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Abstract

Given that real-world infection-spread scenarios pose many uncertainties, and predictions

and simulations may differ from reality, this study explores factors essential for more re-

alistically describing an infection situation. It furnishes three approaches to the argument

that human mobility can create an acceleration of the spread of COVID-19 infection and

its cyclicality under the simultaneous relationship. First, the study presents a dynamic

model comprising the infection–mobility trade-off and mobility demand, where an increase

in human mobility can cause infection explosion and where, conversely, an increase in new

infections can be made temporary by suppressing mobility. Second, using time-series data

for Japan, it presents empirical evidence for a stochastic trend and cycle in new infection

cases. Third, it employs macroeconometrics to ascertain the feasibility of our model’s pre-

dictions. Accordingly, from March 2020 to May 2021, the sources of COVID-19 infection

spread in Japan varied significantly over time, and each change in the trend and cycle of

new infection cases explained approximately half the respective variation.
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1 Introduction

Many epidemiologists have sounded alerts regarding the COVID-19 infection spread, ever since

the initial outbreak in early 2020. They have conducted detailed analyses of the pandemic sit-

uation from the primary stages. For instance, the results of the Susceptible-Infected-Recovered

(SIR) model, a benchmark for modeling epidemics in the field, hinted at the likelihood of a

pandemic. Moreover, in February and early March 2020, the models predicted exponential

growth, massive infections, hospitalizations, and deaths.1 The models further suggested that

either eliminating physical contact between people, to reduce the probability of being infected,

or inducing herd immunity, where infected persons come into contact with sufficient people who

have recovered from or have become immune to the infection, can slow the infection spread at a

fixed reproduction rate. Thus, relevant bodies opted for the former approach, by imposing re-

strictions on mobility and in-person economic activities to alleviate a possible COVID-19-related

tragedy.2

Unsurprisingly, predictions regarding COVID-19 infection spread garnered much attention

because anxieties and fears were strong amid extensive reporting of the outbreak by the media

in early 2020. Epidemiological experts, researchers, and commentators have since disseminated

knowledge and opinions in various media, closely following the evolution of the spread into the

current long-running pandemic.3

However, epidemiological model predictions and simulations are not necessarily consistent

with reality. For example, in Japan, the number of new infection cases did not increase as

expected during the first wave of the pandemic. Even though infection cases may have decreased

because of the mobility restrictions and the subsequent declaration of the first state of emergency

by the government, the number of new infection cases did not decrease easily during the third

and fourth waves, despite the further restrictions of the second and third state of emergency

declarations. To be sure, real-world scenarios pose many uncertainties, and predictions and

1In Japan, on February 24, 2020, members of the Expert Committee on Countermeasures to Combat Infectious
Diseases of Novel Coronaviruses posited that the infection in Japan could spread rapidly. https://www.mhlw.

go.jp/stf/seisakunitsuite/newpage_00006.html (Accessed June 12, 2021)
2As per the Expert Committee on Countermeasures against Novel Coronavirus Infections report on February

24, 2020, the committee sought a policy that reduces the speed of the rise in infection cases and lowers the peak
of the epidemic wave, while strengthening the medical response system. https://www.kantei.go.jp/jp/singi/
novel_coronavirus/senmonkakaigi/sidai_r020224.pdf (Accessed June 12, 2021)

3News items on COVID-19 on Nippon Hoso Kyokai (Japan Broadcasting Corporation), Japan’s only public
broadcaster, were 289 in January 2020, increased to 1,638 in February, and reached more than 4,000 in April.
Monthly news stories have since been always approximately 2,000, as of June 2021.
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simulations may differ from reality if assumptions change. However, to inform relevant policies

and contribute to the literature, it is worthwhile to explore factors essential for a more realistic

description of the evolution of an infection situation.

Arguably, COVID-19 infection cases are closely linked to human mobility. Accordingly, the

rise in new infection cases is positively associated with human mobility because the probability

of being infected via interaction with other infected people increases as mobility increases.

However, people curb their mobility in response to the infection situation. Thus, whenever

the number of new infection cases increases, people will restrict their mobility. Therefore, a

simultaneous relationship between human mobility and new infection cases likely underlies the

dynamics of an infection spread.

Hence, this study explores the dynamics of the COVID-19 infection and human mobility,

to explain the reality of the COVID-19 spread via the underlying simultaneous relationship.

In particular, the supply side of the COVID-19 infection spread and demand side of human

mobility, are likely to determine the number of new infection cases endogenously. Thus, human

mobility can create a dire situation. That is, given a rising number of new infection cases,

unregulated economic activities can induce an explosive increase in such cases. However, sys-

temic mechanisms can converge the increase or decrease in the number of new infection cases.

When people respond to the current infection situation and refrain from activities, the effective

reproduction rate changes systematically according to their behavior and stabilizes, relative to

the standard SIR model prediction.

Under the presence of the simultaneous relationship, an unexpected observed increase in

new infection cases can produce different predictions for infection spread, depending on the

underlying factors. As the infectivity of the virus changes over time with the emergence of

variant strains, the infection risk changes as well; hence, the number of new infections can

suddenly increase. If people are sufficiently aware of and sensitive to changes in infection

risk and change their behavior to avoid infection, the infection spread can be expected to be

transient. In contrast, if people’s patience with the infection situation is limited and their

behavioral preferences change so that they are less sensitive to changes in infection risk, the

infection spread is expected to be prolonged. Therefore, the key challenge in predicting infection

spread is to monitor not only changes in the infection risk itself, but also the changes in people’s

perception of the risk.
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The 2020–2021 outbreak situation in Japan is a valuable example to explore the role of

human mobility in COVID-19 infection cases empirically. Unlike China, the US, and Euro-

pean countries that imposed mandatory lockdowns, the Japanese government has not legally

restricted social activities owing to the spread of COVID-19, but has simply asked people to

refrain from going out and closed restaurants during the declared emergency.4 Nevertheless,

COVID-19-infection status in Japan has been and remains lower than in most other countries.

As of May 21, 2021, the total number of confirmed cases in Japan was approximately 700,000,

less than 1% of the total population. However, the spread of the infection has profoundly im-

pacted the economy; Japan’s real GDP in 2020 was down by 4.8% from the previous year, the

second-largest drop on record, after the recession in 2009 due to the global financial crisis. This

situation suggests that despite the absence of legal or behavioral restrictions, people in Japan

tend to voluntarily restrict their behavior in response to infection spread, at the expense of

economic gain.

This study contributes to the literature in three ways. First, it conducts a model analysis of

the dynamics of new infection cases. In particular, it emphasizes the role of mobility demand.

Changes in human behavior preferences, such as familiarity with and ignorance of the pandemic,

can accelerate infection spread. However, a systematic response of mobility demand to sudden

changes in new infection cases can induce cyclicality of such cases. Second, the study presents

empirical evidence of a stochastic trend and cycle in new infection cases. Third, this study

employs macroeconometrics to present findings supporting the argument in the model analysis.

Further, sources of the COVID-19 infection spread vary significantly over time, and the changes

in the trend and cycle of new infection cases explain approximately half the respective variation,

from February 2020 to May 2021 in Japan.

The rest of this paper is organized as follows. Section 2 reviews the literature relevant to

this study. Section 3 presents a model analysis of new COVID-19 infection dynamics. Section

4 introduces the time-series data and shows the time-series features on the number of new

4The stringency index, calculated by the Oxford Coronavirus Government Response Tracker project, is a
measure of the strictness of government policies and provides evidence that policy impact in Japan is extremely
low. On average, Japan’s stringency index during the sampling period was 39.9, the seventeenth lowest among
the 181 countries for which data can be obtained. Moreover, it is the second lowest among Organisation for
Economic Co-operation and Development member countries after New Zealand (36.9) and the second lowest
among countries with a population of 50 million or more after Tanzania (21.8). The global average of the
stringency index is 59.1, and the population-weighted global average is 66.1. The index in major countries such
as Brazil (68.6), Canada (68.6), China (71.9), France (65.0), Germany (66.4), India (74.6), Italy (71.8), Russia
(53.9), the UK (70.2), and the US (66.1) is generally high.
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COVID-19 infection cases. Section 5 presents empirical results via macroeconometric analysis.

Section 6 discusses the findings and concludes the study. The Appendix provides data sources

and weekly data construction. The Online Appendix provides additional analyses, and reports

the robustness check and sensitivity analysis of the empirical results in the benchmark model.

2 Related work

Model prediction for equilibrium reproduction number equal to one

Several studies (e.g., Gans, 2020) present theoretical models that can generate the tendency

toward an equilibrium point, where the reproduction number is equal to one. Such works

are inspired by the regularity in the reproduction number pattern, showing a sudden rise and

subsequent fall to approximately one or just below one (not zero), that has been documented

across all states in the US and many countries worldwide, documented by Atkeson et al. (2020).

The key mechanism underlying the equilibrium reproduction number equal to one in the model,

is that individuals can base their behavior on prevalence rather than the falling set of those who

are susceptible, to slow an infection using the standard SIR model with a fixed reproduction

rate. In this paper, we present a dynamic model by retaining its implication. We abbreviate

the SIR part of the model for simplicity and specify the supply side of new infection cases,

to capture a trade-off between the new cases as something undesirable and human mobility.

Further, we emphasize the role of mobility demand to generate the stochastic trend and cycle

in the new infection cases.

Time-series analysis for the COVID-19 infections

Time-series modeling considers the model that captures the non-stationary nature of the in-

fection spread in the dynamics of new infection cases. Jiang et al. (forthcoming) develop the

self-normalization technique to capture the phase transitions of an epidemic growth rate via

multiple change-points and apply it to the log of the cumulative COVID-19 confirmed cases

and deaths. They argue that the forecasts using time-series modeling can be a meaningful

addition to the other forecasting models, including complex mechanistic models for tracking

the COVID-19 pandemic. While their model characterizes the non-stationary nature of the

infection spread as the piecewise linear trend, we consider time-series modeling that does the
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same as a stochastic trend. Specifically, we provide empirical evidence of a stochastic trend and

cycle in the log of the new infection cases and apply the vector autoregressive (VAR) model

comprising the log changes in such cases and the measure of human mobility to investigate the

role of the trend and cycle.5

Forecasting and simulating COVID-19 infections using complex mechanistic

models

Many studies have generated COVID-19 infection forecasts and simulations. In particular,

epidemiological models, such as the SIR model, are commonly used for estimations and predic-

tions to quantify knowledge (or the absence of it) on the current infection status, and generate

simulations to explore suggestions for policymakers (Kissler et al., 2020; Atkeson, 2020). Arik

et al. (2020) propose complex mechanistic models modifying epidemiological models, such as

the Susceptible-Exposed-Infectious-Removed model, by means of information-bearing covari-

ates using machine learning and artificial intelligence. This study does not aim to explore or

provide a better forecasting model than other proposed forecasting methods. Rather, it focuses

on investigating the role of human mobility in COVID-19 dynamics, using a model that can

capture the dynamics of the number of new infection cases and human mobility.

