
 

DP2023-13  
 Impacts and Distribution of Premiums 
from Temporal Social Networks 

across Generations* 
 
 

RIEB Junior Research Fel low 

Yosh i t aka  OGI SU  
 

June 21, 2023 

* This Discussion Paper won the Kanematsu Prize (FY 2022). 
 



Impacts and distribution of premiums from temporal social

networks across generations∗

Yoshitaka Ogisu†

Graduate School of Economics, Kobe University
Kobe, Japan

June 21, 2023

Abstract

Social networks certainly play an important role in labor market outcomes. In par-
ticular, the structures affect inter-group inequality via referral hiring. Through the
network effects, while workers surely get premiums from the group to which they be-
long, they may get premiums or penalties from other groups than their own. Young
workers do not obtain sufficient network premiums since referrals cannot be used well
due to the higher unemployment rates of their friends. As time goes by, the network
structure of each generation of course changes. In other words, not only premiums
from their own network group but also those from the other network groups, or the
spillovers from other generations, change over time. However, these changes in intra-
and inter-group network effects have been rather overlooked so far. In this paper, we
compute the network premiums for each generation in a search and matching model,
and clarify which generation benefits the most from time-varying networks called tem-
poral networks. New connections are generated proportional to the number of friends
of each worker over time, while the existing connections are broken at a constant rate.
Under this setting, workers get premiums or penalties depending on their network
structures. On average, workers receive premiums from the overall network effects al-
though they incur penalties from their network structures in wage and unemployment
rates.
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1 Introduction

Referral hiring plays a non-negligible role in labor market outcomes, especially in deter-
mining inequality among workers. Many workers ask their friends for vacant positions.
Thus, those who have many friends have high job-finding probabilities and accordingly
strong outside options in wage bargaining leading to high wages, whereas those who have
a few friends do not (Fontaine, 2008; Ioannides and Soetevent, 2006). Workers benefit
from referral hiring through their social networks in which workers and friendships are
nodes and edges, respectively.

Social networks surely change over time, and those time-varying networks are called
temporal networks (Holme and Saramäki, 2019). This idea applies to a worker network
since new friendships are formed and existing ones are broken up. If a worker is friendly,
and has many friends, he is easy to make new friends, otherwise, he is difficult to make
new ones, which is measured by degree correlations of assortativity (Jackson and Rogers,
2007; Newman, 2002, 2003). If this is the fact for all workers, then social networks are
structured in such a way that a small number of people become to have a large number
of friends as time goes by. This leads to structural differences in the social networks
across generations, say, the young and old generations, meaning that workers of different
generations (or ages) can have different premiums from their social networks.

The labor market with referral hiring using social networks has been analyzed since
seminal works by Rees (1966), Granovetter (1973), and Boorman (1975) because referral
hiring is one of the typical methods used by workers (Holzer, 1988; Pellizzari, 2010).1 An
analytical framework is established by Calvó-Armengol and Zenou (2005) and Fontaine
(2007) in which referral hiring is incorporated as social networks into a search and matching
model proposed by Diamond (1981), Mortensen and Pissarides (1994), and Pissarides
(2000).

In search and matching models, social networks are often assumed to have a simple
structure (e.g. a regular network in which all nodes have the identical number of edges) for
analytical tractability (e.g. Calvó-Armengol and Zenou, 2005; Fontaine, 2007; Galenianos,
2014). However, it is well known that the network structure itself, e.g. how edges connect
nodes in a network, and how workers differ in the number of friends, has a significant
impact on the unemployment probability of a worker, as Calvó-Armengol and Jackson
(2004) and Tassier and Menczer (2008) have shown using small networks.

To clarify the characteristic of a network structure in search and matching models,
Ioannides and Soetevent (2006) uses the idea of degree distribution. The degree of a
node in a network is the number of connections each node has to other nodes, and hence
the degree distribution is defined as the probability distribution of the degrees over the
network.2 The degree distribution in a social network corresponds to the distribution of
the number of friends that each worker has. With degree distributions, differences in social
network structures lead to differences in congestion for sharing information about vacant
job positions (Ogisu, 2022). Since social networks in the previous models are static, we
develop a theoretical model with temporal networks in which network structures can be
different among generations.

In this paper, we attempt to capture generation-dependent premiums (or penalties)
caused by temporal social networks. We employ a search and matching model with over-
lapping generations, called life-cycle search models (e.g. Chéron et al., 2013; Fujimoto,
2013), and incorporate temporal networks into it. First, we construct the model with sim-

1Comprehensive surveys are provided by Ioannides and Loury (2004); Topa (2011).
2See Barabási (2013) and Newman (2018) for basics about degrees and degree distributions.
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ple social networks, random regular networks, and analytically demonstrate the existence
of equilibrium. Second, we extend the model to include temporal networks generated by
a fitness model (e.g. De Masi et al., 2006; Kobayashi et al., 2019). In a fitness model,
each node has an activity parameter, and the probability of creating an edge between two
nodes depends on the parameters. To describe degree correlations in a social network, we
set the activity parameters proportional to the number of friends the worker has.

The main results in the paper are summarized as follows. First, workers can receive
positive premiums from their social networks. Judging from the Japanese data, the pre-
miums in wage and unemployment rates are up to about 1.6%pt (measured by the average
wage) and 0.2%pt, respectively, although the premiums are partly offset by structures of
social networks up to 0.3%pt and 0.03%pt, respectively.

Second, young workers cannot benefit from their own social networks well even if
they have relatively good social network structures. This is because the probability that
their friends are also unemployed is high, and hence young workers are difficult to obtain
valuable information from their friends.

Third, an increase in the network connectivity of some generations (e.g. average num-
ber of friends) can lead to a decline in the unemployment rates not only in that generation
but also in the other generations. When the network connectivity in some generation
increases, it improves the matching probability via referrals in that generation, which in
turn brings about an increase in the number of new entry firms. If the number exceeds
additional matches made by workers in the generation in which the change takes place at
first, the vacancy rate increases in the network as a whole, leading to improved matching in
the labor market. As a result, the other generations can also obtain additional matches. If,
however, the number of entry firms is not sufficient, then the opposite case is also possible
that the vacancy rate decreases and the unemployment rates of the other generations rise.
The results of our numerical calculations confirm that an increase in network connectivity
of the middle aged group (40 y.o.) raises the unemployment rate in the other generations.

This paper contributes to the existing literature threefold. The first is to present
a theoretical analysis to explore the effects of referral hiring using social networks (e.g.
Alaverdyan and Zaharieva, 2022; Cahuc and Fontaine, 2009; Galenianos, 2013; Galeotti
and Merlino, 2014; Horvath and Zhang, 2018; Zaharieva, 2018). In the literature, some
works have investigated efficiency losses (e.g. Cahuc and Fontaine, 2009; Galenianos, 2014;
Horváth, 2014), while some examine the inequality caused by referral hiring (e.g. Calvó-
Armengol and Jackson, 2004, 2007; Galenianos, 2021; Horváth, 2014; Igarashi, 2016; Stup-
nytska and Zaharieva, 2015; Zaharieva, 2013). Our analysis is in the line with the latter.
It is particularly different from the former in using a life-cycle model to introduce gener-
ational differences among worker networks to capture generation-dependent premiums.

The second is examining inequality across generations in a life-cycle search model
(e.g. Chéron et al., 2011, 2013; Esteban-Pretel and Fujimoto, 2014; Fujimoto, 2013; Hahn,
2009). We explicitly introduce referrals with social networks into the model in a tractable
manner.

The third is to focus on the role of temporal networks (e.g. Holme and Saramäki, 2019;
Kobayashi and Takaguchi, 2018; Kobayashi et al., 2019). In our model, social networks
are exogenously given based on a fitness model that is frequently used in recent studies
in network science. Since little is known about the impact of temporal networks on the
labor market, this paper is one of the important applications of social networks using a
search and matching model.

