
 

 
DP2022-19   

F irm’s Stat ic Behavior 
under Dynamic Demand  

 
 
 

Takesh i  FUKASAWA 
 
 

Revised September 14, 2022 



Firm’s static behavior under dynamic demand∗

Takeshi Fukasawa†‡

September 14, 2022

Abstract

This study investigates in what cases a firm’s dynamic price-setting behavior can be approximated as static
under dynamic demand, by developing a dynamic discrete choice model. Under dynamic demand with random
utility shock following Gumbel distribution, this study shows that an oligopolistic firm’s optimal price-setting
behavior is well approximated by the static one with no strategic consideration, when consumers’ conditional
choice probabilities (CCPs) of choosing the firm’s product are small for all consumer types and state variables.
If the condition does not hold, the firm’s behavior might be far from static.
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1 Introduction

Many industries exhibit dynamic demand structures, wherein future demand has connections with current
demand. Examples of goods with dynamic demand include durable goods, storable goods, goods with switching
costs, experience goods, and network goods. Under dynamic demand, firm’s price-setting behavior should also
be dynamic. First, current price indirectly affects current demand through changing consumers’ expectations
of future outcomes. Second, current price and future demands are related; thus, current price affects future
demand. Consequently, firms set their product prices considering these dynamic effects.

This article investigates in what cases a firm’s dynamic price-setting behavior can be approximated as
static under dynamic demand. We should not miss the dynamic aspects of firms’ price-setting behaviors when
considering industries with dynamic demand if their magnitude is not negligible. Nevertheless, if the magnitude
of the dynamic elements is small, ignoring them causes minor problems. By developing a unified theoretical
model of dynamic discrete choice, This study analytically shows when the firm’s dynamic price-setting behavior
is close to or far from the static one.

So far, many studies have applied “static models,” which this article defines as the combination of static
demand models and firm’s static price-setting models, to analyze many industries and derive implications. There
are several advantages to static models. First, static demand structures are simple, and we do not need to solve
dynamic models. Second, firms’ optimality condition of price-setting behavior is also static and simple. There
is no need to solve complicated dynamic optimization problems1; however, numerous recent empirical studies
have found that applying static demand models to industries with dynamic demand yields biased results2.
For example, price elasticities are incorrectly estimated when applying static demand model, as Hendel and
Nevo (2006) and others have indicated. In recent years, the estimation and simulation of dynamic demand
models have been getting easier due to the accumulation of knowledge and computational power. In that sense,
developing dynamic demand model is becoming desirable to derive more precise implications. Nevertheless,
once introducing dynamic demand, firms’ price-setting behaviors should also be dynamic, as described earlier.
Then, developing both dynamic demand-side and dynamic supply-side models is indispensable to make the
model consistent. In this case, the model gets so complicated.

This article’s main objective is to derive easier ways to analyze industries with dynamic demand. If the
firm’s dynamic price-setting behavior can be approximated as static, applying a static specification causes minor
problems. It is relatively easier to solve the supply-side behavior when applying static conditions. We can then
derive appropriate implications with less cost or effort, even though introducing dynamics on the demand side
is necessary.

Under dynamic demand with random utility shock following Gumbel distribution, this study shows that
a firm’s dynamic price-setting behavior is close to static when conditional choice probabilities (CCPs) of the
firm’s product are small for all consumer types and state variables. It implies that the firm’s behavior might
be far from static if at least one consumer type or state variable exists in which the CCP takes a large value.

The existence of random utility shock following Gumbel distribution is prevalent in empirical studies. The
introduction of random utility shock is needed to explain why consumers do not always purchase the same
goods over time in the real world3. Random utility shock brings important implications for firm’s behavior
under dynamic demand4. Intuitively, under random utility shock, current buyers may not be future buyers
because of the randomness of consumer behavior. Then, the connection between current and future periods is
small, and the firm is less likely to consider future outcomes.

1Aguirregabiria et al. (2021) mentioned that computation of dynamic problems is still enormously difficult even now, especially
when state space is large. Researchers are haunted by the problem of the curse of dimensionality.

2See Fukasawa (2022) for the literature review on the biases in applying static demand model to markets with dynamic demand.
3See the discussion in Belleflamme and Peitz (2015) for instance. Note that the introduction of random utility shock largely

affects substitution patterns among products. Rysman and Ackerberg (2005) argued that the model with random utility shock
might not be so attractive for evaluating the value of new goods, since consumer surplus grows without an upper bound as the
number of products increases under random utility shock. This study does not delve into these arguments in detail in this article.
Berry and Pakes (2007) proposed a pure characteristics model which does not introduce random utility shock terms. In recent years,
Lu and Saito (2021) theoretically investigated to what extent the model with random utility shock can well approximate the pure
characteristics model in the case of the mixed logit model.

4In the theoretical literature on durable goods, several articles, such as Biehl (2001), Johnson (2011), and Garrett (2016), have
found that the introduction of random utility shock overturns the previous results.
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Small CCPs for all consumer types and state variables require small persistent heterogeneity of consumers
and small market share. To understand why small persistent heterogeneity of consumers is essential, consider
the case where persistent consumer heterogeneity is large. A small fraction of consumers may strongly prefer the
product; they would always purchase it if they have the opportunity, even under random utility shock. Then,
current buyers would be future buyers, and the connection between the current and future periods would be
large. In this case, the firm is more likely to consider future demand. Otherwise, when persistent heterogeneity
is small, future periods are unimportant for the firm.

Small market share is realized if the number of firms is large, or the firm is fringe. As Anderson et al. (1992)
and others described, when idiosyncratic utility shock follows Gumbel distribution, even small firms can set
prices higher than the products’ marginal costs in contrast to perfect competition or homogeneous goods with
many firms. If the market share is small, the probability that the current buyer coincides with the future buyer
is so small. Then, the connection between the current and the future periods is small, and the firm is less likely
to consider the future periods.

Under the conditions mentioned above, we can also show that the firm behaves like a static monopolistic
competitor, which has no impact on its competitors but is free to choose the price that maximizes its profits
as a monopolist (Chamberlin, 1949). As discussed in Thisse and Ushchev (2018), the model of monopolistic
competition makes it easier to analyze problems with general equilibrium effects, which are hard to deal with in
oligopolistic models that allow for strategic interactions among firms. Hence, the condition of small CCPs for
all consumer types and state variables presented in the current article is important for simplifying the analysis
of industries with dynamic demand.

To validate the performance of the approximation when the conditions are satisfied, this study builds a
numerical model of durable goods as a typical example of the goods with dynamic demand and run numerical
experiments. After generating simulated data of durable goods market, this study conducts two types of
experiments prevalent in empirical applications: recovering marginal cost based on the firm’s static optimality
condition and calculating markup, and calculating the cost pass-through rate based on the recovered marginal
cost. Then, we compare the results based on the true dynamic optimality condition and those based on the
static optimality condition. The simulation results show that a firm’s dynamic pricing behavior is close to static
if the conditions are satisfied but far from when they are violated.

While our focus is on the markets with dynamic demand, we can find an analogy with natural resources
extraction. Consider the case of fishery, where the number of fishers is large and no coordination among them
exists. If each fisher catches too many fish, the number of surviving fish shrinks, making it difficult to catch
them in the next period. Nevertheless, each fisher behaves myopically: their current action has negligible
effects on the number of remaining fish, and they do not have incentives to adjust their activities to maintain
the resources in the future. In that sense, fisher’s behavior is static. Section 6 discusses the counterparts of the
random utility shock and small persistent heterogeneity under dynamic demand in the case of natural resources
extraction.

This article’s main contribution is the proof of the conditions under which a firm’s pricing behavior is
(approximately) static and the firm behaves like a monopolistic competitor under dynamic demand. The
results make it easier to analyze industries with dynamic demand theoretically and empirically if the conditions
are plausible to assume5; this is the first article of this sort.

The organization of the rest of this article is as follows. Section 2 describes the relationship between this
study and the previous studies, Section 3 presents the theoretical model and the main results, and Section
4 validates the analytical results through numerical experiments. Section 5 considers the applications of the
results to each type of goods with dynamic demand, and Section 6 describes the similarity with the natural
resources extraction problem. Section 7 concludes and describes possible extensions.

2 Literature

This article is related to several strands of literature.

5As discussed in the next section, Carranza (2010) empirically applied a similar idea to analyze product innovation in the durable
digital camera market, even though theoretical justification was not formally discussed.
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First, this article builds on and contributes to the growing empirical literature on dynamic demand. Recent
studies have shown that dynamic demand structure characterize many industries in the real world. Examples
include automobiles (durable goods; Chen et al., 2013), electronic devices (durable goods; Goettler and Gordon,
2011, Gowrisankaran and Rysman, 2012), houses (durable goods; Bayer et al., 2016), detergents (storable goods;
Hendel and Nevo, 2006), drugs (experience goods; Crawford and Shum, 2005), subscription TV services (goods
with switching cost; Shcherbakov, 2016), and video games (network goods; Dubé et al., 2010; Lee, 2013).
Building on the literature, Gowrisankaran and Rysman (2020) developed a framework for empirical models of
dynamic demand. Developing the dynamic demand-side and dynamic supply-side models is ideal for analyzing
these industries and deriving more precise policy implications; however, the number of studies is limited6,
probably because of the effort required to solve dynamic problems. This article contributes to the literature by
showing when a firm’s dynamic behavior is or not is not negligible and when ignoring firm’s dynamic behavior
may lead to biased results, using the unified analytical framework.

Carranza (2010) conducted an empirical study applying a similar idea to analyze product innovation in
the digital camera market. Since digital cameras are durable goods, the author specified a dynamic demand
model on the demand side. On the supply side, he argued that each firm’s product-level decisions (pricing and
innovation)7 have negligible effect on market variables including consumers’ expectations (inclusive values), since
the number of products was large in the digital camera market. He justified this claim by showing numerical
evidence that the derivatives of the consumers’ inclusive values concerning individual prices were close to zero.
Then, he used the firms’ static price-setting model to analyze the market8. Even though the effect of the current
price on future demand was not explicitly mentioned and no formal proof exists, the study applied an idea in
line with this current article.

Fukasawa (2022) also investigated dynamic demand using a unified framework similar to this article, but
the focus is different. The existing article focuses on the demand side, and investigates when applying static
demand model yields biased results in key parameters (utility parameters and price elasticities of demand) when
the true demand structure is dynamic. In Fukasawa (2022), supply-side behavior is not explicitly specified. In
contrast, the current article focuses on the supply-side and investigates how firms behave given dynamic demand
structure. Hence, these articles are complementary. It is interesting to note that Fukasawa (2022) showed that
applying static demand models yields small biases in estimated price elasticity of a product when its CCPs
are small for all consumer types and state variables, given consistent consumer utility parameter estimates and
under the assumption that random utility shock follows Gumbel distribution. The conditions are the same as
those in this article, we can argue that applying a “static model,” namely, a static demand-side model and a
static supply-side model, brings valid implications if the condition holds.

This study’s main motivation, namely, considering easier ways to analyze industries with dynamic demand,
is closely related to oblivious equilibrium (Weintraub et al., 2008; Benkard et al., 2015; Ifrach and Weintraub,
2017) and experience-based equilibrium (Fershtman and Pakes, 2012). Oblivious equilibrium and its variants
mainly focus on a firm’s investment decisions when it is small under static demand structures. Even though
they are approximations of Markov perfect equilibrium, they perform well when certain conditions are satisfied.
Experience-based equilibrium focuses on dynamic games with asymmetric information, and agents make their
actions based on their experiences. As discussed in the article, the equilibrium can also be applied to the case
with dynamic demand. They effectively reduce the number of state variables and mitigate the computational
burden to solve the problems. The analysis in the current article does not provide any new equilibrium concepts
but shows when firm’s dynamic pricing behavior in solving a dynamic problem is close to the one based on
the commonly used static solutions under dynamic demand. Hence, this study is complementary to these
equilibrium concepts.

This article also contributes to the monopolistic competition literature. The idea of monopolistic competition
has been widely applied in many fields, including industrial organization, trade, and macroeconomics. One
significant reason for the prevalence of the idea of monopolistic competition would be theoretical simplicity
which does not appear in the standard oligopolistic competition models with strategic interactions among firms.

6For instance, only a handful of articles (Esteban and Shum, 2007; Chen et al., 2008; Chen et al., 2013, Gillingham et al., 2019)
have specified and investigated firms’ dynamic behaviors in the case of oligopolistic durable goods market.

7Note that he considered the model where each firm produces multiple products.
8Note that he assumed the firms’ innovation decisions are dynamic.
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AsThisse and Ushchev (2018) discussed, it has facilitated the studies dealing with general equilibrium effects.
Moreover, several studies, such as Perloff and Salop (1985) and Gabaix et al. (2016), have investigated whether
the market environment of monopolistic competition can be represented as the limit case of the oligopolistic
competition with a sufficiently large number of firms; however, these studies appear to have been confined
to the case of static demand. Nevertheless, dynamic demand structure is prevalent in the real world, as
described previously. This study contributes to the literature by presenting the condition under which the idea
of monopolistic competition can be applied under discrete choice model with a dynamic demand structure,
which is not negligible in many industries.

Finally, this article contributes to many theoretical studies investigating the supply-side behavior under
dynamic demand. They have investigated the characteristics of firms’ behaviors for each type of goods with
dynamic demand: studies on durable goods since the work of Coase (1972), studies on switching costs since
Klemperer (1987), and studies on network effects since Katz and Shapiro (1986), to name a few. This study’s
primary main focus is not on each goods’ unique characteristics but on common characteristics: when a firm’s
pricing behavior is close to or far from static. This article develops a general model of the market with dynamic
demand and provides insights from the viewpoints different from the previous studies.

3 Model

We build a model of dynamic demand with product differentiation. Time is discrete. Both consumers and firms
are forward-looking, and formulate correct expectations. We consider the case where firms set their product
prices in each period, and assume that consumers and firms behave according to Markov perfect equilibrium.
Hence, consumers and firms optimize their behavior conditional only on the current state variables and private
shocks. In Appendix C, we consider the case where firms can commit to future prices, but similar results hold.

3.1 Consumers

On the demand side, a continuum of consumers exists. Let M be the total number of consumers. There are
L types of consumers (l = 1, · · · , L) who have common (deterministic) flow utilities. Let πl be the fraction of
type l consumers. πl satisfies

∑
l πl = 1. We assume L is finite9.

3.1.1 State variables

First, let xt ∈ Xt be consumer’s individual-level state variables at the beginning of time t. Xt denotes the set
of individual-level states. For instance, xt indicates the age (time since the last purchase) of the products, in
the case of durable goods. We assume that Xt is a discrete set. Besides, let Bt be the vector of aggregated-level
state variables at time t. For instance, Bt includes Prlt(xt), where Prlt(xt) denotes the ratio of type l consumers
at state xt among type l consumers at time t. Note that

∑
xt
Prlt(xt) = 1 holds.

3.1.2 Consideration set and choices

Let Al(xt) be the available alternatives (consideration set) of type l consumers at states xt. Al(xt) satisfies
Al(xt) ⊆ J∪{0}, where J denotes the set of products10. We allow a limited consideration set. The consideration
sets depend on consumer’s individual states xt.

Let at ∈ Al(xt) be the choice of type l consumer at time t. at = j means that the consumer purchases
product j, and at = 0 means that they do not purchase any product.

3.1.3 State transition

The transition probability of individual-level state variables xt is given by ψ(xt+1|xt, Bt, at), and it depends
on the previous period’s states and choices. We allow stochastic transitions of state variables. Conversely, we

9The assumption of finite L is imposed just for a technical reason.
10In this study, we abstract away the existence of secondary market (used goods market).
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assume that aggregate state variables Bt follow a deterministic process11. Bt+1 is a function of previous period’s

aggregate states Bt and consumers’ CCPs s
(ccp)
t ≡

(
s
(ccp)
ljt (xt, Bt, pt)

)
xt,l,j∈Al(xt)

, where pt = {pkt}k∈J denote

product prices. Since the vector of CCPs s
(ccp)
t is a function of Bt, Bt+1 is a function of Bt.

Note that Prlt(xt) satisfies the following state transition formula:

Prlt+1(xt+1) =
∑
xt∈Xt

Prlt(xt) ·
∑

j∈Al(xt)

s
(ccp)
ljt (xt, Bt, pt) · ψ(xt+1|xt, Bt, at = j) (1)

3.1.4 Utility function

This study assumes that each consumer purchases at most one product in each period. Let the expected
discounted (decisive) utility of type l consumer i whose states are (xt, Bt) and choice is at given product prices
pt = {pkt}k∈J be vilt (xt, Bt, at, pt). Type l consumer i maximizes utility vilt(xt, Bt, at, pt) regarding at ∈ Al(xt).

