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Abstract

This article analytically investigates the mechanism behind the biases in price elasticities of demand
in applying static demand models under dynamic demand, which has been pointed out by the previous
empirical studies. There are three sources of biases: disregard of state variables (affecting short-run
elasticity), inconsistent utility parameter estimates, and changing expectations of consumers (affecting
long-run elasticity). Disregard of state variables, such as durable product holdings, leads to overestimate of
short-run own elasticities. Especially when the focus is on the large conditional choice probability products,
the first and the third sources of biases might induce large biases in price elasticities.
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1 Introduction

Many markets are characterized by dynamic demand structures, wherein future demand has connections with
current demand. Examples of goods with dynamic demand include durable goods, storable goods, goods
with switching costs, and experience goods. Given the significant presence of these goods in many industries,
empirical analysis of these goods is essential for a deeper understanding of the economy.

So far, to analyze these goods, a large number of studies have applied static demand models, in which the
connections between current and future demand are not explicitly specified. For example, Berry et al. (1995)
(henceforth BLP) applied a static demand model to automobiles, which is one of the typical examples of durable
goods. Many of the studies derived implications on competition, industrial, trade, and environmental policies.
Nevertheless, previous empirical studies specifying dynamic demand models have found that applying static
demand models yields biased estimates of price elasticities of demand, as summarized in Table 1. For example,
Hendel and Nevo (2006), studying storable goods, showed that static demand estimates, which neglect dynamics,
overestimate long-run own price elasticities by 30%, and underestimate long-run cross price elasticities by up
to a factor of 5. Gowrisankaran and Rysman (2012), studying new durable goods, showed that applying a BLP
style static demand model yields price elasticities sufficiently close to zero.

The purpose of this study is to investigate why applying static demand models yields biased price elasticities
under dynamic demand. Even though numerous empirical studies have found the biases in applying static
models, they are limited to empirical contexts. It is not clear whether these results, such as the sign and
magnitude of the biases, are the same in other markets. Furthermore, some of the studies showed the opposite
results. For instance, Chen et al. (2008), analyzing the automobile market, showed that the own price elasticity
of demand computed from a static model is larger than the short-run own price elasticity of demand computed
from a dynamic model. In contrast, Schiraldi (2011), also studying the automobile market, showed that the
own price elasticity computed from a static model is smaller than the short-run own price elasticity of demand
computed from a dynamic model. In this article, I develop a model of dynamic demand and show how biases
arise and in what cases the biases are small or large.

The understanding of the mechanism is important for the appreciation of static demand models. Even
though the estimation and simulation of dynamic demand models are getting easier due to the accumulation of
knowledge and advancement of computational power, analysis with dynamic demand models is time-consuming
and requires greater effort. In addition, for researchers interested in the supply side behavior, the introduction
of dynamic demand structures might not be attractive, since they need to consider firms’ dynamic pricing
setting behaviors to make the models consistent with the theory1. When the dynamics in both the demand
and supply sides are introduced, the problem gets more complicated and computationally burdensome. In that
sense, static demand models would survive even in the future. If we can expect that the biases in applying static
demand models are small for the goods of interest, it can justify the studies that use static demand models. If
not, researchers should be careful about the use of static demand models.

In this study, I classify the biases into three types: disregard of state variables, inconsistent utility parameter
estimates, and changing expectations of consumers. The first source of bias, namely, the disregard of state
variables, causes biased estimates of short-run price elasticity of demand. Here, short-run price elasticity is
defined as the elasticity of the current period’s demand in response to the current period’s temporary price
change, given fixed consumers’ future expectations. The examples of state variables are durable goods holdings.
Especially when using aggregate data, researchers may not have data on the consumers’ inventory2, and existence
of consumer inventory is totally ignored in the standard static demand models. In these static models, it is
implicitly assumed that even the consumers already owning durable goods are highly likely to consider additional
purchases, which might lead to biased price elasticities. I show that applying a static model ignoring state
variables leads to the overestimation of short-run own elasticity3. Further, short-run cross price elasticities are

1Under dynamic demand, current price change affects consumers’ expectations on future outcomes, and indirectly affects current
demand. Furthermore, the current price change affects future demand through the change in current demand. Hence, firms would
consider these dynamic elements when setting product prices.

2In the case of storable goods, individual- level data (scanner data) is typically available, and many previous studies have utilized
them. Nevertheless, data on consumer inventory is not available, and it has been recognized as the one obstacle for studying the
goods.

3By simple calculation, we can easily construct an example where short-run own elasticity is overestimated by over 300%.
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underestimated for durable goods with unit inventory, and storable goods with the same package sizes. Note
that one remedy for the problem is the introduction of random coefficients, especially the one on the constant
term, to approximate the distribution of consumers’ state variables. Nevertheless, there is no guarantee that
such “reduced-form” approach works well.

The second source of bias, namely, inconsistent utility parameter estimates, arises due to the failure
to account for consumers’ future expectations and unobserved state variables4. Utility parameters are
inconsistently estimated under static models without controlling for these components, because product
characteristics might be correlated with consumers’ future expectations or the ratio of the consumers in each
unobserved state variable. So far, several articles have proposed remedies for static demand models, such as the
introduction of time and brand dummies. In this article, we discuss under what conditions these remedies yield
consistent parameter estimates or mitigate the problems associated with the use of the static demand models.

The third source of bias, namely, the changing expectations of consumers, causes biased estimates of long-run
price elasticity of demand. Here, long-run price elasticity is defined as the elasticity of the current period’s
demand change in response to the permanent or long-term price change, allowing the changing expectations
of consumers. The difference between the short-run and the long-run elasticity is the changing expectation
of consumers. In the case of short-run elasticity, price change is limited to only the current period, and we
consider the setting where consumers’ expectations do not change. However, in the case of long-run elasticity,
price changes not only in the current period, but also in the future period. Consumers change expectations on
future market conditions, and consequently change current demand5. Even though the direct counterpart of
long-run elasticity does not exist in static demand models, the elasticity is essential for a more precise evaluation
of the consumers’ responses to prices. I show that the sign and the size of the difference between the short-run
elasticity and long-run elasticity are determined by the index representing the connection between current and
future demand under a perfect foresight setting. Using the statement, we can easily guess that long-run own
elasticity is smaller than short-run own elasticity, and long-run cross price elasticity is larger than short-run
cross elasticity for durable and storable goods6.

With these classifications and statements, we can explain the mechanism behind the results of the previous
empirical articles discussing the biases that result from the application of static demand models summarized in
Table 1. Furthermore, the insight presented here can be applied to other settings not explored in the previous
literature. Note that I also show that the first and the third sources of biases are large when the focus is on
the product with large CCPs. Hence, researchers should be careful about the use of static demand models
especially when the focus is on the products with large market shares.

The main contribution of this article is twofold. First, this article provides insight into the biases associated
with the first source of bias: disregard of state variables. Previous literature has paid much attention to the
changing expectations of consumers and inconsistent utility parameter estimates, but not disregarding of state
variables. Consequently, the literature could not fully explain why some studies have shown contradicting
results. This article contributes to the literature by stressing the importance of the biases due to ignoring
consumers’ state variables, such as consumers’ durable product holdings.

Second, this article provides insight on when the biases in applying static demand models are small or large.
Even though introducing dynamic demand models would fully solve the problems, sometimes it is not attractive,
since it makes the supply-side model more complex and sometimes not manageable. I show the conditions when
applying static demand models yield small biases in price elasticities of demand. When the biases are negligible,
applying static demand models causes only minor problems.

The rest of this article is organized as follows. In Section 2, I describe the relationship between this study
and the previous studies. In Section 3, we develop a dynamic demand model and discuss the three sources of
the biases. In Section 4, we extend the discussions in Section 3, and show the magnitude of the biases and
remedies for static demand models. Further, we extend the base model and discuss storable goods. In Section
5 we discuss how the results in this article provide insight into the previous studies’ findings summarized in

4For instance, the existence of product stock corresponds to the consumers’ unobserved state variables in the case of durable
goods.

5For instance, consumers would postpone purchasing durable goods if the price reduction of the product is permanent, rather
than temporary.

6Still, the result is the opposite for goods with switching costs.
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Table 1. Finally, Section 6 concludes. All the proof of the statements are shown in Appendix A. In Appendix
B, I show the results of Monte Carlo experiments to demonstrate the effectiveness of introducing time dummies
for utility parameter estimates. In Appendix C, I show the sources of the information on the literature on the
biases in static demand models represented in Table 1 and Section 5.

2 Literature

This study relates and contributes to several strands of literature.

2.1 Literature on dynamic demand models

First, this study closely relates to the recent empirical literature on dynamic demand models7. Many of them
specified Dynamic Discrete Choice (DDC) models as in Rust (1987), estimated consumers’ utility parameters
and derived implications. As summarized in Table 1, many articles have shown that applying static demand
models yields biased price elasticities of demand. This study attempts to explain the mechanism behind the
biases by developing a general model.

Gowrisankaran and Rysman (2020) also develop a general model of dynamic demand, and the framework in
this article is similar to theirs. Their focus is surveying previous studies and clarifying the implicit assumptions
imposed in previous empirical studies, which alleviate the computational burden of solving dynamic demand
models. In contrast to their article, we focus on the difference between the dynamic and static demand models.

Fukasawa (2022) also investigates dynamic demand using a unified framework similar to the current article,
but the focus is different. The existing article focuses on the supply side, and investigates the specific cases
in which a firm’s dynamic pricing behavior can be approximated as static under dynamic demand. On the
other hand, the current article focuses on the demand side, and investigates whether applying a static demand
model yields a good approximation of the true dynamic demand model. So, these articles are complementary.
It is interesting that Fukasawa (2022) shows a firm’s dynamic pricing behavior under dynamic demand can be
approximated as static when CCPs of the firm’s product are small for all consumer types and state variables.
The condition is the same as the condition for small biases in price elasticities shown in the current article. If
the condition holds and utility parameters are consistently estimated, we can argue that applying the “static
model,” namely, the combination of the static demand-side model and the static supply-side model, has valid
implications on firms’ markups and the effects of short-run policy interventions8.

2.2 Literature applying static demand models

Second, this article contributes to the large number of studies applying static demand models to goods with
dynamic demand. For example, since the advent of the Berry et al. (1995)’s BLP method, many studies have
applied static demand models to products with dynamic demand, such as durable goods. To justify the use
of static demand models, several articles have discussed some remedies. For instance, Goldberg and Verboven
(2001), studying automobiles, argued that adding time and brand dummies mitigates the problem. Nevertheless,
these discussions have been limited to informal ones. In this study, I formally show the extent to which these
remedies alleviate the issues.

2.3 Literature on dynamic discrete choice models

Third, this article contributes to the recent literature on Dynamic Discrete Choice (DDC) models, which is
the basis of dynamic demand models. So far, the main focus of the literature has been on the identification of
structural parameters, including the discount factor (e.g. Magnac and Thesmar, 2002; Abbring and Daljord,
2020) and more straightforward estimation methods of DDC models (e.g. Hotz and Miller, 1993; Kalouptsidi

7For a survey of the literature, see Aguirregabiria and Nevo (2013), Gowrisankaran and Rysman (2020), and Gandhi and Nevo
(2021).

8Note that static models cannot deal with long-run policy interventions that largely affect consumers’ expectations.
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et al., 2021b). In contrast to the previous studies, the main purpose of the current article is neither to propose
a new identification strategy nor a new estimation method of DDC models. Instead, we discuss the situations
in which static models yield large biases and when applying dynamic models is essential, which have not been
discussed in the previous literature. In that sense, this study is complementary to the literature on DDC
models9.

3 Model

In general, applying static demand models yields biased price elasticities of demand when the true demand
structure is dynamic. To show the essence of the problem, we develop a standard dynamic demand model in
Section 3.1. Then, using the model, we discuss the three sources of the biases: disregard of state variables,
inconsistent utility parameter estimates, and changing consumer expectations. In this section, we mainly
discuss with durable goods in mind. Nevertheless, we can use the general model for other types of goods with
dynamic demand, such as goods with switching costs. Besides, since we consider the model without the choice
of consumption level, we cannot directly apply the results to storable goods. Nevertheless, we can extend the
model and use some of the results to storable goods, as discussed in Section 4.3.

3.1 Setup

3.1.1 State variables

First, let xt ∈ Xt be a consumer’s individual-level state variables at the beginning of time t. Xt denotes the set
of individual-level states. For instance, xt indicates whether the consumer already owns durable products, in the
case of durable goods. In this study, we assume that Xt is a discrete set, for notational simplicity. Nevertheless,
we can easily extend this to the case where Xt is a continuous set. Let Prlt(xt) be the ratio of type l consumers
at state xt among type l consumers at time t. Note that

∑
xt∈Xt

Prlt(xt) = 1 holds by definition.

3.1.2 Choices

Let Jt denotes the set of products available at time t. “0” represents the outside option, namely, the option of
not buying any product. Further, let at ∈ Jt ∪ {0} be the choice of a consumer at time t. at = j means that
the consumer purchases product j, and at = 0 means that they do not purchase any product.

3.1.3 Utility function

In this study, we assume each consumer purchases at most one product in each period. Let the expected
discounted utility of type l consumer i whose state is xt and choice is at given product prices pt ≡ (pjt)j∈Jt and
continuation values gt ≡ (gljt(xt))l,xt,j∈Jt∪{0} be vilt (xt, pt, gt, at). Here, pjt denotes product j’s price at time t.
Type l consumer i maximizes utility vilt(xt, pt, gt, at) with respect to at ∈ Jt ∪ {0}.

