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ABSTRACT 

Traditional frameworks often fail to adequately explain the observed procyclical nature of 

the risk-return trade-off associated with aggregate risk aversion in recent years. This study 

introduces a simple model incorporating the concepts of loss aversion and state-dependent 

preferences. The model suggests an initial positive adjustment to the risk-return trade-off when 

the shock occurs, followed by a negative adjustment once the shock fully manifests. Essentially, 

the risk-return trade-off temporarily becomes procyclical as the shock spreads. In this study, the 

nonlinear structure of the risk-return trade-off is approximated using natural cubic splines with 

several constraints. Estimation results based on market excess returns in the United States indicate 

that a nonlinear risk-return trade-off, consistent with the model, offers valuable insights for 

pricing. 
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1. INTRODUCTION 

 

Aggregate risk aversion, often assessed via the risk-return trade-off in the stock market, has 

traditionally been believed to display a countercyclical pattern in various asset pricing models. 

This notion is exemplified in models featuring state-dependent preferences, such as the external 

habit formation model proposed by Campbell and Cochrane (1999). Aggregate risk aversion can 

fluctuate in response to changes in the risk aversion levels of individuals within the economy, as 

well as shifts in the distribution of individual wealth (Chan and Kogan, 2002; Xiouros and 

Zapatero, 2010). Recent empirical evidence has supported this concept, particularly through 

studies such as those by Cohn et al. (2015) and Guiso et al. (2018). 

 

However, recent empirical findings regarding the relationship between the risk-return trade-

off and business cycles remain inconclusive. For instance, studies by Frazier and Liu (2016) and 

Alemany et al. (2023) emphasize the procyclicality of the risk-return trade-off. Additionally, 

research by Liu (2017) and Adrian et al. (2019) suggests that the association between the risk-

return trade-off and business cycles is not simply binary but may exhibit a more complex non-

linear structure. Despite this, there is a limited body of research addressing the mechanisms 

underlying variations in the risk-return trade-off under different economic conditions, including 

its nonlinear nature. This study aims to fill this gap in the literature. 

This study focuses on loss aversion, a significant component of prospect theory (Kahneman 

and Tversky, 1979; Tversky and Kahneman, 1992), as a novel approach to understanding the 

variability of aggregate risk aversion within the state-dependent preference framework. Several 



 

 

consumption-based asset pricing models, incorporating reference dependence and loss aversion, 

have already been investigated. These include models with reference-dependent preferences 

(Kőszegi and Rabin, 2006, 2007) and those considering disappointment aversion (Gul, 1991; 

Routledge and Zin, 2010). Agents with state-dependent preferences focus their attention not on 

absolute consumption but on relative consumption, using exogenously given states (or habits) as 

a reference point. Essentially, reference dependence is inherently embedded in a state-dependent 

preference framework. However, the integration of loss aversion into this framework remains 

underexplored. 

This study specifically addresses the optimization problem encountered by agents exhibiting 

pseudo-loss aversion. Upon identifying a decline in the state of the economy, these agents 

transition their utility function from a standard (gain-type) form to a loss-type utility function 

characterized by a relatively low utility level and high marginal utility of consumption. It is 

noteworthy that the state prompting the recognition of an economic downturn may differ among 

agents. When a shock occurs and a substantial number of agents newly recognize a deterioration 

in the state of the economy, their utility function shifts to a loss-type utility function with a 

relatively high marginal utility of consumption. This leads to a further increase in the aggregate 

marginal utility of the economy, resulting in a significant rise in the level of aggregate risk 

aversion. In essence, similar to numerous asset pricing models, this proposition suggests 

countercyclical variations in aggregate risk aversion. 

The new model presented in this study explains not only the countercyclicality of aggregate 

risk aversion but also its procyclicality under specific conditions. In this model, the shift to a loss-

type utility function essentially occurs only once. Thus, agents transitioning to a loss-type utility 



 

 

function at the onset of an economic downturn maintain this utility function even in the event of 

further deterioration in the state of the economy. With the worsening of the economy, the number 

of agents newly transitioning to a loss-type utility function will plateau and eventually start 

declining. This implies that the marginal utility increases at a slower rate or decreases at a faster 

rate as the economy deteriorates, potentially leading to a decline in aggregate risk aversion. In 

other words, aggregate risk aversion, or the risk-return trade-off, may exhibit procyclical 

variations. 

This model’s insights can be summarized into three hypotheses. The first hypothesis suggests 

that the risk-return trade-off follows a pattern of increase, decrease, and subsequent increase with 

the decrease in relative consumption. When shocks occur, and many agents acknowledge the “loss” 

stemming from a decline in relative consumption, there tends to be a positive correction in 

aggregate risk aversion. In contrast, after the shocks have fully propagated, there is potential for 

a negative correction in aggregate risk aversion. The second hypothesis suggests that the risk-

return trade-off stabilizes under states of high relative consumption levels, where no one 

acknowledges losses, or low relative consumption levels, where everyone recognizes losses. In 

such extreme states, the mechanism that influences the risk-return trade-off doesn’t function 

adequately. The third hypothesis suggests that under such extreme conditions, the risk-return 

trade-off levels should be almost the same. If the risk aversion of individual agents remains 

constant and homogeneous, regardless of the variations in relative consumption, the risk-return 

trade-off is anticipated to converge to a uniform level at both the right- and left-hand limits. 

The empirical findings indicate robust support for the first hypothesis, partial support for the 

second, and a complete lack of support for the third hypothesis, spanning from January 1959 to 



 

 

December 2019. Specifically, the non-linear relationship between relative consumption and the 

risk-return trade-off is specified using natural cubic splines and estimated using Hansen’s (1982) 

generalized method of moments (GMM). To conserve parameters and reduce the number of 

moment conditions, and to test the characteristics of the risk-return trade-off under extremely high 

and extremely low relative consumption levels, several models with constraints are also examined. 

Models selected based on out-of-sample root mean squared error (RMSE) consistently exhibit 

behavior aligning with the first hypothesis of the risk-return trade-off under any imposed 

constraints. Subsequently, the risk-return trade-off tends to somewhat stabilize under low relative 

consumption levels, lending partial support to the second hypothesis. However, the characteristics 

of the risk-return trade-off under high relative consumption levels are unclear, indicating the 

potential oversight of critical variables associated with pricing. Moreover, the levels of the risk-

return trade-off differ substantially between high and low relative consumption, strongly 

contradicting the third hypothesis, possibly because the risk aversion of individual agents varies 

or is heterogeneous. Alternatively, individual agents might have grown accustomed to 

acknowledging losses due to the continual low levels of relative consumption, considering it as 

the new norm. In this scenario, with a further decrease in relative consumption, individual agents 

recognizing additional losses could potentially result in further positive adjustments to aggregate 

risk aversion. Qualitatively similar results are obtained even when considering the consumption-

wealth ratio (CAY) proposed by Lettau and Ludvigson (2001) as a robust variable to capture 

fluctuations in investment opportunities. Overall, it can be concluded that relative consumption 

plays a significant role in pricing the market portfolio, and its nonlinear structure is largely 

consistent with the model proposed in this paper. 



 

 

The structure of this paper is outlined as follows. Section 2 introduces a simple model that 

integrates the concept of loss aversion into the framework of state-dependent preferences, 

presenting three hypotheses derived from its insights. Section 3 presents the methodology for 

testing these hypotheses alongside an overview of the data. Section 4 offers empirical results and 

discusses the outcomes of the three hypotheses. Finally, Section 5 concludes the paper. 

 

2. MODEL AND HYPOTHESES 

 

    This section introduces a simple model that incorporates the idea of loss aversion into the 

state-dependent preference framework. With this model, it becomes feasible to elucidate not only 

scenarios where the risk-return trade-off varies countercyclically, as observed in prior research, 

but also situations where it fluctuates procyclically contingent upon the stage of the shock. 

