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QUANTITATIVE CONVERGENCE RATES FOR
STOCHASTICALLY MONOTONE MARKOV CHAINS

TAKASHI KAMIHIGASHI AND JOHN STACHURSKI

Abstract. For Markov chains and Markov processes exhibiting a form of sto-
chastic monotonicity (larger states shift up transition probabilities in terms of
stochastic dominance), stability and ergodicity results can be obtained using
order-theoretic mixing conditions. We complement these results by providing
quantitative bounds on deviations between distributions. We also show that
well-known total variation bounds can be recovered as a special case.

1. Introduction

Quantitative bounds on the distance between distributions generated by Markov
chains have many applications in statistics and the natural and social sciences (see,
e.g., [22, 18]). One approach uses total variation distance and exploits minorization
conditions (see, e.g., [21, 7, 12, 2]). Another branch of the literature bounds
deviations using Wasserstein distance [6, 19, 20]. These bounds require some form
of uniform continuity with respect to a metric on the state space.

In some applications, Markov chains lack both the minorization and continuity
properties discussed above, making total variation and Wasserstein-type bounds
difficult or impossible to apply. Fortunately, some of these models also possess
valuable structure in the form of stochastic monotonicity. Such monotonicity
can be exploited to obtain stability and ergodicity via order-theoretic versions
of mixing conditions [5, 3, 9, 4, 13, 8, 14]. In this paper we complement these
stability and ergodicity results by providing a theorem on quantitative bounds for
stochastically monotone Markov chains.

There already exist several results that use stochastic monotonicity to bound the
distributions generated by Markov chains [17, 10]. However, these bounds are typ-
ically stated in terms of total variation distance, which again requires traditional
minorization conditions (as opposed to the order-theoretic mixing conditions dis-
cussed in the last paragraph). In this paper, we aim to fully exploit the monotonic-
ity by instead bounding Kolmogorov distance between distributions. This works
well because Kolmogorov distance respects order structure on the state space.
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Our main theorem is closely related to the total variation bound in Theorem 1
of [21], which is representative of existing work on total variation bounds and
supplies a simple and elegant proof. The main differences between that theorem
and the one presented below is that we use Kolmogorov distance instead of total
variation distance and an order-theoretic mixing condition instead of a standard
minorization condition. At the same time, it is possible to recover Theorem 1 of
[21] from the result we present below by a particular choice of partial order (see
Sections 4.1 and 4.4). Thus our work can be viewed as a generalization of existing
total variation results.

2. Set Up

In this section we recall basic definitions and state some preliminary results.

2.1. Environment. Throughout this paper, X is a Polish space, B is its Borel
sets, and ⪯ is a closed partial order on X. The last statement means that the
graph of ⪯, denoted by

G ≔ {(𝑥′, 𝑥) ∈ X ×X : 𝑥′ ⪯ 𝑥},

is closed under the product topology on X × X. A map ℎ : X → R is called
increasing if 𝑥 ⪯ 𝑥′ implies ℎ(𝑥) ⩽ ℎ(𝑥′). We take 𝑝B to be the set of all probability
measures on B and let 𝑏B be the bounded Borel measurable functions sending X
into R. The symbol 𝑖𝑏B represents all increasing ℎ ∈ 𝑏B.

Given 𝜇, 𝜈 in 𝑝B, we say that 𝜇 is stochastically dominated by 𝜈 and write 𝜇 ⪯𝑠 𝜈

if 𝜇(ℎ) ⩽ 𝜈(ℎ) for all ℎ ∈ 𝑖𝑏B. In addition, we set

𝜅(𝜇, 𝜈) ≔ sup
{���� ∫ ℎ𝑑𝜇 −

∫
ℎ𝑑𝜈

���� : ℎ ∈ 𝑖𝑏B and 0 ⩽ ℎ ⩽ 1
}
, (1)

which corresponds to the Kolmogorov metric on 𝑝B [14, 11].

A function 𝑄 : (X,B) → R is called a stochastic kernel on (X,B) if 𝑄 is a map
from X×B to [0, 1] such that that 𝑥 ↦→ 𝑄(𝑥, 𝐴) is measurable for each 𝐴 ∈ B and
𝐴 ↦→ 𝑄(𝑥, 𝐴) is a probability measure on B for each 𝑥 ∈ X. At times we use the
symbol 𝑄𝑥 to represent the distribution 𝑄(𝑥, ·) at given 𝑥. A stochastic kernel 𝑄
on (X,B) is called increasing if 𝑄ℎ ∈ 𝑖𝑏B whenever ℎ ∈ 𝑖𝑏B.

