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1 Introduction

Decisions are often delegated to expert committees. For instance, shareholders entrust a

company’s management to a board of directors, and governments establish advisory bodies

to make policy decisions. In these situations, committee designers jointly determine the

committee size and the rewards for the experts. How many experts should the committee

designer hire? What rewards should the committee designer offer the experts?

To address these questions, I have constructed a model in which the principal, who dele-

gates a binary decision to a committee of homogeneous agents, can choose the committee size

and a reward scheme. Each agent can receive a binary signal regarding the unknown state

at a cost. Their payoffs are the expected reward minus the cost of information acquisition.1

The unknown state is revealed after the decision is made. In addition, the principal cannot

receive contractible messages from the agents due to communication costs.2 Thus, the re-

wards depend only on the realized state and the committee’s choice, not on the individual

members’ messages. It is assumed that the principal must offer an identical reward scheme to

all committee members. The committee, like a mediator in Myerson (1986), selects the best

alternative for all members based on their information. Such an alternative exists because

all members are offered the same reward scheme. The strategy of the committee is regarded

as the collective choice rule. The principal controls the committee’s collective choice rule

through monetary transfers.

The principal faces a trade-off between the benefit from the decision and the cost of

making agents acquire information when choosing the committee size. As illustrated by

Condorcet’s jury theorem (Condorcet, 1785), increasing the number of agents leads to more

precise decision-making. However, if the number of agents increases, each agent is less

1Committee members do not have intrinsic motives to make correct decisions. These agents are called
non-ethical by Strulovici (2020).

2In many situations where decisions are delegated to committees, sending and receiving verifiable messages
is extremely costly. For example, shareholders do not communicate with individual directors. Moreover,
directors’ compensation depends only on the company’s benefit, which is determined by the collective choice
of the directors and the state of the world in my model. Mookherjee and Tsumagari (2014) explicitly
incorporate communication costs into mechanism design problems.
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likely to play a pivotal role in the collective choice. Thus, increasing the number of agents

discourages members from gathering information. Therefore, committee designers should

take this trade-off into account when choosing the committee size.

The principal may face this trade-off not only when choosing the committee size but also

when setting a reward scheme, that is, controlling the collective choice rule. This is because

the reward scheme that minimizes the cost of making agents acquire information does not

necessarily induce the committee to use the collective choice rule that maximizes the benefit

from the decision. Committee designers should consider this trade-off when setting a reward

scheme.

The main contribution of this paper is its elucidation of the relationship between collective

choice rules and agency costs. Many studies on strategic voting assume that voters share

a common purpose with social planners. Hence, they need not motivate voters to acquire

information. In the literature on delegating decisions to experts, collective choice rules tend

to be fixed. Consequently, the relationship between voting rules and agency costs has not

been adequately studied.

It is shown that, for any committee size and any prior distribution of the state, the

reward scheme that minimizes the cost of making agents acquire information induces the

committee to make decisions by majority rule. Under the assumption that the principal is

ex-ante indifferent between the two alternatives, the optimal reward scheme for the principal

induces the committee to use the majority rule. Under this assumption, I examine the

relationship between the optimal committee size and information quality. If only one agent’s

information quality improves, he is encouraged to acquire information but others are tempted

to be free-riders. Thus, the effect of information quality on the optimal committee size

is unclear. It turns out that the optimal committee size is inversely U-shaped regarding

information quality. In other words, the free-rider effect becomes dominant as information

quality increases.

Given the committee size and a reward scheme, my model is similar to that of strategic
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voting. While conventional voting models assume that voters have the same preferences as

social planners, mine allows the principal to control the agents’ preferences through monetary

transfers. Austen-Smith and Banks (1996) and Persico (2004) focus on threshold voting rules.

Austen-Smith and Banks (1996) imply that the strategy profile in which all voters report

their truthful information is a Nash equilibrium in the threshold voting rule that selects

the best alternative based on the vote profile. In my model, as the committee selects the

best alternative for agents based on their information profile, agents report their information

honestly. Persico (2004) clarifies that the incentive for information acquisition is influenced

by the probability that a vote of an agent makes a difference in the voting outcome, i.e.,

the probability that he is pivotal in the collective choice. Gerardi and Yariv (2008) examine

a voting model that includes stochastic voting rules. They point out that social planners

could increase the incentive for information acquisition by committing to ex-post inefficient

voting rules. In my model, the collective choice rule is selected by the committee. Thus, the

principal cannot improve her payoff by employing ex-post inefficient rules.

My study is related to the literature on delegating decisions with transfers. While the

number of experts was fixed in most earlier studies, my model allows the principal to select

it. Zermeno (2011), Carroll (2019), and Clark and Reggiani (2021) analyze the delegation

of decision-making to one expert in an environment where rewards can be contingent on the

realized state. Gromb and Martimort (2007) compare the delegation to one expert who can

obtain information twice with that to two experts who can obtain information once. They

conclude that if experts do not collude, the delegation to two experts is more profitable for

the principal due to the peer-monitoring effect. Azrieli (2021) shows that the principal can

motivate multiple agents to acquire information using peer monitoring even if the state of

the world is never revealed. In my model, the principal does not use peer monitoring because

she cannot receive verifiable messages from the agents.

Feddersen and Pesendorfer (1998), Gershkov and Szentes (2009), Gershkov, Moldovanu

and Shi (2017), etc. consider optimal voting rules from different perspectives. Mukhopad-
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haya (2003), Koriyama and Szentes (2009), Gersbach, Mamageishvili and Tejada (2022), etc.

investigate the optimal committee size in different settings.

The rest of this paper is organized as follows. Section 2 constructs the model. Section 3

formulates the principal’s optimization problem. Section 4 examines the optimal reward

scheme for a fixed committee size and the relationship between the collective choice rules

and agency costs. Section 5 characterizes the optimal committee size and develops compar-

ative statics under the assumption that the principal is ex-ante indifferent between the two

alternatives. Section 6 concludes and suggests directions for future research. All proofs are

presented in Appendix A. Appendix B discusses the equilibrium selection.

2 The Model

The principal must choose between two alternatives, I and N . The state of the world

θ ∈ {H,L} is distributed according to the common prior, Pr(H) and Pr(L). If the choice is

I and the state is H (resp. L), she earns the benefit of bH > 0 (resp. bL < 0). If the choice

is N , the benefit is zero regardless of the state. The state of the world is revealed after the

decision is made.