    Assuming a pure exchange economy, the only uncertainty in the economy is the aggregate 

endowment (aggregate consumption) 𝑌𝑡 . The aggregate endowment is assumed to follow a 

geometric Brownian motion. 

d𝑌𝑡 = 𝑌𝑡(𝜇d𝑡 + 𝜎d𝐵𝑡), ∀𝑡 ≥ 0, (1) 

where d𝐵𝑡  is a standard Brownian motion, 𝜇 > 𝜎2/2  and 𝜎 > 0 . In this economy, two 

financial securities are traded in the market. One is a single risk asset with a net supply of 1 that 

pays the aggregate endowment 𝑌𝑡 as dividends. The other is an instantaneous risk-free asset, 

with a net supply of zero. Consider 𝑟𝑡 as the instantaneous rate of return for a risky asset, and 

𝜎𝑡 as its instantaneous volatility. Additionally, let 𝑟𝑡
𝑓  denote the instantaneous risk-free interest 

rate for a risk-free asset. 



 

 

    In many models with state-dependent preferences, the relative consumption 𝜔 = ln 𝑌 −

ln 𝑋, which measures the deviation between the past consumption benchmark 𝑋 and current 

consumption 𝑌 , serves as a variable that captures the state of the economy. Following an 

approach similar to Chan and Kogan (2002), the consumption benchmark 𝑥𝑡 = ln 𝑋𝑡  is 

specified as the weighted average of past values of the logarithmic aggregate endowment 𝑦𝑡 =

ln 𝑌𝑡. 

𝑥𝑡 = 𝑒−(1−𝜅)𝑡𝑥0 + (1 − 𝜅) ∫ 𝑒−(1−𝜅)(𝑡−𝑠)𝑦𝑠d𝑠
𝑡

0
, (2) 

d𝑥𝑡 = (1 − 𝜅)(𝑦𝑡 − 𝑥𝑡)d𝑡. (3) 

where the parameter 𝜅 governs the degree of dependence on past values of the consumption 

benchmark. This is linked to the autocorrelation of price-dividend ratios within the state-

dependent preference frameworks, as noted in works such as Campbell and Cochrane (1999), 

Chan and Kogan (2002), and Xiouros and Zapatero (2010). Intuitively, relative consumption, as 

defined in this manner, rises when consumption expands over an extended period and declines 

when consumption contracts over a prolonged duration. In other words, this can be considered to 

reflect the state of the economy. 

This study analyzes the effects of disparities in the timing at which individual agents 

recognize the worsening economic conditions and adjust their marginal utility accordingly. For 

this purpose, the utility function of an agent is expressed below, where the agent identifies a loss, 

or a deterioration in the economic state, when the given relative consumption 𝜔𝑡 falls below a 

threshold 𝜁. 

𝑢(𝐶𝑡, 𝑋𝑡, 𝜔𝑡; 𝜁) = Λ(𝜔𝑡; 𝜁)
1 − 𝛾 (

𝐶𝑡
𝑋𝑡

)
1−𝛾

  for 𝛾 > 1, (4) 



 

 

where  Λ(𝜔𝑡; 𝜁) = {1 if 𝜔𝑡 ≥ 𝜁
𝜆 if 𝜔𝑡 < 𝜁    for 𝜆 ≥ 1. (5) 

𝐶𝑡 is the agent’s consumption, 𝛾 is the relative risk aversion, and 𝜆 is the pseudo-loss aversion. 

Such an agent has a standard (profit-type) utility function (1 − 𝛾)−1(𝐶𝑡/𝑋𝑡)1−𝛾  in the range 

𝜔𝑡 ≥ 𝜁 and has a loss-type utility function 𝜆(1 − 𝛾)−1(𝐶𝑡/𝑋𝑡)1−𝛾  in the range 𝜔𝑡 < 𝜁. In this 

study, it is assumed that 𝛾 is uniform across all agents to mitigate the influence of the mechanism 

of varying aggregate risk aversion stemming from heterogeneity in individual risk aversion, as 

proposed by Chan and Kogan (2002). Furthermore, for simplifying the analysis, it is assumed that 

the pseudo-loss aversion 𝜆 is uniform across all agents. 

    Expressing the societal weights allocated to each type 𝜁  as 𝑓(𝜁) , individual decision-

making problems can be described as a central planner problem. The problem faced by the central 

planner is represented by the following, with the aggregate endowment 𝑌𝑡  and consumption 

benchmark 𝑋𝑡 given. 

sup
{𝐶𝑡(𝑌𝑡,𝑋𝑡,𝜔𝑡;𝜁);𝑡≥0}

{𝐸 [∫ 𝑒−𝜌𝑡 ∫ 𝑓(𝜁) Λ(𝜔𝑡; 𝜁)
1 − 𝛾 (

𝐶𝑡(𝑌𝑡, 𝑋𝑡, 𝜔𝑡; 𝜁)
𝑋𝑡

)
1−𝛾

d𝜁
∞

0
d𝑡] ,

                                                   s. t.   ∫ 𝐶𝑡(𝑌𝑡, 𝑋𝑡, 𝜔𝑡; 𝜁)d𝜁 ≤ 𝑌𝑡  ∀𝑡 ≥ 0} ,
(6) 

where 𝜌 is a parameter representing time preference rate. The utility function specified in eq. (4) 

has a time-additive structure, thus reducing this problem to a series of period-by-period 

optimization problems. In the following, subscripts related to time points are omitted for brevity. 

By solving the optimality conditions for each time point in eq. (6), the optimal consumption share 

𝑐∗ = 𝐶∗/𝑌  can be determined as follows:3 

𝑐∗(𝜔; 𝜁) = 𝑓(𝜁)1/𝛾Λ(𝜔; 𝜁)1/𝛾𝐿(𝜔)−1, (7) 

 
3 See Appendix A for the proof of the results presented in this section. 



 

 

where  𝐿(𝜔) = ∫ 𝑓(𝜁)1/𝛾Λ(𝜔; 𝜁)1/𝛾d𝜁 . (8) 

From eq. (5), eq. (8) can be rewritten as 𝐿(𝜔) = ∫ 𝑓(𝜁)1/𝛾d𝜁
𝜁<𝜔

+ 𝜆1/𝛾 ∫ 𝑓(𝜁)1/𝛾d𝜁
𝜁>𝜔

. When 

the distribution 𝑓(𝜁)  representing the timing of recognizing the economic conditions’ 

deterioration follows a bell-shaped continuous distribution similar to a normal distribution, the 

following properties regarding 𝐿 can be demonstrated. 

𝐿 > 0, 𝐿′ < 0, 𝑓 ′ ⋚ 0 ⇒  𝐿′′ ⋛ 0, (9) 

lim
𝜔→±∞

𝐿′(𝜔) = 0, lim
𝜔→±∞

𝐿′′(𝜔) = 0. (10) 

Under the optimal consumption share, the aggregate utility 𝑈 = ∫ 𝑓(𝜁)𝑢(𝐶∗, 𝑋, 𝜔; 𝜁)d𝜁  is 

expressed as a function of relative consumption. 

𝑈(𝜔) = 𝑒(1−𝛾)𝜔𝐿(𝜔)𝛾 . (11) 

Under the settings, the instantaneous expected return of the risky asset at time 𝑡 is expressed as 

follows: 

𝜇𝑡 − 𝑟𝑡
𝑓 = − 𝑌𝑡𝑈𝑌𝑌

𝑈𝑌
𝜎𝑌 𝜎𝑡, (12) 

where 𝑈𝑌 = 𝜕𝑈/𝜕𝑌  and 𝑈𝑌𝑌 = 𝜕2𝑈/𝜕𝑌 2.  

    Under the optimal consumption share, the aggregate risk aversion 𝛾𝑎 = −𝑌 𝑈𝑌𝑌 /𝑈𝑌 =

1 − 𝑈 ′′/𝑈 ′ is expressed as a function of relative consumption as follows: 

𝛾𝑎(𝜔) = 𝛾 +

⎝
⎜⎜⎜
⎛ 1

𝛾 − 1 − 𝛾 𝐿′(𝜔)
𝐿(𝜔)

𝐿′(𝜔)
𝐿(𝜔) − 1

⎠
⎟⎟⎟
⎞ 𝛾𝐿′(𝜔)

𝐿(𝜔) + 1

𝛾 − 1 − 𝛾 𝐿′(𝜔)
𝐿(𝜔)

𝛾𝐿′′(𝜔)
𝐿(𝜔) . (13) 

The first term represents the uniform relative risk aversion across all agents, while the second and 

third terms depict the deviations from it. If there are no agents whose utility functions change 

with the deterioration of economic conditions (i.e., 𝜆 = 1), the second and third terms become 



 

 

zero, and 𝛾𝑎(𝜔) = 𝛾. When 𝜆 > 1, as 𝐿 > 0 and 𝐿′ < 0, the second term is always positive. 