The rest of the paper is constructed as follows. Sec. 2 describes the basic model with a
life-cycle search and matching model. With assumptions for analytical tractability, Sec. 3
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shows the existence of equilibrium and deals with comparative analysis showing that an
expansion in the effect of network connectivity has spillover effects. With parameters
calibrated to fit the Japanese data, Sec. 4 presents the algorithm generating temporal
social networks and identifies premiums and/or penalties from social networks numerically.
Sec. 5 summarizes the results and describes research avenues.

2 Model

Time is a discrete and infinite horizon, and the economy is in a steady state. Workers
who are risk neutral enter the market for generation 0 at first, and leave the market when
they reach the end of the last generation, ḡ. Thus, there are generations of workers g
ranging from 0 to ḡ in the economy. Assume that workers in each generation make up a
social network with a sufficiently large number of workers, N , which is constant and the
same for all generations. For simplicity, there is no friendship between social networks in
different generations. A worker who is unemployed searches for a job and produces home
production b > 0, or one who is matched with a job supplies a unit of labor and receives
wage wg.

There is an infinite number of jobs which is ready to enter the market. If a job is
vacant, the job is posted in the labor market with cost c > 0. If a worker arrives at
the job, the job becomes a matched job and produces yg unit of general good and pays
wage wg to the matched worker of generation g. Firms are destructed with a constant
probability of δ ∈ (0, 1) for each end of the time period. Variables c, yg, δ are exogenous
parameters, although wg is determined endogenously at the equilibrium.

Let pg be the (aggregate) job arrival rate for a worker in generation g. Following a
life-cycle search model (e.g. Esteban-Pretel and Fujimoto, 2014; Fujimoto, 2013), value
functions are given by, for generation g ∈ {0, 1, · · · , ḡ − 1},

Wg = wg + β[(1− δ)Wg+1 + δUg+1], (1)

Ug = b+ β[pgWg+1 + (1− pg)Ug+1], (2)

Jg = yg − wg + β[(1− δ)Jg+1 + δV ], (3)

for the oldest generation ḡ,

Wḡ = wḡ, (4)

Uḡ = b, (5)

Jḡ = yḡ − wḡ + βV, (6)

where β ∈ (0, 1) is the discount factor, and Wg, Ug, Jg represent the value functions of a
worker of generation g who has the matched job, a worker of generation g who does not
have a matched job, and a job which is matched to a worker of generation g, respectively.

V denotes the value function of a vacancy job, not matched with any workers, and it
is given by

V = −c+ β

q ḡ∑
g=0

Jgλg + (1− q)V

 , (7)

where q ≡
∑

g pgug/v(ḡ + 1) is the average arrival rate of a worker in generation g to the
job, and λg ≡ pgug/

∑
g′ pg′ug′ is the probability that the matched worker is in generation

g.
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E

A job comes with prob. 𝑃𝑃𝑔𝑔
along with each edge.

𝑃𝑃𝑔𝑔
𝑃𝑃𝑔𝑔𝑃𝑃𝑔𝑔

𝑙𝑙 unemployed (exc. D) of 𝑘𝑘
friends with prob. 𝑓𝑓𝑔𝑔(𝑘𝑘)

Take expectation over 𝑙𝑙, 𝑘𝑘

C chosen with prob. 
1
1+𝑙𝑙

Employed with prob 1 − 𝑢𝑢𝑡𝑡
Hold job info. with prob. 𝛾𝛾𝑣𝑣

Wait referrals

Fig. 1. Schematic of matching procedures. (a) A job arrives at a worker with probability γv. When
Worker B is employed and gets a vacancy, Worker B passes it to one of his friends who is
unemployed. If Worker B has two friends, a vacancy is passed to Worker C with probability
1/2. (b) Referral procedure. Worker D has 3 edges in this case and receives a vacancy from
each friend with probability Pg. If Worker E has k friends and l of k friends are unemployed
excluding worker D, E chooses D with probability 1/(l + 1). We sum up all possible cases
with the probability taking k, l to get the expected probability that a vacancy goes from E
to D, which is Pg.

The matching procedure primarily follows the setting in Calvó-Armengol and Zenou
(2005). Vacancies are made available to workers through the market or their social net-
works. pM and pRg denote the arrival rate via the market and the conditional probability
of the job arrival rate by referral, respectively. The aggregate job arrival rate, pg, is given
by

pg = pM + (1− pM )pRg . (8)

We note that the matching function induced by pg is not a constant return scale in ug and
v since we employ the same matching procedure in Calvó-Armengol and Zenou (2005).

We assume that the matching probability in the market is such that the linear function
of vacancy rate v, meaning that

pM = γv, (9)

where γ > 0 is a parameter.
In the search and matching model with referral hiring, it is assumed that vacancy

information goes not only to unemployed workers, but also to employed workers (Fig. 1a).
Every worker can hold only one vacancy information and if multiple vacancies are made
available to a worker, one is chosen by the worker at random and the others vanish. If
an employed worker receives a vacancy, he passes it to one of his unemployed friends
chosen at random. When unemployed workers cannot get job information in the labor
market, they wait for their friends to pass on information regarding a job position. The
referral procedure is described in Fig. 1b. We first define Pg as the probability that an
unemployed worker receives a vacancy from an arbitrary one of his friends. Starting from
an unemployed worker (Worker D in Fig. 1b), one of his friends (Worker E) is employed
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with probability 1 − ug.
3 Worker E receives information about a vacancy in the labor

market with probability γv. If Worker E has a vacancy, she sends it to one of her friends
with probability ψ ∈ [0, 1]. When Worker E has l unemployed of k friends except for
Worker D, Worker E passes Worker D a vacancy with probability 1/(l+1). Furthermore,
combinations of selecting l unemployed workers from k friends are given by a binomial
distribution with probability ug. Lastly, we get

Pg = ψ(1− ug)γv
∑
k

k−1∑
l=0

(
k − 1

l

)
1

l + 1
ulg(1− ug)

k−l−1fg(k)

= ψ(1− ug)γv
∑
k

1− (1− ug)
k

kug
fg(k),

where fg(k) is the probability that a worker of generation g has k friends.4 Thus, at least
one vacancy information is made available to a worker having k friends with probability
1− (1− Pg)

k.
The average arrival rate via referral for generation g is given by

pRg =
∑
k

[
1− (1− Pg)

k
]
fg(k), g ∈ {0, 1 · · · , ḡ − 1}, (10)

and pRḡ = 0. This is basically the same formulation as in Calvó-Armengol and Zenou
(2005). Finally, if we know the degree distribution fg(k) for all g and assume u0 = 1, the
equilibrium can be defined.

Definition 1. An equilibrium is defined such that:

1. The unemployment rate for each generation is determined by the following rules:

fg(k) ∀g : given,

u0 = 1,

ug+1 = (1− pg)ug + δ(1− ug) ∀g ∈ {0, · · · , ḡ − 1},
(11)

where pḡ = 0.

2. Wage is determined by Nash bargaining with worker’s bargaining power η ∈ (0, 1),
which implies

wg = arg max
w

(Wg − Ug)
η(Jg − V )1−η. (12)

3. Free entry condition is satisfied:
V = 0. (13)

Let the match surplus be Sg ≡Wg −Ug + Jg − V . From the Nash bargaining problem
of (12), we obtain,

Wg − Ug = ηSg,

Jg − V = (1− η)Sg.

3We consider ug as the probability that a worker chosen from the worker pool of generation g is
unemployed. That is one of the approximations by mean-field.