Utility vilt(xt, pt, gt, at) is in the following form:

vilt (xt, pt, gt, at) =

{
−αlpjt + fljt + ϕljt(xt) + βCgljt(xt) + ϵijt if at = j

fl0t(xt) + βCgl0t(xt) + ϵi0t if at = 0
(1)

where fljt denotes the flow utility type l consumers gain when buying product j. fl0t(xt) denotes the flow
utility type l consumers at state xt gain when not buying anything. For instance, it represents the utility
from continuing using previous durable product xt in the case of durable goods. ϕljt(xt) denotes the flow
utility for consumers at state xt gains when purchasing product j, which is not captured in fljt. For instance,

9In the recent literature on DDC models, Kalouptsidi et al. (2021a) compare “static” and dynamic models to investigate the
identification of counterfactuals. In their discussion, it is assumed that the static model is the right specification when using the
static model. On the other hand, in the current article, we consider the setting where the dynamic model is the correct specification
when applying the static model. Hence, the meaning of the static model in the current article is different from the one in Kalouptsidi
et al. (2021a).
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it represents the resell value of old durable products xt. (ϵijt)j∈Jt∪{0} denotes the individual-level random
preference shock, and we assume that they follow i.i.d. mean-zero type-I extreme value distribution. βC
represents the consumers’ discount factor, and Et represents the expectation operator given the information
available at time t. αl represents type l consumers’ marginal utility of money, and we assume αl > 0 holds for
all l. Besides, continuation value gljt(xt) is in the following form:

gljt(xt) = EtV
C
lt+1(xt+1, pt+1|xt, pt, at = j) (2)

Note that gt depends on the expected path of future product prices {pt+τ}τ≥1.
V C
lt (xt, pt, gt) is the value function of type l consumers given states xt at time t given product prices pt and

continuation values gt, and defined as follows:

V C
lt (xt, pt, gt) ≡ Eϵ

[
max

at∈Jt∪{0}
vilt (xt, pt, gt, at)

]
where Eϵ denotes the expectation operator with respect to random i.i.d. shocks {ϵijt}j∈Jt∪{0}. Under the

assumption that ϵijt follows i.i.d. type-I extreme value distribution, the following formula holds:

V C
lt (xt, pt, gt) = log

∑
j∈Jt

exp (−αlpjt + fljt + ϕljt(xt) + βCgljt(xt)) + exp (fl0t(xt) + βCgl0t(xt))

 (3)

3.1.4 Choice probability

The CCP that type l consumer buys product j at time t conditional on being at states xt is:

s
(ccp)
ljt (xt, pt, gt) = Pr (vilt(xt, pt, gt, at = j) > vilt(xt, pt, gt, at = k) ∀k ∈ Jt ∪ {0} − {j})

=
exp (−αlpjt + fljt + ϕljt(xt) + βCgljt(xt))

exp
(
V C
lt (xt, pt, gt)

) (4)

The CCP that type l consumer does not buy any product at time t conditional on being at states xt is:

s
(ccp)
l0t (xt, pt, gt) =

exp (fl0t(xt) + βCgl0t(xt))

exp
(
V C
lt (xt, pt, gt)

) (5)

The probability that type l consumer buys product j at time t is:

sljt(pt, gt) =
∑

xt∈Xt

s
(ccp)
ljt (xt, pt, gt) · Prlt(xt) (6)

The probability that type l consumer does not buy any product at time t is:

sl0t(pt, gt) =
∑

xt∈Xt

s
(ccp)
l0t (xt, pt, gt) · Prlt(xt) (7)

The market share of product j at time t, namely, the fraction of consumers purchasing product j at time t
is:

sjt(pt, gt) =

∫
sljt(pt, gt)dP (l) (8)

where dP (l) denotes the measure of type l consumers.
The fraction of consumers not purchasing any product at time t is:

s0t(pt, gt) =

∫
sl0t(pt, gt)dP (l) (9)
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3.1.5 State transition

The transition probability of consumer-level state variables xt is given by ψ(xt+1|xt, at). It depends on the
previous period’s states xt and choices at. For instance, in the case of durable goods which depreciate over
time, xt+1, product holding at time t + 1, depends on the previous state xt and the product choice at at time
t. The transition process depends on the depreciation rate of the durable products.

Note that Prlt(xt) satisfies the following state transition formula:

Prlt+1(xt+1) =
∑

xt∈Xt

Prlt(xt) ·
∑

j∈Jt∪{0}

s
(ccp)
ljt (xt, pt, gt) · ψ(xt+1|xt, at = j) (10)

The dynamic demand system is composed of equations (2)-(10).

3.1.6 Price elasticity of demand

In this study, short-run price elasticity is defined as the elasticity of the current period’s demand in response
to the current period’s temporary price change, given fixed consumers’ future expectations. Long-run price
elasticity is defined as the elasticity of the current period’s demand change in response to the permanent or
long-term price change, allowing changing expectations of consumers1011.

Under the specifications above, short-run own price elasticity of product j at time t given product prices
p0t = (p0jt)j∈Jt and continuation values g0t is:

η
(short)
jt (p0t , g

0
t ) ≡ −∂sjt(p

0
t , g

0
t )

∂pjt

p0jt
s0jt

= −

∫ ∑
xt∈Xt

Prlt(xt)
∂s

(ccp)
ljt (xt, p

0
t , g

0
t )

∂pjt
dP (l)

 p0jt
s0jt

=

[∫
αl

∑
xt∈Xt

Prlt(xt)s
(ccp)
ljt (xt, p

0
t , g

0
t )(1− s

(ccp)
ljt (xt, p

0
t , g

0
t ))dP (l)

]
p0jt
s0jt

(11)

Here, we define the term s0jt ≡ sjt(p
0
t , g

0
t ).

Short-run cross price elasticity of product k with respect to product j(̸= k) at time t given product prices
p0t and continuation values g0t is:

η
(short)
jkt (p0t , g

0
t ) ≡ ∂skt(p

0
t , g

0
t )

∂pjt

p0jt
s0kt

=

[∫ ∑
xt∈Xt

Prlt(xt)
∂s

(ccp)
lkt (xt, p

0
t , g

0
t )

∂pjt
dP (l)

]
p0jt
s0kt

=

[∫
αl

∑
xt∈Xt

Prlt(xt)s
(ccp)
ljt (xt, p

0
t , g

0
t )s

(ccp)
lkt (xt, p

0
t , g

0
t )dP (l)

]
p0jt
s0kt

(12)

3.2 Disregard of state variables and Short-run price elasticity

In the remaining part of this section, we discuss the three sources of biases in applying static demand models
under dynamic demand: disregard of state variables, inconsistent utility parameter estimates, and changing
expectations of consumers.

10Note that some of the studies have used different terms for these elasticities. In this study, I use the definitions here.
11In this study, we assume that the price changes are not expected by the consumers before the current period. This type of

specification is used by most of the studies in Table 1, except for Hartmann (2006).
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In this subsection, we focus on the bias associated with the disregard of state variables. Here, to clarify the
point, we consider the case where no persistent consumer heterogeneity exists in the dynamic model.

First, we can derive a static representation of the dynamic demand model with no random coefficients:12:

sjt(pt, gt) =
exp(−αpjt + fjt + ĉjt(pt, gt))

1 +
∑

k∈Jt
exp(−αpkt + fkt + ĉkt(pt, gt))

(13)

s0t(pt, gt) =
1

1 +
∑

k∈Jt
exp(−αpkt + fkt + ĉkt(pt, gt))

(14)

where

ĉjt(pt, gt) ≡ log


∑

xt∈Xt

exp(ϕjt(xt)+βCgjt(xt))

exp(V C
t (xt,pt,gt))

· Prt(xt)∑
xt∈Xt

exp(f0t(xt)+βCg0t(xt))

exp(V C
t (xt,pt,gt))

· Prt(xt)

 (15)

Next, suppose that the value of ĉjt is available at product prices p0t and continuation values g0t . Then, we
can construct the following static demand model with market share ŝjt

13:

ŝjt(pt; p
0
t , g

0
t ) =

exp(−αpjt + fjt + ĉjt(p
0
t , g

0
t ))

1 +
∑

k∈Jt
exp(−αpkt + fkt + ĉkt(p

0
t , g

0
t ))

(16)

ŝ0t(pt; p
0
t , g

0
t ) =

1

1 +
∑

k∈Jt
exp(−αpkt + fkt + ĉkt(p

0
t , g

0
t ))

(17)

Note that ŝjt(pt = p0t ; p
0
t , g

0
t ) = sjt(p

0
t , g

0
t ) = s0jt holds by construction.

Under the static model, own price elasticity of product j at time t is:

η̂jt(p
0
t , g

0
t ) ≡ −∂ŝjt(pt = p0t ; p

0
t , g

0
t )

∂pjt

p0jt
ŝjt(p0t ; p

0
t , g

0
t )

= αŝjt(p
0
t ; p

0
t , g

0
t )(1− ŝjt(p

0
t ; p

0
t , g

0
t ))

p0jt
ŝjt(p0t ; p

0
t , g

0
t )

= αs0jt(1− s0jt) ·
p0jt
s0jt

(18)

Similarly, cross price elasticity of product k with respect to product j( ̸= k) at time t is:

η̂jkt(p
0
t , g

0
t ) ≡ ∂s̃kt(pt = p0t ; p

0
t , g

0
t )

∂pjt

p0jt
ŝkt(p

0
t ; p

0
t , g

0
t )

= αŝjt(p
0
t ; p

0
t , g

0
t )ŝkt(p

0
t ; p

0
t , g

0
t )

p0jt
ŝkt(p

0
t ; p

0
t , g

0
t )

= αs0jts
0
kt ·

p0jt
s0kt

(19)

Then, static elasticities η̂jt(p
0
t , g

0
t ), η̂jkt(p

0
t , g

0
t ) and dynamic short-run elasticities

η
(short)
jt (p0t , g

0
t ), η

(short)
jkt (p0t , g

0
t ) satisfy the following formulas:

12Since only one consumer type exists, we omit l.
13As we will discuss in the next subsection, we can recover the values of fkt + ĉkt from the observed market share data with

product prices p0t .
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Lemma 1. The following equations hold:

η̂jt(p
0
t , g

0
t )− η

(short)
jt (p0t , g

0
t ) = αV arjt(p

0
t , g

0
t ) ·

p0jt
s0jt

η̂jkt(p
0
t , g

0
t )− η

(short)
jkt (p0t , g

0
t ) = −αCovjkt(p0t , g0t ) ·

p0jt
s0kt

Here, we define the following terms:

Exts
(ccp)
jt (xt, pt, gt) ≡

∑
x̃t∈Xt

Prt(x̃t)s
(ccp)
jt (x̃t, pt, gt)

V arjt(pt, gt) ≡
∑

x̃t∈Xt

Prt(x̃t)
[
s
(ccp)
jt (x̃t, pt, gt)− Exts

(ccp)
jt (xt, pt, gt)

]2
Covjkt(pt, gt) ≡

∑
x̃t∈Xt

Prt(x̃t)
(
s
(ccp)
jt (x̃t, pt, gt)− Exts

(ccp)
jt (xt, pt, gt)

)(
s
(ccp)
kt (x̃t, pt, gt)− Exts

(ccp)
kt (xt, pt, gt)

)
Intuitively, Exts

(ccp)
jt (xt, pt, gt), V arjt(pt, gt), Covjkt(pt, gt) represent the mean, variance, and covariance of

CCPs given product prices pt and continuation values gt. Note that Covjjt = V arjt holds, and the diagonal
components of the matrix ((Covjkt)j,k) correspond to V arjt.

Using the lemma, we can easily obtain the following statement on the short-tun own price elasticities:

Proposition 1. η̂jt(p
0
t , g

0
t ) ≥ η

(short)
jt (p0t , g

0
t )

Furthermore, equality holds only when s
(ccp)
jt (xt, p

0
t , g

0
t ) = sjt(p

0
t , g

0
t ) ∀xt ∈ Xt.

The proposition implies that short-run price elasticity is overestimated when applying the static demand
model.

The next proposition is on cross price elasticities:

Proposition 2. The following inequalities hold:

η̂jkt(p
0
t , g

0
t )


>
=
<

 η
(short)
jkt (p0t , g

0
t ) if Covjkt(p

0
t , g

0
t )


<
=
>

 0

Since we cannot determine the sign of Covjkt in general, the relative size of the two cross elasticities is
unclear from this proposition. Nevertheless, we can derive a stronger result for durable goods with unit stock
where consumers own at most one durable product:

Corollary 1. Suppose that ϕjt(xt) = ϕt(xt) ∀j ∈ Jt. Then, for durable goods with unit stock (inventory),

Covjkt(p
0
t , g

0
t ) ≥ 0 and η̂jkt(p

0
t , g

0
t ) ≤ η

(short)
jkt (p0t , g

0
t ).

The problem of the static model is that the values of ĉjt is treated to be fixed even when product prices
pt change. In reality, ĉjt depends on product prices since V C

t (xt, pt, gt) is a function of product prices, and
the static model cannot capture such an effect. Consequently, elasticities based on the static model and the
short-run elasticities based on the dynamic model do not necessarily coincide. Of course, we can allow changing
values of ĉjt if we can compute the derivatives of ĉjt with respect to product prices. Nevertheless, to do so,
we need the knowledge of the distribution of consumers’ state variables (Prt(xt)), and the process is generally
omitted in the standard static models.

Note that when Prt(xt) = 1 (only one state variable; no role of state variables) and βC = 0 (myopic
consumers), ĉjt = ϕjt − f0t holds

14. Then, ĉjt does not depend on product prices pt, and no problem happens
even when applying the static demand model.

14Since only one state variable exists, we omit xt of ϕt(xt) and f0t(xt).
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3.3 Inconsistent utility parameter estimates

The discussion above implies that static models yield overestimated short-run price own elasticities, and
underestimated short-run cross elasticities for durable goods with unit stock. However, the discussion above
hinges on the condition that the static dynamic models share the same price coefficient α. Nevertheless, there
is no guarantee that the estimated α based on the static model coincides with α in the dynamic model. Next,
we discuss the second source of bias: inconsistent utility parameter estimates.