Utility vilt is in the following form:

vilt (xt, Bt, at, pt) =

flj(xt, Bt, pjt) + βCE
[
V C
l (xt+1, Bt+1(Bt, s

(ccp)
t (Bt, pt)))|xt, at = j

]
+ ϵiljt if at = j

fl0(xt, Bt) + βCE
[
V C
l (xt+1, Bt+1(Bt, s

(ccp)
t (Bt, pt)))|xt, at = 0

]
+ ϵil0t if at = 0

(2)

where flj(xt, Bt, pjt) denotes the flow utility type l consumers at states (xt, Bt) gain when buying product
j whose price is pjt, and fl0(xt, Bt) denotes the flow utility type l consumers at states (xt, Bt) gain when not
buying anything. (ϵiljt)j∈Al(xt) denotes the individual-level random preference shock, and we assume they follow
i.i.d. distribution across (i, t)12. In the following, even though we do not restrict the functional form of the
distribution of ϵiljt provided the assumptions mentioned later are satisfied, we keep Gumbel distribution in
mind. βC represents the consumers’ discount factor, and E represents the expectation operator. Further, let

ṽljt(xt, Bt, pt) = flj(xt, Bt, pjt) + βCE
[
V C
l (xt+1, Bt+1(Bt, s

(ccp)
t (Bt, pt)))|xt, at = j

]
.

Here, V C
l (xt, Bt) is the value function of type l consumers given states (xt, Bt), and satisfies the following

equation under the presumption that firms and consumers behave according to Markov perfect equilibrium:

V C
l (xt, Bt) = Eϵ

[
max

at∈Al(xt)
vilt (xt, Bt, at, p

∗(Bt))

]
(3)

where Eϵ denotes the expectation operator with respect to random i.i.d. shocks {ϵilkt}k∈Al(xt).

3.1.5 Choice probability

The CCP that type l consumer buys product j at time t conditional on being at state (xt, Bt) and product
prices pt is:

s
(ccp)
ljt (xt, Bt, pt) =

{
Pr (vilt(xt, Bt, at = j, pt) > vilt(xt, Bt, at = k, pt) ∀k ∈ Al(xt)− {j}) if j ∈ Al(xt)

0 if j /∈ Al(xt)

=

{
Pr (ṽljt(xt, Bt, pt) + ϵiljt > ṽlkt(xt, Bt, pt) + ϵilkt ∀k ∈ Al(xt)− {j}) if j ∈ Al(xt)

0 if j /∈ Al(xt)
(4)

The probability that type l consumer buys product j at time t is:

sljt(Bt, pt) =
∑
xt

Prlt(xt)s
(ccp)
ljt (xt, Bt, pt) (5)

11This is just for simplicity.
12Here, we allow the case where ϵiljt is not i.i.d across j, as in the case of generalized extreme value (GEV) distribution.
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The probability that type l consumer does not buy any product at time t is:

sl0t(Bt, pt) =
∑
xt

Prlt(xt)s
(ccp)
l0t (xt, Bt, pt) (6)

The market share of product j at time t, namely, the fraction of consumers purchasing product j at time t
given the state variables Bt and product prices pt is:

sjt(Bt, pt) =
∑
l

πlsljt(Bt, pt) (7)

The fraction of consumers not purchasing any product at time t is:

s0t(Bt, pt) =
∑
l

πlsl0t(Bt, pt) (8)

The dynamic demand system is composed of equations (2)-(8).

3.1.6 Examples

Example 1. Durable goods
Consider the case where consumers purchase durable goods that depreciate over time. Suppose that consumers
do not make additional purchases when they already own a product. Let xt be the age of the product consumer
owns. If consumers do not own any product, xt = 0. Then, xt+1 follows the following stochastic process:

In the case of durable goods, xt indicates the age of the products or the dummy variables representing
the holding of functioning products, for instance. Let xt = 0 be the state where consumers do not possess
any product at time t. In the case of durable goods, it is natural to assume that consumers do not consider
replacement or additional purchases when they already own functioning products (xt ̸= 0)13. In this case,
consideration set Al(xt) satisfies Al(xt ̸= 0) = {0}. Since durable goods depreciate, xt+1, product holding
at time t + 1, depends on previous state xt and product choice at. The transition process depends on the
depreciation rate of the products.

Example 2. Goods with switching costs
When switching cost exists, consumer’s flow utility flj(xt, Bt, pjt) depends on their past choices. Namely,
xt = at−1. Generally, flj(xt = at−1 = j, Bt, pjt) > flj(xt = at−1 ̸= j, Bt, pjt) holds if switching costs exist.

Example 3. Experience goods

The quality of the products sold in the market is sometimes uncertain for consumers. Let x
(j)
t be the knowledge

level each consumer has on product j. Specifically, let x
(j)
t = 0 denote the state where consumers do not possess

incomplete information and x
(j)
t = 1 denote the state where consumers possess complete information on product

j. Then, x
(j)
t affects consumer’s flow decisive utility flj(xt, Bt, pjt): If the consumer has incomplete information

about the product (x
(j)
t = 0) and expects the quality of the product to be low, flj(x

(j)
t = 0, Bt, pjt) < flj(x

(j)
t =

1, Bt, pjt) holds. Similarly, if the consumer has incomplete information about the products (x
(j)
t = 0) and

expects the quality of the products to be high, flj(x
(j)
t = 0, Bt, pjt) > flj(x

(j)
t = 1, Bt, pjt) holds. The knowledge

level x
(j)
t+1 depends on the past period’s product choice at and the past period’s knowledge level x

(j)
t .

Example 4. Durable goods with network effects
Many durable goods exhibit network effects, wherein the value of the products depends on the number of
other consumers using the products. When the number of consumers who already own the products is large,
consumers can gain high utility by purchasing the products. There are two channels: direct network effect and

13This kind of specification is also used and discussed in Chen (2016), studying durable network goods with switching costs.
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indirect network effect. First, if the fraction of consumers already using format k, B
(k)
t , increases, the direct

benefit from using the format increases, known as direct network effect. Second, higher B
(k)
t increases the

variety of complementary products, and the benefit from using the format increases, known as indirect network
effects. Here, the number of consumers who already own the products is included as one of the variables in Bt.
Hence, consumer’s flow utility flj(xt, Bt, pjt) depends on Bt.

3.2 Firms

On the supply side, we assume that each firm produces only one product, just for simplicity. Firms follow
Markov perfect equilibrium, and firms set their product prices given aggregate state variables B. We assume
constant marginal costs, and assume that marginal costs are constant over time. We assume that no entry and
exit exist in the market and consider the case where firms’ strategic variables are only their products’ prices.

Firm j’s dynamic optimization problem is:

max{pjt+τ}τ∈Z+

∑∞
τ=0 β

τ
FMsjt+τ (Bt+τ , pjt+τ , p

∗
−jt+τ (Bt+τ ))(pjt+τ −mcj) (9)

where βF and mcj represent the firms’ discount factor and product j’s marginal cost. p∗−j denotes the firms
other than firm j’s optimal prices.

Then, the Bellman equation that characterizes firm j’s value function given that other firms and consumers
behave according to Markov perfect equilibrium is:

V F
j (Bt) = max

pjt

[
Msjt(Bt, pjt, p

∗
−j(Bt))(pjt −mcj) + βFV

F
j (Bt+1(Bt, s

(ccp)
t (pjt, p

∗
−j(Bt))))

]
(10)

The first order condition of the optimization problem is:

0 = Msjt(Bt, pjt, p
∗
−j(Bt)) +M(pjt −mcj)

∑
l

πl

∑
xt

Prlt(xt)
∂flj(xt, Bt, pjt)

∂pjt

∂s
(ccp)
ljt (xt, Bt, pjt, p

∗
−j(Bt))

∂ṽljt(xt, Bt, pjt, p∗−j(Bt))︸ ︷︷ ︸
static

+ (11)

M(pjt −mcj)
∑
l

πl

∑
xt

Prlt(xt)
∑

k∈Al(xt)

∂βCE
[
V C
l (xt+1, Bt+1(Bt, s

(ccp)
t (Bt, pjt, p

∗
−j(Bt))))|xt, at = k

]
∂pjt

∂s
(ccp)
ljt (xt, Bt)

∂ṽlkt(xt, Bt)︸ ︷︷ ︸
changing expectations of consumers

+

βF
∂V F

j (Bt+1(Bt, pjt, p
∗
−j(Bt)))

∂pjt︸ ︷︷ ︸
forward-looking firms

The first term represents the static effect of the current price change, namely, the direct effect of the current
price change on the current profit by changing current flow utilities. The second term indicates the indirect
effect of the current price change on the current profit through the change in consumers’ expectations on future
outcomes. The third term indicates the effect of current price change on future profits through the change in
the current demand. The second and the third term appear in the case of dynamic demand.

Then, equilibrium price p∗j given aggregate state variables Bt satisfies:

p∗j (Bt) = mcj −
Msjt(Bt, p

∗(Bt)) · (1 + λFj (Bt))

M
∑

l πl
∑

xt
Prlt(xt)

∂flj(xt,Bt,p∗j (Bt))

∂pjt

∂s
(ccp)
ljt (xt,Bt,p∗(Bt))

∂ṽljt(xt,Bt,p∗(Bt))
· (1 + λCj (Bt))

(12)

where
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λCj (Bt) ≡
∑

l πl
∑

xt
Prlt(xt)

∑
k∈Al(xt)

∂βCE
[
V C
l (xt+1,Bt+1(Bt,s

(ccp)
t (Bt,p∗(Bt))))|xt,at=k

]
∂pjt

∂s
(ccp)
ljt (xt,Bt,p∗(Bt))

∂ṽlkt(xt,Bt,p∗(Bt))∑
l πl
∑

xt
Prlt(xt)

∂flj(xt,Bt,p∗j (Bt))

∂pjt

∂s
(ccp)
ljt (xt,Bt,p∗(Bt))

∂ṽljt(xt,Bt,p∗(Bt))

λFj (Bt) ≡
βF

∂V F
j (Bt+1(Bt,s

(ccp)
t (p∗j (Bt),p∗−j(Bt))))

∂pjt

Msjt(Bt, p∗(Bt))

Intuitively, λCj represents the importance of the effect of changing consumers’ expectations in firm j’s

price-setting behavior relative to the static effect. λFj represents the importance of the effect on the firm’s
future profits relative to the static effect.

By rearranging the equation, we obtain:

p∗j (Bt)−mcj

p∗j (Bt)
=

−

∑
l πl
∑

xt
Prlt(xt)

∂flj(xt,Bt,p∗j (Bt))

∂ log pjt

∂s
(ccp)
ljt (xt,Bt,p∗(Bt))

∂ṽljt(xt,Bt,p∗(Bt))

sjt(Bt, p∗(Bt))


−1

1 + λFj (Bt)

1 + λCj (Bt)

=

(
−
∂ log sjt(Bt, p

∗
j (Bt), p

∗
−j(Bt))

∂ log pjt

∣∣∣∣
static

)−1 1 + λFj (Bt)

1 + λCj (Bt)
(13)

Three elements affect the markup: “static” price elasticity of demand defined by

∂ log sjt(Bt,p∗j (Bt),p∗−j(Bt))

∂ log pjt

∣∣∣
static

≡
∑

l πl
∑

xt
Prlt(xt)

∂flj(xt,Bt,p
∗
j (Bt))

∂ log pjt

∂s
(ccp)
ljt

(xt,Bt,p
∗(Bt))

∂ṽljt(xt,Bt,p
∗(Bt))

sjt(Bt,p∗(Bt))
, the index representing the

effect of consumers’ expectations, λCj , and the index representing the effect of forward-looking behavior of the

firm, λFj .
The following subsections show that the second and the third terms in the right-hand side of (11) are

negligible, namely, the values of λCj and λFj are sufficiently close to zero when CCPs of product (firm) j are
small for all consumer types and state variables under the existence of random utility shock following Gumbel
distribution.

To proceed with the discussion, we first presume the existence of Markov perfect equilibrium:

Assumption 1 (Existence of Markov perfect equilibrium). Markov perfect equilibrium exists.

Next, we define the following terms in advance:

γ1 ≡
∥∥∥(I − C(Bt))

−1
∥∥∥
∞

γ2 ≡ max
l,xt+1

∑
n

∣∣∣∣∣∂V C
l (xt+1, Bt+1(Bt))

∂B
(n)
t+1

∣∣∣∣∣
γ3 ≡

∑
l

∑
xt

max
k∈Al(xt),n

∣∣∣∣∣ ∂B
(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lkt (xt, Bt, p∗(Bt))

∣∣∣∣∣
γ4 ≡ max

l,xt

∑
k∈Al(xt)

∂s
(ccp)
lkt (xt, Bt, p

∗(Bt))

∂ṽlkt(xt, Bt, p∗(Bt))

γ5 ≡ max
τ∈N,m

∑
n

∣∣∣∣∣∂B
(m)
t+τ (Bt+1(Bt))

∂B
(n)
t+1

∣∣∣∣∣
Furthermore, we define the following terms for firm j:

9



bj1 ≡ max
l,xt

∣∣∣∣∂flj(xt, Bt, p∗j (Bt))∂pjt

∣∣∣∣−1

bj2 ≡ max
τ∈N

∣∣p∗j (Bt+τ (Bt))−mcj
∣∣

bj3 ≡ max
l,τ∈Z+

∑
n

∣∣∣∣∣∂ log sljt+τ+1(Bt+τ+1(Bt))

∂B
(n)
t+τ+1

∣∣∣∣∣
bj4 ≡ max

τ∈Z+

∑
n

∣∣∣∣∣∂p∗j (Bt+τ+1(Bt))

∂B
(n)
t+τ+1

∣∣∣∣∣
bj5 ≡ max

l

∞∑
τ=0

βτ+1
F

sljt+τ+1(Bt+τ+1(Bt))

sljt(Bt)

νj ≡ max
l,xt

∣∣∣∣∣∣∂flj(xt, Bt, p
∗
j (Bt))

∂pjt

∂s
(ccp)
ljt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

∣∣∣∣∣∣
where B

(n)
t+1 represents the n-th element of the vector of aggregate state variables Bt+1. Bt+1(Bt, s

(ccp)
t )

implies that aggregate level state variables Bt+1 depend on the previous period’s aggregate state variables Bt
and CCPs s

(ccp)
t . Regarding bj3 and bj5, sljt+τ+1 is a function of Bt+τ+1 and p∗(Bt+τ+1), and consequently

we can presume that it is a function of only Bt+τ+1. νj represents the direct responsiveness of current CCP

s
(ccp)
ljt (xt, Bt, pt) to changing current price pjt. As discussed, current prices affect consumers’ expectations

concerning future outcomes and subsequently affect current CCPs s
(ccp)
ljt (xt, Bt, pt). νj represents the current

CCP’s response to the current price change excluding these effects. C(Bt) ≡ (cqr)qr is the NBt×NBt dimensional
matrix with

cqr ≡ βC
∑
xt+1

ψ(xt+1|x̃t, Bt, at = k̃)
∑
n

∂V C
l̃
(xt+1, Bt+1(Bt))

∂B
(n)
t+1

∑
h∈Al(xt)

∂B
(n)
t+1(Bt, s

(ccp)
t (Bt, p

∗(Bt)))

∂s
(ccp)
lht (xt, Bt, p∗(Bt))

∂s
(ccp)
lht (xt, Bt, p

∗(Bt))

∂ṽlkt(xt, Bt, p∗(Bt))

for q = GBt(l̃, x̃t, k̃) and r = GBt(l, xt, k). GBt(·) is the one-to-one mapping from
{(l, xt, k) |l ∈ {1, · · · , L}, xt ∈ Xt, k ∈ Al(xt)} to {1, · · · , NBt}. NBt represents the dimension of Bt. ∥A∥∞ ≡
maxi

∑n
j=1 |aij | is the infinity norm for a n×n dimensional matrix A = (aij). Note that γ1, · · · , γ5 and bj1 · · · , bj5

depend on aggregate state variables Bt. Further, some of these terms are determined by the dynamic demand
structure. For instance, the failure rates of products affect some of these values in the case of durable goods.

We impose the following regularity conditions.

Assumption 2 (Regularity Conditions). 1.
∂flj(xt,Bt,p∗j (Bt))

∂pjt
< 0 holds for all l, xt, j (Positive marginal

utility of money)

2. Distribution function of ϵiljt is continuous, differentiable and has unbounded support.

3. (I − C(Bt))
−1 exists.

4. The terms bj1, · · · , bj5 and γ1, · · · , γ5 take finite values.

The first condition is satisfied as long as the marginal utility of money is positive. The second condition is
satisfied if ϵiljt follows Gumbel distribution. The third and fourth conditions would be satisfied if the equilibrium
is well-behaved and ϵiljt follows Gumbel distribution, even when the number of firms is large. In Appendix B,
we discuss the validity of Assumption 2 in detail.
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3.3 Changing consumers’ expectations

First, consider λCj , the relative importance of changing consumers’ expectations in firm j’s price-setting behavior.

The following proposition shows the upper bound of the absolute value of λCj .

Proposition 1. Under Assumptions 1 and 2,∣∣λCj (Bt)∣∣ ≤ 2βCγ1γ2γ3bj1νj

Proof. See Appendix A.

3.4 Forward-looking behavior of firms

Next, consider λFj , the relative importance of future profits for firm j in firm j’s price-setting behavior. The

following proposition shows the upper bound of the absolute value of λFj .

Proposition 2. Under Assumptions 1 and 2,∣∣λFj (Bt)∣∣ ≤ 2γ3(1 + βCγ1γ2γ3γ4)(bj2bj3 + bj4)bj5γ5νj

Proof. See Appendix A.