4In this formulation, we implicitly assume that social networks have a locally tree-like structure in
which the local cycle by three nodes can be ignored(e.g. Molloy and Reed, 1995; Newman, 2018).
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Combining them with Eq.(4)-(6) and free entry condition (13), we obtain,

Wḡ = wḡ = ηyḡ + (1− η)b, (14)

Jḡ = (1− η)(yḡ − b). (15)

The match surplus is determined such that

Sg = yg − b+ β[1− δ − pgη]Sg+1, ∀g ∈ {0, · · · , T − 1}, (16)

Sḡ = yḡ − b. (17)

At the equilibrium, by Eq.(7) and free entry condition (13),

c(ḡ + 1)

β(1− η)
= G(v), (18)

where G(v) ≡
∑ḡ

g=0 ugpgSg/v.

3 Analytical framework in regular networks

For the first step, we solve the model analytically with some assumptions that simplify
the analysis. In this section, we suppose that yg = y > b ∀g, and each network structure
is a random regular network with degree k̄g. In that case, the degree distribution for
generation g is given by

fg(k) =

{
1 if k = k̄g,

0 otherwise.
(19)

3.1 Equilibrium

With the assumption of random regular networks, Pg and pRg can be rewritten as

Pg = ψ(1− ug)γv
1− (1− ug)

k̄g

k̄gug
,

pRg = 1− (1− Pg)
k, for g ∈ {0, · · · , ḡ − 1}.

In this simple case, we derive the next proposition.

Proposition 1. Assume that social networks are regular networks for every generation,
i.e., degree distributions are given by (19). Then an equilibrium exists if parameters satisfy
the condition

γβ(1− η)(y − b)

c(ḡ + 1)

1− [β(1− δ − η)]ḡ−g+1

1− β(1− δ − η)
< 1 <

γβ(1− η)(y − b)

c(ḡ + 1)

ḡ∑
g=0

[
1− [β(1− δ)]ḡ−g+1

1− β(1− δ)

]
.

(20)

Proof. See Appendix A.

There are two remarks for condition (20). First, the existence of the equilibrium is
irrelevant to the network parameter k̄g, which is the same as in Calvó-Armengol and
Zenou (2005). The condition only needs information at the end points of v, meaning that
v = 0, 1/γ. For the existence of the equilibrium, the key is not social networks, and this
is held in the model including the generational structure. At these two end points, the
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v∗

γ
∑ḡ

g=0 Sg

γS0

v = 0

c(ḡ+1)
β(1−η)

1
γ

(a)

0 v 1
γ

(b)

v

G
(v

)

Fig. 2. Graphical image of the uniqueness of the equilibrium. (a) When v = 0, the slope of G(v)
is negative for v ∈ (0, 1/γ), and the unique equilibrium exists if Eq. (20). (b) If v > 0, the
slope of G(v) in v ∈ (v, 1/γ) is negative but ambiguous in v ∈ (0, v]. When v < v, the
uniqueness of the equilibrium is not assured.

job arrival rate in the labor market to 0 and to 1, respectively, meaning that no one can
find jobs and anybody can find jobs in the labor market. Therefore, nobody can rely on
referrals in these polarized cases.

Second, the job opening cost must be in the moderate value range. If job opening
cost c is relatively high, the first inequality is held. However, if c is too high, the system
violates the second inequality. As a result, the job opening cost needs to remain at a
moderate level for the equilibrium to exist. If the job opening cost is too low, infinite jobs
keep entering the market since jobs expect to make profits, while if it is too high, jobs
leave the market which is no longer attractive.

At extreme points of v, G(v) approaches two real values, denoting γS0 and γ
∑ḡ

g=0 Sg,
although its slope between these points is ambiguous. However, we can prove that the
slope is negative above a certain level of v, which is summarized in the next lemma.

Lemma 1. For any parameter sets, there exists v < 1/γ such that for v ∈ (v, 1/γ),

∂G(v)

∂v
< 0. (21)

Proof. See Appendix B.

Moreover, following discussions in this section, we make the next assumption.

Assumption 1. The parameter sets are chosen such that v = 0.

We note here that Assumption 1 is held under the parameters calibrated in Sec. 4.
Combining Lemma 1 and Assumption 1 leads to the next proposition.

Proposition 2. Assume v = 0. Then Eq. (20) is the necessary and sufficient condition
for the existence of the unique equilibrium.
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Proof. By Assumption 1 and Lemma 1, G(v) is monotonically decreased in v and

lim
v→0

G(v) = γ(y − b)

ḡ∑
g=0

1− [β(1− δ)]ḡ+1

1− β(1− δ)
, (22)

lim
v→ 1

γ

G(v) = γ(y − b)
1− [β(1− δ − η)]ḡ+1

1− β(1− δ − η)
. (23)

Therefore, when

lim
v→ 1

γ

G(v) <
c(ḡ + 1)

β(1− η)
< lim

v→0
G(v),

the unique equilibrium exists and this condition is identical to that in Eq. (20) (also see
Fig. 2).

3.2 Spillover effects from network connectivity

In this model, the relationship between the number of friends (k̄g) and matching proba-
bility via referral (pRg ) draws an inverse-U shape (see Proposition 1 (i) in Calvó-Armengol
and Zenou, 2005). The crucial difference from Calvó-Armengol and Zenou (2005) is that
network expansion of a generation affects the job arrival rate via referral not only of the
generation, but also of the other generations. We define k̂g as the k̄g at which pRg is max-

imized. Then, at k̄g = k̂g, pg is also maximized. For simplicity, we tentatively treat k̄g as
a real number, as Calvó-Armengol and Zenou (2005) do. We obtain the following result.

Proposition 3. Given v;

(i) for τ ∈ {g + 1, g + 2 · · · , ḡ},

k̄g ⋛ k̂g =⇒ ∂uτ
∂k̄g

⋛ 0, (24)

(ii) for τ ∈ {g, g + 1, · · · , ḡ},

k̄g ⋛ k̂g =⇒ ∂pτ
∂k̄g

⋚ 0, (25)

(iii) for τ ∈ {0, 1, · · · , ḡ},

k̄g ⋛ k̂g =⇒ ∂Sτ
∂k̄g

⋛ 0. (26)

Proof. See Appendix C.

Regarding Proposition 3, an increment in k̄g means that all workers gain additional

friendships when they become generation (or age) g. Therefore, if the increment in k̄g < k̂g
improves the job arrival rate for workers in generation g, it improves the unemployment
rate and the job arrival rate of the generation in the following periods. For k̄g > k̂g,
however, pg decreases as k̄g increases, resulting in congestion effects stated in Calvó-
Armengol and Zenou (2005). When the network connectivity is too high, the probability
of an unemployed worker getting multiple vacancies is also high, which is congestion in
sharing information.
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With Proposition 3, the equilibrium effects can be obtained. The keys are shifts in
G(v) and Beveridge curves. First, based on Eq. (24)-Eq. (26), an increment (or decline)
in k̄g causes a shift in G(v) and moves the equilibrium vacancy rate also since

∂G(v)

∂k̄g

=

g−1∑
τ=0

uτpτ
v

∂Sτ
∂k̄g

+
ug
v

(
∂pg

∂k̄g
Sg + pg

∂Sg

∂k̄g

)
+

ḡ∑
τ=g+1

1

v

(
∂uτ
∂k̄g

pτSτ + uτ
∂pτ
∂k̄g

Sτ + uτpτ
∂Sτ
∂k̄g

)
.

(27)
The sign of Eq. (27) is ambiguous, and consequently, it is impossible to state the direc-
tion of the change in the new equilibrium vacancy rate. If the equilibrium vacancy rate
increases, which means that additional jobs enter the market because of an improvement
in worker arrival rate, the labor market becomes loose (and vice versa).

Second, for generation τ > g, the Beveridge curves shift downward due to an increase
in k̄g (Eq. 24) while for other generations, they remain constant. Therefore, if the vacancy

rate increases by a change in k̂g, unemployment rates for all generations decrease. By
contrast, if the vacancy rate decreases due to the change, many generations incur negative
impacts on unemployment rates except for the generations for which the Beveridge curves
shift enough to offset the decrease in unemployment rates.

