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Abstract

This paper introduces the new Stata command moransi, which allows users to easily

compute global and local Moran’s I statistics in Stata. The fundamental feature of the

moransi command is that the spatial weight matrix is constructed internally within a sequence

of the program code. The additional information required in the dataset to implement

this command are the latitude and longitude of regions. This paper presents two applied

examples of the moransi command to deepen the understanding of global and local spatial

autocorrelation.

Keywords : moransi, Moran’s I, Global indicators of spatial association, local indicators of

spatial association, Spatial lag

1 Introduction

There is an increasing demand for spatial analysis using Stata among researchers, as the Stata

version 15 newly released the Sp estimation commands in 2017 (StataCorp, 2023). The increasing

availability of geographically disaggregated data and shapefile is making spatial analysis easier.

The objective of this paper is to introduce the novel Stata command, moransi, which

facilitates the calculation of global and local Moran’s I statistics (Moran, 1950; Anselin, 1995;

Kondo, 2018). In the literature on spatial statistical analysis, spatial autocorrelation constitutes

a pivotal concept, which can be further categorized into two distinct classes. Primarily, global

spatial autocorrelation quantifies the degree to which regions exhibit interdependence. The

global Moran’s I statistic is a principal statistical approach to test for spatial autocorrelation.

Secondarily, the local Moran’s I statistic is used to identify local spatial clusters in terms of local

similarities to neighboring regions.1

∗This is a research outcome undertaken at the Research Institute of Economy, Trade and Industry and the
Research Institute for Economics and Business Administration at Kobe University. This study was supported
by JSPS KAKENHI Grant Numbers 21K01497. Sample datasets used in this article are available online (URL:
https://github.com/keisukekondokk/moransi).

†Research Institute of Economy, Trade and Industry. 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo, 100–8901, Japan.
(e-mail: kondo-keisuke@rieti.go.jp).

1The Getis–Ord G∗
i (d) is also used to detect hot and cold spots as spatial outliers (Getis and Ord, 1992; Ord

and Getis, 1995; Anselin, 1995).Kondo (2016) provides the Stata command, getisord, which calculates Getis–Ord

G∗
i (d) statistic.
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The concept of local indicator of spatial association (LISA), which was initially proposed by

Anselin (1995), establishes a coherent link between global and local Moran’s I statistics. To

illustrate, the global Moran’s I statistic can be interpreted as the average of local Moran’s I

statistics for individual regions. As discussed later in two applied examples, this integration

enables a coherent interpretation of local Moran’s I statistics through the lens of the Moran

scatterplot, such as high-high and low-low spatial clusters.

The moransi command facilitates the calculation of global and local Moran’s I in Stata.

Stata users may frequently encounter challenges when constructing a spatial weight matrix. For

example, there are some helpful packages for Moran’s I in Stata. Pisati (2001) provides the

spatgsa command. Additionally, Jeanty (2010) offers the splagvar command. However, it

should be noted that the use of these packages requires the exogenous inclusion of the spatial

weight matrix.2

The fundamental feature of the moransi command is that the spatial weight matrix is

constructed internally within a sequence of the program code. This method was originally

employed by Kondo (2016). Although a disadvantage of this method is its computational

inefficiency, which stems from the fact that the spatial weight matrix is constructed every time,

automating the construction of the spatial weight matrix provides a more intuitive manipulability

for users.

In order to execute the moransi command, it is necessary to provide the latitude and longitude

in the dataset. Even in the absence of an adequate shapefile of the study area, the moransi

command enables researchers to implement spatial analysis using the latitude and longitude of

the regions. In the event that a dataset is missing coordinate information, a recent geocoding

technique can be employed to add this information.

This paper presents two interesting and compelling examples of the moransi command.

First, the moransi command can identify unemployment clusters in Japan using municipal

unemployment rates. Second, the moransi command can capture residential clusters in the Tokyo

metropolitan area using Grid Square Statistics from the population census in Japan. The present

study utilizes elementary yet efficacious spatial analyses to ascertain that residential clusters are

formed along urban railroads when combined with data from the rail network.