For a given stochastic kernel 𝑄 on (X,B), we define the left and right Markov
operators generated by 𝑄 via

𝜇𝑄(𝐴) ≔
∫

𝑄(𝑥, 𝐴)𝜇(d𝑥) and 𝑄 𝑓 (𝐴) ≔
∫

𝑓 (𝑦)𝑄(𝑥, d𝑦).
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(The left Markov operator 𝜇 ↦→ 𝜇𝑄 maps 𝑝B to itself, while the right Markov
operator 𝑓 ↦→ 𝑄 𝑓 acts on bounded measurable functions.) A discrete-time X-
valued stochastic process (𝑋𝑡)𝑡⩾0 on a filtered probability space (Ω,F ,P, (F𝑡)𝑡⩾0)
is called Markov-(𝑄, 𝜇) if 𝑋0

𝑑
= 𝜇 and

E[ℎ(𝑋𝑡+1) |F𝑡] = 𝑄ℎ(𝑋𝑡) with probability one for all 𝑡 ⩾ 0 and ℎ ∈ 𝑏B.

2.2. Couplings. A coupling of (𝜇, 𝜈) ∈ 𝑝B × 𝑝B is a probability measure 𝜌 on
B ⊗ B satisfying 𝜌(𝐴 ×X) = 𝜇(𝐴) and 𝜌(X× 𝐴) = 𝜈(𝐴) for all 𝐴 ∈ B. Let C (𝜇, 𝜈)
denote the set of all couplings of (𝜇, 𝜈) and let

𝛼(𝜇, 𝜈) ≔ sup
𝜌∈C (𝜇,𝜈)

𝜌(G) ((𝜇, 𝜈) ∈ 𝑝B × 𝑝B). (2)

The value 𝛼(𝜇, 𝜈) lies in [0, 1] and can be understood as a measure of “partial
stochastic dominance” of 𝜈 over 𝜇 [15]. By the Polish assumption and Strassen’s
theorem [23, 16] we have

𝛼(𝜇, 𝜈) = 1 whenever 𝜇 ⪯𝑠 𝜈. (3)

Let 𝑄 be a stochastic kernel on (X,B) and let �̂� be a stochastic kernel on (X ×
X,B ⊗ B). We call �̂� a Markov coupling of 𝑄 if �̂� (𝑥,𝑥′) is a coupling of 𝑄𝑥 and 𝑄𝑥′

for all 𝑥, 𝑥′ ∈ X. We call �̂� a ⪯-maximal Markov coupling of 𝑄 if �̂� is a Markov
coupling of 𝑄 and, in addition,

�̂�((𝑥, 𝑥′),G) = 𝛼(𝑄𝑥 , 𝑄𝑥′) for all (𝑥, 𝑥′) ∈ X ×X. (4)

Lemma 2.1. For any stochastic kernel 𝑄 on (X,B), there exists a ⪯-maximal
Markov coupling of 𝑄.

Proof. By Theorem 1.1 of [24], given lower semicontinuous 𝜑 : X ×X→ R, there
exists a stochastic kernel �̂� on (X ×X,B ⊗ B) such that �̂� is a Markov coupling
of 𝑄 and, in addition

(�̂�𝜑)(𝑥, 𝑥′) = inf
{∫

𝜑 d𝜌 : 𝜌 ∈ C (𝑄𝑥 , 𝑄𝑥′)
}
.

As G is closed, this equality is attained when 𝜑 = 1−1G. Since �̂�((𝑥,𝑥′) and 𝜌 are
probability measures, we then have

�̂�((𝑥, 𝑥′),G) = sup {𝜌(G) : 𝜌 ∈ C (𝑄𝑥 , 𝑄𝑥′)} .

Thus, �̂� is a ⪯-maximal Markov coupling of 𝑄. □
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2.3. Drift. Consider the geometric drift condition

𝑄𝑉 (𝑥) ⩽ 𝜆𝑉 (𝑥) + 𝛽 for all 𝑥 ∈ X, (5)

where 𝑄 is a stochastic kernel on (X,B), 𝑉 is a measurable function from X to
[1,∞), and 𝜆 and 𝛽 are nonnegative constants. We fix 𝑑 ⩾ 1 and set

𝛾 ≔ 𝜆 + 2𝛽
𝑑

and 𝐶 ≔ {𝑥 ∈ X : 𝑉 (𝑥) ⩽ 𝑑}. (6)

Fix 𝜇, 𝜇′ in 𝑝B and set

𝐻 (𝜇, 𝜇′) ≔ 1
2

[∫
𝑉 d𝜇 +

∫
𝑉 d𝜇′

]
. (7)

Let �̂� be a Markov coupling of 𝑄 and let ((𝑋𝑡, 𝑋′
𝑡 ))𝑡⩾0 be Markov-(�̂�, 𝜇 × 𝜇′) on

(Ω,F ,P, (F𝑡)𝑡⩾0). We are interested in studying the number of visits to 𝐶 × 𝐶,
as given by

𝑁𝑡 ≔
𝑡∑
𝑗=0
1{(𝑋𝑡, 𝑋′

𝑡 ) ∈ 𝐶 × 𝐶}.