However, the sign of the third term depends on the sign of 𝐿′′. From eq. (9), if 𝑓 ′ < 0, then 

𝐿′′ > 0, meaning the third term is positive, resulting in a positive correction to 𝛾𝑎(𝜔). The 

condition 𝑓 ′ ≤ 0  implies an increasing number of agents shifting towards loss-type utility 

functions as the economic conditions deteriorate. This suggests a stage where the impact of the 

shock has not yet fully permeated throughout the economy. Conversely, if 𝑓 ′ > 0, then 𝐿′′ < 0, 

meaning the third term is negative, resulting in a potential negative correction to 𝛾𝑎(𝜔). The 

condition 𝑓 ′ > 0  implies a decreasing number of agents shifting towards loss-type utility 

functions as the economic conditions deteriorate, suggesting a stage where the impact of the shock 

is increasingly permeating throughout the economy. Furthermore, according to (10), when the 

economic conditions are extremely good or bad, 𝛾𝑎(𝜔) can be approximated by 𝛾, and there is 

little to no correction applied.  

    To enhance clarity and provide substantive insights, examining numerical illustrations that 

are pertinent to the discussion is relevant. The necessary parameters are those that characterize a 

homogeneous relative risk aversion 𝛾 , homogeneous pseudo-loss aversion 𝜆 , and the 

distribution 𝑓(𝜁) governing the timing of recognizing the deterioration of economic conditions. 

The homogeneous relative risk aversion 𝛾 is set to the median value of 6.3, as investigated by 

Kimball et al. (2008) for risk aversion among Americans. The homogeneous pseudo-loss aversion 

𝜆 is set to the median value of 1.7, as surveyed by Wang et al. (2017) for loss aversion among 

Americans. The distribution 𝑓(𝜁) is assumed to follow a normal distribution with mean 𝜇𝑁  and 

standard deviation 𝜎𝑁 , and the parameters are chosen to satisfy the following conditions under 



 

 

the setting of relative consumption from Chan and Kogan (2002) (with a mean of 0.32 and 

standard deviation of 0.12). 

∫ 𝑓(𝜁; 𝜇𝑁 , 𝜎𝑁 )d𝜁
∞

0.32
= 0.001   and   ∫ 𝑓(𝜁; 𝜇𝑁 , 𝜎𝑁)d𝜁

∞

0.32−0.12
= 0.999 

This indicates a scenario where agents recognizing the deterioration of economic conditions under 

average state �̅� represent only about 0.1% of the total, while under extremely adverse conditions 

(mean minus one standard deviation), approximately 99.9% of agents recognize the deterioration. 

To fulfill these two conditions, 𝜇𝑁  is set to 0.26, and 𝜎𝑁  to 0.019. 

    Figure 1 depicts the relationship between the state of the economy (relative consumption) 

and aggregate risk aversion under such numerical examples, providing three key insights. First, 

under appropriate numerical examples, as the economy deteriorates, initially a positive correction 

is applied, but as a sufficient number of agents recognize the deterioration, a negative correction 

is introduced. This implies that, following the propagation of shocks, aggregate risk aversion 

initially fluctuates countercyclically, then switches to procyclical fluctuations, and eventually 

returns to countercyclical fluctuations. Second, even under the average state where there are 

relatively few agents recognizing the deterioration of the economy (i.e., 𝜔 = 0.32), the level of 

aggregate risk aversion becomes notably higher compared to the better state. In the numerical 

example of this paper, the state where aggregate risk aversion is maximized generally corresponds 

to the average state of the economy. 

 

(Figure 1) 

 



 

 

    Based on the insights above, the following three hypotheses regarding the nature of the risk-

return trade-off corresponding to aggregate risk aversion are considered. 

 

Hypothesis 1: As relative consumption decreases, the risk-return trade-off increases, decreases, 

and then increases again. 

Hypothesis 2: In states where almost all agents do not recognize the deterioration of relative 

consumption levels, or conversely, where almost all agents recognize the 

deterioration of relative consumption levels, the risk-return trade-off stabilizes. 

Hypothesis 3: In states where almost all agents do not recognize the deterioration of relative 

consumption levels, and conversely, where almost all agents recognize the 

deterioration of relative consumption levels, the risk-return trade-off reaches nearly 

the same level. 

 

3. DATA AND METHODOLOGY 

 

    In this section, the methodology for verifying the three hypotheses constructed in the 

previous section will be discussed. In much of the previous research, risk for the market portfolio 

is proxied by conditional volatility, and typically, the following relationship between risk and 

return is of interest. 

𝐸𝑡−1[𝑟𝑡
𝑒] = 𝑔𝑡|𝑡−1 Var𝑡−1[𝑟𝑡

𝑒]𝑞/2 , (14) 



 

 

where 𝑟𝑡
𝑒 represents the excess return of the market portfolio and 𝑔𝑡|𝑡−1 is the risk-return trade-

off. When risk is captured by conditional variance, 𝑞 = 2, and when it is captured by conditional 

volatility, 𝑞 = 1. 

    In this paper, the market excess return is specified as follows, considering its correspondence 

with eq. (12). 

𝑟𝑡
𝑒 = 𝑔(𝜔𝑡−1)𝜎𝑟,𝑡|𝑡−1 + 𝜖𝑡, 𝐸[𝜖𝑡|ℐ𝑡−1] = 0, (15) 

where 𝑔(𝜔𝑡−1) is the risk-return trade-off associated with relative consumption 𝜔𝑡−1, 𝜎𝑟,𝑡|𝑡−1 

is the conditional volatility of the market excess return, 𝜖𝑡 is the error term, and ℐ𝑡−1 is the set 

of information variables. It is worth noting that the emphasis is on the relationship between 

𝑔(𝜔𝑡−1) and aggregate risk aversion, and therefore, a constant term is not included in the model. 

From an empirical perspective, Lanne and Saikkonen (2007) highlight that including unnecessary 

constant terms not suggested by the model notably reduces the power of standard Wald tests. The 

model is estimated using the generalized method of moments (GMM), as proposed by Hansen 

(1982), following the approach outlined by Guo et al. (2013).4 

    Relative consumption is specified in the following form, which corresponds to eq. (2) in 

discrete time. 

𝜔𝑡 = ln 𝑌𝑡/𝑌𝑡−1 + 𝜅𝜔𝑡−1, 𝜔0 =
1
𝑇 ∑ ln 𝑌𝑡/𝑌𝑡−1

𝑇
𝑡=1

1 − 𝜅 (16) 

Real personal consumption expenditures for the United States from January 1959 to December 

2019 are utilized for 𝑌 . Following previous studies, 𝜅 is set to 0.9141/12 based on the lag-12 

 
4 Bolleslev et al. (1992) noted that estimation using the ARCH-M (autoregressive conditional 
heteroskedasticity in mean) model proposed by Engle et al. (1987) can lead to significant bias when there 
are specification errors in the model. 