3.5 Static approximation of firm’s behavior under dynamic demand

To make the point clear, let p
(dynamic)
j (Bt) ≡ p∗j (Bt) be the solution of first order condition (11) derived from

the dynamic optimization problem given aggregate state variables Bt.

Here, let p
(static)
j (Bt) be the solution of the following “static” first order condition:

0 = Msjt +M(p
(static)
j (Bt)−mcj)

∑
l

πl
∑
xt

Prlt(xt)
∂flj(xt, Bt, p

(static)
j (Bt))

∂pjt

∂s
(ccp)
ljt (xt, Bt, p

(static)
j (Bt), p

(dynamic)
−j (Bt))

∂ṽljt(xt, Bt, p
(static)
j (Bt), p

(dynamic)
−j (Bt))

(14)

The solution of this condition satisfies the following equation:

p
(static)
j (Bt)−mcj

p
(static)
j (Bt)

=

(
−
∂ log sjt(Bt, p

(static)
j (Bt), p

(dynamic)
−j (Bt))

∂ log pjt

∣∣∣∣∣
static

)−1

(15)

Here, we impose the following additional assumption:

Assumption 3 (Finite semi-elasticity of CCP). The maximum value of semi-elasticity of CCPs bj6 ≡

maxxt,l

∣∣∣∣∂flj(xt,Bt,p∗j (Bt))

∂pjt
· ∂ log s

(ccp)
ljt (xt,Bt,p∗(Bt))

∂ṽljt(xt,Bt,p∗(Bt))

∣∣∣∣ takes a finite value.

The assumption holds when ϵiljt follows Gumbel distribution with scale parameter 1, since

∣∣∣∣∣∣∂flj(xt, Bt, p∗j (Bt))

∂pjt
·
∂ log s

(ccp)
ljt (xt, Bt, p∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

∣∣∣∣∣∣
=

∣∣∣∣∣∣∂flj(xt, Bt, p∗j (Bt))

∂pjt
·
∂s

(ccp)
ljt (xt, Bt, p∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

1

s
(ccp)
ljt (xt, Bt, p∗(Bt))

∣∣∣∣∣∣
≤ max

xt,l

∣∣∣∣∣∂flj(xt, Bt, p∗j (Bt))

∂pjt

[
1− s

(ccp)
ljt (xt, Bt, p

∗(Bt))
]∣∣∣∣∣

∵
∂s

(ccp)
ljt (xt, Bt, p∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))
= s

(ccp)
ljt (xt, Bt, p

∗(Bt))
(
1− s

(ccp)
ljt (xt, Bt, p

∗(Bt))
)

≤ max
l,xt

∣∣∣∣∣∂flj(xt, Bt, p∗j (Bt))

∂pjt

∣∣∣∣∣

11



Since

νj ≡ max
l,xt

∣∣∣∣∣∣∂flj(xt, Bt, p
∗
j (Bt))

∂pjt

∂s
(ccp)
ljt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

∣∣∣∣∣∣
≤ max

l,xt

∣∣∣∣∣∣∂flj(xt, Bt, p
∗
j (Bt))

∂pjt
·
∂ log s

(ccp)
ljt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

∣∣∣∣∣∣︸ ︷︷ ︸
Static semi-elasticity of CCP

·
[
max
l,xt

s
(ccp)
ljt (xt, Bt, p

∗(Bt))

]
︸ ︷︷ ︸

CCP

, νj takes a small value if maxl,xt s
(ccp)
ljt (xt, Bt, p

∗(Bt)) is sufficiently close to zero under Assumption 3. Hence,
using Propositions 1 and 2, we obtain the following informal but intuitive claim:

Proposition 3. Under Assumptions 1, 2, and 3, s
(ccp)
ljt (xt, Bt, p

∗(Bt)) ≈ 0 ∀l, xt implies p
(dynamic)
j (Bt) ≈

p
(static)
j (Bt).

The claim shows that a firm’s optimal price solving dynamic problem is close to the price solving static
condition, if the CCPs of the firm’s product are sufficiently small and close to zero for all consumer types
and (individual level) state variables. The performance of the approximation depends on how large the values
of bj1, · · · , bj6 and γ1, · · · , γ5 are. Nevertheless, if these values are finite, optimal prices based on the static
condition converge to the true prices based on the dynamic condition as the values of CCPs go to zero for all
consumer types and state variables.

If we further assume that firms are symmetric, we can derive stronger results. Here, we impose the following
assumption:

Assumption 4 (Symmetry of firms in terms of CCPs). s
(ccp)
ljt (xt, Bt, p

∗(Bt)) take common values regardless of
the product j ∈ J for all xt and l.

Let J be the number of the firms in the market. Since s
(ccp)
ljt (xt, Bt, p

∗(Bt)) =
1−s(ccp)l0t (xt,Bt,p∗(Bt))

J ≤ 1
J →

0 (J → ∞) under Assumption 4, we obtain the following statement:

Corollary 1. Suppose that Assumptions 1 and 4 hold. Furthermore, suppose that Assumptions 2 and 3 hold

for all j ∈ J . Then, limJ→∞

∣∣∣p(dynamic)j (Bt)− p
(static)
j (Bt)

∣∣∣ = 0 holds.

Note that Proposition 3 includes the case of asymmetric firms, such as the case where a dominant firm exists
in the market yet firm j is fringe.

3.6 Meaning of maxl,xt s
(ccp)
ljt (xt, Bt, p

∗(Bt)) ≈ 0

Here, we interpret the meaning of maxl,xt s
(ccp)
ljt (xt, Bt, p

∗(Bt)) ≈ 0.
To clarify, suppose that random utility shock ϵiljt follows Gumbel distribution with scale parameter σϵ.

Then, s
(ccp)
ljt (xt, Bt, p

∗(Bt)) is in the following form:

s
(ccp)
ljt (xt, Bt, p

∗(Bt)) =
exp

(
ṽljt(xt,Bt,p∗(Bt))

σϵ

)
∑

k∈Al(xt)
exp

(
ṽlkt(xt,Bt,p∗(Bt))

σϵ

)
To understand when the condition does not or does hold, consider the case where the scale parameter of

Gumbel distribution σϵ is so small. If σϵ → 0, it converges to the case where no random utility shock exists.
If we consider the case where a consumer type l exists such that ṽljt(xt, Bt, p

∗(Bt)) > ṽlkt(xt, Bt, p
∗(Bt)) for

all k ∈ Al(xt) − {j}, we can show that s
(ccp)
ljt (xt, Bt, p

∗(Bt)) → 1 (σϵ → 0) holds14. Then, the condition

maxl,xt s
(ccp)
ljt (xt, Bt, p

∗(Bt)) ≈ 0 does not hold. Therefore, the existence of random utility shock is necessary to

14In contrast, s
(ccp)
lkt (xt, Bt, p

∗(Bt)) → 0 (σϵ → 0) holds for k ∈ Al(xt)− {j}.
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derive the condition. Intuitively, current buyers may not be future buyers under random utility shock. Then,
the connection between current and future periods is small, and firm is less likely to consider future outcomes.

Next, consider the case where some consumers strongly prefer the product15. Then, s
(ccp)
ljt (xt, Bt, p

∗(Bt))

take large values far from zero for part of l, and maxl,xt s
(ccp)
ljt (xt, Bt, p

∗(Bt)) ≈ 0 does not hold. In that
sense, small persistent heterogeneity of consumers is required to satisfy the condition. Intuitively, if consumers’
persistent heterogeneity is large and part of the consumers strongly prefer the product, they would always
purchase the product given the opportunity, even under random utility shock. Then, current buyers would be
the future buyers, and the connection between current and future periods would be large. In this case, the firm
is more likely to consider future periods. Otherwise, when persistent heterogeneity is small, future periods are
unimportant for the firm.

Finally, small market share of the firm (product) is also necessary. It holds when the value of each product
is similar but the number of firms is large, or when the product’s value is much lower than the other products
(fringe firm case). Under product differentiation and the existence of utility shock following Gumbel distribution,
even small firms can gain positive profits, in contrast to the case of perfect competition or homogeneous goods
with many firms. If the market share is small, the probability that current buyers coincide with the future
buyers is small. Then, the connection between current and future periods is small, and the firm is less likely to
consider the effects future period.

3.7 Static monopolistic competition under dynamic demand

If the condition s
(ccp)
ljt (xt, Bt, p

∗(Bt)) ≈ 0 ∀xt, l holds, we can further argue that firm j behaves approximately
like a (static) monopolistic competitor, which has no impact on its competitors, but is free to choose the price
that maximizes its profits as a monopolist (Chamberlin, 1949). To see this, we assume that ϵiljt follows the
Gumbel distribution with scale parameter 1. Note that rescaling both flj(xt, Bt, pjt) and ϵiljt to set the standard
deviation of random utility shock ϵiljt to 1 does not make any difference in CCPs and the equilibrium. Let

bj7 ≡ maxl,xt

∣∣∣∂flj(xt,Bt,p∗j (Bt))

∂pjt

∣∣∣. Then, (static and dynamic version of) cross price elasticities of product k ̸= j

concerning product j, ∂ log skt∂pjt
and

∂ log skt+τ

∂pjt
(τ ∈ Z+), satisfy the following inequalities shown in the proposition:

Proposition 4. If ϵiljt follows the Gumbel distribution with scale parameter 1 and Assumptions 1, 2, and 3
hold, following inequalities hold:

∣∣∣∣∂ log skt(Bt, p
∗(Bt))

∂pjt

∣∣∣∣ ≤ [bj7 + 2βCγ1γ2γ3bj6] ·
[
max
l,xt

s
(ccp)
ljt (xt, Bt, p

∗(Bt))

]
(k ̸= j)∣∣∣∣∣∂ log skt+τ (Bt+τ (Bt+1(Bt, s

(ccp)
t (Bt, s

(ccp)
t (Bt, p

∗(Bt)))))

∂pjt

∣∣∣∣∣ ≤ 2γ3(1 + βCγ1γ2γ3γ4)bj3γ5bj6

[
max
l,xt

s
(ccp)
ljt (xt, Bt, p

∗(Bt))

]
(k ∈ J , τ ∈ N)

Proof. See Appendix A.

Hence, if s
(ccp)
ljt (xt, Bt, p

∗(Bt)) ≈ 0 ∀xt, l holds, the effect of firm j’s price on competitors’ demand (current
demand/future demand) is negligible. Consequently, the role of firm j’s strategic incentive considering the
effects on competitors is limited, and firm j behaves approximately like a static monopolistic competitor under
the assumptions.

Note that our model is not restricted to a case where all the firms behave approximately as monopolistic
competitors, like the standard monopolistic competition model (Dixit and Stiglitz, 1977). Our model
encompasses the case where a handful of large firms with the ability to manipulate the market coexist with
small firms having small market share as in Shimomura and Thisse (2012). Proposition 4 shows that if the
CCPs are small for all consumer types and state variables, the small firm has negligible effect on the market
even under dynamic demand.

So far, we have mainly considered the case where the random utility shock follows the Gumbel distribution.
As Anderson et al. (1992) discussed, even small firms can set prices higher than the products’ marginal costs in a

15See the numerical model (the case of fsd = 3) in Section 4 as an example.

13



static setting under Gumbel distribution, which contrasts with the case of perfect competition or homogeneous
goods with many firms. Conversely, if the random utility shock follows a uniform or normal distribution,
the equilibrium prices firms set converge to their marginal costs as the number of firms increases in static
symmetric-firm models (Perloff and Salop, 1985; Gabaix et al., 2016). In Appendix C, we consider whether this
section’s results hold under distributions other than Gumbel.

4 Numerical experiments

The analytical results show that a firm’s price-setting behavior can be approximated as static under dynamic
demand with random utility shock following Gumbel distribution if the CCPs of the firm’s product are small
for all consumer types and state variables. Nevertheless, the extent to which the approximation works well is
unclear from the analytical results. This section numerically shows the extent to which prices solving the static
optimality condition well approximate the dynamic behavior of firms, by building a numerical model of durable
goods16, one of the typical examples of goods with dynamic demand.

In the numerical experiments, we conduct two types of experiments, which are common in empirical
applications:

1. Computing markup rates from data:

We first numerically solve the dynamic equilibrium (based on the dynamic optimality condition (dynamic
optimality condition (13)) and generate the simulated data, including equilbrium product prices. Then,
we recover firm j = 1’s marginal cost based on the following static optimality condition from the observed
equilibrium prices p(data)(Bt), calculate markups, and compare the results with the ones based on the
dynamic optimality condition (13):

p
(data)
j (Bt)−mcj

p
(data)
j (Bt)

=

(
−
∂ log sjt(Bt, p

(data)
j (Bt), p

(data)
−j (Bt))

∂ log pjt

∣∣∣∣∣
static

)−1

Note that we can easily guess that the static solution is sufficiently close to the dynamic solution when
the maximum of the CCPs of firm j = 1 is sufficiently close to zero, as in the discussion in Section 3.5.

2. Computing cost path-through rate:

We compute two types of equilibria. The first one is the equilibrium where all the firms follow the following
static optimality condition:

p
(static)
j (Bt)−mcj

p
(static)
j (Bt)

=

(
−
∂ log sjt(Bt, p

(static)
j (Bt), p

(static)
−j (Bt))

∂ log pjt

∣∣∣∣∣
static

)−1

The second one is the equilibrium where all the firms follow the dynamic optimality condition (13).

We repeat solving the two equilibria for baseline levels of marginal costs and counterfactual levels of
marginal costs (10% increase from the baseline levels). Then, we compute the cost pass-through rates for
two types of equilibria, and compare the outcomes.

Even in this case, we can easily guess that the static solution is sufficiently close to the dynamic solution
when the maximum of all the firms’ CCPs are sufficiently close to zero, as in the discussion in Section 3.5.

16We can think of many kinds of electronic devices, such as light bulbs, washing machines, PCs, as the examples of the products
represented in the numerical model. Note that we do not introduce the existence of used goods market, which is not negligible in
the automobile industry.
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4.1 Model settings

We employ the following model settings.

State variables

Let xt be the “age” of the product, namely, the passed time since the last purchase. xt = 0 denotes the state
where consumers do not possess any product at the beginning of time t. We assume that products always
fail when their ages reach xmax. Let Blt be the fraction of type l consumers not owning any product at the
beginning of time t. Namely, Blt = Prlt(xt = 0) holds.

Consideration set

We assume that consumers do not consider replacement or additional purchases when they already own
functioning products (xt ̸= 0). Consideration set Al(xt) is specified in the following form:

Al(xt) =

{
J ∪ {0} if xt = 0

{0} if xt ̸= 0

Consumers’ flow utility

Consumers’ flow utility is specified as follows:

flj(xt = 0, Bt, pjt) = f̃lj + f0 − αpjt j ∈ J

fl0(xt, Bt) =

{
0 if xt = 0

f0 if xt ̸= 0

f̃lj indicates the flow utility of consumer l from purchasing product j at time t. f0 indicates the flow utility
of consumers using the products. Furthermore, we assume that ϵijt follows Gumbel distribution with scale
parameter σϵ. Then,

α
σϵ

represents the consumers’ marginal utility of money.

Here, we consider the existence of two types of consumers l = 1 and l = 2. f̃lj is specified as follows:

f̃lj =


f + fsd j = 1, l = 1

f − fsd j = 1, l = 2

f j ̸= 1, l = 1, 2

Type l = 1 consumers strongly prefer product j = 1 more than type l = 2 consumers when fsd > 0. The
valuation of products other than product j = 1 are the same for all the consumers. We can interpret fsd as the
intensity of consumers’ persistent heterogeneity.

State transition

We assume that each product owned by consumers fails with probability 1 − ϕ, if the product’s age is under
xmax; here, ϕ denotes the survival rate of the products. Furthermore, we presume that the products always fail
if their age reaches xmax. Then, Prlt+1(xt+1 = 0) satisfies the following equation:

Prlt+1(xt+1 = 0) = (1− s̃l0t(xt = 0, Bt, pt))(1− ϕ) + s̃l0t(xt = 0, Bt, pt)

where s̃l0t(xt = 0, Bt, pt) represents the fraction of consumers not possessing products after purchase
decisions, and the term is defined as:

s̃l0t(xt = 0, Bt, pt) = Prlt(xt = 0) · s(ccp)l0t (xt = 0, Bt, pt)
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Firms

We consider the case where there are |J | = J firms in the market, and each firm produces only one product.
The demand structure of firms j ̸= 1 is symmetric, as represented in the forms of flj(xt = 0, Bt, pjt); however,
firm j = 1 is not symmetric when fsd > 0.

Furthermore, we assume that marginal costs are constant across firms: mcj = mc ∀j ∈ J .

Parameter settings

In the baseline case we employ the following parameter settings: α = 2, f = 5, f0 = 0.4, σϵ = 1, βC = βF =

0.9, ϕ = 0.9, π1 = 0.01,mc = 2, xmax = 100. Here, we define the term f ≡ f +
1−βxmax+1

C
1−βC f0, and set the

parameter value of f , since the value of f and f0 do not affect the consumers’ discounted sum of flow utility

given f and fsd
17. Note that ϕ = 0.9 implies that products fail with probability 0.1 in each period. π1 = 0.01

implies that fraction of type l = 1 consumers is only 1%. Even though the weight among all the consumers is
small, they significantly impact firm j = 1’s behavior when persistent heterogeneity of consumers is large, as
shown later.