Lemma 2.2. If 𝑄 satisfies the geometric drift condition (5), then, for all 𝑡 ∈ N
and all 𝑗 ∈ N with 𝑗 ⩽ 𝑡, we have

P{𝑁𝑡 < 𝑗} ⩽ 𝛾𝑡𝑑 𝑗−1𝐻 (𝜇, 𝜇′).

The result in Lemma 2.2 has already been used in other sources. To make the
paper more self-contained, we provide a proof in the appendix. Our proof is based
on arguments in [21].

3. Convergence Rates

Let 𝑉 be a measurable function from X to [1,∞) and let 𝑄 be a stochastic kernel
on (X,B) satisfying the geometric drift condition (5). Fix 𝑑 ∈ R+ and let 𝐶 and
𝛾 be as defined in (6). Let 𝐻 (𝜇, 𝜇′) be as given in (7). Let

𝜀 ≔ inf {𝛼(𝑄𝑥 , 𝑄𝑥′) : (𝑥, 𝑥′) ∈ 𝐶 × 𝐶} . (8)

We now state the main result.

Theorem 3.1. If 𝑄 is increasing, then, for any 𝑗, 𝑡 ∈ N with 𝑗 ⩽ 𝑡, we have

𝜅(𝜇𝑄𝑡, 𝜇′𝑄𝑡) ⩽ (1 − 𝜀) 𝑗 + 𝛾𝑡𝑑 𝑗−1𝐻 (𝜇, 𝜇′).

Proof. Given 𝑄 in Theorem 3.1, we let �̂� be a ⪯-maximal Markov coupling of
𝑄 (existence of which follows from Lemma 2.1). Let ((𝑋𝑡, 𝑋′

𝑡 ))𝑡⩾0 be Markov-
(�̂�, 𝜇 × 𝜇′) on (Ω,F ,P, (F𝑡)𝑡⩾0). We observe that the graph G of ⪯ is absorbing
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for �̂�. Indeed, if (𝑥, 𝑥′) ∈ G, then, since 𝑄 is increasing, 𝑄(𝑥, ·) ⪯𝑠 𝑄(𝑥′, ·). Hence,
by (3), we have 𝛼(𝑄(𝑥, ·), 𝑄(𝑥′, ·)) = 1. Applying (4) yields �̂�((𝑥, 𝑥′),G) = 1.

Let 𝜏 be the stopping time 𝜏 ≔ inf{𝑡 ⩾ 0 : 𝑋′
𝑡 ⪯ 𝑋𝑡} with inf ∅ = ∞. Since G is

absorbing for �̂�, we have P{𝑋′
𝑡 ⪯ 𝑋𝑡} = 1 whenever 𝑡 ⩾ 𝜏. Let ℎ be any element of

𝑖𝑏B with 0 ⩽ ℎ ⩽ 1. Since ((𝑋𝑡, 𝑋′
𝑡 ))𝑡⩾0 is Markov-(�̂�, 𝜇 × 𝜇′) and �̂�((𝑥, 𝑥′), ·) is a

coupling of 𝑄(𝑥, ·) and 𝑄(𝑥′, ·), we have

(𝜇′𝑄𝑡)(ℎ) − (𝜇𝑄𝑡)(ℎ) = Eℎ(𝑋′
𝑡 ) −Eℎ(𝑋𝑡)

= E[ℎ(𝑋′
𝑡 ) − ℎ(𝑋𝑡)]1{𝑋′

𝑡 ⪯ 𝑋𝑡} +E[ℎ(𝑋′
𝑡 ) − ℎ(𝑋𝑡)]1{𝑋′

𝑡 ⪯ 𝑋𝑡}𝑐.

Since ℎ is increasing, this leads to

(𝜇′𝑄𝑡) (ℎ) − (𝜇𝑄𝑡) (ℎ) ⩽ E[ℎ(𝑋′
𝑡 ) − ℎ(𝑋𝑡)]1{𝑋′

𝑡 ⪯ 𝑋𝑡}𝑐 ⩽ P{𝑋′
𝑡 ⪯ 𝑋𝑡}𝑐.