The principal has the option of delegating her decision to a committee of agents. She

can arbitrarily choose the size of the committee and transfer money to each agent according

to the realized state and the committee’s choice. More specifically, she chooses the number

of agents n and a reward scheme w = (wIH , w
I
L, w

N
H , w

N
L ), where wjθ denotes the amount of

transfer to an agent when the realized state is θ ∈ {H,L} and the committee’s choice is

j ∈ {I,N}. The principal must offer the same reward scheme to all committee members.

Agents are protected by limited liability, i.e., w ≥ 0. The principal is risk-neutral and her

payoff is the expected benefit from the decision minus the expected transfers. I refer to a

pair of a committee size and a reward scheme as a contract. A contract is said to be optimal

if its committee size is the smallest among contracts that maximize the principal’s payoff.
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The principal obtains a payoff of max{Pr(H)bH + Pr(L)bL, 0} by setting the committee size

to zero, i.e., no making committee. Hence, if the optimal committee size is greater than zero,

she can obtain a payoff greater than max{Pr(H)bH + Pr(L)bL, 0}.

By incurring information cost c > 0, each agent i ∈ {1, 2, . . . , n} can receive one condi-

tionally independent private signal si ∈ {h, `}, which is informative:

Pr(si = h | H) = Pr(si = ` | L) = q ∈
(

1

2
, 1

)
.

Let ti ∈ {∅, h, `} denote the type of agent i, where ∅ denotes the type of an uninformed

agent. Agents are homogeneous, that is, the cost and quality of information are identical

across agents. They are risk-neutral, and their payoffs are the expected reward minus the

information cost if they acquire information. After observing the contract, the agents simul-

taneously decide whether to acquire information and report their types to the committee.

The committee selects the best alternative for the agents based on their type profile. This

alternative exists because all committee members are offered the same reward scheme. I refer

to the committee’s strategy as the collective choice rule f : {∅, h, `}n → [0, 1], which maps

the type profile t ∈ {∅, h, `}n to the probability that the committee selects I. For simplicity,

the committee is assumed to select N if it is indifferent between the two alternatives. In

short, a collective choice rule f satisfies the following condition:

Pr(H | t)wIH + Pr(L | t)wIL > Pr(H | t)wNH + Pr(L | t)wNL ⇐⇒ f(t) = 1,

Pr(H | t)wIH + Pr(L | t)wIL ≤ Pr(H | t)wNH + Pr(L | t)wNL ⇐⇒ f(t) = 0.

Note that a contract uniquely determines the collective choice rule.

The game proceeds as follows.

Stage 1. The principal chooses the committee size and a reward scheme.

Stage 2. All the agents simultaneously decide whether to acquire information.
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Stage 3. The agents report their types to the committee.

Stage 4. The committee selects the best alternative based on the agents’ type profile.

Stage 5. The state of the world is revealed, and the principal pays the reward.

Perfect Bayesian equilibrium is adopted as the solution concept. In Stage 3, all committee

members report their truthful types. This is because, given the equilibrium strategy of

the committee, truth-telling is a best response for a pivotal agent if the others report their

truthful types. The following assumption regarding the equilibrium selection is made.

Assumption 1. If multiple equilibria exist given a contract, the equilibrium in which the

number of informed agents is maximized is realized.

This assumption seems convenient for the principal. However, given the optimal contract,

agents also gain the highest payoff on the path where all of them gather information. This

result is proven in Appendix B.

3 Optimization Problem

In this section, the principal’s optimization problem is formulated. First, it is shown that

all committee members acquire information given the optimal contract.

Lemma 1. Suppose that the optimal committee size is greater than zero. Given the optimal

contract, all committee members acquire information.

Suppose that uninformed agents exist on the equilibrium path where the number of

informed agents is maximized. Assumption 1 ensures that this equilibrium is realized. By

removing uninformed agents from the committee, the principal saves on transfers without

changing the probability of making correct decisions. Therefore, all committee members

acquire information given the optimal contract.
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If there exists an integer R such that

f(t1 = · · · = tk = h, tk+1 = · · · = tn = `) = 0 for all k ≤ R,

f(t1 = · · · = tk = h, tk+1 = · · · = tn = `) = 1 for all k ≥ R + 1,

then R is said to be the (voting) threshold. Since the agents are homogeneous, the threshold

R is invariant to the permutation of the types. Note that the threshold is defined only on the

path where all committee members acquire information. On other paths, the committee does

not necessarily make decisions using the threshold R. From Lemma 1 and Assumption 1,

the path where all agents acquire information is realized in the optimal contract. Therefore,

the threshold determines the committee’s choice given the optimal contract. Let Xn denote

the number of h signals in n informed agents. The committee makes decisions using the

threshold R if and only if the contract satisfies the following inequalities:

Pr(H | Xn = R)wNH + Pr(L | Xn = R)wNL

≥Pr(H | Xn = R)wIH + Pr(L | Xn = R)wIL, (1)

Pr(H | Xn = R + 1)wIH + Pr(L | Xn = R + 1)wIL

≥Pr(H | Xn = R + 1)wNH + Pr(L | Xn = R + 1)wNL . (2)

An agent acquires information if the profit from information acquisition exceeds the infor-

mation cost c. For contracts that induce the committee to use the threshold R, the profit

from information acquisition when the others are informed is expressed as follows:

Pr(Xn−1 = R)
[
Pr(H | Xn−1 = R)

(
qwIH + (1− q)wNH

)
+ Pr(L | Xn−1 = R)

(
qwNL + (1− q)wIL

)]
−max

{
Pr(Xn−1 = R)

[
Pr(H | Xn−1 = R)wIH + Pr(L | Xn−1 = R)wIL

]
,

Pr(Xn−1 = R)
[
Pr(H | Xn−1 = R)wNH + Pr(L | Xn−1 = R)wNL

]}
.
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The profit from information acquisition is derived by focusing on pivotal events. From

Assumption 1, all the agents gather information if the following condition is satisfied:

Pr(Xn−1 = R)
[
Pr(L | Xn−1 = R)q

(
wNL − wIL

)
− Pr(H | Xn−1 = R)(1− q)

(
wIH − wNH

)]
≥ c,

(IACI)

Pr(Xn−1 = R)
[
Pr(H | Xn−1 = R)q

(
wIH − wNH

)
− Pr(L | Xn−1 = R)(1− q)

(
wNL − wIL

)]
≥ c.