For details of the experiments and the algorithm for solving the equilibrium, see Appendix D.

4.2 Results

The experiment results are shown in Figures 1-5. In the experiments, we change the number of firms and the
scale of consumers’ persistent heterogeneity (fsd) to see how the results change. We look at the cases where
Prlt(xt = 0) = 1 holds for all l, namely, cases where no consumers own the goods at the beginning of time t.

4.2.1 Experiment 1: Computing markup rates from data

First, Figure 1 shows each type of consumers’ CCPs of the product (firm) j = 1 in the simulated data. Other
than CCPs, market share, which is calculated as their weighted sum is also plotted. The left panel shows the
case where no persistent consumer heterogeneity exists (fsd = 0). Since no persistent consumer heterogeneity
exists, the two types of CCPs coincide, and market shares also coincide. As the number of firms increases,
CCPs and the market share decline. Conversely, the right panel shows the case where persistent consumer
heterogeneity exists (fsd = 3). Type l = 1 consumers strongly prefer product j = 1, and their CCPs of product
j = 1 is over 20%, even when the number of firms exceeds 10. In contrast, type l = 2 consumers’ valuation of
product (firm) j = 1 is low, and CCPs are close to zero, regardless of the number of firms (products). Since the
ratio of type l = 1 consumers is only 1%, the market share are very close to the CCP of type l = 2 consumers,
who comprise 99% of consumers.

17Discounted sum of flow utility from purchasing product j at time t excluding the expected future utility after the the product

failure is f̃lj +
∑xmax

τ=0 βτ
Cf0 = f̃lj +

1−β
xmax+1
C
1−βC

f0.
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Figure 1: Number of firms and CCPs
Notes.
The figures show the values of s

(ccp)
ljt (xt = 0, Bt, p

∗(Bt)) (j = 1;CCPs) and sjt(Bt, p
∗(Bt)) (j = 1;market share) in each setting.

Left: Without persistent consumer heterogeneity (fsd = 0)
Right: With persistent consumer heterogeneity (fsd = 3)
“Share” is defined as the weighted sum of each type of consumers’ CCP.

Next, we look at how the the solutions derived from the static optimality condition well approximate the
true solutions based on the dynamic optimality condition. Figure 2 shows the results on firms’ markups. When
no persistent consumer heterogeneity exists (fsd = 0) and only one firm (j = 1) exists, the static condition yields
significant biases: firm j = 1’s markup is roughly 1.25 even though the true value is roughly 1.5, as shown in
the left panel of Figure 2. Nevertheless, as the number of firms increases, the markups derived from the static
condition converge to the markup based on the actual dynamic optimality condition. When the number of
firms is 30, the two values are almost the identical. Note that since the random utility shock following Gumbel
distribution exists, markup does not converge to 1 when the number of firms increases, unlike the case of the
homogeneous good.

In contrast, the result differs significantly when persistent consumer heterogeneity exists (fsd = 3). As
shown in the right panel, markups based on static condition are largely different from the dynamic solution,
even when the number of firms increases18.

Figure 2: Number of firms and markups
Notes.
The figures show the values of product (firm) j = 1’s markup, defined as

pjt
mcj

(j = 1), in each setting.

Left: Without persistent consumer heterogeneity (fsd = 0)
Right: With persistent consumer heterogeneity (fsd = 3)

Figure 3 shows the values of λCj and λFj . When consumers’ persistent heterogeneity exists (fsd = 3), λFj
does not converge to zero. Conversely, when consumers’ persistent heterogeneity does not exist (fsd = 0), the
value of λFj converges to zero as the number of firms increases. Note that the values of |λCj | are close to zero in

18The right panel of Figure 2 shows the case where the firm’s equilibrium price solving the dynamic optimality condition given
J = 1 (monopolistic case) is lower than the equilibrium price given J ≥ 3 (oligopolistic case). Gul (1987) and Ausubel and Deneckere
(1987) theoretically showed that durable goods producers could set higher prices in an oligopolistic environment than the cases in
a monopolistic environment. The results in Figure 2 reflect of this phenomenon.
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Figure 3. Hence, in our setting, when considering firms’ dynamic decisions, consumers’ changing expectations
is less important than forward-looking behavior of firms.

Figure 3: Number of firms and λCj , λ
F
j

Notes.
The figures show the values of λC

j and λF
j (j = 1) in each setting.

Left: Without persistent consumer heterogeneity (fsd = 0)
Right: With persistent consumer heterogeneity (fsd = 3)

4.2.2 Experiment 2: Computing cost path-through rate

First, Figure 4 shows the maximum value of the all the firms’ CCPs under the dynamic equilibrium and baseline
level of marginal costs. We can see that the maximum of CCPs gets smaller as the number of firms increases in
the no persistent consumer heterogeneity case (left figure), but it does not in the case with persistent consumer
heterogeneity (right figure).

Next, Figure 5 shows the pass-through rate of firm (product) j = 1. “Static” represents the pass-through
rate derived from the model based on the static optimality conditions. As in the case of markups, we can observe
significant biases when no consumer heterogeneity exists (fsd = 0) and the number of firms is 1. Nevertheless,
the pass-through rate based on the static condition converges to the dynamic counterpart, as the number of
firms increases. In contrast, when persistent heterogeneity exists (fsd = 3), it does not necessarily converge to
the dynamic solution, even though the difference is not large.

Figure 4: Number of firms and the maximum of CCPs
Notes.
The figures show the values of maxl,j s

(ccp)
ljt (xt = 0, Bt, p

(dynamic)(Bt)) under the baseline level of marginal costs.
Left: Without persistent consumer heterogeneity (fsd = 0)
Right: With persistent consumer heterogeneity (fsd = 3)
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Figure 5: Number of firms and cost pass-through rates (10% increase in marginal costs)
Notes.
The figures show the values of cost pass-through rate of product firm j = 1 in response to 10% increase in all the firms’ marginal

costs in each setting. Pass-through rate is defined as
p′jt−pjt

mc′j−mcj
, where mc′j and p′jt denote the marginal cost and the equilibrium

price after the 10% cost increase. We consider the case where all the firms’ marginal costs increase permanently by 10%.
Left: Without persistent consumer heterogeneity (fsd = 0)
Right: With persistent consumer heterogeneity (fsd = 3)

Overall, the results of the numerical experiments are consistent with the analytical results, and provide
several implications. First, we can well-approximate the markup rate of a firm based on the static optimality
condition using the observed data, when the firm’s CCP is small for all consumer types and state variables.
Second, if all the firms’ CCPs are small, we can compute the static equilibrium which is sufficiently close to
the dynamic equilibrium, and we can well-approximate the cost pass-through rate using the static equilibrium
model. Third, the static condition does not necessarily yield a good approximation if the persistent consumer
heterogeneity is large, because small CCPs conditions do not necessarily hold.

5 Applications

This section presents examples of how the main results presented in Section 3 can be applied or provide insight
into each type of goods with dynamic demand.

Example 1 (Continued). Durable goods
In the case of durable goods, when firms can commit to future prices, greater current demand implies smaller
future demand due to the durability of goods. Hence, firms have incentives to set higher prices considering

their future profits (p
(dynamic)
j (Bt) > p

(static)
j (Bt)). If firms cannot commit, consumers expect future price

declines and postpone their purchases. Then, firms have incentives to lower current prices. In extreme cases,

p
(dynamic)
j (Bt) ≈ mcj holds, which is known as Coase’s conjecture (Coase, 1972, Stokey, 1981).

This study shows that firm’s forward-looking behavior and the effect of consumers’ expectations is negligible

when maxl,xt s
(ccp)
ljt (xt, Bt, p

∗(Bt)) ≈ 0 holds. Hence, ignoring firm’s dynamic price-setting behavior causes minor
problems if the industry of interest satisfies the condition.

Example 2 (Continued). Goods with switching cost
Recall that state variable xt is the past choice of the consumer at−1, namely, xt = at−1. Consumers opt to choose

the previously purchased goods, and CCPs s
(ccp)
ljt (xt, Bt, p

∗(Bt)) are large and far from zero when xt = at−1 = j.
Then, based on this study’s results, firms’ decisions are far from static. This is consistent with the previous
studies stressing the importance of firms’ dynamic price-setting behavior (investing/harvesting).

Example 3 (Continued). Experience goods
In the case of experience goods, recall that consumers do not have complete information on the quality of

products and learn them through purchasing. Let x
(j)
t be the knowledge level of consumers on product j, Let

x
(k)
t = 0 and x

(k)
t = 1 denote the state where consumers possess incomplete information and the state where

consumers possess complete information on product j. Let x
(j)
t depend on whether a consumer has already
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purchased product j. Here, consider the case where consumers’ flow decisive utility of product j is smaller than

the true value (flj(x
(j)
t = 1, Bt, pjt) > flj(x

(j)
t = 0, Bt, pjt)) when the consumer has incomplete information on

the product (x
(j)
t = 0). If the CCPs of choosing product j are larger than zero given complete knowledge of the

product(x
(j)
t = 1), the main results of this article show that firm j’s behavior cannot be approximated as static.

This holds even when the CCPs of choosing product j is sufficiently close to zero given incomplete knowledge

of the product(x
(j)
t = 0).

Example 4 (Continued). Durable goods with network effects
Consider the case where several types of formats exist in the products19. Let J (k) be the set of format k

products (firms). Furthermore, let x
(k)
t be a dummy variable indicating whether the consumer owns format k

products, and let B
(k)
t be the fraction of consumers already using format k products. If network effects exist,

flow utility flj(xt, Bt, pjt) j ∈ J (k) depends on B
(k)
t . Firms generally have incentives to offer penetration pricing

(Katz and Shapiro, 1986), namely, setting lower prices at early stages of the diffusion when network effects exist.
Here, consider a firm with a small market share among firms producing format k products, implying that the

firm’s CCPs are small. The main result of this article shows that p
(dynamic)
j (Bt) ≈ p

(static)
jt (Bt) holds when

maxl,xt s
(ccp)
ljt (xt, Bt, p

∗(Bt)) ≈ 0. Hence, the firm does not make much future profit and has little incentive to
offer penetration pricing.

6 Comparison with natural resources extraction

Even though our focus has been on markets with dynamic demand, we find an analogy with natural resources
extraction. Consider the case of fisheries, which is a typical example of natural resources extraction20. If each
fisher catches too many fish, the number of surviving fish shrinks, and it is challenging for fishers to catch them
in the next period. Nevertheless, each fisher behaves myopically if the area hosts a large number of fishers
in the area (open access) with no coordination among them; their current action has negligible effects on the
remaining number of fish, and they do not have incentives to adjust their activities to maintain the resources
in the future. In that sense, fishers’ behavior is very close to static. The problem of social inefficiency is known
as “Tragedy of the commons”.

Conversely, if one fisher controls the area (closed access), the fisher’s problem is dynamic. Consider the
case where fish is cultured by one fisher. If catching too many fish in the current period, the number of the
remaining fish gets smaller, and future profits decrease. Then, the fisher would consider the remaining future
number of fish and dynamically optimize the number of fish caught.

Figure 6 illustrates the comparison between natural resources extraction (fishery) and the durable goods
market as an example of dynamic demand. Consumers in the durable goods market correspond to fish. Firms
in the durable goods market correspond to fishers. Consumers are “caught” by firms, and current “capture”
affects future “capture”. Consumers’ preference corresponds to the location of the fish.

In the case of durable goods, if consumers’ preferences change stochastically (random utility shock exists),
the firm can catch other consumers that approach the firm in the next period, even if the firm caught a large
number of nearby consumers in the current period. Similarly, in the case of fisheries, if the area is open access,
and fish can move freely, each fisher can catch other fish entering the area near the fisher in the next period,
even when catching numerous fish near the fisher in the current period (shown in the left panel of Figure 6).
In contrast, in the durable goods case, if consumers’ preference is constant over time (no random utility shock
exists), the number of consumers near the firm would be smaller in the next period if the firm catches the
consumers near the firm in the current period. Analogously, in the fishery case, if the area is closed access and
fish cannot move freely, the number of fish in the controlled area would be smaller in the next period if the firm
catches numerous fish in the area in the current period (shown in the right panel of Figure 6). In both cases,
catching many consumers/fish is not profitable in the long run, and the firm/fisher has incentives to optimize
their action dynamically.

19Consider the case of format war between VHS and Beta, for instance.
20See Conrad (2010) and others.
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Figure 6: Analogy with natural resources extraction (The case of fishery)
Notes.
Left: Open access (fishery) / Without persistent consumer heterogeneity (durable goods) case
Right: Closed access (fishery) / With persistent consumer heterogeneity (durable goods) case

7 Conclusions

This study developed a unified theoretical framework and investigated in what cases a firm’s dynamic
price-setting behavior can be approximated as static under dynamic demand. The results show that a firm’s
dynamic price-setting behavior is close to the static one under dynamic demand with random utility shock
following Gumbel distribution, when consumers’ CCPs of choosing the firm’s product are small for all consumer
types and state variables. Small persistent heterogeneity and small market share of the firm are necessary
to satisfy the conditions. The results in our study would justify the simple static specifications and further
facilitate the studies on the industries with dynamic demand, if the conditions are plausible to assume.

In contrast, based on this article’s discussion, we should note that applying static supply-side model is
inadequate when the firm of interest has a large market share, or large persistent consumer heterogeneity exists.
In some cases, such as the case of merger policies, we are interested in the behavior of large firms. Hence,
applying static supply-side model may yield misleading policy implications. Further consideration of more
accessible methods to analyze industries with large firms is necessary for further development.

Although we have not introduced firms’ dynamic investment decisions, oblivious equilibrium and variants
(Weintraub et al., 2008; Benkard et al., 2015; and Ifrach and Weintraub, 2017) have considered situations
where small firms keep track of their own state variables when making decisions and strategic interactions are
negligible under static demand structures. They are motivated by the need to analyze industries with many
firms, where fully solving a Markov perfect equilibrium is sometimes computationally demanding. Their ideas
and motivations are close to the current article, and investigating the properties of the combinations of the two
ideas is an interesting extension.

Finally, even though this article focuses on the discrete choice models, previous studies have investigated
the connections between the discrete choice models and the representative consumer models (e.g. CES utility
function) under static framework (Anderson et al., 1992; Thisse and Ushchev, 2018). Investigating firms’
behavior under representative consumer models with dynamic demand is an interesting avenue for future
research.
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A Proof

To prove Propositions 1, 2, and 4, we show the following lemmas in advance.

Lemma 1. Following equations hold:∑
k∈Al(xt)

∣∣∣∣∣∂s(ccp)lkt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)

∣∣∣∣∣ = 2
∂s

(ccp)
ljt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)
∀xt, Bt, pt, j ∈ Al(xt)

∣∣∣∣∣∂s(ccp)lkt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)

∣∣∣∣∣ ≤ ∂s
(ccp)
ljt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)
∀xt, Bt, pt, j ∈ Al(xt)

Proof. Since
∑

k∈Alt(xt)
s
(ccp)
lkt (xt, Bt, pt) = 1, we have:

∑
k∈Al(xt)−{j}

∣∣∣∣∣∂s(ccp)lkt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)

∣∣∣∣∣ = −
∑

k∈Al(xt)−{j}

∂s
(ccp)
lkt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)

(
∵
∂s

(ccp)
lkt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)
< 0 ∀k ̸= j

)

= −
∂
(
1− s

(ccp)
ljt (xt, Bt, pt)

)
∂ṽljt(xt, Bt, pt)

=
∂s

(ccp)
ljt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)

Then, for k ∈ Al(xt), we obtain the following equations:∣∣∣∣∣∂s(ccp)lkt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)

∣∣∣∣∣ ≤
∑

k∈Al(xt)−{j}

∣∣∣∣∣∂s(ccp)lkt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)

∣∣∣∣∣
=

∂s
(ccp)
ljt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)

∑
k∈Al(xt)

∣∣∣∣∣∂s(ccp)lkt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)

∣∣∣∣∣ =

∣∣∣∣∣∂s
(ccp)
ljt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)

∣∣∣∣∣+ ∑
k∈Al(xt)−{j}

∣∣∣∣∣∂s(ccp)lkt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)

∣∣∣∣∣
=

∂s
(ccp)
ljt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)
+
∂s

(ccp)
ljt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)

= 2
∂s

(ccp)
ljt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)

Lemma 2.
∑

k∈Al(xt)

∣∣∣∣ ∂s(ccp)ljt
(xt,Bt,pt)

∂ṽlkt(xt,Bt,pt)

∣∣∣∣ = 2
∂s

(ccp)
ljt

(xt,Bt,pt)

∂ṽljt(xt,Bt,pt)
∀xt, Bt, pt, j ∈ Al(xt)

Proof. It is sufficient to show that
∑

k∈Al(xt)−{j}

∣∣∣∣ ∂s(ccp)ljt
(xt,Bt,pt)

∂ṽlkt(xt,Bt,pt)

∣∣∣∣ = ∂s
(ccp)
ljt

(xt,Bt,pt)

∂ṽljt(xt,Bt,pt)
.