 

 

autocorrelation of monthly price-dividend ratios over the same period.5 The market excess return 

𝑟𝑡
𝑒 is defined as the difference between the value-weighted return of all CRSP firms incorporated 

in the US and one-month Treasury bill rate, while the conditional volatility 𝜎𝑟,𝑡|𝑡−1 is determined 

using the realized volatility of period 𝑡 − 1.6  The information variables encompass relative 

consumption, the logarithm of price-dividend ratio (PD), term spread (TERM), credit spread 

(DEF), and stochastically detrended risk-free rate (RREL).7 However, it has been noted that the 

GMM estimation may suffer from serious bias when the number of moment conditions is 

excessive (Newey and Smith, 2004). To mitigate this issue and economize on the number of 

moment conditions, only the first principal component of these five variables is employed as 

additional information variables.8 

    Figure 2 illustrates the evolution of relative consumption and the information variables over 

the analysis period. The gray areas indicate recession periods as defined by the National Bureau 

of Economic Research (NBER). It can be observed that relative consumption sharply declines 

during recessions. However, the relative consumption level during periods of economic expansion 

 
5 The annual autocorrelation of relative consumption in this paper, 𝜅12 = 0.914, is close to 0.91 as found 
in Xiouros and Zapatero (2010). Additionally, Campbell and Cochrane (1999) set it to 0.87, while Chan 
and Kogan (2002) set it to 0.94. Referring to the lag-12 autocorrelation is aimed at eliminating the 
influence of seasonality in price-dividend ratios.  
6 For realized volatility, the sum of squared daily excess returns within the corresponding month is 
utilized. Moreover, as a proxy for conditional volatility, the predicted volatility from an ARFIMA 
(autoregressive fractionally integrated moving average) model with the realized volatility of period 𝑡 as 
the dependent variable yielded qualitatively similar results. Additionally, to align the estimated 𝑔(𝜔) 
with the annual Sharpe ratio, 𝑟𝑡

𝑒 is multiplied by 12, and 𝜎𝑟,𝑡∣𝑡−1 is multiplied by 
√

12 for 
annualization.  
7 PD represents the logarithm of the ratio of the current S&P500 price to the total dividends accumulated 
over the past 12 months. TS stands for the difference between the 10-year Treasury bond yield and the 3-
month T-bill rate, DEF represents the spread between Moody’s Baa and Aaa corporate bond yields, and 
RREL is the difference between the current risk-free rate and risk-free rate over the past 12 months. The 
data was sourced from the FRB of St. Louis, K. French’s website, and R. Shiller’s website.  
8 Substituting all five variables instead of the first principal component as information variables did not 
qualitatively alter the subsequent results.  



 

 

does not necessarily surpass that during economic downturns. However, using relative 

consumption as a proxy for the state of the economy is significant. For instance, the economic 

downturn of the 1970s can be interpreted as relatively mild compared to that of the 1980s from 

the perspective of relative consumption levels. During the former, there were few agents 

recognizing losses, whereas during the latter, there might have been a shift of many agents 

towards loss-type utility functions. Furthermore, since the global financial crisis of 2008, relative 

consumption levels have remained low, indicating a clear regime shift. Considering the economic 

growth in the US during the 2010s, it is unlikely that this period can be classified as a “bad state.” 

However, in the model presented in this paper, the 2010s could also be interpreted as a “stable 

state” where agents have become accustomed to the decline in relative consumption levels. 

Additionally, considering that the first principal component (PC1) effectively captures the 

variability of the underlying five information variables and consistently exhibits a significant 

upward trend during recessionary periods, it is deemed to possess sufficient information crucial 

for pricing in the market portfolio. 

 

(Figure 2) 

 

    Moving forward, the specification of the risk-return trade-off function 𝑔(𝜔)  will be 

examined. If Hypothesis 1 constructed in the previous section holds true, the risk-return trade-off 

should be a nonlinear function of relative consumption. To incorporate the nonlinear structure, 

the following formulation is specified, employing natural cubic spline basis functions 

𝑏𝑘(𝜔) for 𝑘 = 1,… , 𝐾:  



 

 

𝑔(𝜔) = ∑ 𝛿𝑘𝑏𝑘(𝜔)
𝐾

𝑘=1
. (17) 

The basis functions 𝑏𝑘(𝜔) are defined as follows: 

𝑏1(𝜔) = 1, 𝑏2(𝜔) = 𝜔, 𝑏2+𝑘 = 𝑑𝑘(𝜔) − 𝑑𝐾−1(𝜔) for 𝑘 = 1,2,… , 𝐾 − 2, 

𝑑𝑘(𝜔) = {max(0, 𝜔 − 𝜉𝑘)}3 − {max(0, 𝜔 − 𝜉𝐾)}3

𝜉𝐾 − 𝜉𝑘
, (18) 

where 𝜉𝑘 represents the (𝑘 − 1)/(𝐾 − 1) × 100th percentile of the sample of 𝜔. The natural 

cubic spline basis is specified to ensure 𝑔′′(𝜔) = 0 outside the data range (𝜔 < 𝜉1, 𝜔 > 𝜉𝐾). As 

the number of 𝐾 increases, it can capture a more complex nonlinear structure, but it also leads 

to the problem of overfitting. A typical approach to address overfitting is to set a larger 𝐾 and 

smooth 𝑔(𝜔) by penalizing large 𝑔′′(𝜔). However, in the GMM estimation, minimizing the 

number of moment conditions is essential to eliminate bias. Thus, using the smallest possible 𝐾 

is preferable. Therefore, this paper explores the optimal model by comparing the out-of-sample 

RMSE across models with different 𝐾. 

    Furthermore, based on Hypothesis 2 from the previous section, it is also considered to 

impose additional constraints on 𝑔(𝜔). If Hypothesis 2 is correct, then two states exist, away from 

shocks associated with changes in utility functions due to deteriorations in economic conditions: 

one where the economic situation is extremely favorable and another where the economic 

situation has deteriorated significantly. In these states, the risk-return trade-off should stabilize. 

To reflect this property, constraints are imposed such that 𝑔′(𝜔) = 0 outside the data range, i.e., 

𝜔 < 𝜉1 or 𝜔 > 𝜉𝐾 . To incorporate this constraint, eq. (17) is rewritten as follows:9 

𝑔(𝜔) = 𝛿1 + 𝛿2 (𝜔 − 𝑏𝐾(𝜔)
3(𝜉𝐾−1 − 𝜉𝐾−2)

) + ∑ 𝛿𝑘+2𝑏2+𝑘
𝑎𝑑𝑗 (𝜔)

𝐾−3

𝑘=1
+ 𝛿𝐾

𝑎𝑑𝑗𝑏𝐾(𝜔),  

 
9 See Appendix B for the proof of the results presented in this section. 



 

 

where  𝑏2+𝑘
𝑎𝑑𝑗 (𝜔) = 𝑏2+𝑘(𝜔) − 𝜉𝐾−1 − 𝜉𝑘

𝜉𝐾−1 − 𝜉𝐾−2
𝑏𝐾(𝜔)   for 𝑘 = 1,2,… , 𝐾 − 3,  

𝛿𝐾
𝑎𝑑𝑗 =

𝛿2 + 3 ∑ 𝛿𝑘+2(𝜉𝐾−1 − 𝜉𝑘)𝐾−2
𝑘=1

3(𝜉𝐾−1 − 𝜉𝐾−2)
. (19) 

Using this specification, 𝛿2 = 0  implies that the risk-return trade-off stabilizes when the 

economy is at its worst, while 𝛿𝐾
𝑎𝑑𝑗 = 0 suggests stability in the risk-return trade-off during 

periods of exceptionally strong economic conditions. By adding constraints, reducing the number 

of basis functions is possible, thereby conserving parameters and moment conditions while still 

investigating more complex structures.  

    To test Hypothesis 3 from the previous section, constraints are added to ensure that the risk-

return trade-off remains nearly the same when the economy is either extremely favorable or in 

deep distress. For this purpose, constraints are added such that 𝑔(𝜔) = 𝛿0 outside the data range, 

that is, when 𝜔 < 𝜉1 or 𝜔 > 𝜉𝐾 . Under these constraints, 𝑔(𝜔) aligns as follows. 

𝑔(𝜔) = 𝛿1 + ∑ 𝛿𝑘+2𝑏𝑘+2
𝑙𝑒𝑣𝑒𝑙(𝜔)

𝐾−4

𝑘=1
, 

where  𝑏𝑘+2
𝑙𝑒𝑣𝑒𝑙(𝜔) = 𝑏𝑘+2

𝑎𝑑𝑗 (𝜔) − Ξ𝑘 − Ξ𝐾−2
Ξ𝐾−3 − Ξ𝐾−2

𝑏𝐾−1
𝑎𝑑𝑗 (𝜔),  

Ξ𝑘 =
(𝜉𝐾 + 𝜉𝑘)𝜉𝑘 − (𝜉𝐾 + 𝜉𝐾−1)𝜉𝐾−1

𝜉𝐾−1 − 𝜉𝑘
. (20) 

    Finally, the addition of variables that might influence the pricing of the market portfolio in 

eq. (15) is under consideration. Initially, the framework of Section 2 will be revised to incorporate 

additional state variables 𝐹𝑡  besides 𝑋𝑡 , for instance, variables that capture fluctuations in 

investment opportunities. 𝐹𝑡 is assumed to follow the following stochastic process: 

d𝐹𝑡 = 𝜇𝐹𝑡d𝑡 + 𝜎𝐹𝑡d𝐵𝑡, ∀𝑡 ≥ 0. (21) 



 

 

If aggregate utility is represented by 𝑈(𝑌𝑡, 𝑋𝑡, 𝐹𝑡), then instantaneous returns are updated as 

follows. 