Epidemiological models with human behavior

Following the seminal work by Eichenbaum et al. (2021), many studies are increasingly incor-

porating epidemiological SIR models into economic analysis; these are often referred to as the

SIR–Macro models. Regarding Japan, Kubota (2021) and Hosono (2021) present the models

with different ingredients per their interests. They mainly focus on the effect of the spread of

COVID-19 infection on economic activities, using the dynamic stochastic general equilibrium

models. In contrast, this study primarily examines the role of human mobility in the dynamics

of the new infection cases using macroeconometric models.

5The VAR model yields consistent estimates even if each variable in the model is non-stationary. See Hamilton
(1994) pp.651-653.
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Empirical evidence on the association between the COVID-19 infection and

human mobility

Many empirical studies have demonstrated a significant relationship between COVID-19 infec-

tion status and human mobility using various data sources. They conduct an empirical analysis

for each of the two causal relationships between human mobility and the number of new infection

cases. Some studies report empirical evidence supporting a trade-off between human mobility

and COVID-19 infection. For example, Kraemer et al. (2020) use rich data on COVID-19 in-

fection cases (including the dates when people first reported symptoms) and real-time travel

data in China, and find that mobility measures offer a precise prediction of COVID-19 spread

in Chinese cities at the start of 2020. In Japan, Nagata et al. (2021) estimate the impact of

mobility changes on the new confirmed cases using mobile device data and argue that mobility

changes, especially in areas active at night, were positively and significantly associated with

COVID-19 spread. Moreover, Fujii & Nakata (2021) and Fukao & Shioji (2022) use daily data

on the Google mobility index and the number of new infection cases to analyze the determi-

nants of reproduction rate and mobility.6 Others report the response of human mobility to new

infection cases. For example, Goolsbee & Syverson (2021) use mobile phone data in the US be-

tween March and May 2020, to compare the reductions in visits to businesses between counties

that were in government-mandated lockdown states with those in non-lockdown states. They

find that the reductions in visits primarily stemmed from peoples’ choices; those attributable

to a government-mandated lockdown were few. Further, Watanabe & Yabu (2021) use a daily

prefecture-level mobile device data to examine the degree of voluntary response to infection

cases in Japan and find results quantitatively and qualitatively similar to Goolsbee & Syverson

(2021).7 This study conducts empirical analyses using the macroeconometric model comprising

a system of simultaneous equations that considers the two causal relationships between human

mobility and the number of new infection cases.8

6Fujii & Nakata (2021) connect SIR dynamics with economic activity, though they do not incorporate opti-
mization of economic agents in their analysis, unlike the studies by (for example) Eichenbaum et al. (2021).

7Watanabe & Yabu (2021) refer to the voluntary lockdown as refraining from going out by choice, which is
different from the mandatory lockdowns by governments in China, the US, and European countries.

8Although this study has different objectives relative to prior studies, the closest study to this work is the
one by Fukao & Shioji (2022) in that they regress each of the system comprising the infection–mobility trade-off
(i.e., the pandemic Phillips curve) and mobility demand (i.e., the pandemic IS curve and pandemic Taylor rule).
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3 Rationale for the existence of both a stochastic trend and

cycle in the dynamics of the COVID-19 infection

This section explains the logic behind our argument that while an increase in human mobility

can cause infection explosion, such an increase in new infections can be made temporary by

suppressing mobility.9 Specifically, we present the analysis using a straightforward model for

the dynamics of new COVID-19 infection cases, comprising a system of simultaneous equations

that considers the two causal relationships (i.e., the infection–mobility trade-off and mobility

demand). Our model can produce a stochastic trend and cycle of new infection cases under

certain conditions.

3.1 The dynamic model of the COVID-19 infection and human mobility

We consider a model that can describe COVID-19 infection dynamics and human mobility. The

variable πt represents the new infection cases at time t, defined as the log of new confirmed

COVID-19 infection cases. The variable yt represents the mobility level chosen by people at

time t, defined as the log deviation from the steady state.10

First, we model the causal relationship representing an infection–mobility trade-off. Specif-

ically, we consider the new infection production function as follows:

πt+1 = πt + κyt−1 + ϵπ,t+1, (1)

where κ > 0 is the parameter, and ϵπ,t is the stochastic term of the new infection production

function. Equation (1) can easily express an infection–mobility trade-off, where new infection

cases, as something undesirable, are positively associated with human activities. Further, in the

formulation of Equation (1), a new infection case at time t+ 1, πt+1, is regarded as a function

of human mobility two terms prior, yt−1. This development reflects “epidemiological rigidity,”

which is the time lag between physical contact with infected people and COVID-19 infection

(including worsening symptoms after an incubation period, diagnosis, testing, and reporting).

We assume the time lag to be two weeks in the modeling.11

9The purpose of this section is not to propose a model which is suitable for real-world applications, such as
predicting or simulating the infection spread.

10In the model economy, we assume weekly frequency for the duration of time t.
11Lauer et al. (2020) report that the median incubation period is 5.1 days and that 97.5% of people develop

symptoms within 11.5 days. Thus, it takes approximately a week from the time of infection to the time one
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Now consider that there are two types of shocks related to new infection case at time t,

denoting ϵp,t and ϵc,t respectively. We then decompose the stochastic term of the new infection

production function as ϵπ,t = ϵp,t + ϵc,t. Regarding each shock process, we assume that

ϵi,t = ρiϵi,t−1 + ξi,t, ρi ∈ [0, 1], i ∈ {p, c}, (2)

where each ξi,t is independently and identically distributed with mean-zero, and is independent

of each other. We will consider that people’s responses to new infection cases vary across shocks,

as shown below.

Next, we model the systematic response of human mobility demand, as people decide their

mobility level by observing the latest number of new infection cases. Given the premise of the

availability of information on the new infection cases at time t, we specify the mobility demand

function as follows:

yt = b(πt − π∗
t ), (3)

where b < 0 denotes the parameter representing the sensitivity of mobility demand to the infec-

tion situation. Equation (3) expresses the demand of people’s mobility where people negatively

change their mobility demand in response to the outbreak situation. In particular, mobility

demand systematically responds to the deviation in new infection cases from its reference level.

π∗
t is the reference level of crowds. From (3), the reference level works as a threshold of the

activity level to react; if the number of new infection cases increases (decreases) above (below)

the reference level, people refrain from their activities (become active).

We relate the degree of people’s patience about the COVID-19 situation to the dynamics of

the reference level. In practice, as the constrained lifestyle owing to the COVID-19 pandemic

is prolonged, infection anxiety weakens: this phenomenon is often called Corona habituation.

As reports of high numbers of new infection cases lead people to assume an air of permanence,

people begin to entertain the thought that they “deserve it,” even as the infection situation

worsens.12 Thus, to incorporate the degree of people’s patience toward the infection situation

develops symptoms; further, it takes a certain number of days after the actual symptoms appear for those
infected to go to the hospital and undergo tests, after which the test results are reported. In practice, as per the
announcement by the Japanese government of the basic policy on countermeasures against COVID-19 infections,
the average time between the date of the onset to the date of the patients’ diagnosis (reported until the early
stage of the COVID-19 pandemic at the end of March 2020) was 9.0 days, though this seemed rather short at the
time of preparing this paper. https://www.kantei.go.jp/jp/singi/novel_coronavirus/th_siryou/kihon_h_

0525.pdf (Accessed June 14, 2021)
12Kuga (2021) reports the results of an empirical analysis of the status of Corona habituation in Japan.
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into the model, we parameterize the reference level in Equation (3) of the mobility demand as

follows:

π∗
t = dπ̄t, (4)

where d > 0 denotes the parameter representing the degree of people’s patience and π̄t is the

potential and trend level of the number of new infection cases, which are time-varying given

ϵp,t, following π̄t = π̄t−1 + ϵp,t. In d = 1, the reference level of new infection cases is neutral

to their potential and trend level. In d > 1, people are not patient toward infection cases. As

the long-term level of new infection cases increases, the reference level rises above the potential

level, as described by Corona habituation. In d < 1, people are conservative about infection

cases. Even if the long-term level of new infection cases rises even higher, people do not change

their reference level drastically.

In our model setting, the change in new infection cases given ϵp,t is associated with a shock in

mobility demand. We incorporate the degree of people’s patience about the infection situation

into the mobility demand in the model

yt = bπt − bdπ̄t−1 − bdϵp,t, (5)

by substituting Equation (4) into Equation (3). Regarding d > 1, the increase in new infection

cases given ϵp,t results in an increase in mobility demand, separate from its systematic response.

Despite the increasing number of new infection cases, people aggressively continue their eco-

nomic activities. However, regarding 0 < d < 1, the increase in new infection cases given ϵp,t

results in a decrease in mobility demand. Although they increase their reference level, people

partially refrain from activities as per the infection situation. Moreover, regarding d = 1, peo-

ple’s behavior remains unchanged despite the rise in new infection cases given ϵp,t, since their

reference level also rises by the same amount.

Here, we analytically investigate the dynamic properties of the system. Replacing yt−1 in

Specifically, the researcher quantitatively analyzes the state of people’s COVID-19 anxiety using the “Survey on
Changes in Daily Life Due to the New Coronavirus” (『新型コロナウイルスによる暮らしの変化に関する調査』),
conducted by the Nissay Research Institute every three months since June 2020 on approximately 2,000 men and
women aged 20 to 69 nationwide. The author notes that, relative to September 2020, when the second wave had
passed, infection fears had weakened in late March 2021, despite a significant increase in the size of the infected
population.
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Equation (1) by Equation (3) generates

∆πt+1 = κb(πt−1 − π∗
t−1) +

∑
i∈{p,c}

ϵi,t+1. (6)

Equation (6) means that when the number of new infection cases two weeks ago is above (below)

the reference value, the current number of new infection cases is decreasing (increasing).

The model suggests that the change in new infection cases due to the infection shock ϵc is

temporary. Replacing π∗
t−1 in (6) by π∗

t−1 = dπ̄t−1 = d

t−1∑
τ=1

ϵp,τ under the assumption of the

initial value of π̄0 = 0 generates

∆πt+1 = κbπt−1 − κbd

t−1∑
τ=1

ϵp,τ +
∑

i∈{p,c}

ϵi,t+1. (7)

This relationship can also be described as a downward-sloping line given that ∆πt+1 is a function

of πt−1, as in the left panel of Figure 1. The steady state of the new infection cases is where

∆πt+1 = 0, which occurs at πs = d

t−1∑
τ=1

ϵp,τ .
13 Since ϵc does not affect the steady state, the change

in infection cases given ϵc can be shown as movements along the horizontal axis: leftwards when

π > πs and rightwards when π < πs. Hence, the fluctuation due to infection shocks ϵc creates

cyclicality in new infection cases in the model economy.

However, this study’s model suggests that the infection shock ϵp can permanently impact

new infection cases. The right panel of Figure 1 illustrates this impact diagrammatically. The

change in infection cases given ϵp generates a rightward shift in the line, representing a change

in the stochastic trend of the new infection cases. π stabilizes at the new steady state πs′ in

the diagram. Thus, the fluctuation given ϵp is the source of the non-stationary nature of new

infection cases in the model economy.