(IACN)

This condition is said to be the information acquisition constraint (IAC). Since c > 0, if

(IACI) (resp. (IACN)) holds, then so does (1) (resp. (2)). Hence, in effect, the principal

selects a threshold as well as a contract within the information acquisition constraint.

Let π denote the principal’s payoff. The optimization problem is formulated as follows.

max
n,R,w

π(n,R,w) subject to (IAC) & w ≥ 0.

4 Optimal Reward Scheme

This section examines the optimal reward scheme for a fixed committee size. The committee

size is fixed in this section.

First, I derive the reward scheme that minimizes the cost of making agents acquire

information among reward schemes that induce the committee to use a fixed voting threshold

R. Since wIH − wNH and wNL − wIL determine the profit from information acquisition, the

optimal reward scheme satisfies wIL = wNH = 0 by limited liability. Since (IACN) becomes

easier to satisfy as wNL decreases, the optimal reward scheme satisfies (IACI) with equality.

Similarly, it also satisfies (IACN) with equality. The optimal rewards are derived by solving
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this system of equations.

wIH(n,R) =
1

Pr(H) Pr(Xn−1 = R | H)

c

2q − 1
, wNL (n,R) =

1

Pr(L) Pr(Xn−1 = R | L)

c

2q − 1
.

Pr(Xn−1 = R | H) and Pr(Xn−1 = R | L) represent the probabilities of being pivotal.

Therefore, these rewards decrease as they increase.

Next, I derive the reward scheme that minimizes the cost of making agents acquire

information. Let W (n,R) denote the expected transfer to an agent given wIH(n,R) and

wNL (n,R).

W (n,R) ≡ wIH(n,R) Pr(H)
n∑

k=R+1

Pr(Xn = k | H) + wNL (n,R) Pr(L)
R∑
k=0

Pr(Xn = k | L).

Since wIH(n,R) Pr(H) (resp. wNL (n,R) Pr(L)) does not depend on Pr(H) (resp. Pr(L)),

W (n,R) is independent of the prior distribution of the state.

Since wIH(n,R) = wNL (n, n− 1−R) and
n∑

k=R+1

Pr(Xn = k | H) =
n−1−R∑
k=0

Pr(Xn = k | L),

W (n,R) = wNL (n, n−1−R) Pr(L)
n−1−R∑
k=0

Pr(Xn = k | L)+wNL (n,R) Pr(L)
R∑
k=0

Pr(Xn = k | L).

Thus, W (n,R) is symmetric about the simple majority rule, i.e., W (n,R) = W (n, n−1−R).

Note that the cost of making agents acquire information C(n,R) equals to nW (n,R).

Proposition 1. The cost of making agents acquire information C(n,R) decreases as the

voting threshold R approaches the simple majority R = n−1
2

.

Note that, when n is even, C(n,R) is minimized at R = n
2
− 1 and R = n

2
.

Observe that

W (n,R) =

(∑n
k=R+1 Pr(Xn = k | H)(
n−1
R

)
qR(1− q)n−1−R

+

∑R
k=0 Pr(Xn = k | L)(
n−1
R

)
qn−1−R(1− q)R

)
· c

2q − 1
.

9



The cost of making agents acquire information has three elements that depend on threshold

R: (i) The probability of paying rewards in state H (resp. L), i.e.,
∑n

k=R+1 Pr(Xn = k | H)

(resp.
∑R

k=0 Pr(Xn = k | L)), (ii) The probability of a pivotal event in state H (resp. L),

i.e., qR(1−q)n−1−R (resp. qn−1−R(1−q)R), and (iii) The number of pivotal events, i.e.,
(
n−1
R

)
.

When the principal control the collective choice rule, she cannot reduce the probability of

paying rewards in both states. In addition, she cannot increase the probability of a pivotal

event in both states. On the other hand, the number of pivotal events is common to both

states and increases as the threshold approaches the simple majority. The main reason why

the reward scheme that minimizes the cost of making agents acquire information induces the

committee to make decisions by majority rule is that it maximizes the number of pivotal

events. Since the unanimity rule minimizes the number of pivotal events, the reward scheme

that maximizes the cost of making agents acquire information induces the committee to use

the unanimity rule. Thus, we can regard the majority rule as a voting rule that minimizes

agency costs and the unanimity rule as one that maximizes agency costs. Proposition 1 holds

for any prior distribution of the state because W (n,R) does not depend on it.

Let B(n,R) denote the expected benefit from the decision.

B(n,R) ≡
n∑

k=R+1

Pr(Xn = k) [Pr(H | Xn = k)bH + Pr(L | Xn = k)bL] .

The benefit-maximizing threshold R satisfies the following two inequalities:

Pr(H | Xn = R + 1)bH + Pr(L | Xn = R + 1)bL ≥ 0,

Pr(H | Xn = R)bH + Pr(L | Xn = R)bL ≤ 0.

Without information asymmetry, the principal would have compelled the committee to

use the benefit-maximizing threshold. Hence, the benefit-maximizing threshold voting rule

should be interpreted as the first-best rule. The optimal threshold is determined by both
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the benefit from the decision and the cost of making the agents acquire information. Propo-

sition 2 follows from Proposition 1.

Proposition 2. The collective choice rule that the optimal reward scheme induces the com-

mittee to use (i.e., the second-best rule) is closer to the majority rule than the benefit-

maximizing threshold voting rule (i.e., the first-best rule).

If the principal is ex-ante indifferent between the two alternatives, the benefit-maximizing

rule is the majority rule. Hence, the following corollary is established.

Corollary 1. Suppose that the principal is ex-ante indifferent between the two alternatives.

Then the optimal reward scheme induces the committee to use the majority rule.

5 Optimal Committee Size

This section assumes that the principal is ex-ante indifferent between the two alternatives,

Pr(H)bH + Pr(L)bL = 0. First, the optimal committee size is characterized. Second, com-

parative statics on it is conducted.

Since the benefit from the decision is bounded and the cost of making agents acquire

information diverges as the committee size grows to infinity, the optimal committee size is

finite. When the optimal committee size is greater than zero, the following lemma holds.

Lemma 2. Suppose that the principal is ex-ante indifferent between the two alternatives and

that the optimal committee size is greater than zero. Then the optimal committee size is odd.