𝜇𝑡 − 𝑟𝑡
𝑓 = − 𝑌𝑡𝑈𝑌𝑌

𝑈𝑌
𝜎𝑌 𝜎𝑡 + 𝑈𝑌𝐹

𝑈𝑌
𝜎𝐹𝑡𝜎𝑡, (22) 

where 𝑈𝑌𝐹 = 𝜕2𝑈/(𝜕𝑌𝜕𝐹 ) . To simplify, assuming that 𝐹𝑡  does not influence aggregate 

relative risk aversion, the conditional expected market excess return can be expressed as follows: 

𝐸𝑡−1[𝑟𝑡
𝑒] = 𝑔(𝜔𝑡−1)𝜎𝑟,𝑡|𝑡−1 + 𝛽𝐹𝑡𝜎𝐹,𝑡|𝑡−1, 

where 𝛽𝐹𝑡 = 𝑈𝑌𝐹
𝑈𝑌

Cov𝑡−1[𝐹𝑡, 𝑟𝑡
𝑒]

𝜎𝐹,𝑡|𝑡−1
. (23) 

If the risk exposure of the investment opportunity 𝛽𝐹𝑡 can be approximated by a constant value 

𝛽𝐹 , then the following can be obtained. 

𝐸𝑡−1[𝑟𝑡
𝑒] ≈ 𝑔(𝜔𝑡−1)𝜎𝑟,𝑡|𝑡−1 + 𝛽𝐹 𝜎𝐹,𝑡|𝑡−1. (24) 

𝐹𝑡 is not directly observable and thus requires the use of proxy variables. One commonly used 

proxy is the consumption-wealth ratio (CAY) proposed by Lettau and Ludvigson (2001). What is 

crucial to note is that, as demonstrated by Guo et al. (2013), the CAY is influenced not only by 

the risk factor 𝜎𝐹,𝑡|𝑡−1 associated with hedging portfolios but also by the market factor 𝜎𝑟,𝑡|𝑡−1. 

For the sake of simplicity, assuming 𝐶𝐴𝑌𝑡−1 = 𝑎0 + 𝑎1𝜎𝑡|𝑡−1 + 𝑎2𝜎𝐹,𝑡|𝑡−1 , then eq. (23) is 

updated as follows. 

𝐸𝑡−1[𝑟𝑡
𝑒] ≈ {𝑔(𝜔𝑡−1) − 𝑎1

𝑎2
} 𝜎𝑡|𝑡−1 − 𝛽𝐹

𝑎0
𝑎2

+ 𝛽𝐹
𝑎2

𝐶𝐴𝑌𝑡−1. (25) 



 

 

This way, by incorporating variables such as the CAY to capture changes in investment 

opportunities as control variables, a better model can potentially be constructed. Considering the 

above, the following model is estimated.10 

𝑟𝑡
𝑒 = 𝑔𝑐𝑡𝑟𝑙(𝜔𝑡−1)𝜎𝑟,𝑡|𝑡−1 + 𝜃0 + 𝜃1𝐶𝐴𝑌𝑡−1 + 𝜖𝑡, 𝐸[𝜖𝑡|ℐ𝑡−1] = 0, (26) 

where 𝑔𝑐𝑡𝑟𝑙(𝜔𝑡−1) represents risk-return trade-off and is specified in the same way as 𝑔(𝜔𝑡−1). 

It is worth noting that the risk-return trade-off estimated here, denoted as 𝑔(𝜔𝑡−1) − 𝑎1/𝑎2 in eq. 

(25), should not be interpreted as aggregate risk aversion. 11  However, as the estimated 

𝑔𝑐𝑡𝑟𝑙(𝜔𝑡−1) is derived from several simplifications as mentioned above, which effectively shift 

the aggregate risk aversion up or down, its variability could be preserved. Therefore, it is crucial 

to verify whether this variability, rather than its level, satisfies Hypotheses 1 to 3. 

 

4. EMPIRICAL RESULTS 

 

    In this section, Hypotheses 1 to 3, as discussed in Section 2, will be validated. Model 

selection relies on the root mean squared error (RMSE) from predictions. The first half of the 

analysis period, from January 1959 to June 1989, is designated as the in-sample period, while the 

latter half, from July 1989 to December 2019, serves as the out-of-sample period. Additionally, 

consideration is given to the RMSE based on updating predictions using data up to one period 

before the forecast period within the same out-of-sample period. 

 
10 The data for the CAY was obtained from M. Lettau’s website. However, because it is quarterly data, 
the value of 𝐶𝐴𝑌𝑡−1 uses the value from the quarter preceding the one that includes period 𝑡 − 1.  
11 Especially when 𝑎1/𝑎2 > 0, the estimated 𝑔𝑐𝑡𝑟𝑙(𝜔𝑡−1) may take on negative values even with 
positive aggregate risk aversion. Furthermore, when using 𝛽𝐹𝑡 instead of 𝛽𝐹 , the interpretation of the 
risk-return trade-off becomes even more intricate due to the inclusion of 𝜎𝑟,𝑡|𝑡−1. 



 

 

Table 1 displays the estimated results of eq. (15) for 𝐾 = 1,2,… ,10. Eq. (15) represents a 

model without a constant term. As a baseline, a model including a constant term and assuming a 

constant risk-return trade-off is employed to verify if improvements in RMSE can be achieved. 

In the baseline model, a significant positive constant term is indicated. However, the results of 

the overidentification test (J-stat) are rejected at the 5% level, suggesting potential 

misspecification in the model. The second column presents the results of tests (z-tests or F-tests) 

where 𝑔(𝜔) = 0, or 𝛿1 = 𝛿2 = ⋯ = 𝛿𝐾 = 0, is the null hypothesis, indicating that no significant 

risk-return trade-off is observed in the baseline model. 

 

(Table 1) 

 

    The results in Table 1 strongly suggest that relative consumption plays a crucial role in 

pricing the market portfolio, indicating a nonlinear structure for 𝑔(𝜔). The model with 𝐾 = 2 

(i.e., 𝑔(𝜔) = 𝛿1 + 𝛿2𝜔) improves the out-of-sample RMSE by 0.425% compared to the baseline 

model assuming a constant risk-return trade-off. Moreover, unlike the baseline model, the 

overidentification test is not rejected. These strongly imply the importance of relative 

consumption in forecasting 𝑟𝑡
𝑒 . However, as the F-test fails to reject 𝑔(𝜔) = 0  as the null 

hypothesis in this model, it cannot be definitively stated that volatility holds crucial information 

in price formation. However, the nonlinear model with 𝐾 = 5 , which exhibits the most 

improvement in out-of-sample RMSE, achieves a 1.610% improvement rate, and the F-test rejects 

𝑔(𝜔) = 0 as the null hypothesis. This suggests that assuming a nonlinear structure for 𝑔(𝜔) 

could lead to improvements in the model and its predictive power. 



 

 

    The top left portion of Figure 2 illustrates the risk-return trade-off 𝑔(𝜔; �̂�)  with the 

parameter vector �̂� estimated by the model with 𝐾 = 5, which yields the most significant 

improvement in RMSE. Except for periods characterized by high relative consumption levels, the 

trade-off shows a pattern of increasing, decreasing, and then increasing again with decreasing 

relative consumption, mirroring Hypothesis 1. The average relative consumption during the 

analysis period is 0.375, roughly aligning with the peak of the curve. As anticipated, even under 

average state, aggregate risk aversion appears to reach high levels. While these findings broadly 

support Hypothesis 1, the observation that 𝑔(𝜔)  occasionally takes negative values and 

demonstrates unexpected procyclical fluctuations at high 𝜔  contradicts expectations. 

Additionally, the significant increase in 𝑔(𝜔) at low 𝜔 is inconsistent with Hypothesis 2. 