Here, we consider the estimation process using aggregate data. As in the previous subsection, we consider
the static model without random coefficients. Let fjt = Xjtθ+c0+ξjt, whereXjt, ξjt denote product j’s observed
and unobserved characteristics. Let Zjt be instrumental variables satisfying E[ξjt|Zjt] = 0. Additionally, we
impose the following condition as in the static BLP model:

Sjt = sjt j ∈ Jt ∪ {0}

where Sjt denotes the market share data of product j at time t.
Then, by (13) and (14) we obtain the following linear equation:

logSjt − logS0t = −αpjt +Xjtθ + ĉ0 + ζjt

where ζjt ≡ ξjt + ĉjt − E[ĉjt] and ĉ0 = c0 + E[ĉjt].
In general, estimating the linear equation above by treating ζjt as the error term and applying GMM does

not yield consistent estimates of α and θ. Since ĉjt is a function of the value function V C
t (xt, pt, gt) as shown

in (15), it depends on the current product characteristics and prices. Consequently, E[ĉjt|Zjt] ̸= 0, and it
implies E[ζjt|Zjt] ̸= 0. Besides, correlation between instrumental variables Zjt and consumers’ expectations
gjt(xt) = EtV

C
t+1(xt, at = j), or the correlations between IVs Zjt and Prt(xt) also lead to inconsistent utility

parameter estimates.
Note that when Prt(xt) = 1 (only one state variable; no role of state variables) and βC = 0 (myopic

consumers), ĉjt = ϕjt − f0t holds15. Further, if ϕjt = ϕt for all j ∈ Jt and if ϕt and f0t do not change over
time, we can treat ĉjt as a constant term that does not depend on product j, and we can consistently estimate
α and θ. If neither of the conditions above fails, applying the static model leads to the inconsistent estimates
of utility parameters.

3.4 Changing expectations of consumers and Long-run price elasticity

Next, we consider the third source of bias: changing expectations of consumers, which affects long-run price
elasticities. In the static model, there is no counterpart of long-run price elasticities, and we compare long-run
price elasticity based on the dynamic model and short-run price elasticities based on the dynamic model.

To clarify the point, we assume that consumers have perfect foresight on the future price path16. We consider
the case where the price of product j is expected to be raised from time t to time t + T . We assume that the
price change is not expected by the consumers before time t. We further assume that the increments of the
price increases are the same for all the periods. To derive statements, we define:

λljt(xt, {pt+τ}τ≥0) ≡
T∑

τ=1

βτ−1
C [Pr(l choose j at t+ τ |xt, at = j, {pt+τ}τ≥0)− Pr(l choose j at t+ τ |xt, {pt+τ}τ≥0)]

15Since only one state variable exists, we omit xt of ϕt(xt) and f0t(xt).
16Note that many of the previous studies have not used the perfect foresight specification, and specified alternative expectation

formulation (e.g., Expectation with stochastic fluctuations of prices as in Erdem et al., 2003; Expectations with Inclusive Value
Sufficiency as in Hendel and Nevo, 2006, Gowrisankaran and Rysman, 2012). We can derive similar results under the alternative
expectation formation specifications. Nevertheless, the results under perfect foresight are the clearest ones. Even though minor
differences exist between different specifications, the essence of the claims would not be lost even when applying perfect foresight
specification.
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λljkt(xt, {pt+τ}τ≥0) ≡
T∑

τ=1

βτ−1
C [Pr(l choose j at t+ τ |xt, at = k, {pt+τ}τ≥0)− Pr(l choose j at t+ τ |xt, {pt+τ}τ≥0)]

Here, Pr(l choose j at t+ τ |xt, at = k, {pt+τ}τ≥0) denotes the probability that type l consumers with state xt
and choice k at time t choose product j at time t+τ given future product prices {pt+τ}τ≥0. Pr(l choose j at t+
τ |xt, {pt+τ}τ≥0) is defined in a similar way. Intuitively, λljkt(xt) > 0 implies that type l consumers choosing
product k at time t are more likely to choose product j in the future periods.

Let η
(long)
jt ({p0t+τ}τ≥0) be the long-run own price elasticity of product j at time t, and η

(long)
jkt be the long-run

cross elasticity of product k with respect to product j at time t given the future price path {pt+τ}τ≥0. We
further assume that continuation value g0t is consistent with the future price path {p0t+τ}τ≥0. Then, short-run
and long-run price elasticities satisfy the following lemma:

Lemma 2. The following equations hold:

η
(long)
jt ({p0t+τ}τ≥0)− η

(short)
jt (p0t , g

0
t ) =

p0jt
s0jt
βC

∫
αl

∑
xt∈Xt

Prlt(xt)s
(ccp)
ljt (xt, p

0
t )λljt(xt, {p0t+τ}τ≥0)dP (l)

η
(long)
jkt ({p0t+τ}τ≥0)− η

(short)
jkt (p0t , g

0
t ) = −

p0jt
s0kt

βC

∫
αl

∑
xt∈Xt

Prlt(xt)s
(ccp)
lkt (xt, p

0
t )λljkt(xt, {p0t+τ}τ≥0)dP (l)

Then, we can easily obtain the following proposition:

Proposition 3. The following inequalities hold:

η
(long)
jt ({p0t+τ}τ≥0)


<
=
>

 η
(short)
jt (p0t , g

0
t ) if λljt(xt, {p0t+τ}τ≥0)


<
=
>

 0 ∀l, xt ∈ Xt

η
(long)
jkt ({p0t+τ}τ≥0)


>
=
<

 η
(short)
jkt (p0t , g

0
t ) if λljkt(xt, {p0t+τ}τ≥0)


<
=
>

 0 ∀l, xt ∈ Xt

In the case of durable goods, generally the current demand for a product implies less future demand for any
product due to the durability of products (λljt(xt) < 0, λljkt(xt) < 0 j, k ∈ Jt). Then, Proposition 3 implies
that long-run own price elasticity is smaller than the short-run own price elasticity, and long-run cross elasticity
is larger than the short-run cross price elasticity17. Note that the two elasticities coincide when the consumers
are myopic (βC = 0).

4 Extensions

In this section, we extend the results in Section 3 for a deeper appreciation of the static demand model. In
Section 4.1, we consider the magnitude of the biases in price elasticities. In Section 4.2, we discuss some remedies
for static demand models. In Section 4.3, we extend the model to storable goods, which is also an important
product with dynamic demand.

17In the case of goods with switching costs, in general the current demand for a product implies more future demand for the
product due to the existence of switching costs, but less demand for the other products (λljt(xt) > 0, λljkt(xt) < 0 j, k ∈ Jt, j ̸= k).
Then, Proposition 3 implies that long-run own price elasticity is larger than the short-run own price elasticity, and long-run cross
elasticity is larger than the short-run cross price elasticity.
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4.1 Magnitude of the biases in price elasticities

4.1.1 Short-run price elasticity

We can derive the upper bound of the biases in short-run price elasticities associated with the disregard of state
variables discussed in Section 3.2. The following proposition shows the statement:

Proposition 4. The following inequalities hold:

0 ≤ η̂jt(p
0
t , g

0
t )− η

(short)
jt (p0t , g

0
t ) ≤ αp0jt

(
max
xt

s
(ccp)
jt (xt, p

0
t , g

0
t )

)
∣∣∣η̂jkt(p0t , g0t )− η

(short)
jkt (p0t , g

0
t )
∣∣∣ ≤ αp0jt

(
max
xt

s
(ccp)
jt (xt, p

0
t , g

0
t )

)
The inequalities indicate that the biases in short-run elasticities are small when CCPs s

(ccp)
jt (xt, p

0
t ) are

sufficiently small for all the state variables xt.

To understand why the size of the CCPs affects the magnitude of the biases in short-run price elasticities,
consider the simplified setting where ϕjt(xt) = 0 and βC = 0. Then, the utility function based on the dynamic
model can be reformulated as:

vit(xt, pt, at) =

{
−αpjt + fjt + ϵijt if at = j

f0t(xt) + ϵi0t if at = 0

Further, we assume that only one product j exists in the market. Then, by defining the term ∆vit(xt) ≡
vit(xt, pt, at = j)− vit(xt, pt, at = 0), the market share sjt based on the static model can be expressed as:

sjt =
∑

xt∈Xt

Pr(vit(xt, pt, at = j) > vit(xt, pt, at = 0)) · Prt(xt)

=
∑

xt∈Xt

Pr(∆vit(xt) > 0) · Prt(xt)

Next, by (16) and (17), we can specify the “static” utility function based on the static model:

v̂it(pt, at) =

{
−αpjt + fjt + ĉjt + ϵijt if at = j

ϵi0t if at = 0

By defining the term ∆v̂it ≡ v̂it(pt, at = j)− v̂it(pt, at = 0), static market share ŝjt can be expressed as:

ŝjt = Pr(v̂it(pt, at = j) > v̂it(pt, at = 0))

= Pr(∆v̂it > 0)

Consequently, market shares and price elasticities are determined by the distributions of ∆vit(xt) (in the
case of the dynamic model) and ∆v̂it (in the case of the static model).

The real line in Figure 1 shows the shape of the density function of ∆vit(xt). Here, we assume that {ϵijt}j∈Jt

follows i.i.d. type-I extreme value distribution. Since there are multiple types of consumers with different xt,
multiple peaks exist. In contrast, in the static demand model, we abstract away the existence of consumer-level
state variables and fit a single distribution of ∆v̂it as in the dashed line in Figure 1. The two distributions take
different shapes, and leading to biased estimates of price elasticities.

Generally, consumers purchasing the small CCP product is located in the right tail of the distribution. In the
tail of the distribution, we can find minor differences between the real line and the dashed line. Consequently,
the difference between static and dynamic models is small when focusing on the small CCP product.
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Figure 1: Distribution of the utilities ∆vit(xt) and ∆v̂it
Notes:
The real line shows the density function of ∆vit(xt) based on the dynamic model accounting for the existence of state variables xt.
The dashed line shows the density function of ∆v̂it based on the “static” model.

Example. Durable goods with exogenous replacement timing

To understand the results more clearly, consider the example of durable goods with exogenous replacement
timing, where consumers consider purchases only when they do not have any product. Formally, consider the

following setting: s
(ccp)
jt (xt ̸= 0, p0t , g

0
t ) ≈ 0. Here, xt = 0 denotes the state where the consumer does not possess

any product at the beginning of time t.

Then, since sjt(pt, gt) = Prt(xt = 0) · s(ccp)jt (xt = 0, pt, gt) holds, by (11), short-run own price elasticity of
demand based on the dynamic model is:

η
(short)
jt (p0t , g

0
t ) ≡ αp0jt(1− s

(ccp)
jt (xt = 0, p0t , g

0
t ))

By (18), the own price elasticity of demand computed from the static model is:

η̂jt(p
0
t , g

0
t ) ≡ αp0jt(1− sjt(p

0
t , g

0
t ))

Using these simple formulas, we can easily compute the biases in short-run price elasticities when applying
the static demand model. Table 2 shows examples.

Prt(xt = 0) s
(ccp)
jt (xt = 0) sjt η

(short)
jt η̂jt Bias(%)

0.2 0.8 0.16 2 8.4 320%

0.2 0.5 0.1 5 9 80%

0.2 0.1 0.02 9 9.8 9%

0.2 0.01 0.002 9.9 9.98 1%

0.9 0.8 0.72 2 2.8 40%

0.9 0.5 0.45 5 5.5 10%

0.9 0.1 0.09 9 9.1 1%

0.9 0.01 0.009 9.9 9.91 0%

Table 2: Bias in short-run own price elasticity of demand (Durable goods with exogenous replacement timing)
Notes:
Prt(xt = 0) denotes the fraction of no-stock consumers. η

(short)
jt denotes the short-run own price elasticity derived from the dynamic

demand model. η̂jt denotes the price elasticity of demand derived from the static demand model. In the table, the terms p0t and g0t

are omitted to simplify the notation.The biases are calculated as
η̂jt−η

(short)
jt

η
(short)
jt

× 100.

α = 0.1, p0jt = $100.
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As this table shows, the bias is large when the fraction of consumers currently possessing products is

high (Prt(xt = 0) is small), and consumer’s CCP of the product (s
(ccp)
jt (xt, p

0
t , g

0
t )) is high. For instance,

when Prt(xt = 0) = 0.2 and s
(ccp)
jt (xt, p

0
t , g

0
t ) = 0.8, the bias is 320%. This large bias comes from the implicit

assumption in the static model that even the consumers already possessing any product will consider a purchase
as if they do not own anything. In the true dynamic demand model, consumers already possessing products

will not buy. Note that the bias is small if the value of s
(ccp)
jt (xt, p

0
t , g

0
t ) is small, even when Prt(xt = 0) is high.

In that sense, the product’s CCPs and market shares are also important for assessing the biases when applying
static demand models.

4.1.2 Long-run price elasticity

The next proposition shows the upper bound of the biases in long-run price elasticities, which are discussed in
Section 3.4:

Proposition 5. The following inequalities hold:

∣∣∣η(long)jt ({p0t+τ}τ≥0)− η
(short)
jt (p0t , g

0
t )
∣∣∣ ≤ κjt

(
max

l,xt+τ ,τ≥1
αls

(ccp)
ljt+τ (xt+τ , p

0
t+τ , g

0
t+τ )

)
∣∣∣η(long)jkt ({p0t+τ}τ≥0)− η

(short)
t (p0t , g

0
t )
∣∣∣ ≤ κjt

(
max

l,xt+τ ,τ≥1
αls

(ccp)
ljt+τ (xt+τ , p

0
t+τ , g

0
t+τ )

)
where κjt ≡ 2βC

1−βT
C

1−βC
p0jt

The inequalities indicate that the biases in long-run elasticities are small when future CCPs are sufficiently
small for all the state variables and consumer types.

In general, consumers expect that the probability they will purchase the product in the future is small if
the CCP of a product is small. Then, they are less likely to be affected by the future price change of the small
CCP product.

4.2 Remedies for static demand models

In general, applying static models yields biased price elasticities, unless consumers are myopic (βC = 0) and only
one state variable exists. Nevertheless, sometimes it is possible to mitigate the problems. In this subsection,
we discuss some remedies for static demand models. In Section 4.2.1, we discuss the remedies for the problems
associated with the disregard of state variables. In Section 4.2.2, we consider the remedies for utility parameter
estimates. Even though these remedies do not work in all cases, it is worth considering based on each empirical
context.