The rest of this paper is organized as follows. Section 2 explains details of spatial weight

matrix and Moran’s I statistic. Section 3 describes the moransi command. Section 4 offers two

applied examples using the moransi command. Finally, Section 5 presents the conclusions.

2 Spatial autocorrelation

Based on Cliff and Ord (1970), Anselin (1995), and Sokal et al. (1998), this section explains

details of global and local Moran’s I statistics.

2Stata version 15 or later offers the spset command, which facilitates keeping the consistency of the spatial

weight matrix. On Stata version 14 or earlier, matching regional IDs between data and spatial weight matrix was

not easy since regions with missing values were dropped in some situations.
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2.1 Spatial weight matrix

The matrix that expresses spatial structure is called the spatial weight matrix, which plays an

important role in spatial analysis. The spatial weight matrix W takes the following formula:

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 w1,2 w1,3 · · · w1,n

w2,1 0 w2,3 · · · w2,n

w3,1 w3,2 0 · · · w3,n

...
...

...
. . .

...

wn,1 wn,2 wn,3 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where diagonal elements take the value of 0, and the sum of each row takes the value of 1

(i.e., row-standardization). The spatial weight matrix is always row-standardized throughout the

paper.

The spatial weight matrix is generally constructed from the contiguity or distance matrix.

The interregional contiguity relationship is generally constructed from shapefiles. The distance

matrix is easily obtained from longitude and latitude information. If transport network data is

available, the spatial weight matrix can also be constructed using road distance or travel time

between regions. In circumstances where adequate shapefiles are not available, this paper elects

to utilize the distance matrix.3

Various types of spatial weight matrices are proposed in the literature. The moransi command

deals with four types of spatial weight matrices.

The first case of power functional type is shown below:

wij =

⎧⎪⎪⎨
⎪⎪⎩

d−δ
ij∑n

j=1 d
−δ
ij

, if dij < d, i �= j, δ > 0,

0, otherwise,

(1)

where δ is a distance decay parameter and d is a threshold distance.

The second case of the exponential type of spatial weight matrix is shown as follows:

wij =

⎧⎪⎨
⎪⎩

exp(−δdij)∑n
j=1 exp(−δdij)

, if dij < d, i �= j, δ > 0,

0, otherwise,

(2)

where δ is the distance decay parameter.

The third case considers a uniform weight for regions located within d km as follows:

wij =

⎧⎪⎨
⎪⎩

I(dij < d)∑n
j=1 I(dij < d)

, if dij < d, i �= j,

0, otherwise.

(3)

3A commonly used spatial weight matrix is constructed by a contiguity matrix, whose element wij takes a

value of 1 if two regions i and j share the same border and 0 otherwise. Note that the moransi command is limited

to a distance-based spatial weight matrix.
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where I(dij < d) is the indicator function that takes the value of 1 if a bilateral distance between

i and j, dij, is shorter than the threshold distance d and 0 otherwise.

The fourth case considers the k-nearest neighbor weight as follows:

wij =

⎧⎪⎨
⎪⎩

I(dij ≤ dij,(k))∑n
j=1 I(dij ≤ dij,(k))

, if i �= j,

0, otherwise,

(4)

where I(dij ≤ dij,(k)) is the indicator function that takes the value of 1 if a bilateral distance

between i and j, dij , is shorter than or equal to the distance of the kth nearest neighbor dij,(k)

and 0 otherwise.

2.2 Spatial weight matrix with weight variable

The degree of interregional dependence may vary according to economic relationships between

regions even if a geographical distance is identical. It is possible to consider economic distance

using an additional weight variable in the spatial weight matrix.

In line with the gravity equation (Anderson, 1979), values in origin and destination regions

i and j are incorporated into the spatial weight matrix. For example, Molho (1995) uses

employment size in destination region j as a weight variable when constructing the spatial weight

matrix. It is noteworthy that the value of the origin region i is offset by the row-standardization.