To summarize, we see lead to three possible effects on uτ for each τ ∈ {0, · · · , ḡ} at
the equilibrium via the change in the increment in k̄g which we term spillover effects.
Spillover effects can be decomposed into direct and indirect effects. An increment in
k̄g directly decreases in unemployment rates through shifts in Beveridge curves for some
generations (direct effects) while it indirectly changes in unemployment rates for all gen-
erations through a change in vacancy rate (indirect effects). Direct effects surely decrease
unemployment rates although indirect effects can increase those. As a result, the overall
spillover effect for each generation is determined by the relative size of the two effects.

Fig. 3 illustrates the effects from the increment in friendships in generation g from
k̄g = κ to k̄g = κ′. Suppose that the equilibrium vacancy rate v∗ is achieved with k̄τ = κ ∀τ
at first and κ < κ′ < k̂τ . If the increment in k̄g leads to a shift of G(v) to the right (Fig. 3a),
the vacancy rate moves from v∗ to v′, which is indirect effects. Due to the increase in the
vacancy rate, the unemployment rate for every generation decreases. In this case, the
intuition of the spillover effect is very simple. When workers in a generation gain new
friendships, the referral probability in the generation increases. This improves the job-
worker matching probability and encourages jobs to enter the market. As a result, the
aggregate matching probability is improved and the other generations also find it easy to
find jobs. The benefits from the increase in k̄g are larger in older generations since the
Beveridge curves of generations τ > g shift down (direct spillover effects) although those
of the other generations do not (remember Proposition 3 (i)).5

Figs. 3b and 3c reveal that G(v) shifts to the left. In this case, the increment in k̄g rises
unemployment rates for all generations along with the prior Beveridge curves. However,
this change shifts the Beveridge curves downward for generations above g, leading to a
decrease in unemployment rates for these generations. For a generation older than g, if
the latter effect exceeds the former, in other words, the direct spillover effect is larger
than the indirect spillover effect, the generation can achieve a lower unemployment rate
than before (Fig. 3b), otherwise, the unemployment rate rises (Fig. 3c). For both cases of

5The slopes of the Beveridge curves are negative except for generation 0. See discussions in Appendix
B.
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Fig. 3. Three possible spillover effects from increment k̄g. m > 0 is assumed and Beveridge curves
only for generation g and g +m are shown and the others are omitted. (a) G(v) shift to
the right, leading to lower unemployment rates for all generations. (b) G(v) shift to the
right, leading to lower and higher unemployment rates for generation τ > g and g ≤ τ ,
respectively. (c) G(v) shift to the right, leading to higher unemployment rates for all
generations.

Fig. 3b and 3c, the young generations incur negative spillover effects in total, since they
do not benefit from direct spillover effects.

In this section, we find that the increase in the number of friends in a social network
has spillover effects with a simple network structure, a random regular network, for so-
cial networks. Although the simple network structure simplifies the analysis, it cannot
capture the effects of a network structure. It is known that the network structure can
affect the unemployment rates and wages for social groups (e.g. Ogisu, 2022; Tassier and
Menczer, 2008). In the next section, we incorporate a more complex network structure
than a random regular network to analyze network structural effects on intergenerational
inequality.

4 Numerical analysis with temporal networks

Social networks change when new friendships are created and existing ones are broken up.
If the change in social networks is governed by a specific process, each generation has a
specific feature depending on the time in the social network. The class of time-dependent
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networks is called temporal networks (Holme and Saramäki, 2019). We suppose that the
change in social networks over time follows a fitness model (e.g. Kobayashi et al., 2019),
and calculate the quantum of benefits that workers of a generation get, incremental to
those of the other generations, from their network structure.

4.1 Social network formation and degree distributions

Suppose that when entering the labor market (generation 0), a social network is created
such that the probability that each pair of workers has a friendship is given by ϕ ∈ (0, 1),
which is known as an Erdős-Rényi network. Then, f0(k) is given by binomial distribution
such that

f0(k) =

(
N − 1

k

)
ϕk(1− ϕ)N−k−1. (28)

Once a social network is created, the network changes following a fitness model.
In a fitness model, each worker has the activity parameter, and a pair of two workers

will connect by an edge with the probability depending on these activity parameters. If it
is allowed for the activity parameter to change, and it depends on the number of existing
friendships of each worker over time, the procedure in which workers make up friendships
is similar to preferential attachment processes (Barabási and Albert, 1999; Barrat and
Pastor-Satorras, 2005). Let aig be activity parameter of worker i in generation g and
assume that

aig =
kig + 1

⟨kg⟩+ 1
, (29)

where ⟨kg⟩ is the average number of friends of generation g.
Let Uig be the set of workers who are not friends of i in generation g. The probability

that worker i will connect with worker j ∈ Uig when they move to generation g + 1 is

Prg(i, j) = λaigajg, (30)

where λ > 0 is a parameter. While new friendships are created in the network, the existing
ones are broken up with probability s ∈ (0, 1).

Based on Eqs. (28), (??), and (30), we obtain fg(k) for generation g > 0 by the
following simulation.

1. Generate Erdős-Rényi network with ϕ and set iterator l = 0.

2. Let A and B be the set of worker pairs having and not having a friendship, respec-
tively.

3. Break up a friendship for each pair in A with probability s.

4. Create a new edge for each pair in B with probability Prg(i, j).

5. Increment l by one and if l < g, go back 2. Else, the simulation is finished, and
degree distribution fg(k) is computed.

We calibrate parameter set {s, λ, ϕ} to fit the data in the next subsection.6
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Fig. 4. Average number of friendships. Green plots describe the volume of the degree distributions
at ages 20, 30, 40, 50, and 60 produced by the fitness model.

4.2 Parameterization

To obtain the numerical result, we calibrate parameters to fit Japanese data. One period
is a quarter, and workers work from the 1st quarter of 20 to the 4th quarter of 64 years,
while they begin to search for jobs when they are in the last quarter of 19 years which
corresponds to generation 0. There are 1000 workers for each generation, meaning that
N = 1000. We set discount factor β to 0.99. Home production b is 0.336 given by 60%
of average wage which is targeted at 0.56 (mentioned later). We give output yg by linear
function of generation g;

yg =
2(1− b)

ḡ
g + b ∀g,

which assures us that yg ≥ b ∀g, the average output over generations (
∑ḡ

g=0 yg/(ḡ + 1))
equals to one, and workers’ productivity grows by age. The assumption of productivity
growth is adopted by Esteban-Pretel and Fujimoto (2014), in which worker productivity
grows stochastically for each individual. In our formulation, workers’ productivity grows
deterministically for simplicity. Other parameters are calibrated to fit targets.

Calibration is divided into two steps. In the first step, parameter set {s, λ, ϕ} is
calibrated. We compute the average number of friends by age based on International
Social Survey Programme (ISSP): Social Networks and Social Resources, 2017.7 In Fig. 4,
black dots indicate the averaged number of friends in each age and the orange broken line
is the first order fitting by OLS. To fit the data, the parameter set is provided such that
{s, λ, ϕ} = {3.21 × 10−5, 0.0014, 0.023}, and in Fig. 4, the blue solid line is the average
number of friends calculated by the model. Also, we show the volume of the degree
distributions for ages 20, 30, 40, 50, and 60 based on the model by the green plots. With
the calibrated parameters, the model can roughly capture the average and dispersion of
the number of friends.

In the second step, based on the simulated degree distribution, the remaining param-
eters are calibrated to fit 2017 Japanese data. The calibrated parameters are job opening

6We actually use the distribution fg(k) averaged over 100 trials for each generation g to exclude stochas-
tic fluctuation. In other words, letting f̃ i

g(k) be the realization value in trial i, fg(k) =
∑100

g=1 f̃
i
g(k)/100.