4.2.1 Disregard of state variables

In Section 3.2, we have not introduced any random coefficients in the static model. Nevertheless, by introducing
random coefficients, especially the random coefficient on the constant term, we might be able to mitigate the
bias.

Here, to make the point clear we consider the case where no persistent heterogeneity exists in the dynamic
model as in Section 3.2. Note that a similar argument holds even in the case where persistent consumer
heterogeneity exists in the dynamic model. By introducing random coefficients in the static model, we can
derive a static representation of the dynamic model in an alternative way. The static model is composed of
market shares s̃jt, type specific choice probabilities s̃

l̃jt
(pt, gt), additional terms c̃

l̃jt
and a mapping σ from xt

to l̃ such that:
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s̃
l̃jt
(pt, gt) =

exp(−αpjt + fjt + c̃
l̃jt
(gt))

1 +
∑

k∈Jt
exp(−αpkt + fkt + c̃

l̃kt
(gt))

s̃jt(pt, gt) =

∫
s̃
l̃jt
(pt, gt)dP (l̃)

P (l̃ = σ(xt)) = Prt(xt)

c̃
l̃jt
(gt) ≡ ϕjt(xt)− f0t(xt) + βCgjt(xt)− βCg0t(xt) for l̃ = σ(xt)

where P denotes the density of type l̃ consumers. Then, we can easily show that the static and dynamic
models are related in the following ways:

s̃
l̃jt
(pt, gt) = s

(ccp)
jt (xt, pt, gt) for l̃ = xt

s̃jt(pt, gt) = sjt(pt, gt)

Then, own price elasticity of product j is:

η̃jt(p
0, g0t ) = −∂s̃jt(p

0
t , g

0
t )

∂pjt

p0jt
s̃jt(p0t , g

0
t )

= −

[∫ ∂s̃
l̃jt
(p0t , g

0
t )

∂pjt
dP (l̃)

]
p0jt
s0jt

= s̃ljt(p
0
t , g

0
t )(1−s̃ljt(p0t , g0t ))

p0jt
s0jt

= η
(short)
jt (p0t , g

0
t )

Cross price elasticity of product k with respect to product j is:

η̃jkt(p
0
t , g

0
t ) =

∂s̃kt(p
0
t , g

0
t )

∂pjt

p0jt
s̃kt(p

0
t , g

0
t )

= −

[∫
∂s̃

l̃kt
(p0t , g

0
t )

∂pjt
dP (l̃)

]
p0jt
s0kt

= s̃ljt(p
0
t , g

0
t )s̃lkt(p

0
t , g

0
t )

p0jt
skt(p

0
t , g

0
t )

= η
(short)
jkt (p0t , g

0
t )

They imply that we can obtain consistent estimates of the short-run price elasticities, if we can fit the static

model so that s̃
l̃jt
(p0t , g

0
t ) ≈ s

(ccp)
jt (xt, p

0
t , g

0
t ) for l̃ = σ(xt) and α is consistently estimated.

To fit the static model so that s̃
l̃jt
(p0t , g

0
t ) ≈ s

(ccp)
jt (xt, p

0
t , g

0
t ) for l̃ = σ(xt), we should well approximate the

distribution of the term c̃
l̃jt
(gt) = ϕjt(xt)−f0t(xt)+βCgljt(xt)−βCgl0t(xt) by random coefficients. For example,

in order to approximate the distribution of the term f0t(xt), which does not depend on product characteristics,
introducing a random coefficient on the constant term is the most straightforward way. Note that such a
“reduced-form” approach might not work in all cases. The distribution of f0t(xt) changes over time based on
the values of Prt(xt), and it is not clear to what extent this type of strategy works well.

4.2.2 Inconsistent utility parameter estimates

The case of static models without random coefficients We continue the discussion in Section 3.3:
We abstract away the existence of persistent consumer heterogeneity in the dynamic model, and we consider
the case where random coefficients are not introduced in the static model. The problem is that the term

ĉjt(pt, gt) = log

∑
xt∈Xt

exp(ϕjt(xt)+βCgjt(xt))
exp(V C

t (xt,pt,gt))
·Prt(xt)∑

xt∈Xt

exp(f0t(xt)+βCg0t(xt))

exp(V C
t (xt,pt,gt))

·Prt(xt)

 is not controlled in the estimation process:

logSjt − logS0t = −αpjt +Xjtθ + ĉjt(pt, gt) + c0 + ξjt

If we can well approximate the term ĉjt with the variables other than pjt and Xjt, we can obtain consistent
estimates of utility parameter estimates α and θ.
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One strategy for approximating c0 + ĉjt is the introduction of time / group dummies1819. Suppose that the
set of products Jt can be divided into mutually exclusive groups Jgt (g = 1, · · · , G), and products in the same
group share the same values of c0 + ĉjt (c0 + ĉjt = ĉgt ∀j ∈ Jgt). Then, we can consistently estimate α and θ
by treating ĉgt as fixed effect dummies:

logSjt − logS0t = −αpjt +Xjtθ + ĉgt + ξjt

Note that products in the same group share the same values of ĉjt only when products in the same group
share the same values of gjt(xt) (continuation value given purchasing product j) and ϕjt(xt) (flow utility from
purchasing product j given state xt other than −αpjt + fjt)

20 .
The introduction of time and group dummies are informally proposed in Goldberg and Verboven (2001).

In Goldberg and Verboven (2001), automobile brand is the group. If it is plausible to assume that consumers
perceive that future utility from purchasing the same brand automobiles are the same, the strategy works well
and we can obtain the consistent estimate of α and θ.

Note that when the market environment is stable over time, the values of Prt(xt) and βCgjt(xt) are mostly
stable, and ĉjt also take mostly stable values over time. In this case, we can treat the term ĉjt as a constant
term, and we can obtain mostly precise estimate of the utility parameters unless cross-sectional correlations
between βCgjt(xt) and pjt or Zjt exists.

The case of static models with random coefficients We continue the discussion in Section 4.2.1, and
we abstract away the existence of persistent consumer heterogeneity in the dynamic model. Note that a similar
argument holds even when persistent consumer heterogeneity exists in the dynamic model.

If we can well approximate the term c̃
l̃jt
(gt) = ϕjt(xt) − f0t(xt) + βCgjt(xt) − βCg0t(xt) with random

coefficients and the variables other than pjt and Xjt, we can obtain consistent estimates of utility parameters
α and θ. As in the case of static models without random coefficients, introducing time / group dummies
would mitigate the problems in some cases, because it approximates the values of continuation values gjt(xt) to
some extent. Nevertheless, the value also depends on the state variables xt, and the interactions with random
coefficients would be necessary. There is no guarantee that the estimated utility parameters are consistent,
when introducing random coefficients in the static models.

4.3 Storable goods

We can extend the discussion in Section 3 to storable goods, by introducing the choice of consumption level
other than the product choice, which is also the essential component in the storable goods models.

Here, we consider the model where consumers solve the dynamic optimization problem with inventory
represented by the following Bellman equation21:

Ṽ C
lt (xt, pt) =

∫
max

Clt,{diljt}j∈Jt

[
U(Clt)− F (xt + qt − Clt) +

∑
j∈Jt

diljt (−αpjt + fljt + ϵijt)

+βCEtṼ C
lt+1(xt + qt − Clt, pt+1|xt, pt)

]
p(ϵ)dϵ

Here, xt denotes the inventory of the consumer at time t. diljt denotes the number of purchases of product
j. For instance, diljt = 1 implies that the consumer purchases a product j at time t. Clt denotes the amount of

18The effectiveness of the introduction of time / group dummies is quantitatively shown in Appendix B by conducting Monte
Carlo simulation.

19Besides, Lou et al. (2012) proposed to approximate the term associated with the consumers’ expectations by the age of the
product. The strategy works well when the continuation value of each product gjt(xt) is highly correlated with the age of the
product.

20Gowrisankaran and Rysman (2020) formulated the assumptions as “Constant Continuation Value within Group (CCV)”
Assumption and “Separability of Previous Purchases in Flow Utility SPP-F)” Assumption. They argued that they play essential
roles in reducing the number of state variables when solving dynamic demand models.

21The model is mainly based on Hendel and Nevo (2006).
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consumption, and U(Clt) represents the utility from the consumption of storable goods. Here, we assume that
only the quantity of consumption matters (brand does not matter in the consumption stage). qt =

∑
j∈Jt

qjtdiljt
denotes the purchased quantity at time t, where qjt denotes the package size of product j. xt + qt − Clt

represents the quantity of the goods for storage, and F (xt + qt − Clt) represents the storage cost. We assume
that xt+1 = xt + qt − Clt holds.

In the following discussion, we assume that consumers purchase at most one product (
∑

j∈Jt
diljt ≤ 1) in

each period. Then, the optimal consumption level given purchasing product j at time t is:

C∗
lt|j = argmax

Clt

U(Clt)− F (xt + qjt − Clt) + βCEtṼ C
lt+1(xt + qjt − Clt, pt+1|xt, pt)

The optimal consumption level given purchasing nothing at time t is:

C∗
lt|0 = argmax

Clt

U(Clt)− F (xt − Clt) + βCEtṼ C
lt+1(xt − Clt, pt+1|xt, pt)

Note that C∗
lt|j∈Jt∪{0} does not depend on the current product prices pt, given the continuation values

EtṼ C
lt+1(xt + qjt −C∗

lt|j∈Jt∪{0}, pt+1|xt, pt). In contrast, C∗
lt|j∈Jt∪{0} may depend on the future prices {pt+τ}τ≥1

through the terms on continuation values gt.
Then, by defining ϕljt(xt) ≡ U(C∗

lt|j)−F (xt+ qjt−C∗
lt|j) for j ∈ Jt, fl0t(xt) ≡ U(C∗

lt|j)−F (xt+ qjt−C∗
lt|j),

and gljt(xt) ≡ EtṼ C
lt+1(xt + qjt − C∗

lt|j , pt+1|xt, pt), we can specify the utility from choosing the alternative
j ∈ Jt ∪ {0} as in (1):

vilt (xt, pt, gt, at) =

{
−αlpjt + fljt + ϕljt(xt) + βCgljt(xt) + ϵijt if at = j

fl0t(xt) + βCgl0t(xt) + ϵi0t if at = 0

4.3.1 Short-run price elasticity

Since ϕjt(xt) and fl0t(xt) does not depend on the current product prices {pkt}k∈Jt , given the continuation values
gt, we can easily show that the same statements in Section 3.2 (Propositions 1 and 2) hold.

In terms of short-run cross price elasticities, the signs of the biases are not clear, as shown in Proposition 2.
Nevertheless, for the “same package size products”, short-run cross price elasticities are underestimated. The
following corollary shows the statement:

Corollary 2. For storable goods j, k ∈ Jt with qjt = qkt, Covjkt(p
0
t , g

0
t ) ≥ 0 and η̂jkt(p

0
t , g

0
t ) ≤ η

(short)
jkt (p0t , g

0
t ).

4.3.2 Long-run price elasticity

If the future price change does not affect the current consumption level, then the terms ϕljt(xt) and fl0t(xt) do
not depend on future prices, and we can easily show that the statements in Section 3.4 (Proposition 3) also
holds even for storable goods. In the case of storable goods, in general the current demand for a product implies
less future demand for any product (λljt(xt) < 0, λljkt(xt) < 0 j, k ∈ Jt). Then, Proposition 3 implies that
long-run own price elasticity is smaller than the short-run own price elasticity, and long-run cross elasticity is
larger than the short-run cross price elasticity.

Nevertheless, in reality, future price change may affect the current consumption level. For instance,
consumers expecting higher future product prices may reduce the amount of consumption and increase inventory.
Consequently, Proposition 3 cannot be directly applied to storable goods, and another source of bias, namely,
changing consumption level in response to the future price change exists.

5 Applications of the results to empirical researches

In this section, we discuss how the results so far provide insights into the previous studies’ findings on the biases
in applying static demand models. Here, we focus on the results of four papers in Table 1.
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5.1 Automobiles (Chen et al. (2008) and Schiraldi (2011))

Chen et al. (2008), analyzing the automobile market, showed that a static model overestimates short-run own
price elasticity22 by 14%. In contrast, Schiraldi (2011), also analyzing the automobile market, showed that a
static model underestimates short-run own price elasticity by 73%. We can guess that the difference comes
from the primary sources of the biases: Chen et al. (2008)’s result is mainly due to disregarding state variables,
and Schiraldi (2011)’s result is primarily due to the inconsistent utility parameter estimates.

Chen et al. (2008) considered the market with only one homogeneous new car model and one homogeneous
used car model. Moreover, the model did not incorporate persistent consumer heterogeneity. Since they
introduced new and used car dummy variables in the estimation, the identification mainly comes from time-series
variations. Since they implicitly considered the setting where the market is stationary, Prt(xt) and consumers’
expectations gjt(xt) are mostly stable over time. Even though they used cost-shifters as instruments that may
be correlated with consumers’ expectations over time, static estimates yielded only minor biases. In fact, the
bias of the price coefficient was only 2%. Then, the effect of the bias due to the disregard of state variables
dominated, and the static model overestimated the short-run price elasticity.

In contrast, Schiraldi (2011) considered the market with multiple products. The identification came
from both time-series variations and cross-sectional variations. When focusing on cross-sectional variations,
consumers’ continuation values gljt(xt) are positively correlated with the product prices pjt, since higher quality
and expensive products would have higher remaining values in the next period. We can suspect that the
positive correlation leads to a large positive correlation between product prices pjt and c̃ljt, and consequently,
an underestimation of the price coefficient23. Then, since the bias due to the underestimation of the price
coefficient is so large (bias:82%), we can suspect that the effect of the bias dominated the bias due to the
disregard of state variables24, and the static model underestimated the short-run price elasticity.

.