In accordance with Kondo (2015b), the moransi command facilitates the incorporation of a

weight variable v into the spatial weight matrix. The power functional form of the spatial weight

matrix in Equation (1) is extended as follows:

wij =

⎧⎪⎪⎨
⎪⎪⎩

vjd
−δ
ij∑n

j=1 vjd
−δ
ij

, if dij < d, i �= j, δ > 0,

0, otherwise,

where vj is a value of weight variable v in region j.

Second, the exponential type of spatial weight matrix in Equation (2) is extended as follows:

wij =

⎧⎪⎨
⎪⎩

vj exp(−δdij)∑n
j=1 vj exp(−δdij)

, if dij < d, i �= j, δ > 0,

0, otherwise.

Third, the binary type of spatial weight matrix in Equation (3) is extended as follows:

wij =

⎧⎪⎨
⎪⎩

vjI(dij < d)∑n
j=1 vjI(dij < d)

, if i �= j,

0, otherwise.

Fourth, the k-nearest neighbor type of spatial weight matrix in Equation (4) is extended as
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follows:

wij =

⎧⎪⎨
⎪⎩

vjI(dij < dij,(k))∑n
j=1 vjI(dij < dij,(k))

, if i �= j,

0, otherwise,

Note that, in the context of the spatial econometric model, elements of the spatial weight

matrix are assumed to be non-stochastic and exogenous (Anselin, 1988, 2006). The exogeneity

assumption for the spatial weight matrix might be violated if a weight variable vj is endogenous.

2.3 Global Moran’s I

The formula of Moran’s I is given by

I =

∑n
i=1

∑n
j=1wijzizj∑n
i=1 z

2
i

, (5)

where n is the number of regions, zi is the value of region i of variable z, which is standardized or

centered to the mean, and wij is the ijth element of the row-standardized spatial weight matrix

W . This formula can be expressed using the matrix form as follows:

I =
z�Wz

z�z
. (6)

Note again that W is a row-standardized spatial weight matrix.

Moran’s I lies within the range [−1, 1].4 When values in the variable z are randomly

distributed in space, the statistic asymptotically tends to zero. When a positive (negative) value

of Moran’s I is observed, this indicates that positive (negative) spatial autocorrelation exists

across the regions; that is, the regions neighboring a region with high (low) value also show high

(low) value.

The hypothesis testing for spatial autocorrelation can be conducted under the null hypothesis

of the spatial randomization, under which the statistic asymptotically follows a standard normal

distribution. The test statistic z(I) is computed as follows:

z(I) =
I − E(I)√
Var(I)

where E(I) is the expected value of I and Var(I) is the variance of I under the spatial

randomization, and these terms are calculated as follows:

E(I) = − 1

n− 1
and Var(I) = E(I2)− [E(I)]2.

The first term on the right hand side in the variance is given by

E(I2) =
n
[
(n2 − 3n+ 3)S1 − nS2 + 3S2

0

]−m4/m
2
2[(n

2 − n)S1 − 2nS2 + 6S2
0 ]

(n− 1)(n − 2)(n − 3)S2
0

,

4This is not guaranteed when the spatial weight matrix is not row-standardized.
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where mh is the hth sample moment about the sample mean:

m4

m2
2

=
1/n

∑n
i=1 z

4
i

(1/n
∑n

i=1 z
2
i )

2
,

and the terms S0, S1, and S2 denote, respectively,

S0 =

n∑
i=1

n∑
j=1

wij , S1 =
1

2

n∑
i=1

n∑
j=1

(wij + wji)
2, and S2 =

n∑
i=1

⎛
⎝

n∑
j=1

wij +

n∑
j=1

wji

⎞
⎠

2

.

Note that S0 is equal to n since the the spatial weight matrix is row-standardized. See Cliff and

Ord (1970) for further details.