The intuition of Lemma 2 is as follows. Suppose that n is even. Since the principal is

ex-ante indifferent between the two alternatives, she is ex-post indifferent when n
2

agents

receive signal h and the others receive signal `. Thus, the benefit from the decision does

not change between majority decisions by n agents and n − 1 agents. However, the cost

of making them acquire information in n-sized committees is more expensive than that in

(n− 1)-sized committees. Therefore, the optimal committee size is odd.
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From Lemma 2 and Corollary 1, we can restrict the committee size to be odd and the

second-best rule to be the simple majority rule. Define

π̄(n) ≡ π

(
n,
n− 1

2
, wIH(n,

n− 1

2
), 0, 0, wNL (n,

n− 1

2
)

)
.

Lemma 3. Suppose that the principal is ex-ante indifferent between the two alternatives and

that the optimal committee size is greater than zero. Then the optimal committee size is the

smallest odd number n that satisfies π̄(n+ 2)− π̄(n) ≤ 0.

Lemma 3 follows from the concavity of π̄(n) with odd number n. Since the marginal

probability of correct decisions monotonically decreases regarding committee size, so does

the marginal benefit from the decision. As the probability of being pivotal monotonically

decreases regarding committee size, the marginal cost of making agents acquire information

monotonically increases regarding committee size. Consequently, the principal’s payoff is

concave regarding committee size.

Next, comparative statics on the optimal committee size is developed. Under the as-

sumption that Pr(H)bH + Pr(L)bL = 0, rises in bH cause falls in bL. Hence, a rise in bH

increases the variance in benefits from the decision. A rise in bH does not reduce the optimal

committee size for the following reasons. The variance in benefits influences the principal’s

payoff only through the benefit from the decision. When bH rises, the principal has a greater

incentive to make the correct decision. Therefore, the principal is encouraged to enlarge the

committee size.

A rise in the information cost c does not expand the optimal committee size for the

following reasons. The information cost affects the principal’s payoff only through the cost

of making agents acquire information. A rise in c increases the expected transfer to an agent.

Therefore, the principal is encouraged to reduce the committee size.

The effect of information quality q on the optimal committee size is unclear. Information

quality influences both the benefit from the decision and the cost of making agents acquire
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Figure 1: π̄(1):black, π̄(3):red, π̄(5):green, π̄(7):blue. Parameter values: Pr(H) = Pr(L) = 1
2
,

bH = −bL = 2400, and c = 1

information. Improvements in information quality have a positive effect on the benefit side.

It is unclear how information quality affects the cost side. This is because its improvement

induces agents to not only exert effort but also be free-riders. It is shown that the optimal

committee size is inversely U-shaped regarding information quality. In other words, the

free-rider effect becomes dominant as information quality increases.

Proposition 3. Suppose that the principal is ex-ante indifferent between the two alternatives.

Then the optimal committee size is inversely U-shaped regarding information quality.

Figure 1 illustrates that the optimal committee size is inversely U-shaped regarding in-

formation quality under specific parameters. Note that the black line π̄(1) is monotone

increasing in information quality. This is because the free-rider problem does not exist in

one-sized committees.

6 Concluding Remarks

This paper analyzes the optimal committee design where the committee designer chooses

the committee size and indirectly controls the committee’s collective choice rule through
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monetary transfers.

A significant contribution of this paper is that it provides new insights into voting rules

from the perspective of agency costs. Since the cost of making agents acquire information

decreases as the voting threshold approaches the simple majority, this paper concludes that

the majority rule is the best, while the unanimity rule is the worst concerning agency costs.

Finally, I present two extensions of the model as remaining work for future research.

The first considers the circumstances where agents’ messages are contractible. The principal

can reduce agency costs by making contracts contingent on them. However, such contracts

may be vulnerable to collusion among agents. It might be worth examining collusion-proof

contracts in such environments. The second examines committees consisting of heteroge-

neous experts. It would be intriguing to incorporate heterogeneity into information quality.

Competent agents increase the precision of decision-making. In contrast, they tempt others

to be free-riders. Designing a committee that considers this trade-off would be interesting.

A Appendix: Proofs

Proof of Lemma 1. Let (n,w) denote the optimal contract and fn denote the collective

choice rule induced by the optimal contract (n,w). Since the optimal committee size is

greater than zero, n ≥ 1. Suppose that m ≥ 1 uninformed agents exist in equilibrium

where the number of informed agents is maximized. Consider a new contract in which the

committee size is n−m, and the reward scheme is w. Since Pr(H | ∅1, . . . , ∅m, tm+1, . . . , tn) =

Pr(H | tm+1, . . . , tn), the collective choice rule induced by the new contract is fn−m such

that fn−m(tm+1, . . . , tn) = fn(∅1, . . . , ∅m, tm+1, . . . , tn). Thus, the strategy profile in which

all n − m agents acquire information is an equilibrium in the new contract. Moreover, it

is realized from Assumption 1. The committee makes the same decisions between in the

new contract and in the optimal one. Since the optimal committee size is greater than zero,

the optimal contract makes some agents acquire information. Thus, wjθ > 0 for some (θ, j).
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Hence, the principal can save on the transfers of uninformed agents in the new contract.

This contradicts the fact that (n,w) is optimal. Therefore, m = 0.

Proof of Proposition 1. Since W (n,R) = W (n, n − 1 − R), it is enough to show that

W (n,R)−W (n,R− 1) < 0 for R < n
2
.

Since wIH(n,R) and wNL (n,R) satisfy (IACI) with equality,

W (n,R)− c

= Pr(H)wIH(n,R)
n−1∑
k=R

Pr(Xn−1 = k | H) + Pr(L)wNL (n,R)
R−1∑
k=0

Pr(Xn−1 = k | L).

Since wIH(n,R− 1) and wNL (n,R− 1) satisfy (IACN) with equality,

W (n,R− 1)− c

= Pr(H)wIH(n,R− 1)
n−1∑
k=R

Pr(Xn−1 = k | H) + Pr(L)wNL (n,R− 1)
R−1∑
k=0

Pr(Xn−1 = k | L).

Thus,

W (n,R)−W (n,R− 1) =− Pr(H)
[
wIH(n,R− 1)− wIH(n,R)

] n−1∑
k=R

Pr(Xn−1 = k | H)

+ Pr(L)
[
wNL (n,R)− wNL (n,R− 1)

] R−1∑
k=0

Pr(Xn−1 = k | L).