5.2 New durable goods (Gowrisankaran and Rysman (2012))

Gowrisankaran and Rysman (2012) studied a new durable goods market with replacement demand. They
showed that the estimated price coefficient was sufficiently close to zero when applying a static BLP model. In
their model, we can expect that not only continuation values gljt(xt) are correlated with product prices pjt as
in Schiraldi (2011), but also Prlt(xt = 0) is correlated with product prices pjt. Here, xt = 0 denotes the state
where consumers do not own any durable product. Especially in the latter periods of the diffusion process, the
decreasing fraction of no-stock consumers Prlt(xt = 0) induces lower demand sjt. Product prices pjt decline
over time at the same time, and a static estimate fits the model as if declining product prices induces lower
demand25.

5.3 Storable goods (Hendel and Nevo (2006))

Hendel and Nevo (2006) argued that applying a static model leads to the overestimation of long-run own
price elasticities and underestimation of long-run cross price elasticities. The biases come from three sources:
disregard of state variables (consumer inventory), inconsistent utility parameter estimates, and changing
expectations of consumers. Disregard of state variables leads to the overestimation of short-run own price

22Note that Chen et al. (2008) considered the elasticity in which changing consumers’ expectations in response to the current
temporary price change is allowed. Hence, it also affected the estimated price elasticity based on the dynamic model. Besides, we
compare the elasticities given fixed used car prices, even though the article also showed the results allowing changing used car prices.

23Schiraldi (2011) used instrumental variables, including lagged product prices, and assumed that error term ejt satisfies the
moment condition that ejt − λejt−1 is orthogonal to instrumental variables. Even with this identification strategy, the endogeneity
problem might not be solved under the static specification.

24Note that Schiraldi (2011) did not introduce random coefficients in the static estimation, and the problem of the disregard of
state variables might not be solved in the static specification. Nevertheless, the effect might be smaller than the bias due to the
inconsistent utility parameter estimate.

25Note that Gowrisankaran and Rysman (2012) used standard variables that capture how crowded a model is in a characteristic
space as instruments. For new durable goods, it is natural that these variables increase or decline over time. For instance, more
and more products are introduced in the new durable goods market. Hence, Prlt(xt = 0) and instrumental variables would be
correlated, and the use of instrumental variables might not solve the problem.
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elasticities for all the products, and underestimation of short-run own price elasticities for the same package
size products as discussed in Section 4.3. Changing consumers’ expectations affect the current consumption
level and product choice. If the current consumption level does not change in response to the future price
change, it is plausible to assume that long-run price elasticities are higher than short-run price elasticities, as
discussed in Section 4.3.

Regarding inconsistent utility parameter estimates, Hendel and Nevo (2006) empirically showed that
applying a static model results in the overestimation of the price coefficient. To understand the result, consider
a simplified model in which there are only two states: state with / without inventory (xt ̸= 0 and xt = 0).
Further, we abstract away consumer heterogeneity and assume that consumers do not buy anything at the with
inventory state (xt ̸= 0). Then, ĉjt can be expressed as26:

ĉjt(pt, gt) = log

 exp(ϕjt(xt=0)+βCgjt(xt))

exp(V C
t (xt=0,pt,gt))

Prt(xt = 0)

1−
∑

k∈Jt
exp(−αpkt+fkt+ϕkt(xt)+βCgkt(xt))

exp(V C
t (xt=0,pt,gt))

Prt(xt = 0)

 (20)

The equation implies ĉjt is an increasing function of Prt(xt = 0). Generally, consumers are more likely to buy
storables under temporary price reductions and when they are at the no-inventory state. Then, it is plausible
to assume that Prt(xt = 0) and product prices pjt are negatively correlated (Prt(xt = 0) is high when product
prices are low, and Prt(xt = 0) is low when the product prices are high). Then, negative correlation between
Prt(xt = 0) and product prices pjt induces negative correlation between product prices pjt and ĉjt. Of course,
other effects, such as the correlation between pjt and gjt(xt) would exist. Nevertheless, these effects might be
dominated by the effect of the negative correlation between Prt(xt = 0) and product prices pjt

27.

6 Conclusion

In this article, I investigated the mechanisms behind the biases in applying static demand models when the true
demand structure is dynamic. There are three sources of biases: disregard of state variables, inconsistent utility
parameter estimates, and changing expectations of consumers. The bias due to the disregard of state variables,
which has not been discussed so much in the previous literature, leads to the overestimation of short-run own
price elasticities. The first and third sources of biases are small when the focus is on the small CCP products.

In this study, we assumed that idiosyncratic preference shock ϵijt follows type-I extreme value distribution as
in most literature. Nevertheless, there is no guarantee that the distributional assumption is correct. Considering
the results in nonparametric settings might be a promising extension of this study.

Besides, we can find an analogy with the limited consideration set models (e.g., Abaluck and Adams-Prassl,
2021, Crawford et al., 2021). For example, in the default specific models, one of the limited consideration set
models, only a fraction of consumers make purchase decisions. Similarly, in the extreme case of the durable
goods model, only a fraction of consumers with no durable goods holdings make additional purchase decisions28.
However, the fraction of consumers making decisions is generally not observed, and it causes problems in both
cases. It is interesting to investigate how the identification strategies in the recent literature on consideration
set models help mitigate the issues associated with the use of static demand models.

26See Appendix A for the proof.
27Note that Hendel and Nevo (2006) didn’t introduce unobserved product characteristics ξjt and estimated the utility parameters

by maximum likelihood estimation, unlike the discussion in Section 3 and 4. Nevertheless, a similar argument holds.
28CCPs of purchasing any product are zero for consumers with durable product holdings.
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A Proof

A.1 Proof of the statements in Section 3.2

A.1.1 Proof of Lemma 1

Own price elasticity:

Proof. By (11) and (18),

η̂jt(p
0
t , g

0
t )− η

(short)
jt (p0t , g

0
t )

=

[
αs0jt(1− s0jt)− α

∑
xt∈Xt

Prt(xt) · s(ccp)jt (xt, p
0
t , g

0
t )
(
1− s

(ccp)
jt (xt, p

0
t )
)] p0jt

s0jt

= α

−

( ∑
xt∈Xt

Prt(xt)s
(ccp)
jt (xt, p

0
t , g

0
t )

)2

+
∑

xt∈Xt

Prt(xt)s
(ccp)
jt (xt, p

0
t , g

0
t )

2

 p0jt
s0jt

= α
∑

xt∈Xt

Prt(xt)

s(ccp)jt (xt, p
0
t , g

0
t )−

∑
x̃t∈Xt

Prt(x̃t)s
(ccp)
jt (x̃t, p

0
t , g

0
t )

2

·
p0jt
s0jt

= αV arjt(p
0
t , g

0
t ) ·

p0jt
s0jt

Cross price elasticity:

Proof. By (12) and (19),

η̂jkt(p
0
t , g

0
t )− η

(short)
jkt (p0t , g

0
t )

=

[
αs0jts

0
kt − α

∑
xt∈Xt

Prt(xt) · s(ccp)jt (xt, p
0
t , g

0
t )s

(ccp)
kt (xt, p

0
t , g

0
t )

]
p0jt
s0kt

= −α

 ∑
xt∈Xt

Prt(xt)

s(ccp)jt (xt, p
0
t , g

0
t )−

∑
x̃t∈Xt

Prt(x̃t)s
(ccp)
jt (x̃t, p

0
t , g

0
t )

 ·

s(ccp)kt (xt, p
0
t , g

0
t )−

∑
x̃t∈Xt

Prt(x̃t)s
(ccp)
kt (x̃t, p

0
t , g

0
t )

 p0jt
s0kt

= −αCovjkt(p0t , g0t ) ·
p0jt
s0kt

A.1.2 Proof of Corollary 1

Proof. First, continuation value gjt(xt) does not depend on the state variables xt for durable goods with unit
stock, because current product holdings do not affect future continuation values when they sell or throw away
the old product and purchase a new product.

Next, we define sjt(pt, gt) ≡ s
(ccp)
jt (xt, pt, gt)/

(∑
m∈Jt

s
(ccp)
mt (xt, pt, gt)

)
, which represents the conditional

choice probability of product j given purchasing any product. sjt(pt, gt) does not depend on consumers’ state
variables xt, because:
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sjt(pt, gt) ≡
s
(ccp)
jt (xt, pt, gt)∑

m∈Jt
s
(ccp)
mt (xt, pt, gt)

=

exp(ϕt(xt)−αpjt+fjt+βCgjt(xt))

exp(V C
t (xt,pt,gt))∑

m∈Jt

exp(ϕt(xt)−αpmt+fmt+βCgmt(xt))

exp(V C
t (xt,pt,gt))

=
exp (−αpjt + fjt + βCgjt(xt))∑

m∈Jt
exp (−αpmt + fmt + βCgmt(xt))

. Then, we can derive:

Covjkt(pt, gt) ≡
∑

x̃t∈Xt

Prt(x̃t)
(
s
(ccp)
jt (x̃t, pt, gt)− Exts

(ccp)
jt (xt, pt, gt)

)(
s
(ccp)
kt (x̃t, pt, gt)− Exts

(ccp)
kt (xt, pt, gt)

)
=

∑
x̃t∈Xt

Prt(x̃t)
((

1− s
(ccp)
0t (x̃t, pt, gt)

)
sjt(pt, gt)− Ext

(
1− s

(ccp)
0t (xt, pt, gt)

)
sjt(pt, gt)

)
·((

1− s
(ccp)
0t (x̃t, pt, gt)

)
skt(pt, gt)− Ext

(
1− s

(ccp)
0t (xt, pt, gt)

)
skt(pt, gt)

)
= sjt(pt, gt)skt(pt, gt)

∑
x̃t∈Xt

Prt(x̃t)
(
s
(ccp)
0t (x̃t, pt, gt)− Exts

(ccp)
0t (xt, pt, gt)

)2
≥ 0

A.2 Proof of the statements in Section 3.4

A.2.1 Proof of Lemma 2

To prove Lemma 2, we define the term

ṽljt(xt, pt, gt) ≡

{
−αlpjt + fljt + ϕljt(xt) + βCgljt(xt) if j ∈ Jt

fl0t(xt) + βCgl0t(xt) if j = 0

. Using the term, vilt(xt, pt, gt, at = j) = ṽljt(xt, pt, gt) + ϵijt holds. For convenience, we further define At =
Jt ∪ {0}. Besides, we omit the terms p0t+τ and g0t+τ in the following discussion to simplify the notation. First,
we prove the following lemmas:

Lemma 3. Define the following term:

ζlt+τ (x̃t+1) ≡
∑

xt+τ−1

∑
h∈At+τ−1

Pr(l choose j at t+ τ |xt+τ−1, at+τ−1 = h)
∂V C

lt+1(x̃t+1)

∂ ˜vlht+τ−1(xt+τ−1)

for τ = 2, · · · , T . Then, the following formula holds:

ζlt+τ (x̃t+1) = βτ−2
C Pr(l choose j at t+ τ |x̃t+1)
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Proof. First,

ζlt+τ (x̃t+1)

≡
∑

xt+τ−1

∑
h∈At+τ−1

Pr(l choose j at t+ τ |xt+τ−1, at+τ−1 = h)
∂V C

lt+1(x̃t+1)

∂ ˜vlht+τ−1(xt+τ−1)

=
∑

xt+τ−1

∑
h∈At+τ−1

Pr(l choose j at t+ τ |xt+τ−1, at+τ−1 = h) ·

∂V C
lt+τ−1(xt+τ−1)

∂ ˜vlht+τ−1(xt+τ−1)

∑
xt+τ−2

∑
k∈Alt+τ−2(xt+τ−2)

∂ ˜vlkt+τ−2(xt+τ−2)

∂V C
lt+τ−1(xt+τ−1)

∂V C
lt+1(x̃t+1)

∂ ˜vlkt+τ−2(xt+τ−2)

=
∑

xt+τ−1

∑
h∈At+τ−1

Pr(l choose j at t+ τ |xt+τ−1, at+τ−1 = h) ·

s
(ccp)
lht+τ−1(xt+τ−1)

∑
xt+τ−2

∑
k∈At+τ−2

βCψ(xt+τ−1|xt+τ−2, at+τ−2 = k)
∂V C

lt+1(xt+1)

∂ ˜vlkt+τ−2(xt+τ−2)

Since

∑
xt+τ−1

∑
h∈At+τ−1

Pr(l choose j at t+ τ |xt+τ−1, at+τ−1 = h)s
(ccp)
lht+τ−1(xt+τ−1)ψ(xt+τ−1|xt+τ−2, at+τ−2 = k)

= Pr(l choose j at t+ τ |xt+τ−2, at+τ−2 = k)

holds, we obtain:

ζlt+τ (x̃t+1)

= βC
∑

xt+τ−2

∑
k∈At+τ−2

Pr(l choose j at t+ τ − 1|xt+τ−2, at+τ−2 = k)
∂V C

lt+1(x̃t+1)

∂ ˜vlkt+τ−2(xt+τ−2)

= βCζlt+τ−1(x̃t+1)

By repeatedly applying the equation, we have:

ζlt+τ (x̃t+1) = βτ−2
C ζlt+2(x̃t+1)

Here,

ζlt+2(x̃t+1)

≡
∑
xt+1

∑
k∈At+1

Pr(l choose j at t+ τ |xt+1, at+1 = k)
∂V C

lt+1(x̃t+1)

∂ṽlkt+1(xt+1)

=
∑

k∈At+1

Pr(l choose j at t+ τ |x̃t+1, at+1 = k)
∂V C

lt+1(x̃t+1)

∂ṽlkt+1(x̃t+1)

=
∑

k∈At+1

Pr(l choose j at t+ τ |x̃t+1, at+1 = k)s
(ccp)
lkt+1(x̃t+1)

= Pr(l choose j at t+ τ |x̃t+1)

Hence, we obtain:

ζlt+τ (x̃t+1) = βτ−2
C Pr(l choose j at t+ τ |x̃t+1)
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Lemma 4. The following equation holds:

∂EtV
C
lt+1(xt, at = k)

∂pjt+τ
= −αlβ

τ−1
C Pr(l choose j at t+ τ |xt, at = k)

Proof. Using Lemma 3,

∂V C
lt+1(x̃t+1)

∂pjt+τ

=
∑
xt+τ

∂ṽljt+τ (xt+τ )

∂pjt+τ

∂V C
lt+τ (xt+τ )

∂ṽljt+τ (xt+τ )

∑
xt+τ−1

∑
h∈At+τ−1

∂ ˜vlht+τ−1(xt+τ−1)

∂V C
lt+τ (xt+τ )

∂V C
lt+1(x̃t+1)

∂ ˜vlht+τ−1(xt+τ−1)

=
∑
xt+τ

(−αl)s
(ccp)
ljt+τ (xt+τ )

∑
xt+τ−1

∑
h∈At+τ−1

βCψ(xt+τ |xt+τ−1, at+τ−1 = h)
∂V C

lt+1(x̃t+1)

∂ ˜vlht+τ−1(xt+τ−1)

= −βCαl ·
∑

xt+τ−1

∑
h∈At+τ−1
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∂V C
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= −βCαlζlt+τ (x̃t+1)
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Consequently,

∂EtV
C
lt+1(xt, at = k)

∂pjt+τ

=
∑
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∂V C
lt+1(xt+1)

∂pjt+τ
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τ−1
C

∑
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Pr(l choose j at t+ τ |xt+1)ψ(xt+1|xt, at = k)

= −αlβ
τ−1
C Pr(l choose j at t+ τ |xt, at = k)

Lemma 5. The sfollowing equation holds:

∑
m∈At

T∑
τ=1

∂βCEtV
C
lt+1(xt, at = m)

∂pjt+τ

∂s
(ccp)
lkt (xt)

∂ṽlmt(xt)
= −αlβCs

(ccp)
lkt (xt)λljkt(xt)

Proof. First,

∑
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T∑
τ=1

∂βCEtV
C
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∂pjt+τ

∂s
(ccp)
lkt (xt)

∂ṽlmt(xt)

=
T∑
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∂βCEtV
C
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∂s
(ccp)
lkt (xt)
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+

∑
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∂βCEtV
C
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∂pjt+τ

∂s
(ccp)
lkt (xt)

∂ṽlmt(xt)


=

T∑
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∂βCEtV
C
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s
(ccp)
lkt (xt)

(
1− s

(ccp)
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)
−

∑
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C
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s
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
= βCs
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[
∂EtV

C
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C
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]

24



By Lemma 4,

∂EtV
C
lt+1(xt, at = k)

∂pjt+τ
−
∑
m∈At

∂EtV
C
lt+1(xt, at = m)

∂pjt+τ
s
(ccp)
lmt (xt)

= −αlβ
τ−1
C Pr(l choose j at t+ τ |xt, at = k) + αlβ

τ−1
C

∑
m∈At

Pr(l choose j at t+ τ |xt, at = m) · s(ccp)lmt (xt)

= −αlβ
τ−1
C [Pr(l choose j at t+ τ |xt, at = k)− Pr(l choose j at t+ τ |xt)]

Then, we obtain:

∑
m∈At

T∑
τ=1

∂βCEtV
C
lt+1(xt, at = m)

∂pjt+τ

∂s
(ccp)
lkt (xt)

∂ṽlmt(xt)

= −αlβCs
(ccp)
lkt (xt)

T∑
τ=1

βτ−1
C [Pr(l choose j at t+ τ |xt, at = k)− Pr(l choose j at t+ τ |xt)]

= −αlβCs
(ccp)
lkt (xt)λljkt(xt)

Proof of Lemma 2

Own price elasticity:

Proof. It follows that:

η
(long)
jt − η

(short)
jt

= −
p0jt
s0jt

∫  ∑
xt∈Xt

Prlt(xt)
∑
m∈At

T∑
τ=1

∂βCEtV
C
lt+1(xt, at = m)

∂pjt+τ

∂s
(ccp)
ljt (xt)

∂βCEtV C
lt+1(xt, at = m)

 dP (l)

= −
p0jt
s0jt

∫  ∑
xt∈Xt

Prlt(xt)
∑
m∈At

T∑
τ=1

∂βCEtV
C
lt+1(xt, at = m)

∂pjt+τ

∂s
(ccp)
ljt (xt)

∂ṽlmt(xt)

 dP (l)

= −
p0jt
s0jt

∫ ( ∑
xt∈Xt

Prlt(xt)
(
−αlβCs

(ccp)
ljt (xt)λljt(xt)

))
dP (l) (∵ Lemma 5)

= βC
p0jt
s0jt

∫
αl

( ∑
xt∈Xt

Prlt(xt)s
(ccp)
ljt (xt)λljt(xt)

)
dP (l)

Hence, the statement holds.

Cross price elasticity:
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Proof. It follows that:

η
(long)
jkt − η

(short)
jkt

=
p0jt
s0kt

∫ ( ∑
xt∈Xt

Prlt(xt)
∑
m∈At

T∑
τ=1

∂βCEtV
C
lt+1(xt, at = m)

∂pjt+τ

∂s
(ccp)
lkt (xt)

∂βCEtV C
lt+1(xt, at = m)

)
dP (l)

=
p0jt
s0kt

∫ ( ∑
xt∈Xt

Prlt(xt)
∑
m∈At

T∑
τ=1

∂βCEtV
C
lt+1(xt, at = m)

∂pjt+τ

∂s
(ccp)
lkt (xt)

∂ṽlmt(xt)

)
dP (l)

=
p0jt
s0kt

∫ ( ∑
xt∈Xt

Prlt(xt)
(
−αlβCs

(ccp)
lkt (xt)λljkt(xt)

))
dP (l) (∵ Lemma 5)

= −βC
p0jt
s0kt

∫
αl

( ∑
xt∈Xt

Prlt(xt)s
(ccp)
lkt (xt)λljkt(xt)

)
dP (l)

Hence, the statement holds.

A.3 Proof of the statements in Section 4.1

A.3.1 Proof of Proposition 4

Own price elasticity:

Proof. It follows that:

η̂jt(p
0
t , g

0
t )− η

(short)
jt (p0t , g

0
t )

=

α
−

( ∑
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(ccp)
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0
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0
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)2

+
∑
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Prt(xt)s
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0
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0
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2

 p0jt
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∑

xt∈Xt
Prt(xt)s

(ccp)
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0
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0
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0
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0
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0
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(
maxxt αs
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jt (xt, p

0
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0
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)
·
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Prt(xt)s

(ccp)
jt (xt, p

0
t , g

0
t )∑

xt∈Xt
Prt(xt)s

(ccp)
jt (xt, p0t , g

0
t )

p0jt

= αp0jt

(
max
xt

s
(ccp)
jt (xt, p

0
t , g

0
t )

)

Cross price elasticity:

Proof. When η̂jkt(p
0
t , g

0
t )− η

(short)
jkt (p0t , g

0
t ) ≥ 0 holds,
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∣∣∣η̂jkt(p0t , g0t )− η
(short)
jkt (p0t , g

0
t )
∣∣∣ = η̂jkt(p

0
t , g

0
t )− η
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0
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=
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0
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0
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0
t )s
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0
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0
t )

]
p0jt
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≤
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0
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p0jt

≤

(
α
∑

xt∈Xt

Prt(xt)s
(ccp)
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0
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0
t )

)
p0jt
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s
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0
t )p

0
jt

(
∵
∑
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)

On the other hand, when η̂jkt(p
0
t , g

0
t )− η

(short)
jkt (p0t , g

0
t ) ≤ 0 holds,

∣∣∣η̂jkt(p0t , g0t )− η
(short)
jkt (p0t , g

0
t )
∣∣∣ = −η̂jkt(p0t , g0t ) + η

(short)
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0
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=

[
−sjt(p0t , g0t )skt(p0t , g0t ) + α

∑
xt∈Xt

Prt(xt) · s(ccp)jt (xt, p
0
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0
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kt (xt, p

0
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0
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]
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α
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0
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0
t )s

(ccp)
kt (xt, p

0
t , g

0
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p0jt

≤

(
maxxt αs

(ccp)
jt (xt, p

0
t , g

0
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·
∑
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(ccp)
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0
t , g

0
t )

s0kt
p0jt

≤ αmax
xt

s
(ccp)
jt (xt, p

0
t , g

0
t )p

0
jt

Hence, the statement holds.

A.3.2 Proof of Proposition 5

Cross price elasticity:

Proof. In the following, we omit p0t+τ and g0t+τ to make the notation simpler. It follows that:
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∣∣∣η(long)jkt − η
(short)
jkt

∣∣∣
=

p0jt
s0kt

βC

∫
αl

∑
xt∈Xt

Prlt(xt)s
(ccp)
lkt (xt) |λljkt(xt)| dP (l)

≤ βCp
0
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∫ ∑
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(
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)
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0
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αl |λljkt(xt)|
)

= βCp
0
jt

(
max
l,xt

αl

∣∣∣∣∣
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]∣∣∣∣∣∣


= βCp
0
jt

max
l,xt

αl

∣∣∣∣∣∣
T∑

τ=1

βτ−1
C

∑
xt+τ

s
(ccp)
ljt+τ (xt+τ ) [Pr(xt+τ |xt, at = j)− Pr(xt+τ |xt)]

∣∣∣∣∣∣


≤ βCp
0
jt

(
max

l
αl · 2

T∑
τ=1

βτ−1
C max

xt+τ

s
(ccp)
ljt+τ (xt+τ )

)
(∵
∑
xt+τ

Pr(xt+τ |xt, at = j) =
∑
xt+τ

Pr(xt+τ |xt) = 1)

= 2βC
1− βTC
1− βC

p0jt ·max
xt+τ

s
(ccp)
ljt+τ (xt+τ )

Own price elasticity:

Proof. We can prove the statement as in the case of cross price elasticity.

A.4 Proof of the statements in Section 4.3

A.4.1 Proof of Corollary 2

Proof. Let Jgt be the set of products in the same package size, and let j, k ∈ Jgt. Then, ϕjt(xt) = ϕgt(xt) holds
for all j ∈ Jgt, because C

∗
t |j = argmaxCt U(Ct)− F (xt + qjt − Ct) + βCEtV

C
lt+1(xt + qjt − Ct, pt+1|xt, gt) takes

common values for all j ∈ Jgt (same package size (qjt) products), and ϕljt(xt) = U(C∗
t |j)− F (xt + qjt − C∗

t |j)
holds by construction. Moreover, since xt+1 = xt + qt −Ct, continuation values gjt(xt) take common values for
all j ∈ Jgt.

Then, sj|g,t(pt, gt) ≡ s
(ccp)
jt (xt, pt, gt)/

(∑
m∈Jgt

s
(ccp)
mt (xt, pt, gt)

)
, the probability that a consumer purchases

product j conditional on purchasing products in Jgt, does not depend on state variables xt, because:

sj|g,t(pt, gt) ≡ s
(ccp)
jt (xt, pt, gt)/

 ∑
m∈Jgt

s
(ccp)
mt (xt, pt, gt)


=

exp(ϕjt(xt)−αpjt+fjt+βCgjt(xt))

exp(V C
t (xt,pt,gt))∑

m∈Jgt

exp(ϕmt(xt)−αpmt+fmt+βCgmt(xt))

exp(V C
t (xt,pt,gt))

=
exp(−αpjt + fjt)∑

m∈Jgt
exp (−αpmt + fmt)
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Hence, we obtain:

Covjkt(pt, gt) ≡
∑

x̃t∈Xt

Prt(x̃t)
(
s
(ccp)
jt (x̃t, pt, gt)− Exts

(ccp)
jt (xt, pt, gt)

)(
s
(ccp)
kt (x̃t, pt, gt)− Exts

(ccp)
kt (xt, pt, gt)

)

=
∑

x̃t∈Xt

Prt(x̃t)

 ∑
m∈Jgt

s
(ccp)
mt (x̃t, pt, gt)

 sj|g,t(pt, gt)− Ext

 ∑
m∈Jgt

s
(ccp)
mt (xt, pt, gt)

 sj|g,t(pt, gt)

 ·

 ∑
m∈Jgt

s
(ccp)
mt (x̃t, pt, gt)

 sk|g,t(pt, gt)− Ext

 ∑
m∈Jgt

s
(ccp)
mt (xt, pt, gt)

 sk|g,t(pt, gt)


= sj|g,t(pt, gt)sk|g,t(pt, gt)

∑
x̃t∈Xt

Prt(x̃t)

 ∑
m∈Jgt

s
(ccp)
mt (x̃t, pt, gt)− Ext

∑
m∈Jgt

s
(ccp)
mt (xt, pt, gt)

2

≥ 0

A.5 Proof of the statements in Section 5

A.5.1 Proof of equation (20)

Proof. Since we consider the case where consumers do not purchase under the state xt ̸= 0, let ϕjt(xt ̸= 0) = −∞
so that s

(ccp)
jt (xt ̸= 0, pt, gt) = 0. Then,

exp(ϕjt(xt ̸=0)+βCgjt(xt ̸=0))

exp(V C
t (xt ̸=0,pt,gt))

= 0 and exp(f0t(xt ̸=0)+βCg0t(xt ̸=0))

exp(V C
t (xt ̸=0,pt,gt))

= 1. Hence,

ĉjt = log

 exp(ϕjt(xt=0)+βCgjt(xt=0))

exp(V C
t (xt=0,pt,gt))

Prt(xt = 0) +
exp(ϕjt(xt ̸=0)+βCgjt(xt ̸=0))

exp(V C
t (xt ̸=0,pt,gt))

(1− Prt(xt = 0))

exp(f0t(xt=0)+βCg0t(xt=0))

exp(V C
t (xt=0,pt,gt))

Prt(xt = 0) + exp(f0t(xt ̸=0)+βCg0t(xt ̸=0))

exp(V C
t (xt ̸=0,pt,gt))

(1− Prt(xt = 0))


= log

 exp(ϕjt(xt=0)+βCgjt(xt=0))

exp(V C
t (xt=0,pt,gt))

Prt(xt = 0)

exp(f0t(xt=0)+βCg0t(xt=0))

exp(V C
t (xt=0,pt,gt))

Prt(xt = 0) + (1− Prt(xt = 0))


= log

 exp(ϕjt(xt=0)+βCgjt(xt=0))

exp(V C
t (xt=0,pt,gt))

Prt(xt = 0)

1−
∑

k∈Jt
exp(−αpkt+fkt+ϕkt(xt=0)+βCgkt(xt=0))

exp(V C
t (xt=0,pt,gt))

Prt(xt = 0)



B Monte Carlo Simulation

To show the effectiveness of introducing fixed effect terms for utility parameter estimates discussed in Section 3.3,
we conduct a Monte Carlo Experiment. We consider the market of durable goods with exogenous replacement
timing, where consumers consider purchases only when they do not have any product. In the model, all the
products share the same continuation values, and the introduction of time dummies yields consistent estimates
of utility parameters under the nonexistence of persistent consumer heterogeneity. We try the static estimation
as in Berry et al. (1995) with and without fixed effect terms and compare the estimation results. In addition,
we estimate the parameters under two market environments: a stationary environment and a nonstationary
environment. Here, “stationary” implies that product holdings and consumer expectations are mostly stable
over time. I show the case where the biases in parameter estimates are not large if the market is stationary,
even when not introducing fixed effect terms.