2.4 Local Moran’s I

The formula of local Moran’s Ii is given by

Ii = zi

n∑
j=1

wijzj , (7)

where n is the number of regions, zi is the value of region i of variable z, which is standardized or

centered to the mean, and wij is the ijth element of the row-standardized spatial weight matrix

W .

The term on the right hand side of Equation (7) is the product of the standardized value of

region i, zi, and its spatial lag. Note that if the both are negative, the product takes a positive

value, which complicates the direct interpretation of local Moran’s I. However, the statistical

significance of local Moran’s I statistics provides a powerful interpretation through the lens of

the Moran scatterplot, which integrates the global and local spatial autocorrelation.

As a class of the LISA, the sum of local Moran’s Ii is connected to the global Moran’s I, as

follows:

I =
1∑n

i=1 z
2
i

n∑
i=1

Ii,

which is equal to Equation (5).

The hypothesis testing for local spatial autocorrelation can also be conducted under the null

hypothesis of the spatial randomization (Anselin, 1995).

The test statistic of local Moran’s Ii, z(Ii), is computed as follows:

z(Ii) =
Ii − E(Ii)√

Var(Ii)
.

where E(Ii) is the expected value of Ii of region i and Var(Ii) is the variance of Ii of region i

under the spatial randomization.
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The expected value of local Moran’s Ii, E(Ii), under the spatial randomization is as follows:

E(Ii) = −
∑n

j=1wij

n− 1
,

where
∑n

j=1wij = 1 when the spatial weight matrix is row-standardized.

The variance of local Moran’s Ii, Var(Ii), under the spatial randomization is as follows:

Var(Ii) = E(I2i )− [E(Ii)]
2.

where

E(I2i ) =

∑n
i=1w

2
ij(n−m4/m

2
2)

n− 1
+

∑n
k=1

∑n
h=1wikwih(2m4/m

2
2 − n)

(n− 1)(n − 2)
.

See Anselin (1995) and Sokal et al. (1998) for further details.

2.5 Moran scatter plot

Anselin (1995) proposes a Moran scatterplot, which illustrates a spatial autocorrelation in terms

of Moran’s I. Consider the following regression without constant term:

Wz = αz + residuals (8)

where Wz is called the spatial lag of the variable z, and residuals indicate that any statistical

assumption on error terms is not considered.

The OLS estimator of the coefficient α is obtained by

α̂ =
z�Wz

z�z
,

which is equal to the formula of the Moran’s I in Equation (6). Therefore, the Moran scatter

plot is a graphical representation of the correlation between Wz and z. In the case where the

variable is not standardized or centered around the mean, it is necessary to include the constant

term, thereby centering the variable around its mean.

3 Implementation in Stata

3.1 Syntax

moransi varname
[
if

] [
in

]
, lat(varname) lon(varname) swm(swmtype) dist(#)

dunit(km|mi)
[

wvar(varname) dms largesize approx detail nomatsave graph replace
]

3.2 Options

lat(varname) specifies the variable of latitude in the dataset. The decimal format is expected in

the default setting. The positive value denotes the north latitude. The negative value denotes
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the south latitude.

lon(varname) specifies the variable of longitude in the dataset. The decimal format is expected

in the default setting. The positive value denotes the east longitude. The negative value

denotes the west longitude.

swm(swmtype) specifies a type of spatial weight matrix. One of the following types of spatial

weight matrix must be specified: bin (binary), knn (k-nearest neighbor), exp (exponential),

or pow (power). The parameter k must be specified for the k-nearest neighbor weights as

follows: swm(knn #). The distance decay parameter # must be specified for the exponential

and power functional types of spatial weight matrix as follows: swm(exp #) and swm(pow

#).

dist(#) specifies the threshold distance# for the spatial weight matrix, with the unit of distance

specified by the dunit(km|mi) option.

dunit(km|mi) specifies the unit of distance. Either km (kilometers) or mi (miles) must be

specified.

