∗
t + ytet, x

∗
t+1 + yt+1et+1), (B.1)

Yt = {(yt, yt+1) ∈ R2 | (x∗t + ytet, x
∗
t+1 + yt+1et+1) ∈ Xt}. (B.2)

It follows from (A.2) and (2.3) that under (B.1), ∀t ∈ Z+,

qt = lim
ε↓0

E
vt(x

∗
t , x

∗
t+1 − εet)− vt(x

∗
t , x

∗
t+1)

ε
. (B.3)

Remark B.1. (B.1) and (B.2) satisfy Assumptions A.1 and A.2. Further-
more the path {y∗t }∞t=0 defined by ∀t ∈ Z+, y∗t = 0, is optimal for (2.4).

B.1 Proof of Theorem 2.1

Let {xt} be a feasible path satisfying (2.6) and (2.7). Then

{bt}∞t=1 ≡ {Evt(x
∗
t , x

∗
t+1)− Evt(xt, xt+1)}∞t=1 ∈ Ψ, (B.4)

where Ψ is defined by (A.5). Consider (2.4) with {et} = {x∗t − xt}. By
Remark B.1, Assumptions A.1–A.3 hold. Assumption A.4 follows from (2.7)
and the convexity of Xt. Note that ∀ε ∈ (0, 1],∀t ∈ N,

mt(ε) =
Evt(x

∗
t , x

∗
t+1)− Evt(x

∗
t − εet, x

∗
t+1 − εet+1)

ε
(B.5)

≤ Evt(x
∗
t , x

∗
t+1)− Evt(x

∗
t − et, x

∗
t+1 − et+1) = bt, (B.6)

where the inequality holds by concavity. (A.7) now follows. It is easy to see
from (B.3), (2.7), the concavity of vt, and the monotone convergence theorem
that ∀t ∈ Z+, qt = Evt,2(x

∗
t , x

∗
t+1;−et). Thus TVC (2.5) holds by Theorem

A.1(i).

9



B.2 Proof of Theorem 2.2

Consider (2.4) with {et} = {x∗t}. By Remark B.1, Assumptions A.1–A.3
hold. Assumption A.4 follows from Assumption 2.4. Note that ∀t ∈ N, m̂t(1−
λ) = ŵt(λ). Thus (A.7) holds by (2.11). By (B.3) and Assumption 2.5,

∀t ∈ Z+, Evt,2(x
∗
t , x

∗
t+1;−x∗t+1) ≤ qt. (B.7)

Hence both conclusions hold by Theorem A.1.

B.3 Proof of Theorem 2.3

Consider (2.4) with {et} = {x∗t} again. As in the proof of Theorem 2.2,
Assumptions A.1–A.4 hold. Assumption A.5 follows from Assumption 2.6.
Note that ∀t ∈ N, m̂t(1 − λ) = ŵt(λ) and mt(1 − µ) = wt(µ). Thus (A.8)
holds by (2.16). Recalling (B.7), we see that TVC (2.15) holds by Theorem
A.2.
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