B.1 Specifications of the Monte Carlo experiment

The Monte Carlo experiments are conducted in the following specifications and procedures.
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Specifications

The synthetic data generated in this study are similar to those in Dubé et al. (2012) and Sun and Ishihara
(2019)29, except for the introduction of the replacement demand.

Let xt be consumer’s individual-level state variables. We consider the case where consumers consider
purchases only when they do not own any product (xt = 0). Then, type l consumer i’s present value discounted
sum of utility at time t is specified as:

viljt(xt = 0) = θ0l +
2∑

m=1

θlχ
(m)
jt − αlpjt + ξjt + Etβ

L
CV

C
lt+L(xt+L = 0) + ϵijt

vil0t(xt = 0) = βCEtV
C
lt+1(xt+1 = 0) + ϵi0t

for j = 1, ...J , and t = 1, ..., T . Here, χjt, pjt, ξjt denote the product j’s observed characteristics, price, and
unobserved characteristics. L denotes the lifetime of products.

We assume that all the products follow the same lifetime distribution. Products follow geometric depreciation
with a depreciation rate ρ. Then, Pr(xt) follows the following process:

Prlt+1(xt+1 = 0) =
(
1− Prlt(xt = 0)s

(cd)
l0t (xt = 0)

)
ρ+ Prlt(xt = 0)s

(cd)
l0t (xt = 0)

We consider the case where only one market exists, and we let the values of T and J be T = 100 and
J = 50. In addition, we assume that none of the consumers possess the products at the beginning of t = 1
(Prlt=1(xt=1 = 0) = 1).

Observed product characteristics χjt =
(
χ
(1)
jt , χ

(2)
jt

)′
follows log-normal distribution:

χjt ≡
(
x1jt
x2jt

)
∼ LN

((
0
0

)
,

(
0.52

0.52

))
Unobserved product characteristic ξjt follows the i.i.d. normal N(0, 0.52).
Product price is generated in the following way:

pjt = γ0z + γxχjt + γzzjt + γwwjt + γξξjt − γp

∑
k ̸=j Xkt

J − 1
+ upjt

where upjt ∼ N(0, 0.012). We consider the environment where product prices decline over time, but finally
converge to stable levels.

wjt and zjt represents cost shifter, and wjt follows standard normal distribution N(0, 12). zjt follows AR(1)
process zjt = λz0 + λz1zjt−1 + uzjt, where u

z
t ∼ N(0, 0.012).

The values of the parameters are set as follows:
zj0 = 6, [λz0, λ

z
1] = [0.1, 0.9], [γ0z , γx1 , γx2 , γz, γw, γξ] = [1, 0.2, 0.2, 1, 0.2, 0.7], γp = [0.05, 0.05]

The values of the product depreciation rate and consumers’ discount factor are set to 0.03 and 0.99.
For estimation, we use the weight matrix W = (Z ′Z)−1, where Z is the matrix of instrumental variables.

As instrumental variables, we use polynomial expansions of [χjt, zjt, wjt,
∑

k ̸=j χkt]. There are 35 instrumental
variables.

29These studies considered the alternative estimation procedures other than the method relying on the nested fixed-point
algorithm.
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Procedure

I repeated the following process:

1. Generate price and product characteristics data (pjt, χjt)

2. Solve V C
lt (xt = 0) and s

(cd)
ljt (xtr = 0)

To solve these values, we assume the following AR(1) transition process of inclusive value V C
lt (xt = 0):30

V C
lt+1(xt+1 = 0) = γδ0 + γδ1V

C
lt (xt = 0) + uδlt (Euδlt = 0)

3. Calculate the path of stock (Prlt(xt = 0)) and market share (sjt)

4. Using the generated data (pjt, χjt, sjt), estimate parameters by assuming a static demand model and
applying the BLP method. Static BLP estimation was implemented by using PyBLP (Conlon and
Gortmaker, 2020).

B.2 Results under the dynamic model without persistent consumer heterogeneity

First, I show the results under the dynamic model without persistent consumer heterogeneity. I generate
simulated data under the following parameter setting: [θ0l , θ

1
l , θ

2
l , αl] = [2, 1.5, 1, 2] ∀l.

Before looking at the results of parameter estimates, we look at the environment of the market generated
in the simulation.

Figure 2 shows the fraction of consumers who do not possess any product at the beginning of each period.
As time passes, more and more consumers possess the products in the earlier periods. On the other hand, in
the later periods, the fraction is mostly stable over time. In the later periods, most of the demand comes from
the replacement demand, rather than new purchases. Hence, the demand structure is largely different between
the two ranges of periods.

Figure 2: Fraction of no-stock consumers (No persistent consumer heterogeneity)
Notes:
Fraction of no-stock consumers is defined as Prlt(xt = 0).
Averages of 20 simulated data are shown.

Figure 3 shows the time trend of average price( 1J
∑

j pjt) and demand(
∑

j sjt). First, the price declines
gradually, and finally it reaches a stable level. On the other hand, demand increases from time 1 to time 20,

30In this study, inclusive value δlt is defined as follows: δlt = Eϵ

[
maxat∈J∪{0} vilt(xt, at)

]
. On the other hand, most of the

literature has used the alternative specification of inclusive value equivalent to δlt = Eϵ [maxat∈J vilt(xt, at)]. When using the latter
specification, we need to specify the distribution of uδ

lt and calculate expectations based on the distribution of uδ
lt. In this case, the

computation gets more complicated. Hence, I use the former specification.
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and declines from time 20 to time 50. From time 50, the demand is at a stable level, even though it fluctuates
over time. Then, we can observe negative correlations between price and demand in time 1–20 and positive
correlations between price and demand in time 20–50. The positive correlation may seem strange, but it is
mainly caused by the declining fraction of no-stock consumers as shown in Figure 2.

Figure 3: Price and demand (No persistent consumer heterogeneity)
Notes:
Price is defined as 1

J

∑
j pjt. Demand is defined as

∑
j sjt.

Averages of 20 simulated data are shown.

The estimation results are shown in Table 3. Since the environment is largely different between the earlier
periods and the later periods, I divide the data into two parts (t =1–50 and t =51–100), and estimate parameters
in each case.

The first and second columns of Table 3 show the estimation results using the data of the nonstationary
market (t =1–50). In the case of the nonstationary market, estimated parameters are largely different from the
true values when fixed effect terms are not introduced. For instance, the average estimated value of α is 0.885,
though the true value is 2.0. On the other hand, when fixed effect terms are introduced, estimated values are
closer to the true values.

Similarly, the third and fourth columns of Table 3 show the estimation results using the data of the stationary
market (t =51–100). In this case, both specifications yield parameter estimates close to the true values. From
time 51 to time 100, the market is in a stationary environment: consumers’ expectations and product stock are
mostly stable over time. Hence, the role of controlling the fixed effect terms is limited. Even when estimating
parameters with the static model without controlling fixed effect terms, the biases are relatively small31.

Parameters True value
Nonstationary (t =1–50) Stationary (t =51–100)
without FE with FE without FE with FE

θ1 1.5 1.268 1.490 1.485 1.495
(0.030) (0.009) (0.013) (0.01)

θ2 1.0 0.780 0.993 0.988 0.996
(0.023) (0.009) (0.012) (0.008)

α 2.0 0.885 1.970 1.957 1.978
(0.061) (0.027) (0.037) (0.026)

Table 3: Results of the Monte Carlo Experiment (No persistent consumer heterogeneity)
Notes:
Based on 20 simulated data and 5 initial parameter values.
Root mean squared errors are shown inside parenthesis.

31Similar insight was also discussed in Melnikov (2000).
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As discussed in Section 3.2, even when utility parameters are consistently estimated by static specification
under the dynamic model without persistent consumer heterogeneity, estimated short-run price elasticities are
biased. Nevertheless, even though the true model does not include any random coefficients, the introduction of
random coefficients may mitigate the biases in price elasticities by providing more flexible demand structures.
To validate the conjecture, I estimate the utility parameters and price elasticities under the two specifications:
without/with random coefficients.

Table 4 shows the parameter estimates. Columns (1) and (3) are the estimation results without introducing
random coefficients. These results are the same as the ones in Table 3. Columns (2) and (4) are the
estimation results introducing random coefficients. As in Table 3, I divide the samples into two parts:
nonstationary(t =1–50) and stationary(t =51–100) markets. In all the specifications time fixed effects are
introduced. Though the RMSEs get large, estimated parameters are not very close to the true values.

Parameters True value
Nonstationary (t =1–50) Stationary (t =51–100)
(1) (2) (3) (4)

mean of θ1l 1.5 1.490 1.480 1.495 1.492
(0.009) (0.019) (0.010) (0.016)

mean of θ2l 1.0 0.993 0.984 0.996 0.993
(0.009) (0.015) (0.008) (0.014)

mean of αl 2.0 1.970 3.391 1.978 3.789
(0.027) (1.516) (0.026) (1.582)

s.d. of θ1l 0 - 0.069 - 0.038
(0.076) (0.061)

s.d. of θ2l 0 - 0.053 - 0.030
(0.059) (0.055)

s.d. of αl 0 - 0.838 - 1.077
(0.864) (0.881)

with FE Yes Yes Yes Yes

Table 4: Results of Monte Carlo experiment (Parameter estimates; without persistent consumer heterogeneity)
Notes:
Based on 20 simulated data and 5 initial parameter values.
Root mean squared errors (RMSEs) are shown inside parenthesis.

Next, we stack all the samples of 20 simulated data used in the estimation, and compute elasticities. Here,
we do not distinguish between nonstationary and stationary markets. Table 5 shows the summary statistics of
the short-run own price elasticities computed from the true dynamic model. Figure 4 compares the values of own
price elasticities computed from the static demand model and the ones computed from the true dynamic demand
model. Panel (a) shows the results under the specification without random coefficients, which correspond to
columns (1) and (3) in Table 4. Panel (b) shows the results under the specification with random coefficients,
which correspond to columns (2) and (4) in Table 4. To understand when the bias is large, I present the scatter
diagrams between products’ CCPs and biases in elasticities measured by percentage in Figure 4.

As Figure 4(a) shows, the biases are tremendously large especially for large CCP products: For instance,
the bias of the product whose CCP value is roughly 0.9 is over 1,000%32. In contrast, the biases are small for
small CCP products. As shown in Figure 4(b), the introduction of random coefficients partially mitigate the
biases. Nevertheless, negligible magnitudes of the biases remain.

Note that in columns (2) and (4), I did not introduce the random coefficient of the constant term. Even
though the introduction might further reduce the biases, many of the estimations did not converge when
introducing the random coefficient of the constant term.

32As shown in Table 5, short-run price elasticities are not necessarily close to zero. Hence, we cannot attribute the large biases
to small values of true price elasticities.
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Obs Median Mean s.d. Min Max

100000 7.87 8.11 1.09 0.61 14.44

Table 5: Summary statistics of short-run own price elasticities (Without persistent consumer heterogeneity)

Figure 4: Biases in short-run own price elasticities (Without persistent consumer heterogeneity)
Notes:
Bias is calculated by: (static estimate)−(true value)

(true value)
× 100.

CCP is defined as s
(cd)
ljt (xt = 0).

B.3 Results under the model with persistent consumer heterogeneity

Next, I show the results under the dynamic model with persistent consumer heterogeneity. I generate simulated
data under the following parameter settings:

θ0l
θ1l
θ2l
αl

 ∼ N




2
1.5
1
2

 ,


0

0.52

0.52

0.252




Figures 5 and 6 show the trend of the main variables of the simulated data.
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Figure 5: Fraction of no-stock consumers (With persistent consumer heterogeneity)
Notes:
Fraction of no-stock consumers is defined as Prt ≡

∫
Prlt(xt = 0)dP (l).

Averages of 20 simulated data are shown.

Figure 6: Price and demand (With persistent consumer heterogeneity)
Notes:
Price is defined as 1

J

∑
j pjt. Demand is defined as

∑
j sjt.

Averages of 20 simulated data are shown.