wvar(varname) specifies a weight variable for the spatial weight matrix. Weight variable is not

used in the default setting.

dms converts the degrees, minutes and seconds (DMS) format to a decimal. The dms option is

not used in the default setting.

largesize is designed to enhance the efficiency of calculation for the large-sized spatial weight

matrices. The largesize option is not used in the default setting.

approx uses bilateral distance approximated by the simplified version of the Vincenty formula

(Vincenty, 1975). The approx option is not used in the default setting.

detail displays descriptive statistics of distance for lower triangular elements of the distance

matrix. The detail option is not used in the default setting.

nomatsave does not save the bilateral distance matrix r(D) and the spatial weight matrix r(W)

on the memory. The nomatsave option is not used in the default setting.

graph draws a Moran scatterplot. The graph option is not used in the default setting.

replace is used to overwrite the existing output variables in the dataset. The replace option is

not used in the default setting.

3.3 Output

3.3.1 Stored results

The moransi command stores the following results in r-class.
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Scalars

r(I) Moran’s I statistic r(EI) expected value of I

r(seI) standard error of I r(zI) z-value of I

r(pI) p-value of I r(N) number of observations

r(td) threshold distance r(dd) parameter δ of distance decay or k of knn

r(dist mean) mean of distance r(dist sd) standard deviation of distance

r(dist min) minimum value of distance r(dist max) maximum value of distance

Matrices

r(D) lower triangular distance matrix r(W) spatial weight matrix

Macros

r(cmd) moransi r(varname) name of variable

r(swm) type of spatial weight matrix r(dunit) unit of distance

r(dist type) exact or approximation r(wvar) name of weight variable

Technical note

If the calculation speed is too slow due to the large spatial weight matrices, it is recommended

to use the largesize and approx options at the same time. The duration of the calculation

process is contingent upon the CPU performance.

When the spatial weight matrix is too large for the computer specs (e.g., the memory size is

small), the moransi command may not calculate Moran’s I statistic (Stata program or computer

may freeze). For example, about 51, 842 × 51, 842 spatial weight matrix uses about 20 GB of

memory space during the calculation process. In addition, the nomatsave option is recommended

to release the memory space after the calculation.

4 Example

This section illustrates the use of the moransi command in Stata. Two applied examples are

provided below.

4.1 Municipal Unemployment Rates in Japan

This subsection investigates the spatial distribution of unemployment in Japan. The sample

data are taken from Kondo (2015b), who investigates the spatial autocorrelation of municipal

unemployment rates and unemployment clusters in Japan. Municipal unemployment rates used

in Kondo (2015b) are based on the 1980–2005 Population Censuses in Japan.

Figure 1 illustrates geographical distribution of unemployment rates in 2005.5 The

municipalities are categorized into nine quantile levels. It can be seen that municipalities with

high unemployment rates have neighbors with similar characteristic, suggesting a positive spatial

autocorrelation in municipal unemployment rates.

To assess the spatial autocorrelation, the fundamental procedure of the moransi command is

outlined below:

. moransi std_ur2005, lon(lon) lat(lat) swm(pow 2) dist(.) dunit(km) det graph replace

5Stata 14 or lower version can depict maps, like Figure 1, using the shp2dta that command converts shapefile

to a DTA file (Crow, 2015) and the spmap command that illustrates data on map (Pisati, 2008). Stata 15 provides

corresponding official commands spshape2dta and grmap.
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Size of spatial weight matrix: 1745 * 1745

Calculating bilateral distance...

Completed: 10%

Completed: 20%

Completed: 30%

Completed: 40%

Completed: 50%

Completed: 60%

Completed: 70%

Completed: 80%

Completed: 90%

Completed: 100%

Calculating Moran´s I Statistics...

Distance by Vincenty formula (unit: km)

Obs. Mean S.D. Min. Max.

Distance 1523385 603.951 432.634 0.854 2961.185

Distance threshold (unit: km): .