Since
∑n−1

k=R Pr(Xn−1 = k | H) =
∑n−1−R

k=0 Pr(Xn−1 = k | L),
∑n−1

k=R Pr(Xn−1 = k | H) >∑R−1
k=0 Pr(Xn−1 = k | L) for any R < n

2
. Hence, the proof is completed by showing that

Pr(H)
[
wIH(n,R− 1)− wIH(n,R)

]
> Pr(L)

[
wNL (n,R)− wNL (n,R− 1)

]
(> 0) for R <

n

2
.
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Since
(

q
1−q

)x
is convex in x and

(
n−1
R

)
>
(
n−1
R−1

)
if R < n

2
,

Pr(H)wIH(n,R− 1) + Pr(L)wNL (n,R− 1) =
c

2q − 1

1(
n−1
R−1

)
qn−1

[(
q

1− q

)n−R
+

(
q

1− q

)R−1
]

>
c

2q − 1

1(
n−1
R

)
qn−1

[(
q

1− q

)n−R−1

+

(
q

1− q

)R]
= Pr(H)wIH(n,R) + Pr(L)wNL (n,R).

Therefore, for any R < n
2
,

Pr(H)
[
wIH(n,R− 1)− wIH(n,R)

]
> Pr(L)

[
wNL (n,R)− wNL (n,R− 1)

]
(> 0)

Consequently, W (n,R)−W (n,R− 1) < 0 for any R < n
2
.

Proof of Lemma 2. Since Pr(H)bH + Pr(L)bL = 0, if the committee size n is even, then

the benefit-maximizing thresholds are R = n
2

and R = n
2
− 1. If the committee size n is odd,

the benefit-maximizing threshold is R = n−1
2

. Define B̄(n) as follows.

B̄(n) ≡


B(n, n−1

2
) if n is odd

B(n, n
2
) if n is even

From Proposition 1, if the committee size n is even, then the cost-minimizing thresholds are

R = n
2

and R = n
2
− 1. If the committee size n is odd, the cost-minimizing threshold is

R = n−1
2

. Define C̄(n) as follows.

C̄(n) ≡


C(n, n−1

2
) if n is odd

C(n, n
2
) if n is even

Define π̄(n) ≡ B̄(n)− C̄(n) for all n.

I prove that π̄(n) > π̄(n+1) for any odd number n by showing that B̄(n) = B̄(n+1) and
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C̄(n) < C̄(n+ 1). First, it is proven that B̄(n) = B̄(n+ 1). Since Pr(H)bH + Pr(L)bL = 0,

B̄(n+ 1) = Pr(H)bH

n+1
2∑

k=0

(
n+ 1

k

)(
qn+1−k(1− q)k − qk(1− q)n+1−k) .

Noting that

(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
for any 1 ≤ k ≤ n− 1, and that

(
n+ 1

0

)
=

(
n

0

)
,

B̄(n+ 1) = Pr(H)bH

 n+1
2∑

k=0

(
n

k

)(
qn+1−k(1− q)k − qk(1− q)n+1−k)

+

n+1
2∑

k=1

(
n

k − 1

)(
qn+1−k(1− q)k − qk(1− q)n+1−k)

= Pr(H)bH

n−1
2∑

k=0

(
n

k

)(
qn−k(1− q)k − qk(1− q)n−k

)
= B̄(n).

The second equality follows since

n+1
2∑

k=1

(
n

k − 1

)(
qn+1−k(1− q)k − qk(1− q)n+1−k) =

n−1
2∑

k=0

(
n

k

)(
qn−k(1− q)k+1 − qk+1(1− q)n−k

)
.

Next, I prove that C̄(n + 1) > C̄(n) for any odd number n. It is enough to show that

W (n+1, n+1
2

) > W (n, n−1
2

). Since the optimal reward scheme satisfies (IACN) with equality,

W (n+ 1,
n+ 1

2
) =wH(n+ 1,

n+ 1

2
) Pr(H)

n∑
k=n+1

2

Pr(Xn = k | H)

+ wL(n+ 1,
n+ 1

2
) Pr(L)

n−1
2∑

k=0

Pr(Xn = k | L) + c.

Since c > 0, wIH(n+ 1, n+1
2

) > wIH(n, n−1
2

) and wNL (n+ 1, n+1
2

) > wNL (n, n−1
2

),

W (n+ 1,
n+ 1

2
) > W (n,

n− 1

2
).
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Proof of Lemma 3. It is sufficient to show that π̄(n) is concave in odd number n. I prove

that [B̄(n+4)−B̄(n+2)]−[B̄(n+2)−B̄(n)] < 0 and [C̄(n+4)−C̄(n+2)]−[C̄(n+2)−C̄(n)] > 0

for any odd number n. For any odd number n, let me define

F (n) ≡
n−1
2∑

k=0

(
n

k

)
qn−k(1− q)k and G(n) ≡

(
n− 1
n−1
2

)
(2q − 1)q

n−1
2 (1− q)

n−1
2 .

Then, for any odd number n.

B̄(n) = Pr(H)bH (2F (n)− 1) and C̄(n) =
2ncF (n)

G(n)
.

Since q(1− q) < 1
4

for q ∈
(
1
2
, 1
)
,

(
n+ 1
n+1
2

)
q(1− q) =

(
n− 1
n−1
2

)
4n

n+ 1
q(1− q) <

(
n− 1
n−1
2

)
.

Therefore, G(n) monotonically decreases with odd number n.

First, I prove [B̄(n+ 4)− B̄(n+ 2)]− [B̄(n+ 2)− B̄(n)] < 0. It is enough to show that

[F (n + 4) − F (n + 2)] − [F (n + 2) − F (n)] < 0. Since

(
n+ 2

k

)
=

(
n+ 1

k

)
+

(
n+ 1

k − 1

)
for

any 1 ≤ k ≤ n and

(
n+ 2

0

)
=

(
n+ 1

0

)
,

F (n+ 2) =

n+1
2∑

k=0

(
n+ 1

k

)
qn+2−k(1− q)k +

n+1
2∑

k=1

(
n+ 1

k − 1

)
qn+2−k(1− q)k

=q

n+1
2∑

k=0

(
n+ 1

k

)
qn+1−k(1− q)k + (1− q)

n−1
2∑

k=0

(
n+ 1

k

)
qn+1−k(1− q)k

=q

(
n+ 1
n+1
2

)
q

n+1
2 (1− q)

n+1
2 +

n−1
2∑

k=0

(
n+ 1

k

)
qn+1−k(1− q)k.
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Since

(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
for any 1 ≤ k ≤ n− 1 and

(
n+ 1

0

)
=

(
n

0

)
,

F (n+ 2)