7See calculation procedure in Appendix D.
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Tab. 1. Parameters for numerical calculations.

Exogenous parameters
period quarter
working age 20-64

N number of workers in a generation 1000
y output 2(1− b)g/ḡ + b
b home production 0.336 (60% of avg. wage)
β discount factor 0.99

Calibrated parameters
λ scale of friendship making probability 3.21× 10−5

s probability of breaking a friendship 0.0014
ϕ probability of friendships made at entering the market 0.023
c vacancy opening cost 6.310
η worker’s bargaining power 0.024
δ job destruction rate 0.022
ψ efficiency in referral hiring 0.355
γ efficiency in the labor market 15.37

cost c, worker’s bargaining power η, job destruction rate δ, efficiency in referral ψ, and
efficiency in the labor market γ. We set the following five targets:

1. From Survey on Employment Trends, the ratio of referral matches to all matches is
0.213; ∑179

g=1(1− v)pRg ug∑179
g=1 pgug

= 0.213.

2. From Penn World Table, the ratio of workers’ compensation to GDP is 0.56;

180∑
g=1

(1− ug)wg

180
= 0.56,

3. and the labor market tightness, which is the ratio of the unemployment rate to the
vacancy rate, is 1.5;

v

u
= 1.5,

where u ≡
∑180

g=1 ug/(180).

4. From Labour Force Survey, the unemployment rate among 20-24 year olds is 0.047
given by;

20∑
g=1

ug
20

= 0.047,

5. and the average unemployment rate among 20-64 year olds is 0.03;

180∑
g=1

ug
180

= 0.03.

Each of these targets determines c = 6.310, η = 0.024, δ = 0.022, ψ = 0.355, γ = 15.37
respectively. The resulting parameters are summarized in Tab. 1.

13



20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64

0.7

0.8

0.9

1.0

1.1

1.2

(a) wage

model

data

20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64

0.025

0.030

0.035

0.040

0.045

(b) unemployment rate

model

data

age class

Fig. 5. Wages and unemployment rates at the equilibrium. Wages are normalized such that the
average is equal to one in (a).

4.3 Numerical solution and social network premium

The results in Fig. 5 show the average by five-year age group, in which blue and orange lines
are the values by the model and by data, respectively. In Fig. 5a, we normalize the average
wage to be one to compare results from the model and data. The model mainly succeeds
in capturing age-dependent tendencies in the context of wages and unemployment rates.
Then, how much does each generation benefit from the social network in the equilibrium?

Workers can receive additional wages from their social network since they can lower
unemployment probabilities through referral hiring. We define the social network premium
as the difference in the equilibrium values achieved with and without referrals. Here we
calculate the average wage and unemployment premium for each generation.

Workers in a social group benefit not only from the mean number of friends in the
network, but also from the structure of the network (Ogisu, 2022; Tassier and Menczer,
2008). We can also compute the equilibrium values if the structure of networks does
not change over time, and use it for calculating how much workers benefit from network
structures.

Let wg,tem, wg,stat, and wg,no be an equilibrium wage of generation g when all workers
can use referrals and social networks change over time, when all workers can use referrals
but social networks do not change over time, and when all workers cannot use referrals,
respectively. We denote a social network premium to the wage of generation g by ρwg , and
define it as

ρwg ≡ wg,tem − wg,no. (31)

It can be decomposed such that

ρwg = wg,tem − wg,stat︸ ︷︷ ︸
structural effect

+wg,stat − wg,no︸ ︷︷ ︸
common effect

. (32)

When social network structures do not change, all generations have the same network
structure and degree distribution following Eq. (28). Thus, the additional premium (or
penalty) from time-dependent structures of social networks can be captured by the dif-
ference between wg,tem and wg,stat, and we call it structural effect and the rest common
effect.

In the same manner, we also define social network premium to the unemployment rate
of generation g as

ρug ≡ ug,no − ug,tem,
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Fig. 6. Premiums from social networks. Social network premiums are positive while parts of the
premiums are counteracted by structural effects for most generations.

and decompose such that

ρug = ug,no − ug,stat︸ ︷︷ ︸
common effect

+uu,stat − uu,tem︸ ︷︷ ︸
structural effect

. (33)

Note that the sign of ρug is reversed in the definition of ρwg since the premium in unem-
ployment rates is captured as the decrease.

The calculated premiums averaged by the five-year age group are shown in Fig. 6. All
generations receive premiums from their social networks and they are up to 1.6%pt at
age class 55-59 in wages and up to 0.2%pt at the age class 25-29 in unemployment rates.
The premium is the lowest in the youngest group. In turn, the youngest group can get
a relatively large structural effect, meaning that workers in the group have good network
structures in referral hiring. This can be interpreted as young workers being unable to use
referrals frequently even if they have social networks since most friends are unemployed.
Thus, when workers use referrals, most job slots are filled by middle- or old-age workers.

The relationship between wage and unemployment premiums is not monotonic. In
particular, the wage premium of age class 60-64 decreases from that of the 55-59 class
although the unemployment premium does not decrease as much. This is because workers
in age 60-64 have little room for bargaining compared to young ones since they will retire
soon. Workers belonging to the last quarter of age 64, for example, cannot get additional
premiums whenever the change of friendships happens in the other generation because
they receive wḡ or b and exit the market. In other words, their incomes are fixed by the
terminal conditions.

While there are positive premiums overall, structural effects of premiums decrease
as age classes move up, which is caused by the congestion within the network for each
generation. The penalties from the network structures are up to 0.3%pt at age class 55-59
in wages and up to 0.03%pt at age class 60-64 in unemployment rates. Based on Eq. (30),
new friendships are created proportional to the number of friends of workers; in other
words, a worker with more friends can get new friends with a higher probability than a
worker with fewer friends. By this mechanism, workers in the social network are divided
into two groups as time goes on: some workers who are popular and lots of workers who do
not have many friends. A worker group with such a network structure is at a disadvantage
in the labor market (Ogisu, 2022) since vacancy information concentrates in the hands of
some popular workers, and as a result, older generations incur penalties from their network
structure more than younger ones.
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Fig. 7. Spillover effects by increment in the number of friends at the 1st quarter of age 40. Bars
show changes in the structural effects by definition. The class including age 40 obviously
benefits although the others do not. In the classes more than age 45, the effects are relatively
small since they are partly offset by the shift of Beveridge curves.

4.4 An example of spillover effects

In this subsection, we provide an example of spillover effects by an increment in the number
of friends of a generation. We choose the 1st quarter of age 40 (g = 81) for the generations
in which degree distribution will change. To describe the increment in the number of
friends, the mass of the k is moved to the k + 2 for all k in the degree distribution. This
shift in the degree distribution changes the average number of friends from 20.1 to 22.1,
which is an increase of about 10% only for the generation.8

We compute the new equilibrium and record differences in old and new ones for each
age class, shown in Fig. 7. All of these changes in premiums are explained by the change
in structural effect by definition. Although the networks are complex compared to the
case in Sec. 3, the basic mechanism is generally the same. The age class 40-44 years,
including the generation in which the degree distribution shifts right, obviously obtains
the additional premiums to unemployment rates, meaning that the average unemployment
rate decrease. However, premiums decrease for the older age classes compared with age
45, therefore, these unemployment rates at the new equilibrium increase. These changes
are consistent with the case in Fig. 3b and 3c. Equilibrium wages decrease except for the
age class 40-44 while the absolute values of the changes are smaller in the older ages than
the younger ages since shifts of the Beveridge curves in the older generations can mitigate
the decrease in these unemployment rates.

In this section, we demonstrate that workers benefit from their social networks while
the benefit can be partly counteracted by the congestion led by these network structures.
In the calibrated case suited to the Japanese context, spillover effects can be negative
because of a decrease in the vacancy rate.