Summary of Global Moran´s I Statistic Number of Obs. = 1745

Variable Moran´s I E(I) SE(I) Z(I) p-value

std_ur2005 0.49629 -0.00057 0.01019 48.73934 0.00000

Null Hypothesis: Spatial Randomization

Summary of Local Moran´s I Statistics Number of Obs. = 1745

std_ur2005 Obs. p < 0.10 p < 0.05 p < 0.01

1: High-High 526 205 188 156

2: High-Low 256 5 3 3

3: Low-High 157 20 14 9

4: Low-Low 806 245 206 130

Null Hypothesis: Spatial Randomization

splag_std_ur2005_p was generated in the dataset.

lmoran_i_std_ur2005_p was generated in the dataset.

lmoran_e_std_ur2005_p was generated in the dataset.

lmoran_v_std_ur2005_p was generated in the dataset.

lmoran_z_std_ur2005_p was generated in the dataset.

lmoran_p_std_ur2005_p was generated in the dataset.

lmoran_cat_std_ur2005_p was generated in the dataset.

. graph export "fig/FIG_moran_ur2005.svg", replace

(file fig/FIG_moran_ur2005.svg written in SVG format)

The moransi command displays a summary result of the global and local Moran’s I. In this

case, the Moran’s I is 0.496 and statistically significant at the 1 % level. The spatial weight matrix

is based on the power functional form with the distance decay parameter δ = 2. Additionally,

the detail option displays descriptive statistics of distance for lower triangular elements of the
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distance matrix.6

The moransi command includes the graph option, which automatically draws a Moran

scatterplot. However, since the spatial lag of the variable is stored in the dataset, users also

can make a Moran scatterplot manually using the outcome variables as follows:7

. twoway (scatter splag_std_ur2005_p std_ur2005, ms(oh) yaxis(1 2) xaxis(1 2)) ///

> (lfit splag_std_ur2005_p std_ur2005, lw(medthick) estopts(nocons)), ///

> ytitle("W.Standardized Unemployment Rates", tstyle(size(large)) axis(1)) ///

> xtitle("Standardized Unemployment Rates", tstyle(size(large)) height(6) axis(1)) ///

> ytitle("", axis(2)) ///

> xtitle("", axis(2)) ///

> ylabel(-2(2)6, ang(h) labsize(large) format(%2.0f) nogrid axis(1)) ///

> xlabel(-4(2)8, labsize(large) format(%2.0f) nogrid axis(1)) ///

> ylabel(-2(2)6, ang(h) labsize(large) format(%2.0f) nogrid axis(2)) ///

> xlabel(-4(2)8, labsize(large) format(%2.0f) nogrid axis(2)) ///

> ysize(3) xsize(4) ///

> yline(0, lwidth(thin) lcolor(gray) lpattern(dash)) ///

> xline(0, lwidth(thin) lcolor(gray) lpattern(dash)) ///

> legend(off) ///

> graphregion(color(white) fcolor(white))

. graph export "FIG_moran_ur2005.svg", replace

(file FIG_moran_ur2005.svg written in SVG format)

Figure 2 shows a Moran scatter plot, which is made in combination with the standard Stata

command twoway scatter. The line through the origin depicted in Figure 2 indicates the

regression line in Equation (8), which is equal to the Moran’s I statistic.

The moransi command shows the summary results of local Moran’s I statistics based on the

Moran scatterplot. There are 526 municipalities in the high-high category, and 205 municipalities

are statistically significant at the 10 % level and detected as high-high spatial clusters. In turn,

there are 806 municipalities in the low-low category, and 245 municipalities are statistically

significant at the 10 % level and classified as low-low spatial clusters.

Figure 3 shows the statistical significance of the local Moran’s I of municipal unemployment

rates. This map can be integrated with Moran scatterplot in Figure 2, which provides a coherent

interpretation between the global and local spatial autocorrelation.