=q

(
n+ 1
n+1
2

)
q

n+1
2 (1− q)

n+1
2 +

n−1
2∑

k=0

(
n

k

)
qn+1−k(1− q)k +

n−1
2∑

k=1

(
n

k − 1

)
qn+1−k(1− q)k

=q

(
n+ 1
n+1
2

)
q

n+1
2 (1− q)

n+1
2 + qF (n) + (1− q)F (n)−

(
n
n−1
2

)
q

n+1
2 (1− q)

n+1
2

=F (n) +
1

2
G(n+ 2).

The final equality follows from

(
n
n−1
2

)
=

1

2

(
n+ 1
n+1
2

)
. Hence,

[F (n+ 4)− F (n+ 2)]− [F (n+ 2)− F (n)] =
1

2
[G(n+ 4)−G(n+ 2)] < 0.

The final inequality is derived from the monotonically decreasing property of G(n) in n.

Thus, [B̄(n+ 4)− B̄(n+ 2)]− [B̄(n+ 2)− B̄(n)] < 0.

Second, it is shown that [C̄(n+ 4)− C̄(n+ 2)]− [C̄(n+ 2)− C̄(n)] > 0. Since F (n+ 2)−

F (n) = 1
2
G(n+ 2),

[C̄(n+ 4)− C̄(n+ 2)]− [C̄(n+ 2)− C̄(n)]

=2c

(
(n+ 4)F (n+ 2)

G(n+ 4)
+
n+ 4

2
− 2(n+ 2)F (n+ 2)

G(n+ 2)
+
nF (n+ 2)

G(n)
− n

2

)
.

Hence, it is enough to show that

(n+ 4)− 2q(1− q)(n+ 2)

(
n+3
n+3
2

)(
n+1
n+1
2

) + q2(1− q)2n

(
n+3
n+3
2

)(
n−1
n−1
2

) ≥ 0. (3)
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Note that (
n−1
n−1
2

)(
n+1
n+1
2

) n+ 2

n
=

(n+ 1)(n+ 2)

4n2
>

1

4
.

Since 0 < q(1 − q) < 1
4

for q ∈ (1
2
, 1), the left-hand side of (3) is monotone increasing in

q ∈ (1
2
, 1). Note that

(
n+ 3
n+3
2

)
=

4(n+ 2)

n+ 3

(
n+ 1
n+1
2

)
=

16(n+ 2)n

(n+ 3)(n+ 1)

(
n− 1
n−1
2

)
.

By substituting q = 1
2

on the left-hand side of (3) and multiplying both sides by (n+3)(n+1),

we obtain the following inequality.

(n+ 4)(n+ 3)(n+ 1)− 2(n+ 2)2(n+ 1) + (n+ 2)n2 = 3n+ 4 > 0.

Therefore, [C̄(n+ 4)− C̄(n+ 2)]− [C̄(n+ 2)− C̄(n)] > 0.

Proof of Proposition 3. Summarizing the results so far, we obtain the following equations.

2[F (n+ 2)− F (n)] = G(n+ 2).

π̄(n) = Pr(H)bH(2F (n)− 1)− 2ncF (n)

G(n)
.

π̄(n+ 2)− π̄(n) = Pr(H)bHG(n+ 2)− (n+ 2)c− 2cF (n)

(
n+ 2

G(n+ 2)
− n

G(n)

)
.

To prove Proposition 3, I derive the following Lemma.

Lemma A.1. Suppose that the principal is ex-ante indifferent between the two alternatives.

If π̄(1) ≤ 0, then π̄(n) < 0 for any odd number n ≥ 3.

Proof. It is sufficient to show that for any odd number n, π̄(n + 2) ≥ 0 =⇒ π̄(n) > 0. If
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π̄(n+ 2) ≥ 0,

Pr(H)bH ≥
2(n+ 2)cF (n+ 2)

G(n+ 2)[2F (n+ 2)− 1]
>

2(n+ 2)cF (n)

G(n)[2F (n) +G(n+ 2)− 1]
.

Hence,

π̄(n) = Pr(H)bH(2F (n)− 1)− 2ncF (n)

G(n)

>
2cF (n)

G(n)

(
(n+ 2)(2F (n)− 1)

2F (n) +G(n+ 2)− 1
− n

)
=

2cF (n) [2(2F (n)− 1)− nG(n)]

G(n)[2F (n) +G(n+ 2)− 1]
.

Note that 2F (n)− 1 > 0. 2(2F (n)− 1)− nG(n) > 0 is shown by induction. When n = 1,

2(2F (1)− 1)−G(1) = 2(2q − 1)− (2q − 1) = (2q − 1) > 0.

Suppose that 2(2F (n)− 1)− nG(n) > 0. Then,

2(2F (n+ 2)− 1)− (n+ 2)G(n+ 2) = 2(2F (n)− 1)− nG(n+ 2) > n[G(n)−G(n+ 2)] > 0.

From Lemma A.1, we can derive the condition that the optimal committee size is greater

than zero. The principal obtains a payoff of max {Pr(H)bH + Pr(L)bL, 0} = 0 without

making committees. Therefore, from Lemma A.1, the optimal committee size is greater

than zero if and only if π̄(1) > 0.

π̄(1) = Pr(H)bH(2q − 1)− c

2q − 1
2q > 0 ⇐⇒ c <

(2q − 1)2

2q
Pr(H)bH .

From Lemma A.1, when q increases from 1
2
, π̄(1; q) becomes positive first among π̄(n; q).

Since π̄(n; q) is concave regarding n, π̄(n+2; q)− π̄(n; q) monotonically decreases in n. Thus,

the optimal committee size can be changed to the adjacent odd numbers. Lemma A.2 implies
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that once the optimal committee size shrinks, it never expands. Furthermore, for any odd

number n that is greater than one, π̄(n; q) diverges to negative infinity as q → 1. Therefore,

the optimal committee size is inversely U-shaped regarding information quality.