 

(Figure 2) 

 

    To gain deeper insights, particularly regarding Hypotheses 2 and 3, four constrained models 

are examined. The first model, labeled as the lower constraint model, imposes constraints to 

stabilize the movement of 𝑔(𝜔) at low 𝜔. This model sets the constraint 𝛿2 = 0 in eq. (19). The 

second model, labeled as the upper constraint model, imposes constraints to stabilize the 

movement of 𝑔(𝜔) at high 𝜔. This model sets the constraint 𝛿𝐾
𝑎𝑑𝑗 = 0 in eq. (19). The third 

model, labeled as the two-sided constraint model, imposes both constraints. These are valuable 

for testing Hypothesis 2. The fourth model, designated as the level constraint model, incorporates 

additional constraints to ensure that 𝑔(𝜔) remains nearly identical at both extremely high and 



 

 

extremely low values of 𝜔, alongside all the other constraints. This is specified in eq. (20) and is 

valuable for testing Hypothesis 3. 

    Table 2 displays the estimation results for both the unconstrained model and the four 

constrained models. For the sake of brevity, only the model with the most significant improvement 

in RMSE for each 𝐾 = 1,2,… ,10  is provided. 12  In an exceptional case, within the level 

constraint model, the overidentification test for the best RMSE model is rejected. Consequently, 

the model with the best RMSE among those where the overidentification test was not rejected 

was selected. Exceptionally, in the level constraint model, the overidentification test for the best 

RMSE model is rejected, resulting in the selection of the model with the best RMSE among those 

where the overidentification test was not rejected.  

 

(Table 2) 

 

    Table 2 presents partial evidence supporting Hypothesis 2 and contradicting Hypothesis 3. 

Across all five selected models, the F-tests consistently reject the null hypothesis of 𝑔(𝜔) = 0, 

implying that volatility holds crucial information for pricing, unlike the baseline model. The 

Diebold-Mariano test results indicate rejection for both the lower constraint model and the two-

sided constraint model, implying that predictive power equivalent to the baseline model is not 

observed in either case. This suggests that employing these models leads to a significant 

improvement in predictive capability compared to the baseline. The two-sided constraint model 

 
12 Regardless of whether selected based on out-of-sample or updating predictions, the results remain 
consistent. 



 

 

demonstrates the most substantial enhancement in RMSE, surpassing a 2% improvement rate. 

From a predictive perspective, this provides evidence supporting Hypothesis 2, suggesting 

stability in 𝑔(𝜔) at both high and low 𝜔. However, considering the slight decline in predictive 

performance of the upper constraint model relative to the unconstraint model, the significance of 

the upper constraint may be somewhat diminished. On another note, the level constraint model 

exhibits the poorest predictive performance, with scant evidence supporting Hypothesis 3, 

indicating little convergence between 𝑔(𝜔) at extremely high 𝜔 and 𝑔(𝜔) at extremely low 𝜔. 

    The rest of Figure 2 illustrates the risk-return trade-off 𝑔(𝜔; �̂�) estimated under the four 

constraint models, offering crucial insights into the three hypotheses. Outside of extremely high 

and extremely low 𝜔, the behavior of the four constraint models appears to be similar, with each 

model generally showing an initial increase, followed by a decrease, and then another increase, 

all in response to the decline in relative consumption. The summit of the central peak broadly 

corresponds to the average relative consumption of 0.375. This evidence provides robust support 

for Hypothesis 1. Furthermore, in the two-sided constraint model, which exhibits the most 

significant improvement in RMSE, the stabilization of 𝑔(𝜔) at both high and low 𝜔 is evident, 

aligning well with Hypothesis 2. Conversely, the substantial difference between 𝑔(𝜔) at high 𝜔 

and 𝑔(𝜔) at low 𝜔 strongly refutes Hypothesis 3. Furthermore, in all models except the low-

performing level constraint model, 𝑔(𝜔) turns negative at high 𝜔. This poses a challenge when 

linking the risk-return trade-off 𝑔(𝜔)  with aggregate risk aversion. It implies the potential 

oversight of some factor that may significantly impact the pricing of the market portfolio, 

particularly during periods of exceptionally high relative consumption levels. 



 

 

    From this point forward, the examination will focus on how the discussion evolves when 

additional variables that could potentially influence the pricing of the market portfolio are 

introduced. Particularly, the consumption-wealth ratio (CAY) proposed by Lettau and Ludvigson 

(2001) is known to be useful in capturing fluctuations in investment opportunities. Eq. (26) is 

estimated incorporating this effect. However, the risk-return trade-off estimated here does not 

correspond to the aggregate risk aversion, at least not in levels. Nevertheless, it accommodates 

the variability in aggregate risk aversion under certain simplifying assumptions. 

    Table 3 illustrates the estimation results of eq. (26) for 𝐾 = 1,2, . . . ,10, alongside the 

unconstrained risk-return trade-off outlined in eq. (17). Given the lack of necessity to exclude the 

constant term, the model with 𝐾 = 1 is deemed the baseline. In this model, neither the CAY nor 

volatility proves to be statistically significant, and the overidentification test is rejected as well. 

The 𝐾 = 5 model stands out as the one that brings the most significant improvement in RMSE 

from the baseline model, with an enhancement rate of 1.911%. The results of the Diebold-Mariano 

test indicate a substantial enhancement in predictive accuracy compared to the baseline model. In 

this framework, both the CAY and volatility exert significant influence on pricing. Moreover, the 

non-rejection of the overidentification test suggests a minimal chance of misspecification in the 

model. Consistent with the results excluding the CAY, it is indicated that relative consumption 

holds crucial information, with the risk-return trade-off likely represented as its nonlinear function. 

 

(Table 3) 

 



 

 

    The top left panel of Figure 3 illustrates the risk-return trade-off 𝑔𝑐𝑡𝑟𝑙(𝜔; �̂�) under the 

estimated parameter vector �̂� for the 𝐾 = 5 model, which demonstrates the most significant 

improvement in RMSE. Comparing it to the result without CAY (top left panel of Figure 1), a 

nearly identical shape is observed, albeit shifted downward. This downward adjustment at this 

level is attributed to the correction of −𝑎1/𝑎2 as depicted in eq. (25). The crucial part here is not 

merely the level but its variability. Similar to the result without CAY, except for high 𝜔, there is 

a pattern of rise, fall, and rise in relative consumption, which aligns with Hypothesis 1. 

 

(Figure 3) 

 

    Table 4 displays the estimation outcomes of both the unconstrained model and various 

constrained models. While each model ranging from K=1 to 10 is estimated, for the sake of brevity, 

only the model that yields the most significant improvement in RMSE is provided.13 However, 

in both the lower constraint model and the two-sided constraint model, the overidentification test 

is rejected for the best RMSE model. Thus, the model with the best RMSE among those where 

the overidentification test is not rejected is selected. The level constraint model has omitted the 

results as the overidentification test was rejected for all models with 𝐾 ≤ 10. In all four selected 

models, the F-test, with the null hypothesis of 𝑔(𝜔) = 0, is rejected, indicating that volatility 

holds significant information for pricing. Moreover, in every model, there is a significant 

enhancement in predictive capability compared to the baseline model. The lower constraint model 

 
13 As with the case without the CAY, regardless of whether selected based on out-of-sample or updating 
predictions, the results remain consistent. 



 

 

shows the most substantial improvement in RMSE (with an improvement rate of 2.122%), while 

the two-sided constraint model is comparable (2.117%). Under low 𝜔, results consistent with 

Hypothesis 2 seem apparent. Additionally, the complete failure of the level constraint model 

strongly contradicts Hypothesis 3. 

 

(Figure 4) 

 

    The rest of Figure 3 depicts the risk-return trade-off 𝑔𝑐𝑡𝑟𝑙(𝜔; �̂�)  under the estimated 

parameter vector �̂� for three different types of constrained models. The results closely resemble 

the risk-return trade-off estimated by the model excluding the CAY, thus strengthening 

implications for the three hypotheses. The behavior of the three types of constrained models is 

largely similar, except for extremely high and extremely low 𝜔, showing a consistent pattern of 

rise, fall, and rise corresponding to a decrease in relative consumption. Moreover, the peak of the 

central mountain typically coincides with an average relative consumption of 0.375. These 

findings strongly endorse Hypothesis 1. Moreover, in all models, 𝑔𝑐𝑡𝑟𝑙(𝜔) significantly differs 

between extremely high and extremely small 𝜔, providing strong evidence against Hypothesis 3. 