Since 𝜏 ⩽ 𝑡 implies 𝑋′
𝑡 ⪯ 𝑋𝑡 we have {𝑋′

𝑡 ⪯ 𝑋𝑡}𝑐 ⊂ {𝜏 > 𝑡}, and hence

(𝜇′𝑄𝑡)(ℎ) − (𝜇𝑄𝑡)(ℎ) ⩽ P{𝜏 > 𝑡}. (9)

Now define 𝑁𝑡 ≔
∑𝑡

𝑗=0 1{(𝑋′
𝑡 , 𝑋𝑡) ∈ 𝐶 × 𝐶}. Fixing 𝑗 ∈ N with 𝑗 ⩽ 𝑡, we have

P{𝜏 > 𝑡} = P{𝜏 > 𝑡, 𝑁𝑡 < 𝑗} +P{𝜏 > 𝑡, 𝑁𝑡 ⩾ 𝑗}. (10)

To bound the first term in (10), we set 𝑊 (𝑥, 𝑥′) ≔ [𝑉 (𝑥) + 𝑉 (𝑥′)]/2. Since
�̂�((𝑥, 𝑥′), ·) is a coupling of 𝑄(𝑥, ·) and 𝑄(𝑥′, ·), we have

�̂�𝑊 (𝑥, 𝑥′) = 𝑄𝑉 (𝑥) + 𝑄𝑉 (𝑥′)
2

⩽ 𝜆𝑊 (𝑥, 𝑥′) + 𝛽. (11)

Hence, applying Lemma 2.2 to �̂� yields

P{𝜏 > 𝑡, 𝑁𝑡 < 𝑗} ⩽ P{𝑁𝑡 < 𝑗} ⩽= 𝛾𝑡𝑑 𝑗−1𝐻 (𝜇, 𝜇′) (12)

Regarding the second term in (10), we claim that

P{𝜏 > 𝑡, 𝑁𝑡 ⩾ 𝑗} ⩽ (1 − 𝜀) 𝑗. (13)

To see this, suppose (𝐽𝑖)𝑖⩾1 is the times of the successive visits of (𝑋𝑡, 𝑋′
𝑡 ) to 𝐶 ×𝐶.

That is, 𝐽1 is the time of the first visit and

𝐽𝑖+1 ≔ inf{𝑚 ⩾ 𝐽𝑖 + 1 : (𝑋𝑚, 𝑋
′
𝑚) ∈ 𝐶 × 𝐶} for 𝑖 ⩾ 1.

It is not difficult to see that {𝑁𝑡 > 𝑗} ⊂ {𝐽 𝑗 ⩽ 𝑡 − 1}. As a result,

P{𝜏 > 𝑡, 𝑁𝑡 > 𝑗} ⩽ P{𝜏 > 𝑡, 𝐽 𝑗 + 1 ⩽ 𝑡}. (14)

Consider the set {𝜏 > 𝑡, 𝐽 𝑗 + 1 ⩽ 𝑡}. If a path is in this set, then as 𝜏 > 𝑡, for any
index 𝑗 with 𝑗 ⩽ 𝑡 we have 𝑋′

𝑗 ⪯̸ 𝑋 𝑗. In addition, 𝐽𝑖 + 1 ⩽ 𝐽 𝑗 + 1 ⩽ 𝑡 for any 𝑖 ⩽ 𝑗, so
𝑋′
𝐽𝑖+1 ⪯̸ 𝑋𝐽𝑖+1 for every 𝑖 ⩽ 𝑗.

∴ P{𝜏 > 𝑡, 𝐽 𝑗 + 1 ⩽ 𝑡} ⩽ P ∩ 𝑗
𝑖=1 {𝑋

′
𝐽𝑖+1 ⪯̸ 𝑋𝐽𝑖+1}. (15)
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Observe that

P ∩ 𝑗
𝑖=1 {𝑋

′
𝐽𝑖+1 ⪯̸ 𝑋𝐽𝑖+1} = P

[
∩ 𝑗−1
𝑖=1 {𝑋

′
𝐽𝑖+1 ⪯̸ 𝑋𝐽𝑖+1} P[𝑋′

𝐽 𝑗+1 ⪯̸ 𝑋𝐽 𝑗+1 |F𝐽 𝑗]
]
.