The model can also be used to understand how the explosive spread of new infection cases

occurs. For simplicity, we assume that new infection cases are in a steady state at time t = 0,

without losing generality. Consider that an infection shock ξp hits the system at time 1. From

Equation (7) with Equation (2); we can then easily compute ∆π1 = ξp,1 and ∆π2 = ρpξp,1 <

∆π1. Meanwhile, the rise in new cases at time 3 is given by ∆π3 = {ρ2p + κb(1 − d)}ξp,1. The

rise in new infection cases can then re-accelerate (i.e., ∆π3 > ∆π2) if the parameter values in

13We can derive the steady state of human mobility ys = 0.
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Figure 1: Dynamics of the new COVID-19 infection cases in the model, the effect of ϵc and ϵp.

Notes: This figure shows a phase diagram describing the dynamics of new COVID-19 infection cases in our

model. The left panel displays the effect of an increase in new infection cases due to the shock ϵc. The right

panel displays the effect of an increase in new infection cases due to the shock ϵp.

the system are satisfied with the following condition;

−b(d− 1) >
ρp(1− ρp)

κ
. (8)

Intuitively, Equation (8) means that the new infection cases could form a hump-shaped curve

with some delay if people’s reaction to such cases is too sensitive (|b| is sufficiently large) or

people have a fairly impatient preference for new infection cases (d > 1 is large enough).

3.2 Numerical example

We illustrate the dynamic relationship between the new infection cases and human mobility

using the dynamic model with given parameter sets. The system in our dynamic model can be

summarized by the VAR form with vector St = (πt π̄t yt−1 ϵp,t ϵc,t), as follows:

St+1 =



1 0 κ ρp ρc

0 1 0 ρp 0

b −bd 0 0 0

0 0 0 ρp 0

0 0 0 0 ρc


St +



1 1

1 0

0 0

1 0

0 1



ξp,t+1

ξc,t+1

 . (9)
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Table 1: Parameters for the numerical example

κ b d ρp ρc

4 −0.05 5 0.3 0.3

Notes: The entries show the values of the parameters in the dynamic model, summarized by the vector autore-

gressive form (9) in calculating the calibrated impulse responses of the variables in the model to infection shocks,

ξp, ξc.

We can then calculate impulse responses of the variables in the system under a given set of

parameters to examine the dynamic causal effect of the infection shocks, ξp,t and ξc,t.

Table 1 presents the selected parameters. As a benchmark, we set the parameter value of

κ = 4, selected as per the empirical findings of Nagata et al. (2021). Moreover, we also set the

parameter value of b = −0.05, selected based on the empirical findings of Watanabe & Yabu

(2021). We set the value of d to be equal to 5 as a calibration benchmark by assuming a Corona

habituation where people are impatient about the outbreak situation. We set the values of the

autoregressive parameters, ρp and ρc, to be equal to 0.3, reflecting the persistence of infection

shocks.

The upper and lower four panels of Figure 2 show the calibrated dynamic effects of the two

infection shocks, ξp, and ξc, respectively, on the variables in the model economy. The solid line

with circles in each panel represents the calibrated impulse responses of up to 20 times to one

unit of each infection shock at time 0.

The dynamic model with given parameter sets predicts that the infection shock ξp can induce

the explosion of new infection cases, accompanied by increases in human mobility. From the

upper-left panel of Figure 2, new infection cases π increase exponentially, as suggested by the

SIR model. Further, the log change in the number of new infection cases ∆π shows a hump-

shaped response with a second peak after some time, while leading to a sustained increase in

human mobility y. Hence, in our model economy, the variation induced by the infection shock

ξp results in an explosion of new infection cases that produces a stochastic trend, accompanied

by a positive correlation between the new infection cases and human mobility.

In our model, an increase in human mobility, as per people’s response to an outbreak situ-

ation, induces an infection explosion. Figure 3 shows the comparison of the dynamic responses

to the shock ξp with different values of parameter d representing the degree of people’s patience

about the infection situation. The dashed (dotted) line in each panel represents the responses
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Figure 2: Calibrated responses of variables in the model economy to the infection shocks, ξp
and ξc.

Notes: The solid line with circles in each of the upper and lower four panels represents the calibrated impulse

responses to one unit of infection shocks, ξp and ξc, respectively. π: the log of new infection cases, π̄: the potential

and trend level of new infection cases, ∆π: the log change in new infection cases, y: the mobility level, ξp, ξc:

the infection shocks described in the text.
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Figure 3: Calibrated responses of variables in the model economy to the infection shock ξp with
different sensitivities of reference levels

Notes: The solid line with circles, dashed line, and dotted line in each panel represent the calibrated impulse

responses to one unit of infection shock ξp with different parameter values d, 5, 1 and 0.5, respectively. π: the

log of new infection cases, π̄: the potential and trend level of new infection cases, ∆π: the log change in new

infection cases, y: the mobility level, ξp: the infection shocks described in the text.

with d as equal to one (d equal to 0.5). From the figure, the absence of mobility responses

regarding d = 1 results in a limited rise in new infection cases relative to the benchmark, be-

cause the increase in reference levels π∗ is comparable to the increase in the number of new

infection cases π, π̄ due to an infection shock ξp. Further, people’s behavior remains unchanged.

Additionally, regarding d = 0.5, as human mobility decreases, π converges to a level lower

than 1, which is the impact immediately after the shock. Therefore, the model predicts that

new infection cases can exponentially increase with a stochastic trend, due to increased human

mobility associated with patience about the infection situation.

However, the increases in new infection cases induced by the shock ξc are temporary. From

the lower four panels of Figure 2, the new infection cases π eventually converge to zero after

its transitory rise, while leading to a persistent decrease in human mobility y. Therefore, the

fluctuation due to infection shocks ξc creates cyclicality in the new infection cases in the model

economy.
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Figure 4: Calibrated responses of variables in the model economy to the infection shock ξc with
or without systematic responses of mobility demand

Notes: The solid line with circles and dashed line in each panel represent the calibrated impulse responses to

one unit of infection shock ξc with the different parameter values b, −0.05, and 0, respectively. π: the log of new

infection cases, π̄: the potential and trend level of new infection cases, ∆π: the log change in new infection cases,

y: the mobility level, ξc: the infection shocks described in the text.

The key mechanism underlying the cyclicality in new infection cases in our model is the

mobility demand based on which people react to the increase in new cases by suppressing

mobility. Figure 4 shows the comparison of the dynamic responses to the shock ξc with different

values of parameter b representing the systematic response of a mobility demand to the new

infection cases. The red-dashed line in each panel represents the responses with b equal to zero.

From the figure, the absence of mobility responses regarding b = 0 does not result in a steady

decline in ∆π for the convergence of π to zero. Thus, a systematic response of mobility demand

to changes in new infection cases is critical in the cyclicality of such cases in our model economy.

From our model, we can propose the following hypotheses to be examined empirically. The

first is that there are, in reality, both a stochastic trend and cycle in new infection cases. The

second is that there is a mixture of infection shocks that cause an infection explosion with

increased mobility, and infection shocks that cause a temporary increase in new infection cases

with decreased mobility. The third is that we can explain these differences in the impact of
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infection shocks in relation to the role of mobility demand; systematic changes of mobility

demand in response to the infection spread, result in only a temporary increase in new infection

cases, while exogenous changes in mobility demand have a persistent impact on new infection

cases.

4 Evidence on the stochastic trend and cycle in new positive

cases of the COVID-19 infection

This section presents evidence on the stochastic trend and cycle in new infection cases. We

document the statistical time-series features of new positive COVID-19 infection cases in Japan.

We especially focus on non-stationarity and cyclicality in infection spread.

We note the time-series data on COVID-19 spread in Japan during the sample period. Based

on data availability, the sampling period is set from the week of February 16, 2020, to the week

of May 9, 2021. The frequency of all data is weekly, and the sampling period spans up to 65

weeks. We constructed the weekly time series of confirmed new infection cases as the total cases

over the week from Sunday to Saturday.14

First, we statistically examine the time-series characteristics of new infection cases. Table 2

shows the mean and standard deviation of the log changes in such cases. It reports the sum of

the univariate autoregressive (AR) model coefficients with three-week lags for the log changes

in new infection cases, as a measure of their persistence. Table 3 shows the standardized long-

run variance of the log changes as a measure of persistent fluctuations in the log level of new

infection cases and its standard error, as proposed by Cochrane (1988).15

The summary statistics document the non-stationary nature of the log scale of the number

of new infection cases. From Table 2, a historical average weekly rate of new infection cases

is about 10%, but its deviation from the average is quite large over the sample period. More

importantly, Table 2 shows that the persistence of log changes in new cases is 0.585; thus, the

sudden increase in the new infection cases tends to persistently raise the reproduction rate.

14The analysis focuses on the weekly time-series variation, as it does not include differences by day of the week,
as in a daily series of the number of new infection cases.

15See Cochrane (1988) for more details. The researcher proposes the ratio of far-future long-run variance of the
first difference of the time-series variable of interest to its variance (we call the ratio the standardized long-run
variance) as a measure of the persistence of the series level. This measure is zero for a stationary time series, one
for a pure random walk, a number greater than one for a series that continues to diverge following a shock, and a
number between zero and one for a series that returns to a stochastic trend in the future. The author estimates
the long-run variance by 1/l times the variance of l-differences of the series.
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Table 2: Summary statistics for log change in new cases

mean std. dev. persistence

Log change in new cases 0.098 0.364 0.585

Notes: This table shows the mean, standard deviation, and persistence measure of log change in new cases

from the week of February 16, 2020, to the week of May 9, 2021. It reports the sum of the coefficients of

the univariate autoregressive model with three-week lags for the log changes in the new infection cases as the

persistence measure.

Table 3: Standardized long-run variance of log change in new cases

Lag (k)

1 4 8 12 16 20

Standardized long-run variance 1.622 2.667 1.978 0.820 0.344 0.412
(0.331) (0.861) (0.857) (0.427) (0.205) (0.273)

Notes: This table shows the standardized long-run variance of log change in new cases from the week of February

16, 2020, to the week of May 9, 2021. The standardized long-run variance with k lag(s) is calculated as 1/(k+1)

times the variance of k + 1-differences of the log of the new infection cases, divided by the variance of its first

difference. The numbers in parentheses are the Bartlett standard errors, calculated as (4(k + 1)/3T ).5 times

standardized long-run variance.

Hence, the number of infection cases in Japan can increase exponentially, as suggested by the

SIR model.

However, the persistence measure for the log level of new cases suggests cyclicality as well

as non-stationarity in new infection cases. Table 3 shows the standardized long-run variances of

log change in new cases from lag 1 to lag 20; the values in parentheses are asymptotic standard

errors. The standardized long-run variance is above one for a shorter horizon; for example,

standardized long-run variance with lag k = 1 is above one and is statistically significant.