Hypothesis 2 seems unclear in the results. Both the lower constraint model and the two-sided 

constraint model, which significantly improve RMSE, exhibit a tendency for 𝑔𝑐𝑡𝑟𝑙(𝜔)  to 

stabilize somewhat at low omega. However, their behavior differs at high omega. In the former 

model, 𝑔𝑐𝑡𝑟𝑙(𝜔)  fluctuates sharply, whereas in the latter model, 𝑔𝑐𝑡𝑟𝑙(𝜔) remains relatively 

stable. Given that both models have nearly equal predictive power, it suggests that the 

contribution of relative consumption to pricing may be minimal during periods of high 𝜔. 



 

 

 

5. CONCLUSION 

 

    The initial half of the paper introduces a simple model, which integrates the concept of loss 

aversion into the state-dependent preference framework. This model posits that when the relative 

consumption 𝜔 , used to gauge the state of the economy, falls below a certain threshold, 

individuals’ utility functions shift to a loss-type utility function, characterized by high marginal 

utility and low utility levels. When shocks occur that decrease 𝜔, many agents undergo these 

shifts successively, causing the marginal utility at the aggregate level to increase rapidly and 

introduce a positive correction to aggregate risk aversion. Conversely, when shocks propagate 

widely enough, there might be few agents remaining to undergo further shifts. This could lead to 

a decrease in the rate of increase of marginal utility at the aggregate level and potentially result 

in a negative correction to aggregate risk aversion. These characteristics suggest that as 𝜔 

decreases, aggregate risk aversion initially rises, then declines, and finally rises again. This forms 

the basis of Hypothesis 1. Moreover, when 𝜔 is extremely high or extremely low, there are few 

agents left to undergo such shifts. Consequently, aggregate risk aversion is expected to remain 

stable, which is hypothesized as Hypothesis 2. Furthermore, when individual risk aversion 

remains constant and homogeneous, the level of aggregate risk aversion is expected to be the 

same in situations where hardly anyone shifts their utility functions and situations where almost 

everyone shifts their utility functions. This is hypothesized as Hypothesis 3. 

    The latter part of the paper examines three hypotheses derived from the model. Irrespective 

of whether control is exercised using the consumption-wealth ratio (CAY) as a proxy variable for 



 

 

investment opportunities, the variability of the risk-return trade-off 𝑔(𝜔)  corresponding to 

aggregate risk aversion confirms Hypothesis 1, provides partial support for Hypothesis 2, and 

does not support Hypothesis 3. In all models, excluding extremely high and extremely low 𝜔, the 

risk-return trade-off undergoes a pattern of rise, fall, and rise as relative consumption decreases. 

Moreover, there is a tendency for the risk-return trade-off to peak at average levels of relative 

consumption. These findings support Hypothesis 1. Hypothesis 2 appears to generally hold true, 

at least under low 𝜔, but becomes ambiguous under high 𝜔. Despite using the influential variable 

the CAY to capture investment opportunities, Hypothesis 2 remains unclear under high 𝜔 , 

indicating a potential oversight of certain variables. Hypothesis 3 cannot be considered valid, 

given the significant decline in predictive power caused by the level constraint, as well as the 

notable disparity in the estimated values of the risk-return trade-off between high and low 𝜔 in 

other models. 

    Hypothesis 3 may not hold for two potential reasons. First, the variability and heterogeneity 

in individual risk aversion, not considered in this study’s model, may be significant. These 

elements contribute to the countercyclical variation in aggregate risk aversion, thus explaining 

the low 𝑔(𝜔) at extremely high 𝜔 and the high 𝑔(𝜔) at extremely low 𝜔. Second, multiple 

shifts in utility functions may occur with the decline in relative consumption. To explain this, 

attention is drawn to the period since the 2008 global financial crisis, during which relative 

consumption has remained at low levels. It is likely that most agents shifted towards loss-type 

utility functions in response to the decrease in relative consumption during the 2008 global 

financial crisis. In other recessions, relative consumption tends to recover afterward, leading to a 

shift back to standard gain-type utility functions. However, in scenarios similar to the 2010s, 



 

 

where relative consumption fails to bounce back, such a situation may have become the new 

normal. Consequently, there could be agents whose utility functions shift to ones with even higher 

marginal utility of consumption than loss-type utility functions as relative consumption continues 

to decrease. In the presence of such agents, aggregate risk aversion may start to rise again as 

relative consumption declines, eventually leading to a decrease. 

 

APPENDIX A: PROPERTIES OF OPTIMAL CONSUMPTION SHARE 

 

    This section elaborates on the characteristics of the optimal consumption share model 

introduced in Section 2. Initially, to solve optimization problem (6), introduce ℒ defined as 

follows. 

ℒ = ∫ 𝑓(𝜁) Λ(𝜔; 𝜁)
1 − 𝛾 (𝑐(𝑌 , 𝑋, 𝜔; 𝜁) 𝑌

𝑋)
1−𝛾

d𝜁 + 𝐻 (1 − ∫ 𝑐(𝑌 , 𝑋, 𝜔; 𝜁)d𝜁) , (A1) 

where 𝐻 > 0. Solving the first-order conditions leads to the following equation for the optimal 

consumption share. 

𝑐∗(𝜔; 𝜁) = 𝑓(𝜁)1/𝛾Λ(𝜔; 𝜁)1/𝛾𝐻−1/𝛾𝑒
1−𝛾

𝛾 𝜔  for all 𝜁, (A2) 

∫ 𝑐∗(𝜔; 𝜁)d𝜁 = 1. (A3) 

Substituting eq. (A2) into eq. (A3) gives us the equation for 𝐻. 

𝐻 = 𝑒(1−𝛾)𝜔𝐿(𝜔)𝛾 (A4) 

where 𝐿(𝜔) ≡ ∫ 𝑓(𝜁)1/𝛾Λ(𝜔; 𝜁)1/𝛾d𝜁. Substituting this into eq. (A2) leads to the derivation of 

eqs. (7) and (8). 



 

 

    Next, the characteristics of 𝐿(𝜔) when 𝑓(𝜁) follows a bell-shaped continuous distribution, 

such as a normal distribution, will be discussed. 𝐿(𝜔) can be rewritten as follows. 

𝐿(𝜔) = 𝜆1/𝛾 ∫ 𝑓(𝜁)1/𝛾d𝜁
𝜁>𝜔

+ ∫ 𝑓(𝜁)1/𝛾d𝜁
𝜁≤𝜔

(A5) 

Using a certain distribution function 𝜙(𝜁), without loss of generality, 𝑓(𝜁) can be expressed as 

𝑓(𝜁) = (𝜙(𝜁))𝛾𝐹 −1, where 𝐹 = ∫(𝜙(𝜁))𝛾d𝜁
𝜁

. Subsequently, the following equation is derived. 

∫ 𝑓(𝜁)1/𝛾d𝜁
𝜁≤𝜔

= 𝐹 −1/𝛾Φ(𝜔), (A6) 

where Φ(𝜔) = ∫ 𝜙(𝜁)d𝜁
𝜁≤𝜔

. Eq. (A5) can be rewritten as follows. 

𝐿(𝜔) = 𝐹 −1/𝛾𝜆1/𝛾 − (𝜆1/𝛾 − 1)𝐹 −1/𝛾Φ(𝜔) (A7) 

Therefore, the first and second derivatives of 𝐿(𝜔) are as follows. 

𝐿′(𝜔) = −(𝜆1/𝛾 − 1)𝑓(𝜔)1/𝛾 , (A8) 

 

𝐿′′(𝜔) = −(𝜆1/𝛾 − 1) 1
𝛾 𝑓(𝜔)1/𝛾−1𝑓 ′(𝜔). (A9) 

Eq. (9) follows from eqs. (A5), (A8), and (A9). When 𝑓  follows a bell-shaped continuous 

distribution as normal distribution, lim
𝜔→±∞

𝑓(𝜔) = 0, thus eq. (10) holds. 