By the definition of 𝐽 𝑗 we have (𝑋𝐽 𝑗 , 𝑋
′
𝐽 𝑗
) ∈ 𝐶 × 𝐶. Using this fact, the strong

Markov property and the definition of �̂� (see (4)) yields

P[𝑋′
𝐽 𝑗+1 ⪯ 𝑋𝐽 𝑗+1 |F𝐽 𝑗] = �̂�((𝑋′

𝐽 𝑗
, 𝑋𝐽 𝑗),G) = 𝛼(𝑄(𝑋′

𝐽 𝑗
, ·), 𝑄(𝑋𝐽 𝑗 , ·)).

Applying the definition of 𝜀 in (8), we obtain P[𝑋𝐽 𝑗+1 ⪯̸ 𝑋′
𝐽 𝑗+1 |F𝐽 𝑗] ⩽ 1 − 𝜀, so

P ∩ 𝑗
𝑖=1 {𝑋𝐽𝑖+1 ⪯̸ 𝑋′

𝐽𝑖+1} ⩽ (1 − 𝜀)P ∩ 𝑗−1
𝑖=1 {𝑋𝐽𝑖+1 ⪯̸ 𝑋′

𝐽𝑖+1}.

Continuing to iterate backwards in this way yields P∩ 𝑗
𝑖=1 {𝑋𝐽𝑖+1 ⪯̸ 𝑋′

𝐽𝑖+1} ⩽ (1−𝜀) 𝑗.
Combining this inequality with (14) and (15) verifies (13).

Combining (9), (10), (12), and (13) yields

(𝜇′𝑄𝑡) (ℎ) − (𝜇𝑄𝑡) (ℎ) ⩽ (1 − 𝜀) 𝑗 + 𝛾𝑡𝑑 𝑗−1 𝐻 (𝜇, 𝜇′).

Reversing the roles of 𝜇 and 𝜇′ does not change the value on the right-hand side
of this bound, and hence

| (𝜇′𝑄𝑡)(ℎ) − (𝜇𝑄𝑡)(ℎ) | ⩽ (1 − 𝜀) 𝑗 + 𝛾𝑡𝑑 𝑗−1 𝐻 (𝜇, 𝜇′)

also holds. Taking the supremum over all ℎ ∈ 𝑖𝑏B with 0 ⩽ ℎ ⩽ 1 completes the
proof of Theorem 3.1. □

4. Examples and Applications

In this section we consider some special cases, with a focus on (a) connections to
the existing literature and (b) how to obtain an estimate of the value 𝜀 in (8).

4.1. Connection to Total Variation Results. One special case is when ⪯
is the identity order, so that 𝑥 ⪯ 𝑦 if and only if 𝑥 = 𝑦. For this order we have
𝑖𝑏B = 𝑏B, so every stochastic kernel is increasing, and the Kolmogorov metric (see
(1)) becomes the total variation distance. In this setting total variation setting,
Theorem 3.1 is similar to standard geometric bounds for total variation distance,
such as Theorem 1 in [21].

It is worth noting that, in the total variation setting, 𝜀 in (8) is at least as large as
the analogous term 𝜀 in Theorem 1 in [21]. Indeed, in [21], the value 𝜀, which we
now write as 𝜀 to avoid confusion, comes from an assumed minorization condition:
there exists a 𝜈 ∈ 𝑝B such that

𝜀𝜈(𝐵) ⩽ 𝑄(𝑥, 𝐵) for all 𝐵 ∈ B and 𝑥 ∈ 𝐶. (16)
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To compare 𝜀 with 𝜀 defined in (8), suppose that this minorization condition
holds and define the residual kernel 𝑅(𝑥, 𝐵) ≔ (𝑄(𝑥, 𝐵) − 𝜀𝜈(𝐵))/(1 − 𝜀). Fixing
(𝑥, 𝑥′) ∈ 𝐶 ×𝐶, we draw (𝑋, 𝑋′) as follows: With probability 𝜀, draw 𝑋 ∼ 𝜈 and set
𝑋′ = 𝑋 . With probability 1 − 𝜀, independently draw 𝑋 ∼ 𝑅(𝑥, ·) and 𝑋′ ∼ 𝑅(𝑥′, ·).
Simple arguments confirm that 𝑋 is a draw from 𝑄(𝑥, ·) and 𝑋′ is a draw from
𝑄(𝑥′, ·). Recalling that ⪯ is the identity order, this leads to 𝜀 = P{𝐼 ⩽ 𝜀} ⩽ P{𝑋 =

𝑋′} = P{𝑋 ⪯ 𝑋′} ⩽ 𝛼(𝑄(𝑥, ·), 𝑄(𝑥′, ·)). (The last bound is by the definition of 𝛼 in
(2) and the fact that the joint distribution of (𝑋, 𝑋′) is a coupling of 𝑄(𝑥, ·) and
𝑄(𝑥′, ·).) Since, in this discussion, the point (𝑥, 𝑥′) was arbitrarily chosen from
𝐶 × 𝐶, we conclude that 𝜀 ⩽ 𝜀, where 𝜀 is as defined in (8).