Nonetheless, it is significantly below one for far longer horizons, such as lag k = 20. Thus, the

fluctuation in the log level of new cases should have a cyclical component, and the deviation

following the component should return to a stochastic trend in the future.16

Next, we graph the dynamic properties of the log of COVID-19 new infection cases in reality.

Figure 5 shows the scatter plot of the one-week-ahead log changes in the number of COVID-19

16The standardized long-run variance reaches its peak with lag k = 5 and decreases from there. Since the
standardized long-run variance reflects the cumulative autocorrelation, the autocorrelation begins a course toward
negativity from around lag k = 5. This observation corresponds to the period from the peak-to-bottom of the
number of new infection cases.
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infection cases and the one-week lag of its log levels, which is a sample analogous to Figure 1.17

Although there does not seem to be much of a relationship between log changes and levels in

the new infection cases over the entire sample period, we can identify some informative patterns

by separating the periods. In particular, the scatter plot appears to depict a downward-sloping

line for each subsample, which implies a cyclicality in the new infection cases in our dynamic

model in Section 3. This suggests that the number of new infections sometimes tended to return

to a certain level. On the other hand, looking across the subsamples, the downward-sloping

line appears to have shifted to the right, especially around mid-2020, which implies a change in

the stochastic trend of the new infection cases in the dynamic model. This suggests that the

infection spread was long-lasting, depending on the time of year.

5 Macroeconometric analysis

In this section, we employ macroeconometrics to examine whether the data support the pre-

diction in our model analysis of Section 3. Specifically, we use the VAR model to specify the

joint dynamics of COVID-19 infection cases and human mobility in reality.18 Thus, this sec-

tion presents empirical evidence on the (1) the information content of human mobility for the

COVID-19 infection dynamics, (2) dynamic effect of the changes in the stochastic trend and

cycle of the new infection cases, (3) role of human mobility in the dynamics of the new infec-

tion cases, (4) simultaneous equations system comprising the infection–mobility trade-off and

mobility demand, and (5) application to the infection situation in Japanese prefectures.

5.1 Information content of human mobility for the dynamics of the COVID-

19 infection

First, we examine the information content of human mobility for the COVID-19 infection

dynamics. We measure the movement of people using six Google mobility indices (retail &

recreation, grocery & pharmacy, parks, transit stations, workplaces, and residential), and then

construct the composite index of mobility as the first principal component (PC) using six stan-

dardized (mean-zero and unit variance) mobility indices, of which the unit is normalized to the

17We thank an anonymous referee for suggesting the following analysis.
18A possible alternative approach is to estimate the state space model derived from the dynamic model in

Section 3. However, the model is very simple, so we have concerns about whether the model is valid with the
actual data. The plausibility of the dynamic model with respect to actual data is a subject for future research.
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Figure 5: Scatter plot of the log changes and levels in infection cases

Notes: The sample period spans from the week of February 23, 2020, to the week of May 2, 2021. Blue circles

indicate the scatter plot of the one-week-ahead log changes in the number of COVID-19 infection cases and the

one-week lag of its log levels, from the week of February 23, 2020 to the week of June 14, 2020. Orange stars

indicate the plot from the week of June 21, 2020 to the week of August 9, 2020. Green triangles indicate the

plot from the week of August 16, 2020 to the week of December 27, 2020. Red squares indicate the plot from

the week of January 3, 2021 to the week of March 21, 2021. Purple pentagons indicate the plot from the week of

March 28, 2021 to the week of May 2, 2021.
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unit of retail & recreation mobility index.19 Although using more data and complicated models

could generate a more accurate forecast of new infection cases, we expect the composite index

of mobility as a representative measure for human mobility to contain significant information

for the COVID-19 infection dynamics.

We consider the time-series model to capture the dynamics of new positive infection cases

and human mobility. Specifically, we construct the following bivariate reduced-form VAR model:

Xt = a0 +A1Xt−1 + · · ·+ApXt−p + et, (10)

expressed as

A(L)Xt = a0 + et, (11)

where Xt = (∆πt, yt)
′
is a two-by-one vector comprising time-series variables of the log change

in new positive cases ∆πt and mobility measure yt at week t, a0 is a two-by-one constant vector,

A(L) = I − A1L− · · · − ApL
p is a pth order lag polynomial of a two-by-two coefficient matrix

Aj(j = 1, · · · , p) and et is a two-by-one vector of serially uncorrelated innovation with a mean

of zero and a covariance matrix of Σe.

The reduced-form weekly VAR model is estimated from the week of March 1, 2020, to the

week of May 9, 2021. The lag length p in the reduced-form VAR estimation is set to three

weeks. We confirm that taking three-week lags is sufficient to capture the system dynamics.20

We statistically confirm that human mobility plays an important role in constructing a time-

series model of the dynamics of the number of new infection cases. Table 4 shows the results

calculating Akaike and Bayesian information criteria (AIC and BIC, respectively) for the VAR

and other candidate models. As other candidate models, we consider a historical average and

a univariate AR with three-week lags.

From the perspective of model selection, there is statistical support for adding information

on human mobility to the time-series model. We find that the VAR model has the smallest

19The weekly mobility index we use matches the median of each week of the daily mobility index, to eliminate
the effects of holidays as much as possible. See the online appendix for more details on the Google mobility
indices and the data construction for the composite index of mobility.

20The Bayesian information criterion selects one lag, and the Akaike information criterion selects two lags. We
perform a modified likelihood ratio test, proposed by Sims (1980), to check whether taking one or two lags is
sufficient. The chi-squared statistics indicate that the null hypothesis of one or two lags is rejected at the 5%
significance level against the alternative of three lags. They also indicate that conventional significance levels
do not reject the null of three lags, as against the alternative of four lags. Moreover, the estimated results are
insensitive when four and five lags are used.
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Table 4: Information criteria for constant vs AR vs VAR models and F statistics for human
mobility in equation for new infection cases

Information criteria for the model: H0 : y Fails
VAR (3) Hist. ave. AR (3) to Cause ∆π

AIC BIC AIC BIC AIC BIC Granger-F

-2.68 -2.44 -2.02 -1.98 -2.36 -2.22 4.31 [0.04]

Notes: Information criteria indicate the log of the mean square forecast error for one-step model forecasts plus

the penalty term for model complexity. AIC and BIC indicate the Akaike information criterion and Bayesian

information criterion, respectively. For AIC, the penalty is 2/T times the number of parameters in the model

equation. For BIC, the penalty is log(T )/T times the number of parameters in the model equation. Granger-F

indicates the White (1980) heteroskedasticity-robust F -statistic for the Granger causality test under the null

hypothesis that the coefficients on the one- to three-week lags of the composite index of mobility from the

regression of log-changes in new infection cases in the reduced-form VARs are all equal to zero. The numbers in

brackets are p-values for the Granger causality test. We set the lag length to three weeks in the AR and VAR

estimation. Estimation samples span from the week of March 1, 2020, to the week of May 9, 2021.

information criterion computed, whether AIC or BIC, of candidate models, which indicates

the best model fit, including a penalty for complexity. This result suggests that the proposed

VAR model with the lags of the composite index of mobility simply and thriftily captures the

dynamics of the log changes in new infection cases.

Empirical evidence points to the significant information content of human mobility for new

infection dynamics. The last column in Table 4 provides the F statistics for the Granger

causality test under the null hypothesis that the coefficients on the one- to three-week lags

of the composite index of mobility from the regression of log-changes in infection cases in the

reduced-form VARs are all equal to zero. The F statistics show that the composite index of

mobility contains valuable information for one-step model forecasts for new infection cases,

which is statistically significant at the 5% level.21

5.2 Dynamic effect of the changes in stochastic trend and cycle of COVID-19

infection

In this subsection, we examine the role of “structural” shocks on COVID-19 infection cases

and human mobility. In particular, we interpret fluctuations in COVID-19 infection cases and

21We confirm that the predictions of the VAR model improve over the AR model and the historical average
for multistep-ahead model forecasts. In particular, although it has good predictive power in the shorter horizon,
the predictive power of the AR model in the longer horizon is relatively poor. See the online appendix in more
details for the comparison of in-sample forecasting accuracy among a historical average, AR model, and VAR
model for the log-changes in new infection cases.
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human mobility, as being attributable to changes in the stochastic trend and cycle underlying

the time-series pattern of the infection cases. Accordingly, we consider two types of structural

shocks: a shock with a permanent effect on the log level of new infection cases and a shock that

causes temporary changes in new infection cases.22 We identify two types of infection shocks,

which are in reality mixed together. Thus, we examine whether it is consistent with the model

prediction in section 3 that the former shock type increases mobility and the latter decreases it.

Let ξp,t and ξc,t be a permanent and non-permanent shock, respectively. In a structural

VAR, the innovations et in (11) are assumed to be linear combinations of the structural shocks:

et = Θξt, (12)

where ξt = (ξp,t, ξc,t)
′
, the elements of which are assumed to be independent of each other and

have a unit variance, and Θ = (Θp,Θc) represents the impact matrix for the responses of the

VAR variables Xt to the structural shocks ξt. Equations (11) and (12) yield a moving average

representation regarding the structural shocks as follows:

Xt = b0 +B(L)Θξt, (13)

where b0 = A(L)−1a0 and B(L) = A(L)−1.

To identify Θ, we impose the long-run restriction on the VAR developed by Blanchard

& Quah (1989) and King et al. (1991).23 In particular, we assume that the non-permanent

shocks do not affect the log level of new positive infection cases in the long run. This long-run

restriction implies that the cumulative response of the log changes in new positive cases to the

non-permanent shock, is constrained to zero:

[B(1)Θ]12 = 0, (14)

22We label a shock to the trend component of the new infection cases as a permanent shock and a shock to
their cyclical component as a non-permanent shock. In our bivariate VAR model, the innovations in the reduced-
form VARs are, by construction, decomposed into two structural shocks independent of each other. However,
in reality, there can be other shocks than the ones we are interested in, such as idiosyncratic shocks that affect
human mobility, unrelated to the number of new infection cases. In particular, the non-permanent shocks would
be contaminated by such shocks, under the assumption that only a permanent shock affects the log level of new
cases in the long run. They cannot be identified in our bivariate VAR model. We address this issue by using the
composite index of mobility as a representative measure of mobility, so that the VAR model excludes as many
idiosyncratic factors of mobility as possible. Nevertheless, it should be noted that our VAR model has such a
limitation.

23Blanchard & Quah (1989) and King et al. (1991) develop the VAR model to identify structural shocks, by
imposing restrictions on the long-run effect of a given shock on a given variable.
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Figure 6: Estimated responses of the log changes in infection cases and human mobility to
permanent and non-permanent shocks

Notes: The solid line with circles in the upper and lower panels represent the point estimates of the impulse

responses to one standard deviation permanent and non-permanent shock, respectively. The shaded areas denote

one-standard-error bands, calculated using 1,000 bootstrap samples. Mobility CI denotes the composite index of

mobility. We set the lag length to three weeks in the reduced-form vector autoregressive estimation. Estimation

samples span from the week of March 1, 2020, to the week of May 9, 2021.

where [B(1)Θ]12 is the first row and second column of the matrix B(1)Θ. The use of the

restriction (14) with the long-run covariance matrix B(1)ΣeB(1)
′
identifies Θ. To determine

the sign of the structural shocks, we assume that positive structural shocks have a positive

impact on the log changes in infection cases, Θ1,p,Θ1,c > 0.