 

APPENDIX B: CONSTRAINED SPLINE 

 

    This section presents the derivation of the constrained spline introduced in Section 3. Let us 

consider adding constraints to ensure that 𝑔′(𝜔) = 0 when 𝜔 < 𝜉1 in eq. (17). When 𝜔 < 𝜉1, 

the expression for 𝑔(𝜔) is 𝛿1 + 𝛿2𝜔, thus the necessary and sufficient condition for 𝑔′(𝜔) = 0 

is that 𝛿2 = 0.  



 

 

    Next, consider adding constraints to eq. (17) such that 𝑔′(𝜔) = 0 when 𝜔 > 𝜉𝐾 . Noting 

that 𝑑𝑘(𝜔) = {(𝜔 − 𝜉𝑘)3 − (𝜔 − 𝜉𝐾)3}/(𝜉𝐾 − 𝜉𝑘) when 𝜔 > 𝜉𝐾 , the following is derived. 

𝑔′(𝜔) = 𝛿2 + 3 ∑ 𝛿𝑘+2(𝜉𝐾−1 − 𝜉𝑘)
𝐾−2

𝑘=1
(A10) 

Thus, the necessary and sufficient condition for 𝑔′(𝜔) = 0 is 𝛿2 + 3 ∑ 𝛿𝑘+2(𝜉𝐾−1 − 𝜉𝑘)𝐾−2
𝑘=1 =

0. The expression on the left-hand side of this condition represents the numerator of 𝛿𝐾
𝑎𝑑𝑗 as 

defined in eq. (19). In essence, setting 𝛿𝐾
𝑎𝑑𝑗 = 0 becomes the necessary and sufficient condition 

for 𝑔′(𝜔) = 0  when 𝜔 > 𝜉𝐾 . Rewriting the definition of 𝛿𝐾
𝑎𝑑𝑗  in terms of 𝛿𝐾  gives the 

following. 

𝛿𝐾 =
3(𝜉𝐾−1 − 𝜉𝐾−2)𝛿𝐾

𝑎𝑑𝑗 − 𝛿2 − 3 ∑ 𝛿𝑘+2(𝜉𝐾−1 − 𝜉𝑘)𝐾−3
𝑘=1

3(𝜉𝐾−1 − 𝜉𝐾−2)
(A11) 

Substituting this into eq. (17) leads to the derivation of the remaining components of eq. (19). 

    Finally, examining the constraint where 𝑔(𝜔) matches for 𝜔 < 𝜉1  and 𝜔 > 𝜉𝐾 . Under 

this constraint, considering that all the previously mentioned conditions are satisfied, 𝑔(𝜔) is 

taken at the point where 𝛿2 = 𝛿𝐾
𝑎𝑑𝑗 = 0 as the starting point. 

𝑔(𝜔) = 𝛿1 + ∑ 𝛿𝑘+2𝑏2+𝑘
𝑎𝑑𝑗 (𝜔)

𝐾−3

𝑘=1
(A12) 

When 𝜔 > 𝜉𝐾 , the condition ∑ 𝛿𝑘+2𝑏2+𝑘
𝑎𝑑𝑗 (𝜔)𝐾−3

𝑘=1 = 0 implies the following. 

𝛿𝐾−1 = − ∑ 𝛿𝑘+2
(𝜉𝐾−1 − 𝜉𝑘)(Ξ𝑘 − Ξ𝐾−2)

(𝜉𝐾−1 − 𝜉𝐾−3)(Ξ𝐾−3 − Ξ𝐾−2)

𝐾−4

𝑘=1
 

where Ξ𝑘 = {(𝜉𝐾 + 𝜉𝑘)𝜉𝑘 − (𝜉𝐾 + 𝜉𝐾−1)𝜉𝐾−1}/(𝜉𝐾−1 − 𝜉𝑘). By substitution and rearrangement, eq. 

(20) is derived. 
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TABLES 

 

TABLE 1. 

  
   

Out-of-sample prediction Updating prediction 

  Constant H0: 𝑔(𝜔) = 0 J-stat RMSE-IR [%] DM RMSE-IR [%] DM 

Baseline 0.118** -1.134 4.732* - - - - 

K=1 - 1.405 2.527 -0.249 -0.374 -0.243 -0.364 

K=2 - 2.994 1.399 0.425 0.465 0.434 0.474 

K=3 - 7.017 1.491 0.455 0.412 0.463 0.419 

K=4 - 18.493** 1.454 0.797 0.928 0.802 0.933 

K=5 - 26.244** 2.013 1.610 1.754 1.616 1.759 

K=6 - 43.112** 3.127 1.451 1.674 1.461 1.683 

K=7 - 44.622** 2.754 1.036 1.119 1.046 1.129 

K=8 - 45.739** 2.847 0.847 0.851 0.856 0.859 

K=9 - 47.809** 2.852 1.175 1.297 1.182 1.303 

K=10 - 49.674** 2.579 1.454 1.525 1.460 1.530 

Note: ** and * represent statistical significance at the 1 and 5% levels, respectively. H0: 𝑔(𝜔) = 0 represents the z-value or F-value 

with 𝛿1 = 𝛿2 = ⋯ = 𝛿𝐾 = 0 as the null hypothesis. J-stat means Hansen’s J statistic. In out-of-sample prediction, the period from 

January 1959 to June 1989 is in-sample, and the period from July 1989 to December 2019 is out-of-sample. Updating prediction 

means a prediction from July 1989 to December 2019 using data from one period before the prediction period. RMSE-IR represents 

the root mean squared error improvement rate compared to the baseline model. DM means Diebold-Mariano (1995) test statistic with 

the null hypothesis that there is no difference in predictive power between the model with K=1. 

 

  



 

 

TABLE 2. 

  
  

Out-of-sample prediction Updating prediction 

  H0: 𝑔(𝜔) = 0 J-stat RMSE-IR [%] DM RMSE-IR [%] DM 

Unconstraint (K=5) 26.244** 2.013 1.610 1.754 1.616 1.759 

Lower constraint (K=9) 31.669** 2.961 1.960 2.140* 1.967 2.146* 

Upper constraint (K=6) 42.303** 3.166 1.531 1.738 1.540 1.746 

Two-sided constraint (K=9) 28.186** 3.139 2.020 2.224* 2.027 2.230* 

Level constraint (K=7) 19.241** 3.260 1.077 1.253 1.088 1.264 

Note: ** and * represent statistical significance at the 1 and 5% levels, respectively. 

 

TABLE 3. 
     

Out-of-sample prediction Updating prediction 
 

Constant CAY H0: 𝑔(𝜔) = 0 J-stat RMSE-IR [%] DM RMSE-IR [%] DM 

Baseline 0.120** 1.361 -1.292 4.932* - - - - 

K=2 0.132** 1.954* 12.499** 2.821 1.151 2.167* 1.151 2.168* 

K=3 0.118** 2.361* 12.503** 3.351 1.326 2.168* 1.326 2.168* 

K=4 0.120** 2.159 12.612* 3.186 1.481 2.587** 1.481 2.587** 

K=5 0.108** 2.209* 13.706* 3.494 1.911 2.924** 1.910 2.925** 

K=6 0.082** 2.118 19.952** 4.292* 1.737 2.635** 1.739 2.639** 

K=7 0.087* 2.333* 25.729** 4.024* 1.731 2.743** 1.733 2.748** 

K=8 0.081** 2.254 29.583** 3.931* 1.335 2.052* 1.336 2.055* 

K=9 0.079** 2.229* 30.891** 3.964* 1.502 2.348* 1.503 2.350* 

K=10 0.070* 2.054 36.784** 3.649 1.684 2.296* 1.685 2.297* 

Note: ** and * represent statistical significance at the 1 and 5% levels, respectively.  



 

 

TABLE 4. 

  
   

Out-of-sample prediction Updating prediction 

  Constant CAY H0: 𝑔(𝜔) = 0 RMSE-IR [%] DM RMSE-IR [%] DM 

Unconstraint (K=5) 0.108** 2.209* 13.706* 1.911 2.924** 1.910 2.925** 

Lower constraint (K=7) 0.110** 2.355* 18.955** 2.122 2.847** 2.123 2.851** 

Upper constraint (K=5) 0.112** 2.022* 13.883** 1.815 2.828** 1.815 2.830** 

Two-sided constraint (K=7) 0.110** 2.445* 16.036** 2.117 2.869** 2.117 2.872** 

Note: ** and * represent statistical significance at the 1 and 5% levels, respectively. 
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