4.2. Stochastic Recursive Sequences. The preceding section showed that The-
orem 3.1 reduces to existing results for bounds on total variation distance when
the partial order ⪯ is the identity order. Now we show how Theorem 3.1 leads to
new results other settings, such as when ⪯ is a pointwise partial order. To this
end, consider the process

𝑋𝑡+1 = 𝐹(𝑋𝑡,𝑊𝑡+1) (17)

where (𝑊𝑡)𝑡⩾1 is an iid shock process taking values in some space W, and 𝐹 is a
measurable function from X × W to X. The common distribution of each 𝑊𝑡 is
denoted by 𝜑. We suppose that 𝐹 is increasing, in the sense that 𝑥 ⪯ 𝑥′ implies
𝐹(𝑥, 𝑤) ⪯ 𝐹(𝑥′, 𝑤) for any fixed 𝑤 ∈ W. We let 𝑄 represent the stochastic kernel
corresponding to (17), so that 𝑄(𝑥, 𝐵) = 𝜑{𝑤 ∈ W : 𝐹(𝑥, 𝑤) ∈ 𝐵} for all 𝑥 ∈ X
and 𝐵 ∈ B. Since 𝐹 is increasing, the kernel 𝑄 is increasing. Hence Theorem 3.1
applies. We can obtain a lower bound on 𝜀 in (8) by calculating

𝑒 ≔ inf
{∫ ∫

1{𝐹(𝑥′, 𝑤′) ⩽ 𝐹(𝑥, 𝑤)}𝜑(d𝑤)𝜑(d𝑤′) : (𝑥, 𝑥′) ∈ 𝐶 × 𝐶

}
. (18)

Indeed, if 𝑊 and 𝑊′ are drawn independently from 𝜑, then 𝑋 = 𝐹(𝑥,𝑊) is a draw
from 𝑄(𝑥, ·) and 𝑋′ = 𝐹(𝑥′,𝑊) is a draw from 𝑄(𝑥′, ·). Hence

𝑒 = P{𝑋′ ⪯ 𝑋} ⩽ 𝛼(𝑄(𝑥, ·), 𝑄(𝑥′, ·)) ⩽ 𝜀. (19)

4.3. Example: TCP Window Size Process. To help illustrate how to com-
pute 𝑒 in (18), we consider the TCP window size process (see, e.g., [2]), which
has embedded jump chain 𝑋𝑡+1 = 𝑎(𝑋2

𝑡 + 2𝐸𝑡+1)1/2. Here 𝑎 ∈ (0, 1) and (𝐸𝑡) is
iid exponential with unit rate. If 𝐶 = [0, 𝑐], then drawing 𝐸, 𝐸′ as independent
standard exponentials and using (19),

𝜀 ⩾ inf
0⩽𝑥,𝑦⩽𝑐

P{𝑎
√
𝑦2 + 2𝐸′ ⩽ 𝑎

√
𝑥2 + 2𝐸} = P{

√
𝑐2 + 2𝐸′ ⩽

√
2𝐸}.
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Since 𝐸′ − 𝐸 has the Laplace-(0, 1) distribution, we get

1 − 𝜀 ⩽ P{𝑐2 + 2𝐸′ > 2𝐸} = P{𝐸′ − 𝐸 > 𝑐2/2} = 1
2

exp(−𝑐2/2).

4.4. Example: When Minorization Fails. We provide an elementary scenario
where Theorem 3.1 provides a usable bound while the minorization based methods
described in Section 4.1 do not. Let Q be the rational numbers, let X = R, and
assume that

𝑋𝑡+1 =
𝑋𝑡
2
+𝑊𝑡+1 where 𝑊𝑡 is iid on {0, 1} and P{𝑊𝑡 = 0} = 1/2.