5 Conclusion

In this paper, we demonstrate the generation-dependent premiums from their social net-
works in a search and matching model with overlapping generations. These premiums are
shown to be small for young workers compared to middle- and old-aged ones. A crucial
reason is that young workers cannot utilize referrals sufficiently even if they have many

8We calculate two other examples in Appendix E; increase in connectivity of young and old generation.
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friends since many of them are also unemployed. This implies that benefits from social
networks vary in response to the unemployment dynamics. We note here that premiums
are partially offset by congestion caused by network structures for most generations.

A change in the connectivity of a network affects not only the generation of which the
degree distribution changes, but also the other generations through the changes in the
vacancy rate in equilibrium. When the vacancy rate increases in response to a change in
the degree distribution, then the unemployment rates of the other generations decrease.
Even if, however, the vacancy rate decreases, it is possible that the unemployment rates
of older generations become lower than before, or the increments in unemployment rates
are partially offset due to the shift of the Beveridge curves.

Our model can be extended in various directions. Among them, the following three are
important and hence worth investigating. First, an alternative model could be presented
to be used for a realistic description of social networks. We have used a fitness model with
simple rules to describe the dynamics in social networks. However, other specifications
than this one are also possible. We use only the average number of friendships from data
for the calibration target. If a data set of detailed social networks in the real economy
becomes available, the model specification will be modified in a way to capture the actual
characteristics of networks (e.g. clustering coefficients, diameters).

Second, social networks could be endogenized. In the model presented in this paper,
workers do not invest in keeping or making friendships. If workers expect to receive refer-
rals from their friends, they have incentives to make friends (e.g. Galenianos, 2021; Galeotti
and Merlino, 2014; Horvath and Zhang, 2018). Including the endogenized network, the
dynamics of variables in equilibrium (e.g. unemployment rates, job arrival rates) are de-
termined as a result of the interaction between the social network dynamics and workers’
decisions, which allows us to analyze premiums from a temporal network in a realistic
sense.

Third, on-the-job search could be included. Referrals can work significantly to step
workers’ careers in reality. One of the natural extensions is to make job productivity
stochastic. As a result, the referral process becomes complicated because all workers wait
for good job information. Since a job passed down from a friend is not better than the
friend’s, if workers hope to get better-paid jobs, they need to wait for such a job in the
labor market which is a tiny probability, or to form friendships with workers who earn
much. Thus, in a model with on-the-job search, positions on the social networks, i.e. who
you know, will become more crucial to determine premiums than in the model presented
in this paper.

An important remark exists in interpreting the results put forward in the paper. To
introduce network structure into the model, we employ degree distributions for the infor-
mation on the network structures, similar to Ioannides and Soetevent (2006) and Ogisu
(2022). This formulation is unable to capture the micro characteristics of the network
structures like clustering coefficients. Thus, social networks in this paper cannot be distin-
guished from configuration models. In a configuration model, workers’ degree distribution
is prespecified, while the connection between workers is given at uniformly random, and
hence clustering coefficients are equal to zero with a sufficiently large number of nodes
(Catanzaro et al., 2005; Newman, 2018), although in an assortative mixing model, it is
possible that clustering coefficients are positive (Jackson and Rogers, 2007). The impact
of micro characteristics of network structure is one of the most important issues to be
examined in the future.
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Appendix

A Proof of Proposition 1

We respectively rewrite Sg, pg to

Sg = (y − b)

(
1 +

g∏
τ=g

∆τ +

g+1∏
τ=g

∆τ + · · ·+
ḡ−1∏
τ=g

∆τ

)

= (y − b)

(
1 +

ḡ−1∑
m=g

m∏
τ=g

∆τ

)
,

Pg = ψγv(1− ug)
1− (1− ug)

k̄g

k̄gug

=
ψγv(1− ug)

k̄g

k̄g−1∑
κ=0

(1− ug)
κ,

pg = γv + (1− γv)[1− (1− Pg)
k̄g ]

= γv (1− Pg)
k̄g + 1− (1− Pg)

k̄g

= γv (1− Pg)
k̄g + Pg

k̄g−1∑
κ=0

(1− Pg)
κ,

where ∆g ≡ β(1− δ − pgη). Therefore, we can calculate

pg
v

= γ(1− Pg)
k̄g +

ψγ(1− ug)

k̄g

k̄g−1∑
κ=0

(1− ug)
κ

k̄g−1∑
κ=0

(1− Pg)
κ

 . (34)

When v approaches zero, for all g ∈ {0, 1, · · · ḡ}

lim
v→0

Pg = 0, lim
v→0

pg = 0, lim
v→0

ug = 1,

lim
v→0

Sg = (y − b)

[
1− [β(1− δ)]ḡ−g+1

1− β(1− δ)

]
≡ Sg,

lim
v→0

pg
v

= γ.

Thus,

lim
v→0

ḡ∑
g=0

ug
pg
v
Sg = γ

ḡ∑
g=0

Sg. (35)

As v → 1/γ, for all g ∈ {1, 2, · · · , ḡ}

lim
v→ 1

γ

Pg = ψ, lim
v→ 1

γ

pg = 1, lim
v→ 1

γ

ug = 0,

lim
v→ 1

γ

Sg = (y − b)
1− [β(1− δ − η)]ḡ−g+1

1− β(1− δ − η)
≡ Sg,

lim
v→ 1

γ

pg
v

= γ,
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and for g = 0 with u0 = 1,

lim
v→ 1

γ

P0 = 0, lim
v→ 1

γ

p0 = 1,

lim
v→ 1

γ

S0 = (y − b)
1− [β(1− δ − η)]ḡ+1

1− β(1− δ − η)
≡ S0,

lim
v→ 1

γ

p0
v

= γ.

Thereby,

lim
v→ 1

γ

k̄g−1∑
g=0

ug
pg
v
Sg = γS0. (36)

As a result,

γS0 <
c(ḡ + 1)

β(1− η)
< γ

ḡ∑
g=0

Sg

⇐⇒ γβ(1− η)(y − b)

c(ḡ + 1)

1− [β(1− δ − η)]ḡ−g+1

1− β(1− δ − η)
< 1 <

γβ(1− η)(y − b)

c(ḡ + 1)

ḡ∑
g=0

[
1− [β(1− δ)]ḡ−g+1

1− β(1− δ)

]
is the sufficient condition for the existence of the equilibrium.

B Proof of Lemma 1

∂Pg

∂ug
⋛ 0,

⇐⇒ (k̄gug + 1)(1− ug)
k̄g ⋛ 1. (37)

LHS of (37) decreases in ug and approaches one when ug → 0. Therefore,

∂Pg

∂ug
≤ 0.

And we can get

∂pRg
∂ug

= k̄g(1− Pg)
k̄g−1∂Pg

∂ug
≤ 0 ∀ug ∈ (0, 1],

∂pg
∂ug

≤ 0.