The estimated impulse response functions, B̂(L)Θ̂, are summarized in Figure 6. As described

above, structural shocks are normalized to have unit variance and signed to positively affect the

log changes in infection cases on impact. The solid line with the circles indicates the estimated

response for the log changes and the composite index of mobility for up to 20 weeks. The shaded

areas denote one-standard-error bands, calculated using 1,000 bootstrap samples.

Overall, this figure shows that structural shocks have a plausible effect, consistent with the

dynamic model analysis discussed in Section 3. We find that the log changes in infection cases
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have a hump-shaped response to a permanent shock, with the second peak effect emerging

after two weeks. Quantitatively, permanent shocks increase the level of new infections over

the following eight weeks, by more than five times the impact, immediately after the shock.

Moreover, human mobility rises in response to a permanent shock. However, a non-permanent

shock, which raises the log changes in infection cases for two weeks and declines steadily for about

eight weeks, induces a persistent decrease in human mobility to its lowest values, approximately

four weeks after the shock occurs.

Next, we report the time series of structural shocks identified using the VAR model. In

particular, it is useful to decompose the unexpected changes in COVID-19 infection cases into

changes in the stochastic trend and in the cycle. Based on our model in section 3, we expect

that permanent shocks would capture exogenous changes in people’s demand for human mo-

bility that deviates from systematic responses to infection risk, such as changes in behavioral

preferences like Corona habituation and emergency restrictions on mobility due to certain preva-

lence measures by the government. On the other hand, we expect that non-permanent shocks

would capture sudden changes in the number of new infection cases, which people perceive as

the rise in infection risk, which is reflected in changes in the degree of fear and anxiety about

the COVID-19. The identified structural shocks would have historically captured changes in

people’s perception of infection risk, over the sample period.

Figure 7 displays the time series of permanent and non-permanent shocks. The bars in

the upper and lower panels indicate permanent and non-permanent shocks, respectively, as

identified using the estimated VAR model. The orange shaded areas show the weeks coinciding

with the period during the declaration of a state of emergency in Japan.24

The upper panel of Figure 7 shows the persistent troughs representing permanent shocks for

the period during the first state of emergency declaration on April 7, 2020, followed by upward

swings. Thus, the first state of emergency declaration can contribute to inducing a downward

24In Japan, a state of emergency was declared three times during the sampling period: from April 7 to May 25,
2020; from January 8, to March 21, 2021; and from April 25, 2021 onward. The legal basis for policy responses
by governors of prefectures subject to the emergency measures is the “Act on Special Measures for Pandemic
Influenza and New Infectious Diseases Preparedness and Response.” Under the first declaration of emergency,
prefectural governors were able to request that people refrain from going out of their homes, and to request and
instruct facility administrators of schools, social welfare facilities, and entertainment venues to restrict the use of
those facilities in accordance with the provisions of Article 45 of the Act. However, the Act does not stipulate
any penalties for disobeying the instructions under Article 45, and Japan’s curfew was extremely loose compared
to the lockdowns in China, the United States, and many European countries, for example. On February 13, 2021,
during the second declaration of a state of emergency, the Act was amended to allow prefectural governors to
order facility managers. Based on the newly established Article 79, facility managers who do not comply with
the order will be subject to a fine of up to 300,000 yen.
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Figure 7: Identified permanent and non-permanent shocks

Notes: The bars in the upper and lower panels indicate the permanent and non-permanent shocks, respectively,

identified using the estimated vector autoregressive (VAR) model (11) with the restriction (14). We set the lag

length to three weeks in the reduced-form VAR estimation. The orange shaded areas show the weeks coinciding

with the period during the state of emergency declaration in Japan. The sample period spans from the week of

March 1, 2020, to the week of May 9, 2021.

trend in the number of new infection cases in response to the first wave of the COVID-19

pandemic. Moreover, there are upward swings in permanent shocks for several weeks from the

week of May 24, 2020, to the second half of August 2020. Hence, the termination of the state

of emergency on May 25 may contribute to an upward trend in the number of new infection

cases. However, there are no large troughs for the period during the second and third states of

emergency, except for a significant drop at the week of the end of 2020. Therefore, the second

and third states of emergency have not contributed to a decline in the number of new infection

cases. Regarding non-permanent shocks, as in the lower panel of Figure 7, we see persistent

troughs from the first half of August 2020 to the second half of October 2020, and from the end

of November 2020 to the end of December 2020.

We investigate the extent to which past movements in the new positive cases of COVID-19 in-
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Figure 8: Historical decomposition of changes in COVID-19 infection cases and human mobility
due to permanent and non-permanent shocks

Notes: All the series are displayed as deviations from the deterministic component. Mobility CI denotes the

composite index of mobility. The purple bar shows the decomposed series explained by the permanent shocks.

The light blue bar shows the decomposed series explained by the non-permanent shocks. The solid line indicates

the estimated stochastic component before decomposition. The orange shaded areas show the weeks coinciding

with the period during the state of emergency declaration in Japan. We set the lag length to three weeks in the

reduced-form vector autoregressive estimation. Estimation samples span from the week of March 1, 2020, to the

week of May 9, 2021.

fection and human mobility resulted from permanent or non-permanent shocks. Specifically, we

use the historical decomposition technique to decompose the historical value of the log changes

in new positive infection cases and the mobility index into the accumulated effects of current and

past permanent or non-permanent shocks. The upper panel of Figure 8 shows the time series

of the log changes in new positive infection cases explained by permanent and non-permanent

shocks, whereas the lower panel of the figure shows the time series of the composite index of

mobility explained by the shocks. The purple bar shows the decomposed series explained by

the permanent shocks, ξp,t, and the light blue bar shows the decomposed series explained by

non-permanent shocks, ξc,t. The solid line indicates the estimated stochastic components before

decomposition.
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Table 5: A fraction of the forecast error variance explained by permanent or non-permanent
shocks for COVID-19 infection cases and human mobility

Log changes in infection cases Composite index of mobility

Horizon Permanent Non-permanent Permanent Non-permanent

0 18.6 81.4 92.8 7.2
4 51.4 48.6 71.1 28.9
8 48.3 51.7 62.1 37.9
20 48.1 51.9 61.9 38.1

Notes: The entries show the percentage variance of the forecast error made in the column variable, as explained

by the permanent or non-permanent shock at a given horizon. The results are computed from the vector autore-

gressive (VAR) model (11) with the restriction (14) over the sample period from the week of March 1, 2020, to

the week of May 9, 2021. We set the lag length to three weeks in the reduced-form VAR estimation.

The results reveal that sources of the epidemics of the COVID-19 infection vary greatly from

time to time. From the upper panel of Figure 8, much of the fluctuation in the log changes in

infection cases, during and several weeks after the first state of emergency declaration, occur due

to permanent shocks. However, much of this fluctuation also stems from non-permanent shocks

beginning in the first half of August. Even during the second and third states of emergency, a

decline in the log changes in infection cases stems from non-permanent shocks.

Finally, we assess the relative contributions of permanent and cyclical components for

COVID-19 infection cases and human mobility dynamics. Specifically, given the permanent

and non-permanent shocks in the VAR model, we decompose the forecast error variances of

the log changes in infection cases and the composite index of mobility into the variances of

permanent and non-permanent shocks. Next, we estimate the percentage contribution of each

shock to the forecast errors of the log changes in infection cases and the composite index of

mobility.

Table 5 presents the results of the forecast error variance decomposition. The relative

contribution of non-permanent shocks to the fluctuations of the log changes in infection cases

at the current week is about 80%. Although this contribution falls to about 50% at a longer

horizon, the results suggest an important role of the permanent and non-permanent shocks in

the dynamics of COVID-19 infection cases.
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5.3 Role of human mobility in the dynamics of COVID-19 infection

In this subsection, we explore the role of human mobility in the dynamics of COVID-19 infection

cases. We predict that the systematic response of human mobility generates the hump-shaped

response of the changes in the new infection cases and the cyclicality therein. Thus, to inves-

tigate the plausibility of our prediction, we conduct counterfactual simulations using the VAR

model developed by Bernanke et al. (1997) and Sims & Zha (2006) to measure the role of the

systematic response of mobility in response to structural shocks.

First, we measure the dynamic effect of exogenous changes in human mobility. Specifically,

we assume that the mobility changes, ξy,t, t = 1, · · · , T , produce a unit increase in the composite

index of mobility, with no impact on the log changes in infection cases at the time a shock occurs,

due to epidemiological rigidity. Accordingly, we can calculate the impulse response functions to

an exogenous mobility change as B(L)Θy, where Θy = (0, 1)
′
.

Figure 9 shows the estimated impulse response function to an exogenous mobility change,

B̂(L)Θy. We find that, in response to an increase in human mobility, the log changes in infection

cases remain roughly zero for two weeks, due to epidemiological rigidity, and then rapidly

increase for eight weeks. The maximum impact is about four. Thus, a percentage increase

in the composite index of mobility, which reflects a percentage increase in the mobility index

with retail & recreation, raises the rate of new infection cases by approximately 4%. Hence,

exogenous changes in people’s behavior induce an increase in the number of new infection cases,

along with an empirical trade-off relationship, reported in the next subsection.

Next, we investigate the role of human mobility in the dynamic response to COVID-19

infection cases given permanent and non-permanent shocks. Following Bernanke et al. (1997)

and Sims & Zha (2006), we use the VAR model to conduct counterfactual simulations to assess

how the number of new infection cases would have performed, without the systematic response

of mobility to the structural shocks. Specifically, we measure the counterfactual values of the

variables in the VAR model by taking the following steps. Given the response function to per-

manent and non-permanent shocks B(L)Θp, B(L)Θc, we calculate each sequence of exogenous

mobility changes {ξ̌jy,0, ξ̌
j
y,+1, · · · , ξ̌

j
y,+H} for j = p and c that would reset y̌0, y̌+1, · · · , y̌+H to

zero in response to permanent and non-permanent shocks, respectively. We then add each se-

quence before calculating the impulse response function of ∆π to permanent and non-permanent

shocks.
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Figure 9: Dynamic impacts of the exogenous mobility change on COVID-19 infection cases

Notes: The solid line with circles represents the point estimates of the impulse responses to an exogenous mobility

change, B(L)Θy, where Θy = (0, 1)
′
. Mobility CI denotes the composite index of mobility. The mobility change

increases the mobility CI by one unit. Estimation samples span from the week of March 1, 2020, to the week of

May 9, 2021. The shaded areas denote one-standard-error bands, calculated using 1,000 bootstrap samples. We

set the lag length to three weeks in the reduced-form vector autoregressive estimation.

Figure 10 summarizes the simulation results. The red dashed lines represent the simulated

responses to each structural shock and sequence of exogenous mobility changes, to eliminate the

normal response of mobility to the structural shocks. The difference between the baseline result

represented by the solid lines and the simulated result indicates a magnitude of the dynamic

effect of the structural shocks through human mobility.