Let 𝐶 contain at least one rational and one irrational number. Let 𝜇 be a measure
on the Borel sets of R obeying 𝜇(𝐵) ⩽ 𝑄(𝑥, 𝐵) = P{𝑥/2 +𝑊 ∈ 𝐵} for all 𝑥 ∈ 𝐶 and
Borel sets 𝐵. If 𝑥 is rational, then 𝑥/2 +𝑊 ∈ Q with probability one, so 𝜇(Q𝑐) ⩽
𝑄(𝑥,Q𝑐) = 0. Similarly, if 𝑥 is irrational, then 𝑥/2 +𝑊 ∈ Q𝑐 with probability one,
so 𝜇(Q) ⩽ 𝑄(𝑥,Q) = 0. Hence 𝜇 is the zero measure on R. Thus, we cannot take
a 𝜀 > 0 and probability measure 𝜈 obeying the minorization condition (16). On
the other hand, letting 𝑉 (𝑥) = 𝑥 + 1 and 𝑑 = 1, so that 𝐶 = {𝑉 ⩽ 2} = [0, 1], the
value 𝑒 from (18) obeys 𝑒 = P{1/2 +𝑊 ⩽ 𝑊′} = P{𝑊′ −𝑊 ⩾ 1/2} = 1

4 . Hence, by
(19), the constant 𝜀 in Theorem 3.1 is positive.

4.5. Example: Wealth Dynamics. Many economic models examine wealth
dynamics in the presence of credit market imperfections (see, e.g., [1]). These
often result in dynamics of the form

𝑋𝑡+1 = 𝜂𝑡+1 𝐺(𝑋𝑡) + 𝜉𝑡+1, (𝜂𝑡) iid∼ 𝜑, (𝜉𝑡) iid∼ 𝜓. (20)

Here (𝑋𝑡) is some measure of household wealth, 𝐺 is a function fromR+ to itself and
(𝜂𝑡) and (𝜉𝑡) are independent R+-valued sequences. The function 𝐺 is increasing,
since greater current wealth relaxes borrowing constraints and increases financial
income. We assume that there exists a 𝜆 < 1 such that E 𝜂𝑡𝐺(𝑥) ⩽ 𝜆𝑥 for all
𝑥 ∈ R+, and, in addition, that 𝜉 ≔ E𝜉𝑡 < ∞.

Let 𝑄 be the stochastic kernel corresponding to (20). With 𝑉 (𝑥) = 𝑥 + 1, we have

𝑄𝑉 (𝑥) = E[𝜂𝑡+1 𝐺(𝑥) + 𝜉𝑡+1 + 1] ⩽ 𝜆𝑥 + 𝜉 + 1 ⩽ 𝜆𝑉 (𝑥) + 𝜉 + 1. (21)

Fixing 𝑑 ∈ R+ and setting 𝐶 = {𝑉 ⩽ 𝑑} = [0, 𝑑], we can obtain 𝑒 in (18) via

𝑒 = P{𝜂′𝐺(𝑑) + 𝜉′ ⩽ 𝜂𝐺(0) + 𝜉} when (𝜂′, 𝜉′, 𝜂, 𝜉) ∼ 𝜑 × 𝜓 × 𝜑 × 𝜓.

This term will be strictly positive under suitable conditions, such as when 𝜓

has a sufficiently large support. Combining (19) and (21) with the bound in
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Theorem 3.1, we have, for any 𝜇 and 𝜇′ in 𝑝B and 𝑗, 𝑡 ∈ N with 𝑗 ⩽ 𝑡,

𝜅(𝜇𝑄𝑡, 𝜇′𝑄𝑡) ⩽ (1 − 𝑒) 𝑗 + 1
2

(
𝜆 + 2 (̄𝜉 + 1)

𝑑

) 𝑡
𝑑 𝑗−1𝐻 (𝜇, 𝜇′).

where 𝐻 (𝜇, 𝜇′) ≔
(∫

𝑥𝜇(d𝑥) +
∫

𝑥𝜇′(d𝑥)
)
/2.

Notice that, for this model, we cannot compute useful total variation bounds or
Wasserstein distance bounds without additional assumptions.
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Appendix A. Proof of Lemma 2.2

Let the conditions of Lemma 2.2 hold and let 𝑄, �̂� and ((𝑋𝑡, 𝑋′
𝑡 ))𝑡⩾0 be as de-

scribed above. We assume in what follows that 𝐻 (𝜇, 𝜇′) is finite, since otherwise
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Lemma 2.2 is trivial. Setting 𝑊 (𝑥, 𝑥′) ≔ (𝑉 (𝑥) + 𝑉 (𝑥′))/2, we have

�̂�𝑊 (𝑥, 𝑥′) = 𝑄𝑉 (𝑋𝑡) + 𝑄𝑉 (𝑋′
𝑡 )

2
⩽ 𝜆𝑊 (𝑥, 𝑥′) + 𝛽. (22)