First,

s
(ccp)
ljt (xt, Bt, pt) ≡ Pr(ṽljt(xt, Bt, pt) + ϵiljt > ṽlkt(xt, Bt, pt) + ϵilkt ∀k ∈ Al(xt)− {j})

= Pr(ṽljt(xt, Bt, pt)− ṽlkt(xt, Bt, pt) > ϵilkt − ϵiljt ∀k ∈ Al(xt)− {j})
= Pr(z

(j,k)
lt (xt, Bt, pt) > ϵ̃ilt

(k,j) ∀k ∈ Al(xt)− {j})

Here, we define z
(j,k)
lt (xt, Bt, pt) ≡ ṽljt(xt, Bt, pt)− ṽlkt(xt, Bt, pt) and ϵ̃ilt

(k,j) ≡ ϵilkt − ϵiljt. Then,

∑
k∈Al(xt)−{j}

∣∣∣∣∣∂s
(ccp)
ljt (xt, Bt, pt)

∂ṽlkt(xt, Bt, pt)

∣∣∣∣∣
= −

∑
k∈Al(xt)−{j}

∂s
(ccp)
ljt (xt, Bt, pt)

∂ṽlkt(xt, Bt, pt)

(
∵
∂s

(ccp)
ljt (xt, Bt, pt)

∂ṽlkt(xt, Bt, pt)
< 0 ∀k ̸= j

)

= −

 ∑
k∈Al(xt)−{j}

∂z
(j,k)
lt (xt, Bt, pt)

∂ṽlkt(xt, Bt, pt)

∂Pr(z
(j,k)
lt (xt, Bt, pt) > ϵ̃ilt

(k,j) ∀k ∈ Al(xt)− {j})
∂z

(j,k)
lt (xt, Bt, pt)


=

∑
k∈Al(xt)−{j}

∂Pr(z
(j,k)
lt (xt, Bt, pt) > ϵ̃ilt

(k,j) ∀k ∈ Al(xt)− {j})
∂z

(j,k)
lt (xt, Bt, pt)

(
∵
∂z

(j,k)
lt (xt, Bt, pt)

∂ṽlkt(xt, Bt, pt)
= −1 ∀k ∈ Al(xt)− {j}

)
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In contrast,

∂s
(ccp)
ljt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)
=

∑
k∈Al(xt)−{j}

∂z
(j,k)
lt (xt, Bt, pt)

∂ṽljt(xt, Bt, pt)

∂Pr(z
(j,k)
lt (xt, Bt, pt) > ϵ̃ilt

(k,j) ∀k ∈ Al(xt)− {j})
∂z

(j,k)
lt (xt, Bt, pt)

Hence,
∑

k∈Al(xt)−{j}

∣∣∣∣ ∂s(ccp)ljt
(xt,Bt,pt)

∂ṽlkt(xt,Bt,pt)

∣∣∣∣ = ∂s
(ccp)
ljt

(xt,Bt,pt)

∂ṽljt(xt,Bt,pt)
holds.

Lemma 3. maxl,xt,k∈Al(xt)

∣∣∣∣ ∂E[
V C
l (xt+1,Bt+1(Bt,s

(ccp)
t (Bt,p

∗(Bt))))|xt,at=k
]

∂pjt

∣∣∣∣ ≤ γ1γ2γ3νj

Proof. First,
∂E

[
V C
l (xt+1,Bt+1(Bt,s

(ccp)
t (Bt,p

∗(Bt))))|xt,at=k
]

∂pjt
satisfies the following equation:

∂E
[
V C
l (xt+1, Bt+1(Bt, s

(ccp)
t (Bt, p∗(Bt))))|xt, at = k

]
∂pjt

=
∑
xt+1

ψ(xt+1|x̃t, Bt, at = k̃)
∑
n

∂V C
l̃t+1

(xt+1, Bt+1)

∂B
(n)
t+1

∑
l

∑
xt

∑
k∈Al(xt)

∂B
(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lkt (xt, Bt, p∗(Bt))

∂s
(ccp)
lkt (xt, Bt, p∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

∂flj(xt, Bt, p∗j (Bt))

∂pjt
+

∑
xt+1

ψ(xt+1|x̃t, Bt, at = k̃)
∑
n

∂V C
l̃t+1

(xt+1, Bt+1)

∂B
(n)
t+1

∑
l

∑
xt

∑
k,h∈Al(xt)

∂B
(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lht (xt, Bt, p∗(Bt))

∂s
(ccp)
lht (xt, Bt, p∗(Bt))

∂ṽlkt(xt, Bt, p∗(Bt))
·

∂βCE
[
V C
l (Xt+1, Bt+1(Bt, s

(ccp)
t (Bt, p∗(Bt))))|xt, at = k

]
∂pjt

Here, we define the following NBt ×NBt dimensional matrix C(Bt) = (cqr) where

cqr ≡ βC
∑
xt+1

ψ(xt+1|x̃t, Bt, at = k̃)
∑
n

∂V C
l̃t+1

(xt+1, Bt+1)

∂B
(n)
t+1

∑
h∈Al(xt)

∂B
(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lht (xt, Bt, p∗(Bt))

∂s
(ccp)
lht (xt, Bt, p

∗(Bt))

∂ṽlkt(xt, Bt, p∗(Bt))

for q = GBt(l̃, x̃t, k̃) and r = GBt(l, xt, k). GBt(·) is the mapping from {(l, xt, k) |l ∈ {1, · · · , L}, xt ∈ Xt, k ∈ Al(xt)} to
{1, · · · , NBt}.

Let w(Bt) = (wr(Bt)) be NBt dimensional vector where

wr(Bt) =
∑
xt+1

ψ(xt+1|x̃t, Bt, at = k̃)
∑
n

∂V C
l̃t+1

(xt+1, Bt+1)

∂B
(n)
t+1

∂B
(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lkt (xt, Bt, p∗(Bt))

∂s
(ccp)
lkt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

∂flj(xt, Bt, p
∗
j (Bt))

∂pjt

for r = GBt(l, xt, k).
Let y(Bt) ≡ (yr(Bt)) be NBt dimensional vector where

yr(Bt) ≡
∂E
[
V C
l (xt+1, Bt+1(Bt, s

(ccp)
t (Bt, p

∗(Bt))))|xt, at = k
]

∂pjt

for r = GBt(l, xt, ait = k).
Since y(Bt) = w(Bt) + C(Bt)y(Bt) holds, we have:

y(Bt) = (I − C(Bt))
−1 w(Bt)

where I denotes the identity matrix.
Hence, using the formula in linear algebra, we have:

∥y(Bt)∥∞ ≤
∥∥(I − C(Bt))

−1
∥∥
∞ ∥w(Bt)∥∞

where ∥a∥∞ ≡ maxi ai is the infinity norm for a vector a = (ai) and ∥A∥∞ ≡ maxi

∑n
j=1 |aij | is the infinity norm for a n × n

dimensional matrix A = (aij).
Here, ∥w(Bt)∥∞ satisfies:
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∥w(Bt)∥∞

= max
l,xt,k∈Al(xt)

∣∣∣∣∣∣
∑
xt+1

ψ(xt+1|x̃t, Bt, at = k̃)
∑
n

∂V C
l̃t+1

(xt+1, Bt+1)

∂B
(n)
t+1

∂B
(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lkt (xt, Bt, p∗(Bt))

∂s
(ccp)
lkt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

∂flj(xt, Bt, p
∗
j (Bt))

∂pjt

∣∣∣∣∣∣
≤

[
max
l,xt+1

∑
n

∣∣∣∣∣∂Vl(xt+1, Bt+1)

∂B
(n)
t+1

∣∣∣∣∣
]
·

max
l,xt,k∈Al(xt),n

∣∣∣∣∣∣
∑
xt+1

ψ(xt+1|x̃t, Bt, at = k̃) ·

[∣∣∣∣∣∂B
(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lkt (xt, Bt)

∣∣∣∣∣
∣∣∣∣∣∂s(ccp)lkt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

∣∣∣∣∣
∣∣∣∣∂flj(xt, Bt, p

∗
j (Bt))

∂pjt

∣∣∣∣
]∣∣∣∣∣∣

≤ γ2 · max
l,xt,k∈Al(xt),n

∣∣∣∣∣ ∂B
(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lkt (xt, Bt, p∗(Bt))

∣∣∣∣∣
∣∣∣∣∣∂s(ccp)lkt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

∣∣∣∣∣
∣∣∣∣∂flj(xt, Bt, p

∗
j (Bt))

∂pjt

∣∣∣∣
≤ γ2 · max

l,xt,k∈Al(xt),n

∣∣∣∣∣ ∂B
(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lkt (xt, Bt, p∗(Bt))

∣∣∣∣∣ ·max
l,xt

[∣∣∣∣∣∂s
(ccp)
ljt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

∣∣∣∣∣
∣∣∣∣∂flj(xt, Bt, p

∗
j (Bt))

∂pjt

∣∣∣∣
]

(∵ Lemma 1)

≤ γ2γ3νj

Therefore, we obtain:

max
l,xt,k∈Al(xt)

∣∣∣∣∣∣
∂E
[
V C
l (xt+1, Bt+1(Bt, s

(ccp)
t (Bt, p

∗(Bt))))|xt, at = k
]

∂pjt

∣∣∣∣∣∣
= ∥y(Bt)∥∞
≤

∥∥(I − C(Bt))
−1
∥∥
∞ · ∥w(Bt)∥∞

=
∥∥(I − C(Bt))

−1
∥∥
∞ · γ2γ3νj

≤ γ1γ2γ3νj

Proof of Proposition 1

Proof. It follows that:

∣∣∣λC
j (Bt)

∣∣∣
=

∣∣∣∣∑l πl

∑
xt
Prlt(xt)

∑
k∈Al(xt)

∂βCE
[
V C
l (xt+1,Bt+1(Bt,s

(ccp)
t (Bt,p

∗(Bt))))|xt,at=k
]

∂pjt

∂s
(ccp)
ljt

(xt,Bt,p
∗(Bt))

∂ṽlkt(xt,Bt,p∗(Bt))

∣∣∣∣∑
l πl

∑
xt
Prlt(xt)

∣∣∣ ∂flj(xt,Bt,p
∗
j (Bt))

∂pjt

∣∣∣ ∂s
(ccp)
ljt

(xt,Bt,p∗(Bt))

∂ṽljt(xt,Bt,p∗(Bt))

≤

[
maxl,xt,k∈Al(xt)

∂βCE
[
V C
l (xt+1,Bt+1(Bt,s

(ccp)
t (Bt,p

∗(Bt))))|xt,at=k
]

∂pjt

]
·
∑

l πl

∑
xt
Prlt(xt)

∑
k∈Al(xt)

∣∣∣∣ ∂s(ccp)ljt
(xt,Bt,p

∗(Bt))

∂ṽlkt(xt,Bt,p∗(Bt))

∣∣∣∣∑
l πl

∑
xt
Prlt(xt)

∣∣∣ ∂flj(xt,Bt,p
∗
j (Bt))

∂pjt

∣∣∣ ∂s
(ccp)
ljt

(xt,Bt,p∗(Bt))

∂ṽljt(xt,Bt,p∗(Bt))

≤ βC

 max
l,xt,k∈Al(xt)

∂βCE
[
V C
l (xt+1, Bt+1(Bt, s

(ccp)
t (Bt, p

∗(Bt))))|xt, at = k
]

∂pjt

 ·

∑
l πl

∑
xt
Prlt(xt) · 2

∣∣∣∣ ∂s(ccp)ljt
(xt,Bt)

∂ṽljt(xt,Bt)

∣∣∣∣ ∣∣∣ ∂flj(xt,Bt,p
∗
j (Bt))

∂pjt

∣∣∣ ∣∣∣ ∂flj(xt,Bt,p
∗
j (Bt))

∂pjt

∣∣∣−1

∑
l πl

∑
xt
Prlt(xt)

∣∣∣ ∂flj(xt,Bt,p
∗
j (Bt))

∂pjt

∣∣∣ ∂s
(ccp)
ljt

(xt,Bt,p∗(Bt))

∂ṽljt(xt,Bt,p∗(Bt))

(∵ Lemma 2)

≤ 2βC

 max
l,xt,k∈Al(xt)

∂βCE
[
V C
l (xt+1, Bt+1(Bt, s

(ccp)
t (Bt, p

∗(Bt))))|xt, at = k
]

∂pjt

 ·

[
max
l,xt

∣∣∣∣∂flj(xt, Bt, p
∗
j (Bt))

∂pjt

∣∣∣∣−1
]

≤ 2βCγ1γ2γ3bj1νj (∵ Lemma 3)

Next, we prove Proposition 2. To prove it, we show the following lemmas in advance:
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Lemma 4. Following inequality holds:

∑∞
τ=0 β

τ+1
F

∑
m

∣∣∣∣ ∂ΠF
jt+τ+1(Bt+τ+1)

∂B
(m)
t+τ+1

∣∣∣∣
Msjt(Bt)

≤ (bj2bj3 + bj4)

Proof. First,
∑

m

∣∣∣∣ ∂ΠF
jt+τ+1(Bt+τ+1)

∂B
(m)
t+τ+1

∣∣∣∣ satisfies the following inequality:

∑
m

∣∣∣∣∣∂ΠF
jt+τ+1(Bt+τ+1)

∂B
(m)
t+τ+1

∣∣∣∣∣
=

∑
m

∣∣∣∣∣∂
[(
p∗j (Bt+τ+1)−mcj

)
·M

∑
l πlsljt+τ+1((Bt+τ+1, p

∗(Bt+τ+1)))
]

∂B
(m)
t+τ+1

∣∣∣∣∣
≤

∑
m

∣∣∣∣∣∂
[
M
∑

l πlsljt+τ+1

]
∂B

(m)
t+τ+1

∣∣∣∣∣ · max
τ∈Z+

|pjt+τ+1(Bt+τ+1)−mcj |+[
M
∑
l

πlsljt+τ+1

]
·
∑
m

∣∣∣∣∣∂pjt+τ+1(Bt+τ+1)

∂B
(m)
t+τ+1

∣∣∣∣∣
≤ M

∑
l

πl

[
max

l,

∑
m

∣∣∣∣∣∂ log sljt+τ+1((Bt+τ+1, p
∗(Bt+τ+1)))

∂B
(m)
t+τ+1

∣∣∣∣∣
]
sljt+τ+1 · max

τ∈Z+

∣∣p∗j (Bt+τ+1)−mcj
∣∣+[

M
∑
l

πlsljt+τ+1

]
·
∑
m

∣∣∣∣∣∂p∗j (Bt+τ+1)

∂B
(m)
t+τ+1

∣∣∣∣∣
≤

[
M
∑
l

πlsljt+τ+1

]
· (bj3bj2 + bj4)

Therefore, we obtain:

∑∞
τ=0 β

τ+1
F

∑
m

∣∣∣∣ ∂ΠF
jt+τ+1(Bt+τ+1)

∂B
(m)
t+τ+1

∣∣∣∣
Msjt(Bt, p∗(Bt))

≤
∑∞

τ=0 β
τ+1
F M

∑
l πlsljt+τ+1

M
∑

l πlsljt(Bt, p∗(Bt))
· (bj2bj3 + bj4)

≤

∑
l πlsljt ·

[
maxl

∑∞
τ=0 β

τ+1
F

sljt+τ+1

sljt

]
∑

l πlsljt(Bt, p∗(Bt))
· (bj2bj3 + bj4)

= (bj2bj3 + bj4)bj5

Lemma 5. maxn

∣∣∣∣ ∂B(n)
t+1(Bt,s

(ccp)
t (Bt,p

∗(Bt)))

∂pjt

∣∣∣∣ ≤ 2γ3(1 + βCγ1γ2γ3γ4)νj

Proof. It follows that:
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max
n

∣∣∣∣∣∂B
(n)
t+1(Bt, s

(ccp)
t (Bt, p

∗(Bt)))

∂pjt

∣∣∣∣∣
≤ max

n

∑
l

∑
xt

∑
k∈Al(xt)

∣∣∣∣∂flj(xt, Bt, p
∗
j (Bt))

∂pjt

∣∣∣∣
∣∣∣∣∣∂s(ccp)lkt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

∣∣∣∣∣
∣∣∣∣∣∂B

(n)
t+1(Bt, s

(ccp)
t (Bt, p

∗(Bt)))

∂s
(ccp)
lkt (xt, Bt, p∗(Bt))

∣∣∣∣∣+
max

n

∑
l

∑
xt

∑
k,h∈Al(xt)

∣∣∣∣∣∣
∂βCE

[
V C
l (xt+1, Bt+1(Bt, s

(ccp)
t (Bt, p

∗(Bt))))|xt, at = h
]

∂pjt

∣∣∣∣∣∣ ·∣∣∣∣∣∂s(ccp)lkt (xt, Bt, p
∗(Bt))

∂ṽlht(xt, Bt, p∗(Bt))

∣∣∣∣∣
∣∣∣∣∣ ∂B

(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lkt (xt, Bt, p∗(Bt))

∣∣∣∣∣
≤

[∑
l

∑
xt

max
k∈Al(xt),n

∣∣∣∣∣ ∂B
(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lkt (xt, Bt, p∗(Bt))