Table 6 shows the estimation results. As in Table 3, I estimate the parameters with and without time
fixed effect terms. As in the case of the model without persistent consumer heterogeneity, the estimations
without fixed effect terms lead to large biases in parameter estimates when the environment of the market is
nonstationary. We can also observe that even when introducing fixed effect terms, estimated coefficients are
not very close to the true values, even though the RMSEs are large.
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Parameters True value
Nonstationary (t =1–50) Stationary (t =51–100)
without FE with FE without FE with FE

mean of θx1
l 1.5 1.137 1.348 1.291 1.291

(0.080) (0.041) (0.030) (0.033)
mean of θx2

l 1.0 0.686 0.864 0.826 0.830
(0.051) (0.032) (0.036) (0.035)

mean of αp
l 2.0 1.094 2.491 2.937 3.188

(0.798) (0.238) (0.959) (1.152)
s.d. of θx1

l 0.5 0.388 0.426 0.440 0.446
(0.079) (0.052) (0.025) (0.028)

s.d. of θx2
l 0.5 0.419 0.464 0.457 0.459

(0.054) (0.031) (0.032) (0.031)
s.d. of αp

l 0.25 0.138 0.441 0.675 0.802
(0.448) (0.110) (0.512) (0.619)

Table 6: Results of Monte Carlo simulation (Parameter estimates; with persistent consumer heterogeneity)
Notes:
Based on 20 simulated data and 5 initial parameter values.
Root mean squared errors (RMSEs) are shown inside parenthesis.

Next, as in the case without persistent consumer heterogeneity presented in the previous subsection, we stack
all the samples of generated data used in the estimation, and compute elasticities. Table 7 shows the summary
statistics of short-run own price elasticities computed from the true dynamic model. Figure 7 compares the
values of own price elasticities computed from the static demand model and the ones computed from the true
dynamic demand model. Here, random coefficients and fixed effect terms are introduced in the static estimates.
As in the cases of the model without persistent consumer heterogeneity, the biases are large especially for large
CCP products.

Obs Median Mean s.d. Min Max

100000 7.52 7.64 0.76 2.37 11.69

Table 7: Summary statistics of short-run own price elasticities (With persistent consumer heterogeneity)

Figure 7: Biases in short-run price elasticities (With persistent consumer heterogeneity)
Notes:
Bias is calculated by: (static estimate)−(true value)

(true value)
× 100.

CCP is defined as
∫
s
(cd)
ljt (xt = 0)dP (l).

Overall, the biases in own price elasticities may be large when the products’ CCPs are large. Caution is
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required when we use static demand models especially when the CCPs or the market shares of the products we
focus on are large.

C Literature on the biases in static demand models

In this section, I show the source of the information of each article’s estimates summarized in Table 1. In
addition, for some articles I provide additional interpretation of the results based on the discussion in this
article.

C.1 Durable goods

Chen et al. (2008)

Chen et al. (2008) specified both dynamic demand-side model and dynamic supply-side model, and generated
data of automobile market given calibrated parameter values. Besides, both new and used goods exist in the
market, and no persistent consumer heterogeneity exists.

• Price coefficient: Table 3 (N = 3, δ=0.11, ρ = 0.10, β1=0.96, β2 = 0.96)

γ̂ represents the static estimates of the price coefficient (marginal utility of money), and γ represents the
true marginal utility of money based on the dynamic model.

• Own elasticity: Table 3 (N = 3, δ=0.11, ρ = 0.10, β1=0.96, β2 = 0.96)

η̂ represents the static estimate of the price elasticity (of the new product). e represents the true price
elasticity of the new product based on the dynamic model. Note that η considers the effect of temporary
price change on the current demand, yet it includes the changing future expectations of consumers after
the temporary price change. In contrast to e, η abstracts away the changing price of used car prices under
market clearing conditions of the secondary market.

Prince (2008)

• Price coefficient: Table V (“1999 Full Data Estimate”) (dynamic), Table VII (“1999 Myopic Model
Estimate”) (myopic) and Table VII (“No Stock Model #1 Estimate”) (static)

We look at the row of “Marginal utility of Money” in the tables. Note that the “Myopic” model corresponds
to the case where state variables (product holdings) are correctly specified, but setting the consumers’
discount factor to zero. “No Stock Model #1” corresponds to the case where state variables are not
specified (researchers assume that consumers do not possess anything). This model corresponds to the
“static model”, in our terminology.

• Own elasticity: Table IX (1999)

Gordon (2009)

• Price coefficient: Table 2

Estimates of Price coefficients under “Myopic”(myopic) model and “Two Segment”(dynamic; Segment 1)
are shown in Table 1 of the current article.

• Own elasticity: Table 5

Estimates of Intel and AMD’s own elasticities of demand under dynamic and static models are presented.

• Cross elasticity: Table 5

Estimates of Intel and AMD’s cross elasticities of demand under dynamic and static models are presented.
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Schiraldi (2011)

Schiraldi (2011) introduced the existence of used goods in the model.

• Price coefficient: Table 4 (“Dynamic Model with Micromoments” / “Static Model”)

• Own elasticity: Table 5 (“Dynamic Model with Transaction Costs and Micromoments, Short run”, “Static
Model”; Small Car)

• Cross elasticity: Table 6 (“Full dynamic model (Short-run)”, “Static Model”; Small Car, New)

Average price elasticities weighted by market shares are shown in the article. Note that Schiraldi (2011)
also considered “long-run price elasticity” (“Dynamic Model with Transaction Costs and Micromoments,
Long run” in Table 5 (own elasticity) and “Full dynamic model (Long run)” in Table 6 (cross elasticity)).
Nevertheless, the elasticity is different from ours, in that Schiraldi (2011) allowed changing used car prices.
For example, the author mentioned in footnote 28 that “I increase the price of a new FIAT compact in
2000, the 1-year-old FIAT compact in 2001, the 2-year-old Fiat compact in 2002, and so on” for computing
long-run elasticities. Under the specification, “price changes” not only affect consumers’ expectations on
future new car prices but also resell values of the cars already owned by consumers. In contrast to the
discussion of the current article, Schiraldi (2011) showed the case where long-run cross price elasticity is
smaller than short-run cross elasticity (0.1558 (long-run, New, Small car) / 0.2564 (short-run, New, Small
car)) in Table 633.

Gowrisankaran and Rysman (2012)

• Price coefficient: Table 1 (“Dynamic Model with Micro Moment”, “Static Model”)

Mean coefficients of “Log price” are reported in Table 1 of the current article.

• Own elasticity: Figure 13

Figure 13 shows the own price elasticity for the product “Sony DCRTRV250”, which had the largest
market share in the median period, and the values of the elasticities are mentioned on page 1206 (2.59
for long-run elasticity and 2.41 for short-run elasticity). Note that industrywide elasticities are reported
to be 2.55 (long-run) and 1.23 (short-run), which is mentioned on page 1206 and plotted in Figure 12.
Besides, the price elasticity derived from the static model are based on the information in footnote 29 of
the article.

Lou et al. (2012)

• Price coefficient: Table 3 (“BLP model”(static), “GR model”(dynamic))

• Own and cross elasticity: Table 5 (“BLP model”(static), “GR model”(dynamic))

In addition to the static and dynamic models, Lou et al. (2012) compared “BLPWP” model proposed in
the article.

C.2 Storable goods

Erdem et al. (2003)

• Own elasticity:

Own elasticities of quantity demanded with respect to Heinz’s price cut are shown. The values of
3.6(long-run) and 4.9(short-run) are shown in Table 11 (short-run; “Heinz”, “Fixed”) and Table 12
(long-run; “Heinz”, “Permanent 10% drop in mean offer price of Heinz” “Purchase quantity”, “Heinz”).

33For larger cars, he showed that long-run cross price elasticity is larger than short-run cross elasticity (0.0797 (long-run, New) /
0.0691 (short-run, New))
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• Cross elasticity:

Cross elasticities of several products are reported. The values of 0.2(short-run) and 0.75∼1(long-run) are
shown in Table 11 (short-run; “Hunts / Del Monte / Store Brand”, “Fixed”) and Table 12 (long-run;
“Hunts / Del Monte / Store Brand”, “Permanent 10% drop in mean offer price of Heinz, “, “Purchase
quantity”, “Heinz”).

In Erdem et al. (2003), “short-run price elasticity” is defined as the current demand change in response to the
current price change allowing for changing future expectations of consumers. In contrast, in the current article,
“short-run price elasticity” is defined as the current demand change in response to the current price change
given fixed consumers’ future expectations.

Sun et al. (2003)

• Price coefficient: (“Logit with No-Purchase Alternative”(static) and “Dynamic Structural
Model”(dynamic))

“Logit with No-Purchase Alternative” model corresponds to the static model in our setting. Note that
“Logit” model in Table 4 does not include an outside option (buy nothing) as a choice, and it does not
coincide with the “static model” in our setting.

• Own elasticity: Table 5 (“Logit with No-Purchase Alternative”(static) and “Dynamic Structural
Model”(dynamic))

Based on the results in Table 5, under “Logit with No-Purchase Alternative” (static) specification,
“short-run switching elasticity” is 0.346, and its ratio to “short-run promotion effect” is 77%. Then,
the short-run promotion effect is 0.346

0.77 = 0.449 in this case.

Similarly, under “Dynamic Structural Model” (dynamic) specification, “short-run switching elasticity”
is 0.242, and its ratio to “short-run promotion effect” is 56%. Then, the short-run promotion effect is
0.242
0.56 = 0.432 in this case.

Hence, the ratio of static estimates of price elasticity to short-run price elasticity based on the dynamic
model is 0.449

0.432 = 1.039.

Hendel and Nevo (2006)

Hendel and Nevo (2006) allowed household level heterogeneity, but they did not introduce persistent unobserved
consumer heterogeneity.

• Price coefficient

On page 1665, the authors mentioned that “The price coefficient estimated in the static model is roughly
15 percent higher than that estimated in the first stage of the dynamic model”.

• Own elasticity

The information of “overestimate own-price elasticities by 30 percent” is based on the description of the
results by the authors in the abstract of the article. The result is based on Table VIII.

• Cross elasticity

In the abstract of this article, the authors mention that “underestimate cross-price elasticities by up to a
factor of 5”. The result is based on Table VIII.

Hendel and Nevo (2013)

Hendel and Nevo (2013) considered the model and estimation procedures where utility parameters are not
explicitly estimated. The estimation procedure of price elasticity is largely different from the articles applying
standard discrete choice models.
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• Own elasticity

The authors mentioned on page 2741 of the article that “The own-price elasticity implied by the estimates
from the dynamic model, evaluated at the quantity-weighted price, is 2.16 for Coke and 2.78 for Pepsi.
The elasticities implied by the static estimates are 2.46 and 2.94, respectively. As expected, neglecting
dynamics in the estimation overstates own-price elasticities”.

Wang (2015)

• Own elasticity

The author mentioned in the abstract and introduction of the article that “static analyses overestimate
the long-run own-price elasticity of regular soda by 60.8%”.

Perrone (2017)

Perrone (2017) considered the model where only one product exists. The estimation procedure of price elasticity
is largely different from the articles applying standard discrete choice models.

• Own elasticity: Table 3 (ϵsr0/ϵlr0)

Li (2021)

Li (2021) theoretically investigated the biases in price elasticities under the existence of consumer stockpiling.
Nevertheless, he compared “elasticity of demand for immediate consumption” and “elasticity of demand for sum
of immediate consumption and stockpiling”. Even though the latter elasticity corresponds to either “short-run
elasticity” or “long-run elasticity” discussed in the current article, the former elasticity is different from neither
“short-run elasticity” nor “long-run elasticity” in our terminology.

C.3 Goods with switching costs

Ho (2015)

• Price Coefficient: Table 2 (“Dynamic-1” (dynamic) and “Myopia” (static))

• Own Elasticity

Inequality on the absolute values of the three elasticities (Static<Short<Long) is obtained by comparing
the results in Table 4 and Table 6 of the article.

• Cross Elasticity

Inequality on the absolute values of the three elasticities (Static<Short<Long) is obtained by comparing
the results in Table 4 and Table 6 of the article.

Shcherbakov (2016)

Shcherbakov (2016) did not introduce persistent consumer heterogeneity in the baseline model. The results
in Table 1 are based on the specification. Note that he also showed the results with persistent consumer
heterogeneity as robustness checks.

• Price Coefficient: Table 3 (“Static” and “Dynamic(1)”)

• Own Elasticity: Table 4 ( “Dynamic short run” and “Dynamic long run”)

Price elasticities of cable and satellite are shown. Note that Shcherbakov (2016) also showed static
estimates of own price elasticities for cable and satellite. Nevertheless, since the results (inequalities with
other elasticities) are largely different between the two alternatives, I did not show the result in Table 1
of the current article.
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Yeo and Miller (2018)

Yeo and Miller (2018) introduced random coefficients for static models, but they did not introduce them for a
dynamic model.

• Price Coefficient: Table 6 ((1); dynamic) and Table 7 ((1); static)

• Own Elasticity: Table 9 Panel A (“Myopic”(myopic), “Dyn-1”(short-run), “Dyn-3”(long-run), t = 2006)

Median of the own elasticities are shown in Table 1 of the current article.

• Cross Elasticity: Table 9 Panel C (“Myopic”(myopic), “Forward-looking”(long-run), t = 2006)

The means of the cross elasticities are shown in Table 1 of the current article.

Note that static estimates of own and cross elasticities are shown in Table 9 of the article. Nevertheless, since
(inequalities with other elasticities) are largely different between the t = 2006 and t ≥ 2007, I did not show the
result in Table 1 of the current article.

C.4 Others

Hartmann (2006)

Even though Hartmann (2006) focused on consumption capital, the basic structure of the model is close to the
one for durable goods.

• Price Coefficient: Table 4 (“Static logit Random coefficients” and “Dynamic logit Random coefficients”)

• Own Elasticity:

The value of 2.7789 (long-run elasticity) is mentioned on page 345. The value of 3.0550 (short-run
elasticity) appears in Table 5 of the article.

Osborne (2011)

Osborne (2011) compared the results under the full model (with learning and switching costs) and the partial
models (either with learning or with switching costs). This type of comparison is not intuitive in our model.

Seiler (2013)

Seiler (2013) compared the results under the full model (with inventory and search cost) and the partial model
(with inventory but without search cost). This type of comparison is not intuitive in our model.

Pires (2016)

Pires (2016) compared four types of models: model (with/without) inventory and (with/without) consideration
set. Parameter estimates are shown in Table 5 (model with inventory and consideration set) and Table 7 (other
models).
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