Lemma A.2. If ∂
∂q

[π̄(n+ 2; q)− π̄(n; q)] < 0 for some q∗ ∈
(
1
2
, 1
)
, then ∂

∂q
[π̄(n+ 2; q)− π̄(n; q)] <

0 for any q ∈ (q∗, 1)

Proof. Note that

π̄(n+ 2; q)− π̄(n; q) = Pr(H)bHG(n+ 2; q)− (n+ 2)c− 2cF (n; q)

G(n+ 2; q)

(
n+ 2− 4n2

n+ 1
q(1− q)

)
.

It is follows that

∂

∂q
[π̄(n+ 2; q)− π̄(n; q)]

= Pr(H)bH ·
∂

∂q
G(n+ 2; q)− 2c · ∂

∂q

(
F (n; q)

G(n+ 2; q)

)(
n+ 2− 4n2

n+ 1
q(1− q)

)
− 2cF (n; q)

G(n+ 2; q)

4n2

n+ 1
(2q − 1).

If ∂
∂q
G(n+2; q) ≤ 0, then ∂

∂q

(
F (n;q)
G(n+2;q)

)
> 0 because ∂

∂q
F (n; q) > 0. Thus, if ∂

∂q
G(n+2; q) ≤ 0,

then ∂
∂q

[π̄(n+ 2; q)− π̄(n; q)] < 0.

Consider the case where ∂
∂q
G(n+ 2; q) > 0. The proof is completed by showing that

∂2

∂q2
[π̄(n+ 2; q)− π̄(n; q)] < 0

⇐⇒ Pr(H)bH
∂2

∂q2
G(n+ 2; q)− 2c · ∂

2

∂q2

(
F (n; q)

G(n+ 2; q)

)(
n+ 2− 4n2

n+ 1
q(1− q)

)
− 2c(2q − 1)

4n2

n+ 1

∂

∂q

(
F (n; q)

G(n+ 2; q)

)
− 2cF (n; q)

G(n+ 2; q)

8n2

n+ 1
< 0.

First, it is shown that ∂2

∂q2
G(n+ 2; q) < 0.

∂

∂q
G(n+ 2; q) =

(
q − q2

)n−1
2

[
1

2
− n+ 2

2
(2q − 1)2

]
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∂
∂q
G(n+ 2; q) > 0 implies that 1

2
− n+2

2
(2q − 1)2 > 0. Hence,

∂2

∂q2
G(n+ 2; q)

=− n− 1

2
(2q − 1)

(
q − q2

)n−3
2

[
1

2
− n+ 2

2
(2q − 1)2

]
− 2(n+ 2)(2q − 1)

(
q − q2

)n−1
2 < 0.

Second, I show that

∂2

∂q2

(
F (n; q)

G(n+ 2; q)

)(
n+ 2− 4n2

n+ 1
q(1− q)

)
+ (2q − 1)

4n2

n+ 1

∂

∂q

(
F (n; q)

G(n+ 2; q)

)
+

F (n; q)

G(n+ 2; q)

8n2

n+ 1
> 0.

Note that

(
n+ 1
n+1
2

)
∂

∂q

(
F (n; q)

G(n+ 2; q)

)
=

∂

∂q

 1

(2q − 1)(1− q)

n−1
2∑

k=0

(
n

k

)(
q

1− q

)n−1
2

−k


=
4q − 3

(2q − 1)2(1− q)2

n−1
2∑

k=0

(
n

k

)(
q

1− q

)n−1
2

−k

+
1

(2q − 1)(1− q)2q

n−1
2∑

k=0

(
n

k

)(
n− 1

2
− k
)(

q

1− q

)n−1
2

−k

.

From some computations,

(
n+ 1
n+1
2

)
∂2

∂q2

(
F (n; q)

G(n+ 2; q)

)

=
1

(2q − 1)(1− q)3q2

n−1
2∑

k=0

(
n

k

)(
q

1− q

)n−1
2

−k
[(

n− 1

2
− k
)2

− (2q − 1)

(
n− 1

2
− k
)

+
4(2q − 1)(1− q)q2 + 2(4q − 3)2q2

(2q − 1)2

]
.

Since 0 < 2q − 1 < 1,

(
n− 1

2
− k
)2

− (2q − 1)

(
n− 1

2
− k
)

+
4(2q − 1)(1− q)q2 + 2(4q − 3)2q2

(2q − 1)2
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is minimized at n−1
2
− k = 0. Therefore, ∂2

∂q2

(
F (n;q)
G(n+2;q)

)
is positive. If

(2q − 1)
4n2

n+ 1

∂

∂q

(
F (n; q)

G(n+ 2; q)

)
+

F (n; q)

G(n+ 2; q)

8n2

n+ 1
≥ 0,

the proof is completed. Consider the case where it is negative. Since (n+ 2)(n+ 1) > n2, it

is sufficient to show that

∂2

∂q2

(
F (n; q)

G(n+ 2; q)

)
(1− 4q(1− q)) + 4(2q − 1)

∂

∂q

(
F (n; q)

G(n+ 2; q)

)
+

8F (n; q)

G(n+ 2; q)
> 0.

Note that

(2q − 1)
∂

∂q

(
F (n; q)

G(n+ 2; q)

)
+ 2

F (n; q)

G(n+ 2; q)

=
1

(1− q)2

n−1
2∑

k=0

(
n

k

)(
q

1− q

)n−1
2

−k

+
1

(1− q)2q

n−1
2∑

k=0

(
n

k

)(
n− 1

2
− k
)(

q

1− q

)n−1
2

−k

.

It follows that

(2q − 1)2
∂2

∂q2

(
F (n; q)

G(n+ 2; q)

)
+ 4(2q − 1)

∂

∂q

(
F (n; q)

G(n+ 2; q)

)
+

8F (n; q)

G(n+ 2; q)

=
2q − 1

(1− q)3q2

n−1
2∑

k=0

(
n

k

)(
q

1− q

)n−1
2

−k
[(

n− 1

2
− k
)2

− 8q2 − 8q + 1

2q − 1

(
n− 1

2
− k
)

+
q2((4q − 3)2 + 1)

(2q − 1)2

]
.

Since

∂

∂q

(
8q2 − 8q + 1

2q − 1

)
=
−16(q − 1)2 + 6

(2q − 1)2
> 0 for q ∈ (

1

2
, 1),

8q2−8q+1
2q−1

< 1 for q ∈ (1
2
, 1). Thus,

(
n− 1

2
− k
)2

− 8q2 − 8q + 1

2q − 1

(
n− 1

2
− k
)

+
q2((4q − 3)2 + 1)

(2q − 1)2
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is minimized at n−1
2
− k = 0. Therefore, it is positive.