∣∣∣∣∣
]
· 2max

l,xt

(∣∣∣∣∂flj(xt, Bt, p
∗
j (Bt))

∂pjt

∣∣∣∣
∣∣∣∣∣∂s

(ccp)
ljt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, , p∗(Bt))

∣∣∣∣∣
)

+

βC

 max
l,xt,h∈Alt(xt)

∣∣∣∣∣∣
∂βCE

[
V C
l (xt+1, Bt+1(Bt, s

(ccp)
t (Bt, p

∗(Bt))))|xt, at = h
]

∂pjt

∣∣∣∣∣∣
 ·

max
l,xt

∑
k,h∈Al(xt)

∣∣∣∣∣∂s(ccp)lkt (xt, Bt, p
∗(Bt))

∂ṽlht(xt, Bt, p∗(Bt))

∣∣∣∣∣
[∑

l

∑
xt

max
k∈Al(xt)

∣∣∣∣∣ ∂B
(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lkt (xt, Bt, p∗(Bt))

∣∣∣∣∣
]

(∵ Lemma 1)

≤ 2γ3νj +

βC · γ1γ2γ3νj ·

2max
l,xt

∑
k∈Al(xt)

∣∣∣∣∂slkt(xt, Bt, p
∗(Bt))

∂ṽlkt(xt, Bt, p∗(Bt))

∣∣∣∣
 γ3 (∵ Lemma 2)

= 2γ3νj + βCγ1γ2γ3νj · 2γ4γ3
= 2(1 + βCγ1γ2γ3γ4)γ3νj

Proof of Proposition 2

Proof. First,
∣∣λF

j (Bt)
∣∣ satisfies the following inequality:

∣∣∣λF
j (Bt)

∣∣∣ =

∣∣∣∣∣∣∣
βF

∂V F
j (Bt+1(Bt,s

(ccp)
t (Bt,p

∗(Bt))))

∂pjt

Msjt

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
βF
∑

n

∂V F
j (Bt+1)

∂B
(n)
t+1

∂B
(n)
t+1(Bt,s

(ccp)
t (Bt,p

∗(Bt)))

∂pjt

Msjt

∣∣∣∣∣∣∣∣
≤


∑

n

∣∣∣∣ ∂βF V F
j (Bt+1)

∂B
(n)
t+1

∣∣∣∣
Msjt

 ·

[
max

n

∣∣∣∣∣∂B
(n)
t+1(Bt, s

(ccp)
t (Bt, p

∗(Bt)))

∂pjt

∣∣∣∣∣
]

Here,

∣∣∣∣∣∣∣
∑

n

∂βF V F
j (Bt+1)

∂B
(n)
t+1

Msjt

∣∣∣∣∣∣∣ satisfies:∣∣∣∣∣∣∣∣
∑

n

∂βF V F
j (Bt+1)

∂B
(n)
t+1

Msjt

∣∣∣∣∣∣∣∣ ≤ 1

Msjt

∞∑
τ=0

βτ+1
F

∑
n,m

∣∣∣∣∣∂B
(m)
t+τ+1

∂B
(n)
t+1

∣∣∣∣∣
∣∣∣∣∣∂ΠF

jt+τ+1(Bt+τ+1)

∂B
(m)
t+τ+1

∣∣∣∣∣

≤

[
max

τ∈Z+,m

∑
n

∣∣∣∣∣∂B
(m)
t+τ+1

∂B
(n)
t+1

∣∣∣∣∣
]
·

∑∞
τ=0 β

τ+1
F

∑
m

∣∣∣∣ ∂ΠF
jt+τ+1(Bt+τ+1)

∂B
(m)
t+τ+1

∣∣∣∣
Msjt

≤ γ5 · (bj2bj3 + bj4) (∵ Lemma 4)

Hence, by Lemma 5, we have:
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∣∣∣λF
j (Bt)

∣∣∣ ≤ 2γ3(1 + βCγ1γ2γ3γ4)(bj2bj3 + bj4)bj5γ5νj

Proof of Proposition 4

Proof. When ϵiljt follows Gumbel distribution with scale parameter 1,
∣∣∣ ∂ log skt(Bt,p

∗(Bt))
∂pjt

∣∣∣ satisfies:
∣∣∣∣∂ log skt(Bt, p

∗(Bt))

∂pjt

∣∣∣∣
=

∣∣∣∣∂skt(Bt, p
∗(Bt))

∂pjt

1

skt(Bt, p∗(Bt)

∣∣∣∣
=

∑
l πl

∑
xt
Prlt(xt)

∣∣∣∣ ∂s(ccp)lkt
(xt,Bt,p

∗(Bt))

∂pjt

∣∣∣∣∑
l πl

∑
xt
Prlt(xt)s

(ccp)
lkt (xt, Bt, p∗(Bt))

=

∑
l πl

∑
xt
Prlt(xt)s

(ccp)
lkt (xt, Bt, p

∗(Bt))

∣∣∣∣ ∂s(ccp)lkt
(xt,Bt,p

∗(Bt))

∂pjt

1

s
(ccp)
lkt

(xt,Bt,p∗(Bt))

∣∣∣∣∑
l πl

∑
xt
Prlt(xt)s

(ccp)
lkt (xt, Bt, p∗(Bt))

≤ max
l,xt

∣∣∣∣∣∂s(ccp)lkt (xt, Bt, p
∗(Bt))

∂pjt

1

s
(ccp)
lkt (xt, Bt, p∗(Bt))

∣∣∣∣∣
≤ max

l,xt

[∣∣∣∣∂flj(xt, Bt, p
∗
j (Bt))

∂pjt

∣∣∣∣
∣∣∣∣∣∂s(ccp)lkt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

1

s
(ccp)
lkt (xt, Bt, p∗(Bt))

∣∣∣∣∣
]
+

max
l,xt

 ∑
h∈Al(xt)

∣∣∣∣∣∣
∂βCE

[
V C
l (xt+1, Bt+1(Bt, s

(ccp)
t (Bt, p

∗(Bt))))|xt, at = h
]

∂pjt

∣∣∣∣∣∣
∣∣∣∣∣∂s(ccp)lkt (xt, Bt, p

∗(Bt))

∂ṽlht(xt, Bt, p∗(Bt))

1

s
(ccp)
lkt (xt, Bt, p∗(Bt))

∣∣∣∣∣


≤ max
l,xt

∣∣∣∣∂flj(xt, Bt, p
∗
j (Bt))

∂pjt

∣∣∣∣ ·max
l,xt

∣∣∣∣∣∂s(ccp)lkt (xt, Bt, p
∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

1

s
(ccp)
lkt (xt, Bt, p∗(Bt))

∣∣∣∣∣+ max
l,xt,h∈Al(xt)

∣∣∣∣∣∣
∂βCE

[
V C
l (xt+1, Bt+1(Bt, s

(ccp)
t (Bt, p

∗(Bt))))|xt, at = h
]

∂pjt

∣∣∣∣∣∣
 ·

max
l,xt

∑
h∈Al(xt)

∣∣∣∣∣∂s(ccp)lkt (xt, Bt, p
∗(Bt))

∂ṽlht(xt, Bt, p∗(Bt))

1

s
(ccp)
lkt (xt, Bt, p∗(Bt))

∣∣∣∣∣


= bj7 ·max
l,xt

∣∣∣∣∣s(ccp)ljt (xt, Bt, p
∗(Bt))s

(ccp)
lkt (xt, Bt, p

∗(Bt))
1

s
(ccp)
lkt (xt, Bt, p∗(Bt))

∣∣∣∣∣+
βCγ1γ2γ3νj ·

[
max
l,xt

2

∣∣∣∣∣∂s(ccp)lkt (xt, Bt, p
∗(Bt))

∂ṽlkt(xt, Bt, p∗(Bt))

1

s
(ccp)
lkt (xt, Bt, p∗(Bt))

∣∣∣∣∣
]

(∵ Lemmas 2, 3)

= bj7 ·max
l,xt

s
(ccp)
ljt (xt, Bt, p

∗(Bt)) + 2βCγ1γ2γ3νj

[
max
l,xt

s
(ccp)
lkt (xt, Bt, p

∗(Bt))(1− s
(ccp)
lkt (xt, Bt, p

∗(Bt)))

]
= bj7 ·max

l,xt

s
(ccp)
ljt (xt, Bt, p

∗(Bt)) + 2βCγ1γ2γ3bj6 max
l,xt

s
(ccp)
ljt (xt, Bt, p

∗(Bt))
(
∵ s(ccp)lkt (xt, Bt, p

∗(Bt))(1− s
(ccp)
lkt (xt, Bt, p

∗(Bt))) < 1
)

Furthermore,
∣∣∣ ∂ log skt+τ

∂pjt

∣∣∣ satisfies:

27



∣∣∣∣∣∂ log skt+τ (Bt+τ (Bt+1(Bt, s
(ccp)
t (Bt, p

∗(Bt)))))

∂pjt

∣∣∣∣∣ ≤

[
max

n

∣∣∣∣∣∂B
(n)
t+1(Bt, s

(ccp)
t (Bt, p

∗(Bt)))

∂pjt

∣∣∣∣∣
] [∑

n,m

∂B
(m)
t+τ

∂B
(n)
t+1

∂ log skt+τ

∂B
(m)
t+τ

]

≤

[
max

n

∣∣∣∣∣∂B
(n)
t+1(Bt, s

(ccp)
t (Bt, p

∗(Bt)))

∂pjt

∣∣∣∣∣
]
·

[
max
m

∑
n

∂B
(m)
t+τ

∂B
(n)
t+1

]
·

[∑
m

∂ log skt+τ

∂B
(m)
t+τ

]

≤ 2γ3(1 + βCγ1γ2γ3γ4)νj · γ5 ·

[∑
m

∂ log skt+τ

∂B
(m)
t+τ

]
(∵ Lemma 5)

≤ 2γ3(1 + βCγ1γ2γ3γ4)νj · γ5 ·

∑
l πl

∑
m

∣∣∣∣ ∂slkt+τ

∂B
(m)
t+τ

∣∣∣∣∑
l πlslkt+τ

≤ 2γ3(1 + βCγ1γ2γ3γ4)νj · γ5 · max
l,τ∈N

∑
m

∣∣∣∣∣∂slkt+τ

∂B
(m)
t+τ

1

slkt+τ

∣∣∣∣∣
= 2γ3(1 + βCγ1γ2γ3γ4)νj · γ5 · bj3

≤ 2γ3(1 + βCγ1γ2γ3γ4)bj3γ5bj6 ·
[
max
l,xt

s
(ccp)
ljt (xt, Bt, p

∗(Bt))

]

B Further consideration of Assumption 2

In this section, we consider the validity of Assumption 2. we show that (I − C(Bt))
−1 would exist and the terms γ1, · · · , γ5 and

bj1, · · · , bj5 would take finite values in standard settings. The results hold even when s
(ccp)
ljt (xt, Bt, p

∗(Bt)) is so small, or the number
of firms is large, for instance.

The existence of (I − C(Bt))
−1

Even though we imposed the assumption that the inverse matrix of I − C(Bt) exists, we can show the existence of the matrix if
2βCγ2γ3γ4 < 1. First,

∑
r |cqr| satisfies the following inequality:

∑
r

|cqr|

=
∑
l

∑
xt

∑
k∈Al(xt)

βC
∑
xt+1

ψ(xt+1|x̃t, Bt, at = k̃)
∑
n

∣∣∣∣∣∂V
C
l̃t+1

(xt+1, Bt+1)

∂B
(n)
t+1

∣∣∣∣∣ ∑
h∈Al(xt)

∣∣∣∣∣∂s(ccp)lht (xt, Bt, p
∗(Bt))

∂ṽlkt(xt, Bt, p∗(Bt))

∣∣∣∣∣
∣∣∣∣∣ ∂B

(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lht (xt, Bt, p∗(Bt))

∣∣∣∣∣
≤

[
max
l̃,xt+1

∑
n

∣∣∣∣∣∂V
C
l̃t+1

(xt+1, Bt+1)

∂B
(n)
t+1

∣∣∣∣∣
]
·
∑
l

∑
xt

∑
k,h∈Al(xt)

βC

∑
xt+1

ψ(xt+1|x̃t, Bt, at = k̃)

 ∣∣∣∣∣∂s(ccp)lht (xt, Bt, p
∗(Bt))

∂ṽlkt(xt, Bt, p∗(Bt))

∣∣∣∣∣
∣∣∣∣∣ ∂B

(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lht (xt, Bt, p∗(Bt))

∣∣∣∣∣
≤ βCγ2 ·

[∑
l

∑
xt

max
h∈Al(xt),n

∣∣∣∣∣ ∂B
(n)
t+1(Bt, s

(ccp)
t )

∂s
(ccp)
lht (xt, Bt, p∗(Bt))

∣∣∣∣∣
]
·

max
l,xt

∑
k,h∈Al(xt)

∣∣∣∣∣∂s(ccp)lht (xt, Bt, p
∗(Bt))

∂ṽlkt(xt, Bt, p∗(Bt))

∣∣∣∣∣


≤ 2βCγ2γ3γ4

∵
∑

k,h∈Al(xt)

∣∣∣∣∣∂s(ccp)lht (xt, Bt, p
∗(Bt))

∂ṽlkt(xt, Bt, p∗(Bt))

∣∣∣∣∣ = 2
∑

k∈Al(xt)

∣∣∣∣∣∂s(ccp)lkt (xt, Bt, p
∗(Bt))

∂ṽlkt(xt, Bt, p∗(Bt))

∣∣∣∣∣ by Lemma 2


Here, we define (eqr)qr ≡ E(Bt) ≡ I −C(Bt), for convenience. If we presume that 2βCγ2γ3γ4 < 1 holds, |cqq| < 2βCγ2γ3γ4 < 1

and

|eqq| −
∑

r∈{1,··· ,NBt}−{q}

|eqr| = |1− cqq| −
∑

r∈{1,··· ,NBt}−{q}

|cqr|

= 1− cqq −
∑

r∈{1,··· ,NBt}−{q}

|cqr|

≥ 1−
∑

r∈{1,··· ,NBt}
|cqr| (∵ −cqq ≥ −|cqq|)

≥ 1− 2βCγ2γ3γ4
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Hence, if 2βCγ2γ3γ4 < 1 holds, |eqq| −
∑

r∈{1,··· ,NBt}−{q} |eqr| > 0 and E(Bt) ≡ I − C(Bt) is a strictly diagonally dominant

matrix. Then, by Levy-Desplanques theorem (see Corollary 5.6.17 of Horn and Johnson (2012)), I − C(Bt) is nonsingular and its
inverse matrix exists.

γ1(Infinity norm of the inverse matrix)

If 2βCγ2γ3γ4 < 1 holds, by using Ahlberg-Nilson-Varah bound (Ahlberg and Nilson, 1963, Varah, 1975; see Theorem 1 of Varah,
1975), it follows that:

γ1 ≡
∥∥(I − C(Bt))

−1
∥∥
∞

=
∥∥(E(Bt))

−1
∥∥
∞

≤ 1

minq

(
|eqq| −

∑
r∈{1,··· ,NBt

}−{q} |eqr|
)

≤ 1

1− 2βCγ2γ3γ4

∵ |eqq| −
∑

r∈{1,··· ,NBt}−{q}

|eqr| ≥ 1− 2βCγ2γ3γ4 ∀q


γ2 (Change in consumers’ value function in response to the aggregate state change)

Define the term ζlt+τ (xt+1, Bt+1) ≡
∑

xt+τ

∑
h∈Al(xt+τ )

∂V C
l (xt+1,Bt+1)

∂ ˜vlht+τ (xt+τ ,Bt+τ ,p∗(Bt+τ ))
. We use the following lemma.