Figure 4 shows spatial clusters of municipal unemployment rates, based on four categories

of the Moran scatterplot in Figure 2. As discussed before, 205 municipalities of high-high

unemployment clusters and 245 municipalities of low-low unemployment clusters are visualized

on the map.

(Continued on next page)

6The supplementary material for replication includes a comparison program between the spatgsa command

developed by Pisati (2001), the splagvar command developed by Jeanty (2010), and the moransi command. These

three commands show the same calculation results.
7The spgen command also generates the spatially lagged variables (Kondo, 2015a).



Testing for spatial autocorrelation in Stata 12

Unemployment Rates
(7.5,19.4] (193)
(6.5,7.5] (194)
(6.0,6.5] (194)
(5.6,6.0] (194)
(5.1,5.6] (194)
(4.7,5.1] (194)
(4.1,4.7] (194)
(3.5,4.1] (194)
[0.0,3.5] (194)
No data (4)

Figure 1: Municipal unemployment rates in 2005

Note: Created by the author using the dataset of Kondo (2015b). Original data source of
municipal unemployment rates is Population Census (Statistical Bureau, Ministry of Internal
Affairs and Communications of Japan) .
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Figure 2: Moran Scatterplot of municipal underemployment rates in 2005

Note: Created by the author using the dataset of Kondo (2015b). Original data source of
municipal unemployment rates is Population Census (Statistical Bureau, Ministry of Internal
Affairs and Communications of Japan) .
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< 1 %
< 5 %
< 10 %
Not Significant

Figure 3: Statistical Significance for Local Moran’s I of Municipal Unemployment Rates in 2005

Note: Created by the author using the dataset of Kondo (2015b). Original data source of
municipal unemployment rates is Population Census (Statistical Bureau, Ministry of Internal
Affairs and Communications of Japan).
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High-High
High-Low
Low-High
Low-Low
Not Significant

Figure 4: Moran Cluster Map of Municipal Unemployment Rates in 2005

Note: Created by the author using the dataset of Kondo (2015b). Original data source of
municipal unemployment rates is Population Census (Statistical Bureau, Ministry of Internal
Affairs and Communications of Japan). Municipalities with statistical significance at the 10 %
level are shown.
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4.2 Population in Tokyo Metropolitan Area

This subsection investigates a population distribution using the Grid Square Statistics of 2015

Population Census in Japan Ministry of Internal Affairs and Communications (2025a,b). This

paper focuses on the residential population in the Tokyo metropolitan area (i.e., Saitama, Chiba,

Tokyo, and Kanagawa prefectures). There are several previous studies in the field of geography

that discuss population distribution in the corresponding area in terms of the explanatory spatial

data analysis (Koizumi, 2010; Monzur, 2017).

As illustrated in Figure 5, the geographical distribution of the residential population in the

Tokyo metropolitan area in 2015 is categorized into nine quantile levels. The population is

concentrated within 23 wards of Tokyo, and the mesh grid surrounding the central business

district near Tokyo Station and the Imperial Palace exhibits areas with few residents. Residential

areas extend in a radial pattern toward suburban areas.

The global and local Moran’s I statistics were obtained using the moransi command, and the

spatial weight matrix was based on the power functional form with the distance decay parameter

δ = 4. The global Moran’s I statistic was found to be 0.84, which is statistically significant at the

1 % level, thereby confirming the presence of spatial similarities in the population distribution.

The local Moran’s I analysis identified 1,790 residential clusters among 3,106 mesh grids in the

high-high category, reaching a 1

(Continued on next page)
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. ** Moran´s I

. moransi pop_total_all, lon(lon) lat(lat) swm(pow 4) dist(.) dunit(km) large approx graph replace

Size of spatial weight matrix: 13291 * 13291

Calculating bilateral distance...

Completed: 10%

Completed: 20%

Completed: 30%

Completed: 40%

Completed: 50%

Completed: 60%

Completed: 70%

Completed: 80%

Completed: 90%

Completed: 100%

Calculating Moran´s I Statistics...