Now define
𝑀𝑡 ≔ 𝛾−𝑡𝑑−𝑁𝑡−1𝑊 (𝑋𝑡, 𝑋′

𝑡 ) for 𝑡 ⩾ 0 with 𝑁−1 ≔ 1.
We claim that (𝑀𝑡)𝑡⩾0 is an (F𝑡)-supermartingale. Clearly (𝑀𝑡) is adapted. To
see that E[𝑀𝑡+1 |F𝑡] ⩽ 𝑀𝑡 holds P-almost surely,1 let 𝐹𝑡 ≔ 1{(𝑋𝑡, 𝑋′

𝑡 ) ∈ 𝐶 × 𝐶},
and let 𝐹𝑐𝑡 ≔ 1 − 𝐹𝑡, so that

E[𝑀𝑡+1 |F𝑡] = E[𝑀𝑡+1𝐹𝑡 |F𝑡] +E[𝑀𝑡+1𝐹
𝑐
𝑡 |F𝑡]. (23)

On 𝐶×𝐶 we have 𝑊 ⩽ 𝑑, so, by (22), E[𝑊 (𝑋𝑡+1, 𝑋′
𝑡+1) |F𝑡] ⩽ 𝜆𝑑+𝑏 = 𝑑𝛾. Therefore,

E[𝑀𝑡+1𝐹𝑡 |F𝑡] = 𝛾−(𝑡+1)𝑑−𝑁𝑡E[𝑊 (𝑋𝑡+1, 𝑋
′
𝑡+1) |F𝑡]𝐹𝑡 ⩽ 𝛾−𝑡𝑑−𝑁𝑡+1𝐹𝑡 .

Also, on 𝐹𝑡 we have 𝑁𝑡 = 𝑁𝑡−1 + 1. Using this fact and 1 ⩽ 𝑊 yields

E[𝑀𝑡+1𝐹𝑡 |F𝑡] ⩽ 𝛾−𝑡𝑑−𝑁𝑡−1𝐹𝑡 ⩽ 𝑀𝑡𝐹𝑡 . (24)

Turning to the term E[𝑀𝑡+1𝐹𝑐𝑡 |F𝑡], observe that on 𝐹𝑐𝑡 we have 𝑊 ⩾ 𝑑/2, so, using
(11) again,

�̂�𝑊

𝑊
⩽ 𝜆 + 𝛽

𝑊
⩽ 𝜆 + 2𝛽

𝑑
= 𝛾.

Therefore, E[𝑊 (𝑋𝑡+1, 𝑋′
𝑡+1)𝐹𝑐𝑡 |F𝑡] ⩽ 𝛾𝑊 (𝑋𝑡, 𝑋′

𝑡 )𝐹𝑐𝑡 . Combining this bound with the
fact that 𝑁𝑡 = 𝑁𝑡−1 on 𝐹𝑐𝑡 yields

E[𝑀𝑡+1𝐹
𝑐
𝑡 |F𝑡] = 𝛾−(𝑡+1)𝑑−𝑁𝑡E[𝑊 (𝑋𝑡+1, 𝑋

′
𝑡+1) |F𝑡]𝐹𝑐𝑡 ⩽ 𝛾−𝑡𝑑−𝑁𝑡−1𝐹𝑐𝑡 ⩽ 𝑀𝑡𝐹

𝑐
𝑡 ,

where the last inequality used 1 ⩽ 𝑊. Together with (24) and (23), this inequality
gives E[𝑀𝑡+1 |F𝑡] ⩽ 𝑀𝑡, so (𝑀𝑡) is a supermartingale as claimed.

Now fix 𝑡 ∈ N and 𝑗 ⩽ 𝑡. Since 𝑑 ⩾ 1 we have

P{𝑁𝑡 < 𝑗} ⩽ P{𝑁𝑡−1 ⩽ 𝑗 − 1} = P{𝑑−𝑁𝑡−1 ⩾ 𝑑− 𝑗+1}.

From Chebychev’s inequality, 1 ⩽ 𝑊 and the supermartingale property, the last
term is dominated by

𝑑 𝑗−1E𝑑−𝑁𝑡−1 ⩽ 𝛾𝑡𝑑 𝑗−1E[𝛾−𝑡𝑑−𝑁𝑡−1𝑊 (𝑋𝑡, 𝑋′
𝑡 )] = 𝛾𝑡𝑑 𝑗−1E[𝑀𝑡] ⩽ 𝛾𝑡𝑑 𝑗−1E[𝑀0].

The last term is just 𝛾𝑡𝑑 𝑗−1𝐻 (𝜇, 𝜇′), so the claim in Lemma 2.2 is now proved.

1This inequality implies integrability of 𝑀𝑡 because then E𝑀𝑡 ⩽ E𝑀0 and E𝑀0 = 𝐻 (𝜇, 𝜇′) is
finite by assumption.