Lemma 6. If ϵiljt follows Gumbel distribution with scale parameter 1,

ζlt+τ (xt+1, Bt+1) = βCζlt+τ−1(xt+1, Bt+1) ∀τ ≥ 2

= βτ−1
C

Proof. First, ζlt+τ (xt+1, Bt+1) satisfies the following equation:

ζlt+τ (xt+1, Bt+1)

=
∑
xt+τ

∑
h∈Al(xt+τ )

∂V C
l (xt+1, Bt+1)

∂ṽlht+τ (xt+τ , Bt+τ , p∗(Bt+τ ))

=
∑
xt+τ

∑
h∈Al(xt+τ )

∂V C
lt+τ (xt+τ , Bt+τ )

∂ṽlht+τ (xt+τ , Bt+τ , p∗(Bt+τ ))
·

∑
xt+τ−1

∑
k∈Al(xt+τ−1)

∂ ˜vlkt+τ−1(xt+τ−1, Bt+τ−1, p
∗(Bt+τ−1))

∂V C
lt+τ (xt+τ , Bt+τ )

∂V C
l (xt+1, Bt+1)

∂ ˜vlkt+τ−1(xt+τ−1, Bt+τ−1, p∗(Bt+τ−1))

If ϵiljt follows Gumbel distribution with scale parameter 1,

∑
h∈Al(xt+τ )

∂V C
lt+τ (xt+τ , Bt+τ )

∂ṽlht+τ (xt+τ , Bt+τ , p∗(Bt+τ ))

=
∑

h∈Al(xt+τ )

∂ log
(∑

h̃∈Al(xt+τ ) exp
(
ṽlh̃t+τ (xt+τ , Bt+τ , p

∗(Bt+τ ))
))

∂ṽlht+τ (xt+τ , Bt+τ , p∗(Bt+τ ))

=
∑

h∈Al(xt+τ )

exp
(
ṽlht+τ (xt+τ , Bt+τ , p

∗(Bt+τ ))
)∑

h̃∈Al(xt+τ ) exp
(
ṽlh̃t+τ (xt+τ , Bt+τ , p∗(Bt+τ ))

)
= 1

Using these equations, we obtain:
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ζlt+τ (xt+1, Bt+1)

≡
∑
xt+τ

∑
h∈Al(xt+τ )

∂V C
l (xt+1, Bt+1)

∂ṽlht+τ (xt+τ , Bt+τ , p∗(Bt+τ ))

=
∑
xt+τ

1 ·
∑

xt+τ−1

∑
k∈Al(xt+τ−1)

∂ ˜vlkt+τ−1(xt+τ−1, Bt+τ−1, p
∗(Bt+τ−1))

∂V C
lt+τ (xt+τ , Bt+τ )

∂V C
l (xt+1, Bt+1)

∂ ˜vlkt+τ−1(xt+τ−1, Bt+τ−1, p∗(Bt+τ−1))

=
∑

xt+τ−1

∑
k∈Al(xt+τ−1)

∑
xt+τ

∂ ˜vlkt+τ−1(xt+τ−1, Bt+τ−1, p
∗(Bt+τ−1))

∂V C
lt+τ (xt+τ , Bt+τ )

 · ∂V C
l (xt+1, Bt+1)

∂ ˜vlkt+τ−1(xt+τ−1, Bt+τ−1, p∗(Bt+τ−1))

=
∑

xt+τ−1

∑
k∈Al(xt+τ−1)

∑
xt+τ

βCψ(xt+τ |xt+τ−1, Bt+τ−1, at+τ−1 = k)

 · ∂V C
l (xt+1, Bt+1)

∂ ˜vlkt+τ−1(xt+τ−1, Bt+τ−1, p∗(Bt+τ−1))

= βC
∑

xt+τ−1

∑
k∈Al(xt+τ−1)

· ∂V C
l (xt+1, Bt+1)

∂ ˜vlkt+τ−1(xt+τ−1, Bt+τ−1, p∗(Bt+τ−1))

= βCζlt+τ−1(xt+1, Bt+1)

Furthermore,

ζlt+τ (xt+1, Bt+1)

= βCζlt+τ−1(xt+1, Bt+1)

= · · ·
= βτ−2

C ζlt+2(xt+1, Bt+1)

= βτ−2
C

∑
xt+2

∑
m∈Al(xt+2)

∂V C
l (xt+1, Bt+1)

∂ṽlmt+2(xt+2, Bt+2, p∗(Bt+2))

= βτ−2
C

∑
xt+2

∑
m∈Al(xt+2)

∂V C
lt+2(xt+2, Bt+2)

∂ṽlmt+2(xt+2, Bt+2, p∗(Bt+2))

∑
n∈Al(xt+1)

∂ṽlnt+1(xt+1, Bt+1, p
∗(Bt+1))

∂V C
lt+2(xt+2, Bt+2)

∂V C
l (xt+1, Bt+1)

∂ṽlnt+1(xt+1, Bt+1, p∗(Bt+1))

= βτ−2
C

∑
xt+2

∑
m∈Al(xt+2)

exp
(
ṽlmt+2(xt+2, Bt+2, p

∗(Bt+2))
)∑

m̃∈Al(xt+2)
exp

(
ṽlm̃t+2(xt+2, Bt+2, p∗(Bt+2))

) ·

∑
n∈Al(xt+1)

βCψ(xt+2|xt+1, Bt+1, at+1 = n)
exp

(
ṽlnt+1(xt+1, Bt+1, p

∗(Bt+1))
)∑

ñ∈Al(xt+1)
exp

(
ṽlñt+1(xt+1, Bt+1, p∗(Bt+1))

)
= βτ−1

C

Using Lemma 6, we can derive the upper bound of γ2:

γ2 ≡ max
l,xt+1

∑
n

∣∣∣∣∣∂V C
l (xt+1, Bt+1)

∂B
(n)
t+1

∣∣∣∣∣
≤ max

l,xt+1

∑
n

∞∑
τ=1

∑
h∈J

∣∣∣∣∣∂pht+τ

∂B
(n)
t+1

∣∣∣∣∣ ∑
xt+τ

∣∣∣∣∂flh(xt+τ , Bt+τ , p
∗
h(Bt+τ ))

∂pht+τ

∣∣∣∣ ∣∣∣∣ ∂V C
l (xt+1, Bt+1)

∂ṽlht+τ (xt+τ , Bt+τ , , p∗(Bt+τ ))

∣∣∣∣
≤

[
max

h∈J ,τ∈N

∑
n

∣∣∣∣∣∂pht+τ

∂B
(n)
t+1

∣∣∣∣∣
]
·
[

max
lxt+τ ,τ∈N,,h∈Al(xt+τ )

∣∣∣∣∂flh(xt+τ , Bt+τ , p
∗
h(Bt+τ ))

∂pht+τ

∣∣∣∣] ·max
l,xt+1

∞∑
τ=1

∑
xt+τ

∑
h∈Al(xt+τ )

∣∣∣∣ ∂V C
l (xt+1, Bt+1)

∂ṽlht+τ (xt+τ , Bt+τ , p∗(Bt+τ ))

∣∣∣∣


≤

[
max

h∈J ,τ∈N

∑
n

∣∣∣∣∣∂pht+τ

∂B
(n)
t+1

∣∣∣∣∣
]
·
[

max
l,xt+τ ,τ∈N,h∈Al(xt+τ )

∣∣∣∣∂flh(xt+τ , Bt+τ , p
∗
h(Bt+τ ))

∂pht+τ

∣∣∣∣] ·
[
max
l,xt+1

∞∑
τ=1

ζlt+τ (xt+1, Bt+1)

]

=

[
max

h∈J ,τ∈N

∑
n

∣∣∣∣∣∂pht+τ

∂B
(n)
t+1

∣∣∣∣∣
]
·
[

max
l,xt+τ ,τ∈N,h∈Al(xt+τ )

∣∣∣∣∂flh(xt+τ , Bt+τ , p
∗
h(Bt+τ ))

∂pht+τ

∣∣∣∣] · ∞∑
τ=1

βτ−1
C (∵ Lemma 6)

=
1

1− βC

[
max

l,xt,h∈J ,τ∈N,,k∈Al(xt)

∣∣∣∣∣∂pht+τ

∂B
(n)
t+1

∣∣∣∣∣
]
·
[

max
l,xt+τ ,τ∈N,,h∈Al(xt+τ )

∣∣∣∣∂flh(xt+τ , Bt+τ , p
∗
h(Bt+τ ))

∂pht+τ

∣∣∣∣]

30



Moreover, in the case of perfectly durable goods with no persistent consumer heterogeneity and no network effects, the term

maxh∈J ,τ∈N
∑

n

∣∣∣∣ ∂pht+τ

∂B
(n)
t+1

∣∣∣∣ is equal to zero and γ2 = 0 holds. For details, see the discussion on perfectly durable goods at the end of

this section.

γ3 (Next period’s aggregate state’s response to the current CCP’s change)

The value is determined by the state transition process. If it is well-behaved, γ3 ≡
∑

l

∑
xt

maxk∈Al(xt),n

∣∣∣∣ ∂B
(n)
t+1(Bt,s

(ccp)
t )

∂s
(ccp)
lkt

(xt,Bt,p∗(Bt))

∣∣∣∣ would
take a finite value.

γ4 (Sum of the current CCP change in response to the current utility change)

Consider the case where ϵiljt follows Gumbel distribution with scale parameter 1. Then,

γ4 ≡ max
l,xt

∑
k∈Al(xt)

∂s
(ccp)
lkt (xt, Bt, p

∗(Bt))

∂ṽlkt(xt, Bt, p∗(Bt))

= max
l,xt

∑
k∈Al(xt)

s
(ccp)
lkt (xt, Bt, p

∗(Bt))
(
1− s

(ccp)
lkt (xt, Bt, p

∗(Bt))
)

= max
l,xt

 ∑
k∈Al(xt)

s
(ccp)
lkt (xt, Bt, p

∗(Bt))−
∑

k∈Al(xt)

s
(ccp)
lkt (xt, Bt, p

∗(Bt))
2


< 1

∵
∑

k∈Al(xt)

s
(ccp)
lkt (xt, Bt, p

∗(Bt)) = 1,
∑

k∈Al(xt)

s
(ccp)
lkt (xt, Bt, p

∗(Bt))
2 > 0


γ5 (Future aggregate state response to the current aggregate state change)

The value of γ5 ≡ maxτ∈Z+,m

∑
n

∣∣∣∣ ∂B(m)
t+τ+1

∂B
(n)
t+1

∣∣∣∣ is determined by the future state transition process and firms’ equilibrium prices based

on the aggregate state variables. If they are well-behaved, γ5 would take a finite value. Moreover, in the case of perfectly durable
goods with no persistent consumer heterogeneity and no network effects, γ5 = 1 holds. See the discussion on perfectly durable goods
at the end of this section for details.

bj1 (Inverse of the marginal utility of money)

If the utility function is quasi-linear and
∂flj(xt,Bt,p

∗
j (Bt))

∂pjt
= −αl ∀xt, l holds, bj1 ≡ maxl,xt

∣∣∣ ∂flj(xt,Bt,p
∗
j (Bt))

∂pjt

∣∣∣−1

= maxl α
−1
l and

bj1 takes a finite value as long as the values of α−1
l are finite for all consumer types l.

bj2(Absolute value of the margin)

If the equilibrium price is well-behaved, bj2 ≡ maxτ∈N
∣∣p∗j (Bt+τ (Bt))−mcj

∣∣ would be finite.

bj3 (Semi-elasticity of the future demand with respect to the aggregate state)

bj3 satisfies the following inequality:
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bj3

≡ max
l,τ∈Z+

∑
n

∣∣∣∣∣∂ log sljt+τ+1(Bt+τ+1)

∂B
(n)
t+τ+1

∣∣∣∣∣
≤ max

l,τ∈Z+

∑
n

∣∣∣∣∑xt+τ+1
Prlt+τ+1(xt+τ+1)

∂s
(ccp)
ljt+τ+1

(xt+τ+1,Bt+τ+1)

∂B
(n)
t+τ+1

∣∣∣∣∑
xt+τ+1

Prlt+τ+1(xt+τ+1)s
(ccp)
ljt+τ+1(xt+τ+1, Bt+τ+1)

+

max
l,τ∈Z+

∑
n

∣∣∣∣∑xt+τ+1

∂Prlt+τ+1(xt+τ+1)

∂B
(n)
t+τ+1

s
(ccp)
ljt+τ+1(xt+τ+1, Bt+τ+1)

∣∣∣∣∑
xt+τ+1

Prlt+τ+1(xt+τ+1)s
(ccp)
ljt+τ+1(xt+τ+1, Bt+τ+1)

= max
l,τ∈Z+

∑
n

∣∣∣∣∑xt+τ+1
Prlt+τ+1(xt+τ+1)s

(ccp)
ljt+τ+1(xt+τ+1, Bt+τ+1)

∂ log s
(ccp)
ljt+τ+1

(xt+τ+1,Bt+τ+1)

∂B
(n)
t+τ+1

∣∣∣∣∑
xt+τ+1

Prlt+τ+1(xt+τ+1)s
(ccp)
ljt+τ+1(xt+τ+1, Bt+τ+1)

+

max
l,τ∈Z+

∑
n

∣∣∣∣∑xt+τ+1

∂ logPrlt+τ+1(xt+τ+1)

∂B
(n)
t+τ+1

Prlt+τ+1(xt+τ+1)s
(ccp)
ljt+τ+1(xt+τ+1, Bt+τ+1)

∣∣∣∣∑
xt+τ+1

Prlt+τ+1(xt+τ+1)s
(ccp)
ljt+τ+1(xt+τ+1, Bt+τ+1)

≤ max
l,τ∈Z+,xt+τ+1

∑
n

∣∣∣∣∣∂ log s
(ccp)
ljt+τ+1(xt+τ+1, Bt+τ+1)

∂B
(n)
t+τ+1

∣∣∣∣∣+ max
l,τ∈Z+,xt+τ+1

∑
n

∣∣∣∣∣∂ logPrlt+τ+1(xt+τ+1)

∂B
(n)
t+τ+1

∣∣∣∣∣
First, the term maxl,τ∈Z+,xt+τ+1

∑
n

∣∣∣∣ ∂ log s
(ccp)
ljt+τ+1

(xt+τ+1,Bt+τ+1)

∂B
(n)
t+τ+1

∣∣∣∣ would take a finite value in normal settings. In

the case of perfectly durable goods with no persistent consumer heterogeneity and no network effects, the term

maxl,τ∈Z+,xt+τ+1

∑
n

∣∣∣∣ ∂ log s
(ccp)
ljt+τ+1

(xt+τ+1,Bt+τ+1(Bt))

∂B
(n)
t+τ+1

∣∣∣∣ is equal to zero, as we discuss later.

Second, it is plausible to assume that the term maxl,τ∈Z+,xt+τ+1

∑
n

∣∣∣∣ ∂ logPrlt+τ+1(xt+τ+1)

∂B
(n)
t+τ+1

∣∣∣∣ takes a finite value. When the goods

is perfectly durable and ϵiljt follows Gumbel distribution, we can show that the term maxl,τ∈Z+,xt+τ+1

∑
n

∣∣∣∣ ∂ logPrlt+τ+1(xt+τ+1)

∂B
(n)
t+τ+1

∣∣∣∣
takes a finite value. Suppose that ∃l, xt+τ+1 s.t. Prlt+τ+1(xt+τ+1) = B

(n)
t+τ+1. Then,

max
l,τ∈Z+,xt+τ+1

∑
n

∣∣∣∣∣∂ logPrlt+τ+1(xt+τ+1)

∂B
(n)
t+τ+1

∣∣∣∣∣ = max
l,τ∈Z+,xt+τ+1

∑
l

∣∣∣∣∂ logPrlt+τ+1(xt+τ+1)

∂Prlt+τ+1(xt+τ+1)

∣∣∣∣
= max

l,τ∈Z+,xt+τ+1

∑
l

1

Prlt+τ+1(xt+τ+1)

Hence, if 1
Prlt+τ+1(xt+τ+1)

takes a finite value (Prlt+τ+1(xt+τ+1) is not sufficiently close to zero), it is plausible to assume that

bj3 is finite.

bj4 (Future price change in response to the current aggregate state change)

If the equilibrium price is well-behaved, bj4 ≡ maxτ∈Z+

∑
n

∣∣∣∣ ∂p∗j (Bt+τ+1)

∂B
(n)
t+τ+1

∣∣∣∣ would be finite. Moreover, in the case of perfectly durable

goods with no persistent consumer heterogeneity and no network effects, bj4 is equal to zero. For details, see the discussion on
perfectly durable goods at the end of this section.

bj5 (Ratio of the future demand to the current demand)

bj5 ≡ maxl

∑∞
τ=0 β

τ+1
F

sljt+τ+1(Bt+τ+1(Bt))

sljt(Bt)
takes a small value when the relative size of the future demand sljt+τ (Bt+τ+1(Bt))

compared to the current demand sljt(Bt) is small. Note that bj5 may take a large or infinite value if the size of the future demand
is much larger than the current demand. For example, if network effects exist, demand for the product may grow so rapidly. In this
case, bj5 might be large. Intuitively, if the future demand is so large compared to the current demand, the firm would make much
of the future demand. Consequently, the static approximation might not work well if bj5 is large.

The case of perfectly durable goods with no persistent consumer heterogeneity and no network effects

Here, we consider the case of perfectly durable goods, where consumers would not buy anymore after purchasing any product. We
do not allow the existence of persistent consumer heterogeneity here and assume that only one consumer type exists. Let xt = 0
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be the state where consumers do not own any product. Consumers make purchase decisions only when they are at state xt = 0.
Furthermore, let Bt = Prt(xt = 0) be the fraction of consumers who do not own any product at the beginning of time t21. We
consider an environment where marginal cost and flow utility do not change over time, for simplicity. Besides, we consider the case
where the CCPs do not depend on Bt, and focus on the environment where no network effects exist.