Distance by simplified version of Vincenty formula (unit: km)

Summary of Global Moran´s I Statistic Number of Obs. = 13291

Variable Moran´s I E(I) SE(I) Z(I) p-value

pop_total_all 0.84325 -0.00008 0.00469 179.63289 0.00000

Null Hypothesis: Spatial Randomization

Summary of Local Moran´s I Statistics Number of Obs. = 13291

pop_total_all Obs. p < 0.10 p < 0.05 p < 0.01

1: High-High 3106 2044 1958 1790

2: High-Low 328 0 0 0

3: Low-High 610 1 0 0

4: Low-Low 9247 0 0 0

Null Hypothesis: Spatial Randomization

splag_pop_total_all_p was generated in the dataset.

lmoran_i_pop_total_all_p was generated in the dataset.

lmoran_e_pop_total_all_p was generated in the dataset.

lmoran_v_pop_total_all_p was generated in the dataset.

lmoran_z_pop_total_all_p was generated in the dataset.

lmoran_p_pop_total_all_p was generated in the dataset.

lmoran_cat_pop_total_all_p was generated in the dataset.

Figure 6 presents a Moran scatter plot of residential population, with the regression line

corresponding to the Moran’s I statistic indicated by the line in the figure. As previously

discussed, a clear positive relationship exists between neighboring mesh grids.

Figure 7 shows the statistical significance of the local Moran’s I and a radial pattern of

residential areas toward suburban areas. The map, which is integrated with the Moran scatterplot

in Figure 6, provides an important implication of the spatial analysis.

Figure 8 shows 1,706 residential clusters detected by local Moran’s I statistics in the Tokyo

metropolitan area, with the rail network depicted according to Ministry of Land, Infrastructure,

Transport and Tourism (2025). Notably, high-high residential clusters are found along the rail

network, indicating that enhanced transport accessibility increases the desirability of a location
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for habitation. Additionally, the analysis reveals a clear limit to the distance from the central

business districts of the Tokyo metropolitan area.

(Continued on next page)
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Figure 5: Residential Population Distribution in 2015

Note: Created by the author using the population in 1km-by-1km mesh grid of 2015 Population
Census (Statistical Bureau, Ministry of Internal Affairs and Communications of Japan).
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Figure 6: Moran Scatterplot of Population in Tokyo Metropolitan Area

Note: Created by the author using the population in 1km-by-1km mesh grid of 2015 Population
Census (Statistical Bureau, Ministry of Internal Affairs and Communications of Japan).
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Figure 7: Statistical Significance for Local Moran’s I of Population in Tokyo Metropolitan Area

Note: Created by the author using the population in 1km-by-1km mesh grid of 2015 Population
Census (Statistical Bureau, Ministry of Internal Affairs and Communications of Japan).
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Figure 8: Moran Cluster Map of Population in Tokyo Metropolitan Area

Note: Created by the author using the population in 1km-by-1km mesh grid of 2015 Population
Census (Statistical Bureau, Ministry of Internal Affairs and Communications of Japan).
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5 Concluding remarks

This paper has introduced the moransi command, a novel tool for computing global and local

Moran’s I in Stata. The moransi command offers a more intuitive interface than previous spatial

analysis tools, as it does not require the user to construct a spatial weight matrix in advance.

While this approach may result in a slight reduction in computational efficiency, it provides a

more straightforward and user-friendly interface for Stata users.

To further expand the reader’s comprehension of spatial analysis using the moransi command,

this paper has provided two applied examples of spatial analysis in Japan. First, analysis of the

global and local Moran’s I revealed spatial clusters of high-high and low-low unemployment rates

in Japan. Second, analysis of the global and local Moran’s I revealed that residential clusters are

formed along with the rail network in Tokyo metropolitan area. The incorporation of additional

geographical data facilitates a more profound comprehension of spatial analysis.

It is anticipated that the moransi command will contribute to the continued expansion of

spatial analysis within the Stata community.
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