Our simulation results in the estimated VAR model are consistent with our model prediction

in Section 3. From the upper-left panel of Figure 10, the absence of mobility responses results in

limited rise in the log changes in infection cases relative to the benchmark. Moreover, as in the

lower-left panel of Figure 10, the absence of mobility responses does not result in a continuous

decline to converge to a steady-state level. These results of the macroeconometric analysis

support the argument that human mobility creates an accelerated increase in new infection

cases underlying the changes in its trend. Further, the systematic response of mobility demand

29



Figure 10: Responses to permanent and non-permanent shocks, no mobility response

Notes: The solid line with circles in the upper and lower panels represent the point estimates of the impulse

responses to one standard deviation permanent and non-permanent shock, respectively. The shaded areas denote

one-standard-error bands, calculated using 1,000 bootstrap samples. The red dashed lines represent the simulated

responses to each structural shock and sequence of mobility shocks to eliminate the normal response of mobility

to the structural shocks. Mobility CI denotes the composite index of mobility. We set the lag length to three

weeks in the reduced-form vector autoregressive estimation. Estimation samples span from the week of March 1,

2020, to the week of May 9, 2021.

automatically reduces the number of new infection cases underlying changes in its cycle.

5.4 Simultaneous equations system of infection-mobility trade-off and mo-

bility demand

In this subsection, we examine the feasibility of our argument from another perspective. In

Sections 5.2 and 5.3, we conducted a macroeconometric analysis on the premise of a stochastic

trend and cycle in the new infection cases. We examined the dynamics of COVID-19 infection

cases and human mobility to permanent and non-permanent shocks in the number of new

infection cases, using the VAR model with a long-run restriction. While our dynamic model

in Section 3 explains that the system comprising the infection–mobility trade-off and mobility
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demand can create the stochastic trend and cycle in the new infection cases, it is not obvious

whether, in reality, the dynamics generated by permanent shocks and by non-permanent shocks

employ the same system. Thus, we conduct another macroeconometric analysis using the VAR–

IV model on the explicit premise of simultaneous equations comprising the infection–mobility

trade-off and mobility demand.25 We then show that we can explain the differences in the

impact of permanent and non-permanent infection shocks in relation to the role of mobility

demand, in that the dynamics suggested by the empirical results employ the same mechanism

as those described in the previous subsections.26

First, we empirically investigate the existence of the infection–mobility trade-off. Specifi-

cally, we estimate the following specification of the infection–mobility trade-off (1):

∆πt+1 = κyt−1 + ι+ ϵπ,t+1. (15)

The sample period spans from the week of February 23, 2020, to the week of May 2, 2021.

Under the premise that the human mobility should be predetermined in the supply side of the

infection cases due to the epidemiological rigidity, we can estimate the regression (15) by OLS.

Empirical evidence supports the existence of the trade-off between COVID-19 infection and

human mobility. Table 6 reports estimation results for the infection–mobility trade-off (15). The

coefficient κ describing the response of the one-week-ahead log changes in infection cases to the

one-week lag of human mobility is positive and statistically significant for human mobility. The

OLS estimate of κ implies that a percentage increase in the composite index of mobility raises

the rate of new infection cases by about 3% after two weeks. It is quantitatively comparable with

the finding using other mobility data and statistical models by Nagata et al. (2021).27 Figure 11

shows the scatter plot of the one-week-ahead log changes in the number of COVID-19 infection

cases and the one-week lag of the composite index of mobility, which graphically confirms the

stability of the positive relationship of COVID-19 infection cases and human mobility during

the sample period.

25See the online appendix for the derivation of the VAR–IV model from a simultaneous equations system of
infection-mobility trade-off and mobility demand.

26Note that the VAR model with a long-run restriction and the VAR–IV model should be considered to be
inherently different from each other, as they have different restrictions. Nevertheless, as shown in the following
analysis, we find that the dynamics estimated by using the VAR-IV model, are almost the same as those estimated
by using the VAR with a long-run restriction.

27Nagata et al. (2021) report an impact of mobility changes in nightlife places on new confirmed cases of about
1% to 4%, despite large regional differences in sensitivity intensity.
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Table 6: Estimation results for the COVID-19 infection–mobility trade-off in Japan

Dependent variable: log changes in infection cases

κ 3.28
(0.54)

ι 0.09
(0.05)

Adj-R2 0.43

Notes: This table shows the ordinary least squares regression results (15) of the log changes in infection cases on

the composite index of mobility and constant term. We obtain the composite index by scaling and signing the

first principal component calculated using six Google mobility indices to the index for retail & recreation. The

sample period spans from the week of February 23, 2020, to the week of May 2, 2021. The numbers in parentheses

are Newey & West (1987) heteroskedasticity and autocorrelation robust standard errors for least squares with a

four-week lag truncation.

Next, we empirically investigate the existence of the mobility demand. Specifically, we

estimate the following specification of the mobility demand (5):

yt = b∆πt + γ
′
Wt + ξmd,t, (16)

where Wt is a vector of control variables comprising the one- to three-week lags of yt and ∆πt

and a constant.28 ξmd,t with a mean of zero and a variance of σ2
md represents the nonsystem-

atic component of the reaction of mobility demand, which we refer to as a “mobility demand

shock.” In interpreting the mobility demand shocks, ξmd,t may reflect transitory changes in the

preferences of human behavior and emergent changes in human mobility patterns due to some

prevalence measures, irrespective of whether they are compulsory or not, by the government.

We estimate the regression (16) by an instrumental variable (IV) estimation, because the

number of infection cases can be contemporaneously positively correlated with mobility demand

shock. For example, changing preferences for mobility, such as getting used to the pandemic

28In specifying the dynamics of human mobility, one might argue that log level should also be added to the
VAR model. In particular, Chernozhukov et al. (2021) and Hoshi et al. (2021) find evidence that not only the log
changes, but also the log levels of cases are an important determinant of mobility, using panel data for the US and
Japan. Nevertheless, even with the addition of log level of cases, there should be a less significant difference in the
mobility dynamics that can be captured by our VAR model. In the online appendix, we provide empirical results
showing that adding log level of cases in our VAR model plays a limited role in explaining the dynamics of the
composite index of mobility. It is important to note that we do not claim that our results are inconsistent with
the findings of Chernozhukov et al. (2021) and Hoshi et al. (2021). We interpret that the detailed information
contained in the log level of weekly cases in explaining the dynamics of human mobility is already contained in
the lagged values of log changes of cases and human mobility in our VAR model. In addition, the results of our
IV estimation of mobility demand, taking into account the presence of endogenous bias, are consistent with the
claims of Chernozhukov et al. (2021) and Hoshi et al. (2021) that the higher number of cases reduced people’s
mobility.
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Figure 11: Scatter plot of the log changes in infection cases and human mobility

Notes: Blue circles indicate the scatter plot of the one-week-ahead log changes in the number of COVID-19

infection cases and the one-week lag of the composite index of mobility. The dotted line indicates the fitted value

for the regression of the one-week-ahead log changes in the number of infection cases on the one-week lag of the

composite index of mobility based on the ordinary least squares estimation. Mobility CI denotes the composite

index of mobility. The sample period spans from the week of February 23, 2020, to the week of May 2, 2021.

lifestyle and experiencing complacency toward the COVID-19 outbreak, can make people more

active, despite the worsening infection situation. Thus, the OLS estimate of b suffers from an

upward endogeneity bias. However, estimation using an IV, such as surprise increases in new

infection cases given the emergence of variant strains (which satisfies the relevance of the changes

in infection cases and the exogeneity of the mobility demand shocks), allows for a consistent

estimate of b.

The instrument in the analysis is the weekly log changes in the search volume of the Japanese

term “感染者数” (number of infected individuals in English).29 We expect this measure to reflect

the degree of anxiety regarding the surprise changes in the spread of the COVID-19 infection

among Japanese people, which correlates with the log changes in infection cases, but less so with

29We retrieved the search volume data from Google Trends (https://trends.google.co.jp/trends/?geo=JP)
on June 1, 2021.
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familiarity/ignorance toward such cases. To verify the robustness of the proposed instrument, we

compute the F -statistic under the null hypothesis that the coefficient on the instrument from

the first-stage regression of the log changes in infection cases on the instrument and control

variables is equal to zero. We also conduct the Hausman (1978) test for endogeneity.

Table 7 reports the estimation results for the mobility demand (16). The coefficient b

describing the systematic response of human mobility to the log changes in infection cases is

negative (positive) in the IV (OLS) estimation. This result is consistent with our prediction

that the OLS estimate of b suffers from an upward endogeneity bias. Moreover, the IV estimate

of b shows that a percentage increase in new infection cases reduces the composite index of

mobility by about 0.062, which is quantitatively comparable with the finding obtained by using

other mobility data and the statistical model by Watanabe & Yabu (2021).30 The instrument

is robust, with a heteroskedasticity-robust first-stage F -statistic of 21.488.31 Furthermore,

the Hausman test result detects endogeneity of the log changes in infection cases, although

at a 10% statistical level, possibly because of efficiency loss from the IV estimation. This

result statistically supports the implication of our dynamic model, where the infection–mobility

trade-off and mobility demand endogenously and simultaneously determine the number of new

infection cases.

Next, we examine the dynamic effect of changes in anxiety related to surprise changes in the

spread of COVID-19 infection. Let ξa,t be an anxiety shock and Θa, the impact vector for the

responses of the VAR variables Xt to the anxiety shock. We can express the impulse response

functions of Xt to an anxiety shock ξa,t as B(L)Θa.

To identify Θa = (Θ1a,Θ2a)
′
, we adopt the VAR–IV model proposed by Stock & Watson

(2012, 2018). Assume that a unit increase in ϵa,t increases ∆πt by one unit Θ1a = 1. We use

the IV regression to yield a consistent estimate of Θ2a

e2,t = Θ2ae1,t + ξmd,t, (17)

using the instrument, where e1,t and e2,t are the reduced-form VAR innovations of the log

30Given the result of the factor model in the online appendix, a percentage increase in new infection cases
increases mobility in residence by 0.026(≃ −0.062 × −0.42). Watanabe & Yabu (2021) report a reduction in
people’s outings by 0.026% due to a 1% increase in new infection cases.