Under the setting, we can show that the equilibrium prices do not depend on the aggregate states Bt. To prove the statement,
guess the equilibrium price of firm k ∈ J in the following form:

p∗k(Bt) = θk ·mck

where θk is a parameter which does not depend on Bt. In addition, guess that consumers’ value functions V C
t (xt, Bt) do not

depend on Bt. In this case, E
[
V C
t+1(xt+1, Bt+1(Bt, s

(ccp)
t (Bt, pt)))|xt, at

]
do not depend on pt. The transition process of Bt is in

the following form:

Bt+1 = s
(ccp)
0t (xt = 0, p∗) ·Bt (16)

Then, firm k’s value function V F
kt+1 is in the following form:

V F
k (Bt+1) =

∞∑
τ=1

βτ−1
F MBt+τ · s(ccp)kt+τ (xt+τ , p

∗)

= M

∞∑
τ=1

βτ−1
F

[
τ−1∏
u=1

s
(ccp)
0t+u (xt+u = 0, p∗)

]
Bt+1 · s(ccp)kt+τ (xt+τ = 0, p∗)

By (16),
∂Bt+1

∂pkt
=

∂s
(ccp)
0t (xt=0,p∗k,p

∗
−k)

∂pkt

∂Bt+1(Bt,s
(ccp)
t )

∂s
(ccp)
0t (xt=0,p∗

k
,p∗−k

)
=

∂s
(ccp)
0t (xt=0,p∗k,p

∗
−k)

∂pkt
Bt holds. Then, by (11), p∗k = θk · mck should

satisfy the following first order condition:

0 = MBts
(ccp)
kt (xt = 0, p∗k, p

∗
−k) + (p∗k −mck)MBt

∂fk(xt = 0, p∗k)

∂pkt

∂s
(ccp)
kt (xt = 0, p∗)

∂ṽkt(xt = 0, p∗)
+

βF
∂Bt+1(Bt, s

(ccp)
t (Bt, p

∗))

∂pkt

∂V F
j (Bt+1)

∂Bt+1

= MBts
(ccp)
kt (xt = 0, p∗) +M(θk − 1)mckBt

∂fkt(xt = 0, p∗k)

∂pkt

∂s
(ccp)
kt (xt = 0, p∗)

∂ṽkt(xt = 0, p∗)
+

βF
∂s

(ccp)
0t (xt = 0, p∗)

∂pkt
Bt ·M

∞∑
τ=1

βτ−1
F

[
τ−1∏
u=1

s
(ccp)
0t+u (xt+u = 0, p∗)

]
· s(ccp)kt+τ (xt+τ = 0, p∗) (∵ (16))

Hence, we obtain:

0 = s
(ccp)
kt (xt = 0, p∗) + (θk − 1)mck

∂fkt(xt = 0, p∗k)

∂pkt

∂s
(ccp)
kt (xt = 0, p∗)

∂ṽkt(xt = 0, p∗)
+

βF
∂s

(ccp)
0t (xt = 0, p∗)

∂pkt
·

∞∑
τ=1

βτ−1
F

[
τ−1∏
u=1

s
(ccp)
0t+u (xt+u = 0, p∗)

]
· s(ccp)kt+τ (xt+τ = 0, p∗)

Note that this equation does not depend on aggregate state variables Bt. Then, if the parameters {θk}k∈J satisfy the equation
above, p∗k(Bt) = θk ·mck is the equilibrium price.

Intuitively, under the condition that the goods are perfectly durable, no persistent heterogeneity exists, and no network effects
exist, firms and consumers play the same games over time except for the potential number of consumers M · Bt. Hence, the
equilibrium prices do not depend on aggregate state variables Bt.

Furthermore, the result implies that current CCPs do not affect future prices and future CCPs. Hence, we can easily derive the
following equations:

21We omit subscript l since only one consumer type exists.
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max
h∈J ,τ∈N

∑
n

∣∣∣∣∣∂pht+τ

∂B
(n)
t+1

∣∣∣∣∣ = 0

max
l,τ∈Z+,xt+τ+1

∑
n

∣∣∣∣∣∂ log s
(ccp)
ljt+τ+1(xt+τ+1, Bt+τ+1)

∂B
(n)
t+τ+1

∣∣∣∣∣ = 0

(γ5 ≡) max
τ∈Z+,m

∑
n

∣∣∣∣∣∂B
(m)
t+τ+1

∂B
(n)
t+1

∣∣∣∣∣ = 1

(bj4 ≡) max
τ∈Z+

∑
n

∣∣∣∣∣∂pjt+τ+1(Bt+τ+1)

∂B
(n)
t+τ+1

∣∣∣∣∣ = 0

C Additional results

C.1 Equilibrium under firms’ commitment ability

In the main part of this article, we considered the case where firms and consumers follow Markov perfect equilibrium. We
can show that the main argument holds even when firms can commit to their future prices. If firms have commitment
ability, firms would not change their future pricing even when future state variables change. Hence, the term corresponding to

bj4 ≡ maxτ∈Z+

∑
n

∣∣∣∣ ∂pjt+τ+1(Bt+τ+1)

∂B
(n)
t+τ+1

∣∣∣∣ disappears. This is the difference, and we can prove a statement similar to the statement in

the main part of this article in a similar way.

C.2 Distribution of the random utility shock

In the main part of this article, we have mainly considered the case where the random utility shock ϵiljt follows Gumbel distribution.
Then, what if it follows a distribution other than Gumbel? This subsection mainly considers the case where the random utility
shock follows uniform distribution and looks at how the main results change under the condition.

For simplicity, we impose Assumption 4 and consider the symmetric firms’ case as in Perloff and Salop (1985) and Gabaix et al.
(2016). Let G and g be the distribution function and density function of random utility shock ϵiljt. To make the notations simpler,

let ṽlkt(xt, Bt, p
∗(Bt)) = v and ṽl0t(xt, Bt, p

∗(Bt)) = v0. First, we obtain the following statement22:

Lemma 7. Under Assumption 4, the following equations hold:

s
(ccp)
ljt (xt, Bt, p

∗(Bt)) = G(θ)J−1G(v − v0 + θ)g(θ)dθ

∂s
(ccp)
ljt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))
= (J − 1)

∫
G(θ)J−2G(v − v0 + θ)g(θ)2dθ +

∫
G(θ)J−1g(v − v0 + θ)g(θ)dθ

Proof. First, by the symmetry assumption,

s
(ccp)
ljt (xt, Bt, p

∗(Bt)) =

∫
G(ṽljt(xt, Bt, p

∗(Bt))− v + θ)J−1G(ṽljt(xt, Bt, p
∗(Bt))− v0 + θ)g(θ)dθ

∂s
(ccp)
ljt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))
= (J − 1)

∫
G(ṽljt(xt, Bt, p

∗(Bt))− v + θ)J−2G(ṽljt(xt, Bt, p
∗(Bt))− v0 + θ)g(θ)2dθ +∫

G(ṽljt(xt, Bt, p
∗(Bt))− v + θ)J−1g(ṽljt(xt, Bt, p

∗(Bt))− v0 + θ)g(θ)dθ

Since ṽljt(xt, Bt, p
∗(Bt)) = v holds by the symmetry assumption, we obtain the statements.

Next, let ϵiljt ∼i.i.d. U(0, 1). Then, G and g are in the following forms:

G(θ) =


0 if θ < 0

θ if 0 ≤ θ ≤ 1

1 if 1 < θ

g(θ) =

{
0 if θ < 0, 1 < θ

1 if 0 ≤ θ ≤ 1

22An analogous discussion exists in Perloff and Salop (1985) and Gabaix et al. (2016). The difference is the existence of the
outside option. Under dynamic demand structures, the existence of the outside option is essential. For instance, in the case of
perfectly durable goods, no outside option implies no demand in the next period, and demand dynamics plays minor role.
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To exclude the case where all the consumers choose some products rather than the outside option (no purchase), we assume that
0 < v0 − v < 1 holds. By Lemma 7, it follows that:

∂s
(ccp)
ljt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))
= (J − 1)

∫ 1

v0−v

θJ−2(v − v0 + θ)dθ +

∫ 1

v0−v

θJ−1(v − v0 + θ)dθ

= (v − v0) +
J − 1 + v − v0

J
+

1

J + 1

−
(
−(v0 − v)J +

J − 1 + v − v0
J

(v0 − v

)
)J +

1

J + 1
(v0 − v)J+1

→ 1 + v − v0 ∈ (0, 1) (J → ∞) (17)

Hence, unless v0 − v converges to 1 as J goes to infinity,
∂s

(ccp)
ljt

(xt,Bt,p
∗(Bt))

∂ṽljt(xt,Bt,p∗(Bt))
converge to a positive value. Consequently, γ4 ≡

maxl,xt

∑
k∈Al(xt)

∂s
(ccp)
lkt

(xt,Bt,p
∗(Bt))

∂ṽlkt(xt,Bt,p∗(Bt))
≥ maxl,xt

∑
k∈J

∂s
(ccp)
lkt

(xt,Bt,p
∗(Bt))

∂ṽlkt(xt,Bt,p∗(Bt))
= maxl,xt J

∂s
(ccp)
lkt

(xt,Bt,p
∗(Bt))

∂ṽlkt(xt,Bt,p∗(Bt))
→ ∞ (J → ∞) holds, and

Assumption 2 is violated. Moreover, since s
(ccp)
ljt (xt, Bt) ≤ 1

J
→ 0 (J → ∞), bj6 ≡ maxl,xt

∂flj(xt,Bt,p
∗
j (Bt))

∂pjt

∂ log s
(ccp)
ljt

(xt,Bt,p
∗(Bt))

∂ṽljt(xt,Bt,p∗(Bt))
≤

[
maxl,xt

∂flj(xt,Bt,p
∗
j (Bt))

∂pjt

]
·

maxl,xt

∂s
(ccp)
ljt

(xt,Bt,p
∗(Bt))

∂ṽljt(xt,Bt,p
∗(Bt))

s
(ccp)
ljt

(xt,Bt,p∗(Bt))

 → ∞ (J → ∞) holds, and Assumption 3 is not satisfied. Hence, the

argument in the main part of this article fails under the uniform distribution.
Nevertheless, p

(static)
jt and p

(dynamic)
jt take closer values as J → ∞ from different logic. As discussed in Section 3, p

(dynamic)
jt and

p
(static)
jt satisfy the following equations:

p
(dynamic)
jt (Bt)−mcj

p
(dynamic)
jt (Bt)

=

(
− ∂ log sjt
∂ log pjt

∣∣∣∣
static

)−1 1 + λF
j (Bt)

1 + λC
j (Bt)

p
(static)
jt (Bt)−mcj

p
(static)
jt (Bt)

=

(
− ∂ log sjt
∂ log pjt

∣∣∣∣
static

)−1

If the marginal cost is positive and pjt does not converge to zero, it follows that:

∂ log sjt
∂ log pjt

∣∣∣∣
static

=

∑
l πl

∑
xt
Prlt(xt)

∂flj(xt,Bt,p
∗
j (Bt))

∂pjt

∂s
(ccp)
ljt

(xt,Bt,p
∗(Bt))

∂ṽljt(xt,Bt,p∗(Bt))∑
l πl

∑
xt
s
(ccp)
ljt (xt, Bt)

pjt

≥ min
l,xt

∣∣∣∣∣∂flj(xt, Bt, p
∗
j (Bt))

∂pjt

∂ log s
(ccp)
ljt (xt, Bt, p

∗(Bt))

∂ṽljt(xt, Bt, p∗(Bt))

∣∣∣∣∣ pjt
= min

l,xt

∣∣∣∣∣∣∣
∂flj(xt, Bt, p

∗
j (Bt))

∂pjt

∂s
(ccp)
ljt

(xt,Bt,p
∗(Bt))

∂ṽljt(xt,Bt,p∗(Bt))

s
(ccp)
ljt (xt, Bt, p∗(Bt))

∣∣∣∣∣∣∣ pjt

→ ∞ (J → ∞)

∵

∂s
(ccp)
ljt

(xt,Bt,p
∗(Bt))

∂ṽljt(xt,Bt,p∗(Bt))

s
(ccp)
ljt (xt, Bt, p∗(Bt))

→ ∞ (J → ∞)


Then, both p

(dynamic)
j and p

(static)
j converge to mcj as the number of firms goes to infinity, if λC

j does not converge to −123

and λF
j takes a finite value. Consequently, p

(static)
j and p

(dynamic)
j take sufficiently close values when the number of the firms is so

large even under uniform distribution.

D Details of the numerical experiments

Algorithm

To run the numerical experiments, we need to solve the equilibrium. this study uses the following fixed point algorithm:

23In the case of perfectly durable goods with no persistent consumer heterogeneity and no network effects, γ2 = 0 holds, as we
discussed in Appendix C, and consequently λC

j = 0 holds.
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1. Take grid points of state variables Bt = (Blt)l = (Prlt(xt = 0))l. Set initial values of V C(0) ≡
{
V

C(0)
l (xt, Bt)

}
l,xt,Bt

(consumers’ value function), V F (0) ≡
{
V

F (0)
j (Bt)

}
j,Bt

(firm’s value function), p(0) ≡
{
p
(0)
j (Bt)

}
j,Bt

(equilibrium price),

B
(0)
t+1 ≡

{
B

(0)
lt+1(Bt)

}
l,Bt

(aggregate level state variables in the next period), and
∂B

(0)
t+1

∂pt
≡
{

∂B
(0)
lt+1

∂pjt
(Bt)

}
j,l,xt,Bt

(derivative

of the aggregate state variables in the next period with respect to the current price).

2. Iterate the following process until the convergence of V C(n), V F (n), p(n), B
(n)
t+1,

∂B
(n)
t+1

∂pt
(n = 1, 2, · · · ):

(a) Given V C(n), V F (n), p(n), B
(n)
t+1,

∂B
(n)
t+1

∂pt
, solve:

s
(ccp)
ljt (xt = 0, Bt, p

(n)(Bt)) =

exp

(
flj(xt = 0, Bt, p

(n)
j (Bt)) + βCE

[
V̂

C(n)
l (xt+1, B

(n)
t+1(Bt))|xt = 0, at = j

])
∑

k∈J∪{0} exp

(
flk(xt = 0, Bt, p

(n)
k (Bt)) + βCE

[
V̂

C(n)
l (xt+1, B

(n)
t+1(Bt))|xt = 0, at = k

])

s
(ccp)
l0t (xt = 0, Bt, p

(n)(Bt)) =

exp

(
flj(xt = 0, Bt, p

(n)
j (Bt)) + βCE

[
V̂

C(n)
l (xt+1, B

(n)
t+1(Bt))|xt = 0, at = 0

])
∑

k∈J∪{0} exp

(
flkt(xt = 0, Bt) + βCE

[
V̂

C(n)
l (xt+1, B

(n)
t+1(Bt))|xt = 0, at = k

])
sjt(Bt, p

(n)(Bt)) =
∑
l

πlPrlt(xt = 0) · s(ccp)ljt (xt = 0, Bt, p
(n)(Bt))

where ·̂ denotes the interpolated value based on the values at grid points Bt.

(b) Given V C(n), V F (n), p(n), B
(n)
t+1,

∂B
(n)
t+1

∂pt
and

{
s
(ccp)
ljt (xt = 0, Bt, p

(n)(Bt))
}

l,j,Bt

,
{
s
(ccp)
l0t (xt = 0, Bt, p

(n)(Bt))
}

l,Bt

,{
sjt(Bt, p

(n)(Bt))
}

j,Bt

, solve:

V
C(n+1)
l (xt = 0, Bt) = log

 ∑
k∈J∪{0}

exp

(
flk(xt = 0, Bt, p

(n)
kt (Bt)) + βCE

[
V̂

C(n)
l (xt+1, B

(n)
t+1(Bt))|xt = 0, at = k

])
V

C(n+1)
l (1 ≤ xt ≤ xmax − 1, Bt) = f0 + βC

[
ϕV

C(n)
l (xt+1 = xt + 1, B

(n)
t+1(Bt)) + (1− ϕ)V

C(n)
l (xt+1 = 0, B

(n)
t+1(Bt))

]
V

C(n+1)
l (xt = xmax, Bt) = f0 + βCV

C(n)
l (xt+1 = 0, B

(n)
t+1(Bt))

V
F (n+1)
j (Bt) =

(
p
(n)
j (Bt)−mcj

)
Msjt(Bt, p

(n)(Bt)) + βF V̂
F (n)
j (B

(n)
t+1)

p
(n+1)
j (Bt) = mcj −

Msjt + βF
∂

̂
V

F (n)
j (Bt,s

(ccp)
t (Bt,p

(n)(Bt)))

∂pjt

M
∂sjt(Bt,p(n)(Bt))

∂pjt

B
(n+1)
lt+1 (Bt) = B

(n)
lt s

(ccp)
l0t (xt = 0, Bt, p

(n)(Bt)) + (1− ϕ)
(
1−B

(n)
lt s

(ccp)
l0t (xt = 0, Bt, p

(n)(Bt))
)

∂B
(n+1)
lt+1

∂pjt
(Bt) =

∑
l̃

∑
k∈J∪{0}

∂s
(ccp)

l̃kt
(xt = 0, Bt, p

(n)(Bt))

∂pjt

∂B
(n)
lt+1(Bt, s

(ccp)
t )

∂s
(ccp)

l̃kt
(xt = 0, Bt, p(n)(Bt))

To speed up the convergence process, this study incorporates the spectral algorithm developed in La Cruz et al. (2006) in the
iteration. To interpolate the values at the points other than the grid points, this study uses the collocation method, and Chebyshev

polynomials are used as basis functions. Furthermore, to efficiently interpolate the values of V̂
C(n)
l and V̂

F (n)
j , this study uses

Smolyak method developed by Smolyak (1963) and improved by Judd et al. (2014).
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