B Appendix: Equilibrium Selection

Appendix B proves that, in the optimal contract, the intended equilibrium in Assumption 1

Pareto-dominates all the other strategy profiles. Note that this section does not assume that

the principal is ex-ante indifferent between the two alternatives.

First, I explain why multiple equilibria exist given the optimal contract. Suppose that

the optimal committee size is n and the optimal reward scheme induces the committee to

use the voting threshold R. Since the optimal reward scheme satisfies the two inequalities

of the information acquisition constraint with equality, the committee is indifferent between

the two alternatives when R agents report signal h, n − 1 − R agents report signal `, and

one declares ∅. Being indifferent between the two alternatives for some information profile

means that the agent’s payoff takes the same value regardless of the chosen alternative on

pivotal events. Thus, if the number of informed agents is n− 1, an informed agent deviates

from information acquisition.

Proposition B.1 justifies Assumption 1.

Proposition B.1. Given the optimal contract, agents gain the highest payoff on the path

where all committee members acquire information.

From Lemma 1, in the optimal contract, the principal achieves the maximum payoff on the

path where all agents acquire information. From Proposition B.1, all agents gain the highest

payoff on that path. Thus, the intended equilibrium in Assumption 1 Pareto-dominates

all the other strategy profiles. Consequently, Proposition B.1 ensures the plausibility of

Assumption 1.

Subsequently, I prepare for the proof of Proposition B.1. Define

D(k;m,wIH , w
N
L ) ≡ Pr(H | Xm = k)wIH − Pr(L | Xm = k)wNL .
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LetR∗
m(wIH , w

N
L ) denote an integer k that satisfiesD(k;m,wIH , w

N
L ) ≤ 0 andD(k+1;m,wIH , w

N
L ) >

0. Given the contract (n, (wIH , 0, 0, w
N
L )), the collective choice rule is characterized by

{R∗
m(wIH , w

N
L )}m=0,1,...,n. Since wIH(n,R) and wNL (n,R) induce the committee to use threshold

R, R∗
n(wIH(n,R), wNL (n,R)) = R.

Similar to the result of Persico (2004), the following lemma holds.

Lemma B.1. Suppose 0 ≤ R∗
m(wIH , w

N
L ) ≤ m− 1. Then R∗

m−2(w
I
H , w

N
L ) = R∗

m(wIH , w
N
L )− 1.

Proof.

D(k;m,wIH , w
N
L ) = Pr(H)

(
m

k

)
qk(1− q)m−kwIH − Pr(L)

(
m

k

)
qm−k(1− q)kwNL

=

(
m

k

)
qm−k(1− q)k

[
Pr(H)

(
1− q
q

)m−2k

wIH − Pr(L)wNL

]

Since m − 2k = (m − 2) − 2(k − 1), the sign of D(k;m,wIH , w
N
L ) coincides with that

of D(k − 1;m − 2, wIH , w
N
L ). Therefore, D(R∗

m(wIH , w
N
L ) − 1;m − 2, wIH , w

N
L ) ≤ 0 and

D(R∗
m(wIH , w

N
L );m,wIH , w

N
L ) > 0, that is, R∗

m−2(w
I
H , w

N
L ) = R∗

m(wIH , w
N
L )− 1.

Proof of Proposition B.1. Take wIH(n,R) and wNL (n,R) as given. Let W (m,R∗
m) denote

the expected transfer to one agent when m informed and n −m uninformed agents report

their truthful types.

W (m,R∗
m) ≡

m∑
k=R∗

m+1

Pr(H) Pr(Xm = k | H)wIH(n,R) +

R∗
m∑

k=0

Pr(L) Pr(Xm = k | L)wNL (n,R).

The proof is completed by showing that, for any m < n, W (n,R∗
n)−W (m,R∗

m) ≥ c. Since the

optimal reward scheme satisfies the two inequalities of the information acquisition constraint

with equality, R∗
n−1(w

I
H(n,R), wNL (n,R)) = R. From Lemma B.1,

W (n− 2k + 1, R∗
n−2k+1)−W (n− 2k,R∗

n−2k) = W (n− 2k + 1, R− k + 1)−W (n− 2k,R− k).
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Focusing on pivotal events,

W (n− 2k + 1, R∗
n−2k+1)−W (n− 2k,R∗

n−2k)

= Pr(Xn−2k = R− k)
[
Pr(H | Xn−2k = R− k)qwIH(n,R) + Pr(L | Xn−2k = R− k)qwNL (n,R)

]
− Pr(Xn−2k = R− k) Pr(H | Xn−2k = R− k)wIH(n,R)

=− Pr(H)

(
n− 2k

R− k + 1

)
qR−k+1(1− q)n−k−RwIH(n,R)

+ Pr(L)

(
n− 2k

R− k + 1

)
qn−k−R(1− q)R−k+1wNL (n,R) = 0.

Similarly,

W (n− 2k,R∗
n−2k)−W (n− 2k − 1, R∗

n−2k−1)

= Pr(H)

(
n− 2k − 1

R− k

)
qR−k+1(1− q)n−k−R−1wIH(n,R)

− Pr(L)

(
n− 2k − 1

R− k

)
qn−k−R−1(1− q)R−k+1wNL (n,R)

=

(
n−2k−1
R−k

)(
n−1
R

) 1

qk(1− q)k
c > 0.

From the information acquisition constraint, W (n,R∗
n)−W (n− 1, R∗

n−1) = c. Therefore, for

any m < n,

W (n,R∗
n)−W (m,R∗

m) =
n−m−1∑
k=0

[
W (n− k,R∗

n−k)−W (n− k − 1, R∗
n−k−1)

]
≥ c

References

Austen-Smith, David and Jeffrey S Banks (1996) “Information aggregation, rationality, and

the Condorcet jury theorem,” American Political Science Review, 90 (1), 34–45.

27



Azrieli, Yaron (2021) “Monitoring experts,” Theoretical Economics, 16 (4), 1313–1350.

Carroll, Gabriel (2019) “Robust incentives for information acquisition,” Journal of Economic

Theory, 181, 382–420.

Clark, Aubrey and Giovanni Reggiani (2021) “Contracts for acquiring information,” arXiv

preprint arXiv:2103.03911.

Condorcet, Marquis de (1785) Essai sur l’application de l’analyse à la probabilité des
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