31To ensure that a weak instrument problem is not present, Stock et al. (2002) and Stock & Yogo (2005)
recommend the rule of thumb that requires the F -statistic from the first-stage regression of the two-stage least
squares to exceed 10.
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Table 7: Estimation results for mobility demand in Japan

Dependent variable: Mobility CI

OLS estimate of b 0.027
(0.013)

IV estimate of b -0.062
(0.055)

Wald F 21.488
Hausman 2.764

[0.096]

Notes: The dependent variable is the composite index of mobility. The independent variable is the log changes

in infection cases. The constant and one- to three-week lags of log changes in infection cases and the composite

index of mobility are included as control variables in the linear regression model. The ordinary least squares

(OLS) estimate of b indicates the estimate of b by the OLS regression. The instrumental variable (IV) estimate

of b indicates the estimate of b by the IV regression. We use the weekly log changes in the search volume of “感染

者数” (number of infected individuals in English) in Google as an external instrument in the IV regression. The

numbers in parentheses are White (1980) heteroskedasticity-robust standard errors. Coefficients and standard

errors for the control variables are not reported. Wald F indicates White (1980) heteroskedasticity-robust F -

statistic under the null hypothesis that the coefficient on the instrument from the first-stage regression of the

log changes in infection cases on the instrument and control variables is equal to zero. Hausman indicates the

statistic on the Hausman (1978) test under the null hypothesis that the OLS and IV estimators are consistent,

but the OLS estimate is efficient. The numbers in brackets are p-values for the Hausman test. The sample period

spans from the week of March 1, 2020, to the week of May 9, 2021.

changes in infection cases and the composite index of mobility, respectively. Given that the

regression in Equation (17) is mathematically equivalent to the regression in Equation (16), we

can set Θ2a as the IV estimate of b.

Figure 12 summarizes the estimated impulse response functions B̂(L)Θ̂a. Accordingly, a

unit increase in infection cases due to an anxiety shock leads to a persistent decrease in human

mobility to its lowest values approximately four weeks after the shock occurs. Moreover, after

the transitory rise in the log changes in infection cases for two weeks, they decline steadily for

about eight weeks. These responses are qualitatively similar to those regarding a non-permanent

shock reported in Figure 6.

We can confirm that the anxiety shocks identified by the VAR–IV model are the same as

the non-permanent shocks identified by the VAR model with long-run restriction. Figure 13

displays the time series of anxiety shocks indicated by the solid line (left-hand scale). Relative

to the time series of non-permanent shocks (the dotted line, right-hand scale) identified with the

long-run restriction (14), the two series are observationally equivalent (the Pearson’s correlation
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Figure 12: Dynamic impacts of an anxiety shock on COVID-19 infection cases and human
mobility

Notes: The solid lines with circles represent the point estimates of the impulse responses to an anxiety shock

identified using the estimated vector autoregressive (VAR) model (11) with the weekly log changes in the search

volume of “感染者数” (number of infected individuals in English) in Google as an external instrument. The

anxiety shock increases the log changes in infection cases by one unit. The shaded areas denote one-standard-

error bands, calculated using 1,000 bootstrap samples. Mobility CI denotes the composite index of mobility. We

set the lag length to three weeks in the reduced-form VAR estimation. Estimation samples span from the week

of March 1, 2020, to the week of May 9, 2021.

coefficient between them is 0.997), except for the size of variances. This evidence implies that

the space covered by the anxiety shocks should cover the space of the non-permanent shocks

identified by imposing the long-run restriction. Therefore, it supports our view that a systematic

response of mobility demand to a surprise change in the new infection cases generates the

cyclicality of COVID-19 infection cases.

Finally, we examine the dynamic impact of a mobility demand shock on COVID-19 infection

cases and human mobility. The straightforward way to analyze it within our framework is to

include the shocks obtained from the IV regression (16) in the VAR as an exogenous variable:

A(L)Xt = a0 +Θmdξmd,t + e⊥t , (18)
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Figure 13: Identified anxiety shocks

Notes: The solid line (left-hand scale) indicates the anxiety shocks identified using the estimated vector autore-

gressive (VAR) model (11) with the weekly log changes in the search volume of “感染者数” (number of infected

individuals in English) in Google as an external instrument. The dotted line (right-hand scale) indicates the

non-permanent shocks identified using the estimated VAR model (11) with the restriction (14). We set the lag

length to three weeks in the reduced-form VAR estimation. The sample period spans from the week of March 1,

2020, to the week of May 9, 2021. The orange shaded areas show the weeks coinciding with the period during

the state of emergency declaration in Japan.

where Θmd is a two-by-one vector capturing the contemporaneous response of the elements of

Xt to a mobility demand shock. The innovation term e⊥t is, by construction, orthogonal to

the mobility shock. We can obtain the consistent estimates of Θmd by regressing the VAR

innovations et on the mobility demand shocks ξmd,t. We can express impulse response functions

of Xt to a mobility demand shock ξmb,t as B(L)Θmd.

In addition to the anxiety and non-permanent shocks, the mobility demand shocks are the

same as the permanent shocks identified in the VAR model with the long-run restriction. From

Figure 14, the estimated responses to a mobility demand shock are qualitatively similar to those

to a permanent shock. In response to the rise in human mobility due to a mobility demand

shock, the log changes in infection cases have a hump-shaped response, with the second peak

effect occurring after two weeks. Moreover, from Figure 15, the mobility demand shocks track
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Figure 14: Dynamic impacts of a mobility demand shock on COVID-19 infection cases and
human mobility

Notes: The solid line with circles represents the point estimates of the impulse responses to one unit of a mobility

demand shock obtained from the residual of the instrumental variable regression (16) with the weekly log changes

in the search volume of “感染者数” (number of infected individuals in English) in Google as an instrument. The

shaded areas denote one-standard-error bands, calculated using 1,000 bootstrap samples. Mobility CI denotes

the composite index of mobility. We set the lag length to three weeks in the reduced-form vector autoregressive

estimation. Estimation samples spans from the week of March 1, 2020, to the week of May 9, 2021.

the movement of the permanent shocks precisely, which changes the stochastic trend in the new

infection cases. Thus, the changes in mobility demand, such as the changes in human behavioral

preferences and emergent changes in human mobility patterns, can accelerate changes in the

stochastic trend in new infection cases.

The results can reconcile highly controversial evidence on the association between COVID-

19 infection cases and human mobility. Studies such as Kraemer et al. (2020) and Nagata et al.

(2021) report empirical evidence on the positive causal relationship between human mobility and

infection cases. Others, such as Goolsbee & Syverson (2021) and Watanabe & Yabu (2021),

report empirical evidence on the negative causal relationship between human mobility and

infection cases. Our proposed simultaneous equations system, which takes into account the two
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Figure 15: Identified mobility demand shocks

Notes: The solid line (left-hand scale) indicates the mobility demand shocks obtained from the residual of the

instrumental variable regression (16) with the weekly log changes in the search volume of “感染者数” (number

of infected individuals in English) in Google as an instrument. The dotted line (right-hand scale) indicates the

permanent shocks identified using the estimated vector autoregressive (VAR) model (11) with the restriction

(14). We set the lag length to three weeks in the reduced-form VAR estimation. The orange shaded areas show

the weeks coinciding with the period during the state of emergency declaration in Japan. The sample period

spans from the week of March 1, 2020, to the week of May 9, 2021.

causal relationships between human mobility and new infections, can interpret these conflicting

empirical results without contradiction, and is useful for understanding infection dynamics.

Therefore, analyses using macroeconometrics provide a more realistic picture of the COVID-19

infection cases and human mobility to capture the role of the stochastic trend and cycle in their

dynamics.

5.5 Application to the infection situation in Japanese prefectures

In this subsection, we present the empirical results of applying our empirical framework to

time-series data of new infection cases in Japanese prefectures.32 In particular, we investigate

whether there is a dynamic causal relationship as obtained in section 5.2 for these regional

32We thank an anonymous referee for suggesting the following analysis.
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time-series data. We further illustrate how regional differences in the evolution of an infection

situation can be interpreted in our framework.

We limit our analysis to the infection situation in the two prefectures of Tokyo and Osaka,

where the number of the new infection cases is relatively high, compared to elsewhere in Japan.33

Both of these prefectures experienced a sustained decrease in the infection cases during the

state of emergency declaration, and a persistent increase in cases after the state of emergency

declaration was lifted. Nevertheless, there are regional differences in the infection spread. In

particular, when the first emergency declaration was lifted, the infection situation in Osaka

improved steadily, and the emergency declaration was lifted earlier on May 21, but the infection

situation in Tokyo was not reassuring.34 Also, after the second state of emergency declaration

was lifted, the infection situation in Osaka deteriorated rapidly.35

We apply our empirical framework to the infection situation in each prefecture. Specifically,

we estimate the VAR model with a long-run restriction separately, using the time-series data of

the log changes in infection cases and human mobility in each prefecture. As well as carrying

out an analysis with the aggregated data, we construct the composite index of mobility for each

prefecture, using six of Google’s mobility indices and employ it as an endogenous variable in

the VAR model.36 The one- to three-week lags of the endogenous variables are included in the

VAR model for each prefecture.

Figure 16 shows the estimated impulse response of the log changes in infection cases and the

composite index of mobility to permanent and non-permanent shocks in Tokyo and Osaka. We

find that, although there are quantitative regional differences, the estimated dynamic causal

relationship between the infection cases and human mobility is qualitatively similar to the

results for Japan as a whole in section 5.2; a permanent infection shock causes a hump-shaped

increase in infection cases with increased human mobility and a non-permanent shock causes a

temporary increase in cases with decreased human mobility.

33In the online appendix, we take a look at the evolution of an infection situation in Tokyo and Osaka to
illustrate a common trend and regional differences in infection spread.

34On June 2, 2020, immediately after the first state of emergency declaration was lifted, the Tokyo Metropolitan
Government issued “Tokyo Alert,” its own standard for providing warning signals regarding the infection spread
situation of COVID-19, for the first time, to warn Tokyo residents about signs of a resurgence of the infection.

35In Osaka, the second state of emergency declaration was lifted ahead of schedule, on February 28, 2021.
However, in response to the reemergence of the infection, on April 7, the Osaka Prefectural Government called
for the prefectural residents to be vigilant, stating that the infection situation was at the most serious level
based on the “Osaka Model,” its own standard for a warning signal regarding the infection spread situation of
COVID-19.

36See the online appendix for the time-series data on the composite index of mobility in Tokyo and Osaka that
we use in the analysis.
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Figure 16: Estimated responses of the log changes in infection cases and human mobility to
permanent and non-permanent shocks in Tokyo and Osaka

Notes: The solid lines in the upper and lower panels represent the point estimates of the impulse responses to

one standard deviation permanent and non-permanent shock, respectively, by prefecture. Mobility CI denotes

the composite index of mobility. We set the lag length to three weeks in the reduced-form vector autoregressive

estimation. Estimation samples span from the week of March 1, 2020, to the week of May 9, 2021. Different

colors represent different prefectures, where the navy blue is for Tokyo and the dark orange is for Osaka.

41



Figure 17 displays the time series of identified permanent and non-permanent shocks in

Tokyo and Osaka. As seen in the top panel of the figure, we find that the permanent shocks

tend to occur simultaneously across the two prefectures.37 On the other hand, as seen in

the bottom panel of the figure, we find that the time series of non-permanent shocks vary

considerably between Tokyo and Osaka.38 In particular, there is a large discrepancy between

the non-permanent shocks in Tokyo and Osaka at the end of the first and second states of

emergency declarations. This implies that the source of the differences in the evolution of an

infection situation between the two prefectures, can be interpreted as occurring primarily due

to non-permanent shocks in our framework.