By definition,

P0 = 0, p0 = γv,

and

∂Pg

∂v
=

ψγ

k̄gu2g

[(
ug − v

∂ug
∂v

)(
1− ug − (1− ug)

k̄g+1
)
+ vug

(
(k̄g + 1)(1− ug)

k̄g − 1
) ∂ug
∂v

]
=

ψγ

k̄gu2g

[
ug

(
1− ug − (1− ug)

k̄g+1
)
+ v

∂ug
∂v

(
ug(k̄g + 1)(1− ug)

k̄g + (1− ug)
k̄g+1 − 1

)]
=
Pg

v
+
ψγv

k̄gu2g

[
(k̄g + 1)ug(1− ug)

k̄g + (1− ug)
k̄g+1 − 1

] ∂ug
∂v

=
Pg

v
+
ψγv

k̄gu2g

[
(k̄gug + 1)(1− ug)

k̄g − 1
] ∂ug
∂v

,
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where (k̄gug + 1)(1− ug)
k̄g − 1 < 0 ∀ug ∈ (0, 1] and

∂pg
∂v

=

[
γ(1− Pg) + k̄g(1− γv)

∂Pg

∂v

]
(1− Pg)

k̄g−1

= γ(1− Pg)
k̄g + k̄g(1− γv)(1− Pg)

k̄g−1∂Pg

∂v

= γ(1− Pg)
k̄g + k̄g(1− γv)(1− Pg)

k̄g−1

[
Pg

v
+
ψγv

k̄gu2g

[
(k̄gug + 1)(1− ug)

k̄g − 1
] ∂ug
∂v

]

= γ(1− Pg)
k̄g + k̄g(1− γv)(1− Pg)

k̄g−1Pg

v

+ (1− γv)(1− Pg)
k̄g−1ψγv

u2g

[
(k̄gug + 1)(1− ug)

k̄g − 1
] ∂ug
∂v

=

[
γ(1− Pg) + k̄g(1− γv)

Pg

v

]
(1− Pg)

k̄g−1

+ (1− γv)(1− Pg)
k̄g−1ψγv

u2g

[
(k̄gug + 1)(1− ug)

k̄g − 1
] ∂ug
∂v

=

[
γ(1− Pg) + k̄g(1− γv)

Pg

v

]
(1− Pg)

k̄g−1

+ (1− γv)(1− Pg)
k̄g−1ψγv

u2g

[
(k̄gug + 1)(1− ug)

k̄g − 1
] ∂ug
∂v

=

[
γ(1− Pg) + (1− γv)ψγ

1− ug − (1− ug)
k̄g+1

ug

]
(1− Pg)

k̄g−1

+ (1− γv)(1− Pg)
k̄g−1ψγv

u2g

[
(k̄gug + 1)(1− ug)

k̄g − 1
] ∂ug
∂v

,

and by the law of motion,

∂ug
∂v

= −∂pg−1

∂v
ug−1 + (1− δ − pg−1)

∂ug−1

∂v

= −ug−1

[
γ(1− Pg−1) + k̄g(1− γv)

Pg−1

v

]
(1− Pg−1)

k̄g−1

− ug−1(1− γv)(1− Pg−1)
k̄g−1 ψγv

u2g−1

[
(k̄gug−1 + 1)(1− ug−1)

k̄g − 1
] ∂ug−1

∂v

+ (1− δ − pg−1)
∂ug−1

∂v

lim
v→0

∂u2
v

= −γ − γ(1− δ)

thus,

∂u0
∂v

= 0,
∂u1
∂v

= −γ < 0,

and for g = 2,
∂u2
∂v

< 0,

since

∂P1

∂v
> 0,

∂p1
∂v

> 0.

23



And after that, similarly, for all g ≥ 2,

∂ug
∂v

< 0,
∂Pg

∂v
> 0,

∂pg
∂v

> 0.

Consequently,

∂Sg
∂v

= −βη(y − b)

[
∂pg
∂v

1

∆g

{
g∏

τ=g

∆τ +

g+1∏
τ=g

∆τ + · · ·+
ḡ−1∏
τ=g

∆τ

}

+
∂pg+1

∂v

1

∆g+1

{
g+1∏
τ=g

∆g+1 + · · ·+
ḡ−1∏
τ=g

∆τ

}
...

+
∂pḡ−2

∂v

1

∆ḡ−2

{
ḡ−2∏
τ=g

∆τ +

ḡ−1∏
τ=g

∆τ

}

+
∂pḡ−1

∂v

1

∆ḡ−1

{
ḡ−1∏
τ=g

∆ḡ−1

}]
< 0 ∀g ∈ {0, 1, · · · , ḡ − 1},

∂Sḡ
∂v

= 0.

Differentiating G(v) by v,

∂(ug(pg/v)Sg)

∂v

=
∂ug
∂v

pg
v
Sg + ug

∂(pg/v)

∂v
Sg + ug

pg
v

∂Sg
∂v

=
∂ug
∂v

pg
v
Sg + ug

pg
v

∂Sg
∂v

+ ugSg

−γk̄g(1− Pg)
k̄g−1∂Pg

∂v
+

ψγ

k̄gug

∂ug
∂v

(
(k̄g + 1)(1− ug)

k̄g − 1
) k̄g−1∑

κ=0

(1− Pg)
κ

− ψγ

k̄gug

(
1− ug − (1− ug)

k̄g+1
) k̄g−1∑

κ=1

κ(1− Pg)
κ−1∂Pg

∂v

− ψγ

k̄gu2g

∂ug
∂v

(
1− ug − (1− ug)

k̄g+1
) k̄g−1∑

κ=0

(1− Pg)
κ


=
∂ug
∂v

pg
v
Sg + ug

pg
v

∂Sg
∂v

+ ugSg

−γk̄g(1− Pg)
k̄g−1∂Pg

∂v
− ψγ

k̄gug

(
1− ug − (1− ug)

k̄g+1
) k̄g−1∑

κ=1

κ(1− Pg)
κ−1∂Pg

∂v


+ Sg

ψγ

k̄g

∂ug
∂v

(
(k̄g + 1)(1− ug)

k̄g − 1
) k̄g−1∑

κ=0

(1− Pg)
κ

− Sg
ψγ

k̄gug

∂ug
∂v

(
1− ug − (1− ug)

k̄g+1
) k̄g−1∑

κ=0

(1− Pg)
κ
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= ug
pg
v

∂Sg
∂v

− ugSg

γk̄g(1− Pg)
k̄g−1∂Pg

∂v
+

ψγ

k̄gug

(
1− ug − (1− ug)

k̄g+1
) k̄g−1∑

κ=1

κ(1− Pg)
κ−1∂Pg

∂v


+ Sg

∂ug
∂v

γ(1− Pg)
k̄g +

ψγ

k̄g

(
(k̄g + 1)(1− ug)

k̄g − 1
) k̄g−1∑

κ=0

(1− Pg)
κ


= ug

pg
v

∂Sg
∂v

− ugSgγ

k̄g(1− Pg)
k̄g−1 +

ψ

k̄gug

(
1− ug − (1− ug)

k̄g+1
) k̄g−1∑

κ=1

κ(1− Pg)
κ−1

 ∂Pg

∂v

+ Sg
∂ug
∂v

γ

(1− Pg)
k̄g +

ψ

k̄g

(
(k̄g + 1)(1− ug)

k̄g − 1
) k̄g−1∑

κ=0

(1− Pg)
κ

 ,
where only the last term can be positive. When the bracket in the last term becomes
positive, all terms in the equation become negative since ∂ug/∂v < 0. For g = 0, the
bracket in the last term is

1− ψ > 0,

and for g ∈ {1, 2, · · · , ḡ}, it becomes such that

lim
v→ 1

γ

(1− Pg)
k̄g +

ψ

k̄g

(
(k̄g + 1)(1− ug)

k̄g − 1
) k̄g−1∑

κ=0

(1− Pg)
κ

 = 1 > 0,

Thus, for each g ∈ {0, 1, · · · ḡ} there exists vg ∈ (0, 1/γ) such that for v ∈ (vg, 1/γ)

∂ug(pg/v)Sg
∂v

< 0.

Therefore, let
v ≡ max{vg}ḡg=0,

then for v < v, ∂ug(pg/v)Sg/∂v < 0 for all g, which is sufficient for ∂G(v)/∂v < 0.