Figure 17: Identified permanent and non-permanent shocks in Tokyo and Osaka

Notes: The solid lines in the upper and lower panels indicate the permanent and non-permanent shocks, re-

spectively, identified using the estimated vector autoregressive (VAR) model (11) with the restriction (14) by

prefecture. We set the lag length to three weeks in the reduced-form VAR estimation. The orange shaded areas

show the weeks coinciding with the period during the state of emergency declaration in Japan. The sample

period spans from the week of March 1, 2020, to the week of May 9, 2021. Different colors represent different

prefectures, where the navy blue is for Tokyo and the dark orange is for Osaka.

37We confirm that there is a statistically positive correlation of permanent shocks between Tokyo and Osaka
(correlation coefficient is 0.81).

38The correlation of the non-permanent shocks between Tokyo and Osaka is small, with a correlation coefficient
of 0.11.
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Figure 18 gives the historical decomposition of the log changes in infection cases in Tokyo and

Osaka. We find that the decomposed series explained by permanent shocks is similar to the ones

in the upper panel of Figure 8. In particular, there is a common tendency in the two prefectures

for the decomposed series to drop significantly during the first state of emergency declaration,

and to rise significantly in the weeks following the lifting of the declaration. Nevertheless,

we find that the fluctuation in the decomposed series explained by non-permanent shocks is

considerably larger than that explained by permanent shocks. This implies that when analyzing

the relationship between infection spread and human mobility using prefecture-specific data,

variations in the growth rate of new cases by prefecture is likely to be dominated by the influence

of non-permanent shocks.

Figure 18: Historical decomposition of log changes in COVID-19 infection cases due to the
permanent and non-permanent shocks in Tokyo and Osaka

Notes: All the series are displayed as deviations from the deterministic component. The purple bar shows the

decomposed series explained by the permanent shocks. The light blue bar shows the decomposed series explained

by the non-permanent shocks. The solid line indicates the estimated stochastic component before decomposition.

The orange shaded areas show the weeks coinciding with the period during the state of emergency declaration

in Japan. We set the lag length to three weeks in the reduced-form vector autoregressive estimation in each

prefecture. Estimation samples span from the week of March 1, 2020, to the week of May 9, 2021.
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The application in this subsection suggests the importance of monitoring the changes in

people’s perception of infection risk, in controlling infection spread throughout Japan. The

infection spread can vary from prefecture to prefecture, but much of it is temporary, thanks to

people in each prefecture curbing their mobility. On the other hand, permanent shocks, possibly

due to exogenous changes in mobility demand, may create a common tendency of infection

spread across prefectures. Policymakers may need to intervene to limit people’s behavior if the

infection spread is expected to be long-lasting and widespread, as people’s perception of the

infection risk changes.

6 Summary and discussion

Human mobility is pivotal in considering the dynamics of the number of COVID-19 infection

cases. Arguably, there is a trade-off between the increase in new infection cases and human

mobility. The number of new infection cases increases, because the probability of susceptible

people being infected by interacting with other infected people becomes higher as more people

move around. However, there is a systematic response of mobility demand regarding the new

infection cases; that is, when the number of new infection cases increases, people restrain their

mobility. Hence, there is a stochastic trend and cycle in the infection dynamics. As described

in our analysis using the dynamic model of COVID-19 infection and human mobility, human

mobility can create an acceleration of the spread of COVID-19 infection and its cyclicality under

the simultaneous relationship.

This study has provided empirical evidence in support of the argument. Using time-series

data from February 2020 to May 2021 in Japan, we demonstrated the stochastic trend and cycle

in the new infection cases. Using macroeconometric analysis applied to the time series of log

changes in the new infection cases and human mobility, we demonstrated the feasibility of our

predictions. Moreover, sources of the COVID-19 infection spread vary significantly from time

to time, and the changes in the trend and cycle of the new infection cases explain approximately

half of its variation, respectively, from March 2020 to May 2021 in Japan.

The findings of this study offer suggestions on some of the current concerns regarding

COVID-19. For instance, there is concern that the infection rate may vary from time to time,

because the severe acute respiratory syndrome coronavirus 2, an RNA virus, is prone to muta-
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tion. The emergence of a variant strain would cause surprise changes in the new infection cases,

reflecting a transitory change in the parameter κ in our model. Nevertheless, we predict that

if we respond appropriately to the situation and change our behavior, we can keep the number

of new infection cases at a certain level, under the premise of system stability.

However, the primary concern of this study is that, as the COVID-19 infection spread

continues, people may ignore the situation, and partly or fully continue (or resume) economic

activities because they have become accustomed to living amid the reality of the pandemic and a

life of restrictions. Through this study, we hope to curb the speed of infection spread by helping

people realize that how they regulate their behavioral preferences and freedom of mobility can

reduce the probability of infections. Such decisions are reflected in practical measures such

as wearing masks, avoiding close encounters, social distancing, and refraining from going out

if one has COVID-19-related symptoms, to stall the spread as much as possible. Admittedly,

despite the fact that the declaration of a state of emergency due to the spread of the COVID-19

infection and the request to refrain from needlessly going out have greatly restricted economic

activities, Japan has not experienced a major medical collapse, and the probability of people in

the country contracting the virus has been kept extremely low. However, people are likely to be

wearied by the repeated declarations of a state of emergency and calls for self-restraint. If this

scenario becomes unbearable and people begin ignoring the situation, the number of infection

cases could increase exponentially.

Hence, what actions can be taken to prevent an escalation of the infection rate? Assuming

that economic activities continue, it would be challenging to completely control the spread

of infections, and a certain level of new infection cases will be inevitable. People must act

to avoid increasing the number of new infection cases, due to the changes in their preferences

regarding systematic behavior. Even without relying on strict countermeasures against COVID-

19 infections, avoiding a sustained increase in the number of new infection cases via people’s

behavioral responses, is possible by employing the practical measures highlighted above.

Although this study assumes a stable system, structural changes are expected.39 In partic-

ular, we expect the widespread administration of vaccines to cause a structural change in the

39It would be interesting to analyze the fourth wave and the subsequent decline of COVID-19 in Japan. At
this time, vaccination in Japan progressed rapidly. We speculate that the widespread use of vaccines may have
played a major role in the decrease in the number of cases after the fourth wave. However, because there is little
data after the vaccine has been distributed throughout Japan, it is difficult to verify the structural changes in
the VAR model. Therefore, we leave the analysis of possible structural changes in the system as a future issue.
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parameter κ, in that it becomes flat in our model, thereby inducing a weak trade-off between the

new infection cases and human mobility. Nevertheless, if the widespread availability of vaccines

changes people’s preferences in terms of ignoring the situation, which pushes the parameter

in the mobility demand, b, toward zero in our dynamic model, then the spread of COVID-19

infections may emulate the seasonal flu epidemics in winter. As of June 2021, when this paper

was being prepared, this speculation is consistent with events in countries where vaccines are

widely available.

There are many possibilities for an extension of the analysis in this study, leaving room

for future research to proceed in several directions. First, investigating the system stability in

the dynamics of the number of new infection cases is an important theoretical and empirical

challenge. Although our analysis is premised on cyclicality and the stochastic trends in new

infection cases, the model predictions and empirical results do not necessarily hold for every

economy. The dynamics in our model strongly depend on the set of its parameters. In par-

ticular, as the parameter representing the systematic response of mobility demand to the new

infection cases, b, tends toward zero, the model predicts less cyclicality in such cases. Thus,

the irresponsibility of human mobility in the economy is associated with the probability of an

infection explosion, which can vary significantly by country and region, depending on behav-

ioral factors such as testing and quarantine procedures for positive cases, lifestyle, and culture.

Hence, future research can theoretically examine conditions that are satisfied with cyclicality

in the new infection cases and quantitatively assess its degree, using time-series data in other

countries and regions.

Second, although this study considers the formation of the reference level of new infection

cases briefly in the models, future studies can provide empirical evidence on the formation of

people’s opinions and beliefs regarding the reality of epidemics. The study’s findings present

important policy implications. An important task for policymakers in predicting and controlling

infections is to monitor changes in people’s perception of infection risk. If people continue

to ignore the risk of infection and engage in economic activities, policymakers should take

interventions that will change the way people view the risk of infections. To do so, we need

to consult quantitative assessments on how people form their opinions and beliefs regarding

the reality of epidemics. It is also important to extend the model to include the policy sector,

in order to analyze the role of policy interventions, such as a systematic control of human
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mobility in response to increases or decreases in the number of new infections.40 Moreover,

significant heterogeneity in the level of concern people have about the situation is expected.

It is conceivable that those who are at high risk of serious illness may respond to government

measures and requests to refrain from economic activities, while those at low risk may ignore

them.

Finally, the study findings can encourage important developments in building epidemiolog-

ical models incorporating human behavior. From the theoretical analysis in Gans (2020), in

environments where the systematic responses of mobility demand to changes in the number of

new infection cases fully work, an equilibrium level would be reached long before herd immu-

nity is achieved. However, even in the SIR–Macro model, as in Eichenbaum et al. (2021), where

the reproduction rate systematically changes depending on economic activities, this mechanism

seems to be unattractive. Better predictions and simulations of new infection cases may be

provided by modifying the SIR models, implying an economically convenient reduction in the

reproduction rate.

Appendix: Data sources and weekly data construction

Data on the new confirmed cases of COVID-19 and the Oxford Stringency Index are obtained

from Our World in Data.41 The Oxford Stringency Index is calculated by the Oxford Coro-

navirus Government Response Tracker project.42 This index averages nine indices: school

closures, workplace closures, cancellation of public events, restrictions on public gatherings, clo-

sures of public transport, stay-at-home requirements, public information campaigns, restrictions

on internal movements, and international travel controls. Each index takes a value from 0 to

100. The larger the index, the stricter the government’s response.

Data on the new confirmed cases in Tokyo and Osaka are obtained from the Japan Broadcast-

ing Corporation (NHK) special website for new coronaviruses43 because the data on COVID-19

Data Repository by CSSE at Johns Hopkins University, which is the source for Our World in

Data, have missing values for the sample period from February 16, 2020, to May 9, 2021. We

40Fukao & Shioji (2022) use the system comprising the infection–economic activity trade-off, people’s choice
of economic activity levels, as well as a policy reaction, and point out the importance of a trade-off between
economic activities and COVID-19 infection cases in understanding the role of public policies.

41https://ourworldindata.org/
42https://covidtracker.bsg.ox.ac.uk/
43https://www3.nhk.or.jp/news/special/coronavirus/
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confirm that both data are consistent except for the missing values.

The mobility indices are from the COVID-19 Community Mobility Reports by Google.44

Each mobility variable is calculated as the rate of deviation from the reference value, which is

set for each day of the week. The reference value for each day of the week, is the median value

for each day of the week for five weeks, from January 3 to February 6, 2020.

The frequency of all data is daily. We convert to weekly data from Sunday to Saturday,

in order to eliminate the transitory factor. The number of new weekly infection cases and the

weekly mobility indices, are calculated as the cumulative number of new daily infection cases

and the median of the daily mobility indices each week, respectively.
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