C Proof of Proposition 3

For k̄g > 0,

∂Pg

∂k̄g
=
γψv(1− ug)

ugk̄g

[{
1− k̄g log(1− ug)

}
(1− ug)

k̄g − 1
]
< 0,

∂pg

∂k̄g
= −(1− γv)(1− Pg)

k̄g

(
log(1− Pg)−

k̄g
1− Pg

∂Pg

∂k̄g

)
= (1− γv)(1− Pg)

k̄g

(
k̄g

1− Pg

∂Pg

∂k̄g
− log(1− Pg)

)
= (1− γv)(1− Pg)

k̄g

(
γψv(1− ug)

(1− Pg)ug

[{
1− k̄g log(1− ug)

}
(1− ug)

k̄g − 1
]
− log(1− Pg)

)
.
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log(1− Pg) increases monotonically in k̄g,

lim
k̄g→0

log(1− Pg) = log

(
1 +

γψv(1− ug)

ug
log(1− ug)

)
< 0,

lim
k̄g→∞

log(1− Pg) = 0,

lim
k̄g→0

k̄g
1− Pg

∂Pg

∂k̄g
= 0.

Therefore, there is k̄g = k̂g such that ∂pg/∂k̄g = 0, at which pg is maximized, and

∂pg

∂k̄g
⋛ 0 ⇐⇒ k̄g ⋚ k̂g

Intergenerational propagations are such that

∂Pg

∂kg−1
=
∂Pg

∂ug

∂ug
∂kg−1

= −ug−1
∂Pg

∂ug

∂pg−1

∂k̄g−1

∴ ∂Pg

∂kg−1
⋛ 0 ⇐⇒ k̄g−1 ⋚ k̂g−1

and

∂pg

∂k̄g−1
= k̄g(1− γv)(1− Pg)

k̄g−1 ∂Pg

∂k̄g−1
.

Similarly,

∂Pg+m

∂k̄g
=
∂Pg+m

∂ug+m

∂ug+m

∂k̄g
,

∂pg+m

∂k̄g
= k̄g+m(1− γv)(1− Pg)

k̄g+m−1∂Pg+m

∂k̄g

= k̄g+m(1− γv)(1− Pg)
k̄g+m−1∂Pg+m

∂ug+m

∂ug+m

∂k̄g

∂ug+m

∂k̄g
= −∂pg+m−1

∂k̄g
ug+m−1 + (1− δ − pg+m−1)

[
−∂pg+m−2

∂k̄g
ug+m−2 + (1− δ − pg+m−2)

∂ug+m−2

∂k̄g

]
= −∂pg+m−1

∂k̄g
ug+m−1 − (1− δ − pg+m−1)

∂pg+m−2

∂k̄g
ug+m−2

+ (1− δ − pg+m−1)(1− δ − pg+m−2)
∂ug+m−2

∂k̄g

= −∂pg+m−1

∂k̄g
ug+m−1 −

∂pg+m−2

∂k̄g
ug+m−2

g+m−1∏
τ=g+m−1

(1− δ − pτ )− · · · − ∂pg

∂k̄g
ug

g+m−1∏
τ=g+1

(1− δ − pτ )

= −

∂pg+m−1

∂k̄g
ug+m−1 +

g+m−1∑
r=g+1

∂pr−1

∂k̄g
ur−1

g+m−1∏
τ=r

(1− δ − pτ )
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And for m ≥ 0,

∂Sg+m

∂k̄g
= −βη(y − b)

[
∂pg+m

∂k̄g

1

∆g+m
{∆g+m +∆g+m∆g+m+1 + · · ·+∆g+m · · ·∆ḡ−1}

+
∂pg+m+1

∂k̄g

1

∆g+m+1
{∆g+m∆g+m+1 + · · ·+∆g+m · · ·∆ḡ−1}

...

+
∂pḡ−2

∂k̄g

1

∆ḡ−2
{∆g+m · · ·∆ḡ−2 +∆g+m · · ·∆ḡ−1}

+
∂pḡ−1

∂k̄g

1

∆ḡ−1
{∆g+m · · ·∆ḡ−1}

]
= −βη(y − b)

[
∂pg+m

∂k̄g

1

∆g+m

{
g+m∏

τ=g+m

∆τ +

g+m+1∏
τ=g+m

∆τ + · · ·+
ḡ−1∏

τ=g+m

∆τ

}

+
∂pg+m+1

∂k̄g

1

∆g+m+1

{
g+m+1∏
τ=g+m

∆τ + · · ·+
ḡ−1∏

τ=g+m

∆τ

}
...

+
∂pḡ−2

∂k̄g

1

∆ḡ−2

{
ḡ−2∏

τ=g+m

∆τ +

ḡ−1∏
τ=g+m

∆τ

}

+
∂pḡ−1

∂k̄g

1

∆ḡ−1

{
ḡ−1∏

τ=g+m

∆τ

}]

= −βη(y − b)

[
1

∆g+m

∂pg+m

∂k̄g

g+m∏
τ=g+m

∆τ

+

(
1

∆g+m

∂pg+m

∂k̄g
+

1

∆g+m+1

∂pg+m+1

∂k̄g

) g+m+1∏
τ=g+m

∆τ

+

(
1

∆g+m

∂pg+m

∂k̄g
+

1

∆g+m+1

∂pg+m+1

∂k̄g
+

1

∆g+m+2

∂pg+m+2

∂k̄g

) g+m+2∏
τ=g+m

∆τ

...

+

(
ḡ−1∑

τ=g+m

1

∆τ

∂pτ
∂k̄g

)
ḡ−1∏

τ=g+m

∆τ

]
.

Thus, since ∂Pg/∂ug < 0,

k̄g ⋚ k̂g

=⇒ ∂pg

∂k̄g
⋛ 0

=⇒ ∂ug+1

∂k̄g
⋚ 0

=⇒ ∂pg+1

∂k̄g
⋛ 0
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...

=⇒ ∂ug+m

∂k̄g
⋚ 0

=⇒ ∂pg+m

∂k̄g
⋛ 0

=⇒ ∂Sg+m

∂k̄g
⋚ 0.

D Construction of the number of friendships

We use International Social Survey Programme (ISSP): Social Networks and Social Re-
sources.9 In the questionnaire, a respondent chooses how many people she has contact
with on a typical weekday from options that include “0-4,” “5-9,” “10-19,” “20-49,” “50-
99,” “100 or more,” “Can’t choose,” and “No answer.” We exclude samples answering the
last two, and set the middle value of each range to a representative value(e.g. 2 for range
“0-4”). We set it 100 if the answer is “100 or more.” Lastly, we take the average of the
value by each age classes and show it in Fig. 4.

E Spillover effects from young and old age

We check here the spillover effects from other generations than middle age not discussed
in Sec. 4.4. Fig. 8 and 9 are respectively spillover effects by increasing in connectivity in
the social network of 1st quarter of age 20 and of 3rd quarter of age 64. In both cases,
the network connectivity increase by about 10% by the same procedure in Sec. 4.4.

In Fig. 8, young workers incur relatively large penalties despite the increase in connec-
tivity. When the network connectivity expands in the young generation, Beveridge curves
of middle and old generations also shift. Thus, the probability of referrals increases for
all generations. It leads to additional job-worker matches in many generations, and to
a decrease in the equilibrium vacancy rate. However, young generations have still high
unemployment rates and cannot use referrals well. As a result, the benefits do not go to
young generations, but to middle and old generations.

In Fig. 9, by contrast, all generations can benefit from the increase in network connec-
tivity. In this case, the Beveridge curve of the 3rd quarter of age 64 shifts lower although
these curves of other generations do not. A part of new entrant jobs allocates to the
generation in which network connectivity increase by referrals while the other part goes to
the labor market. It makes the tightness of the labor market loose and improves the job
arrival rate in the labor market. Consequently, all generations benefit from the change.

9https://search.gesis.org/research_data/ZA6980, (access in July 2022)
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Fig. 8. Spillover effects by increment in the number of friends at the 1st quarter of age 20. Bars
show changes in the structural effects.
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Fig. 9. Spillover effects by increment in the number of friends at the 3rd quarter of age 64. Bars
show changes in the structural effects.
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