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 Abstract. We address the problem of predicting how rational agents will form coalitions in a 

nontransferable utility game, and within each coalition how they will allocate the gains obtained 

through cooperation. To answer these questions, we propose solution concepts according to which 

the coalition structure and the payoff allocations are simultaneously determined. We prove the 

nonemptiness and partial efficiency of the steady bargaining set, a refinement of the Zhou 

bargaining set, for at least one coalition structure under the restrictive non-crossing condition. In 

addition, we show the nonemptiness and possible inefficiency of the Mas-Colell bargaining set if 

this condition is not assumed. 

Keywords: Nontransferable utility game, coalition structure, bargaining set, restrictive   non-

crossing condition 

JEL classification No: C71, D71 

1. Introduction 

We address the problem of predicting how rational agents, namely players, will form coalitions, 

and within coalitions how they will allocate the gains obtained through cooperation. We define a 

coalition structure as a partition of the whole set of players, and formulate the underlying situation 

as a coalitional game with coalition structure, in which the allocation of payoffs will depend on 

which coalitions actually form. We consider a coalition structure as a collection of coalitions whose 

members are always free to form a new coalition for higher payoffs. Then, the eventual formation 
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of coalitions will be influenced by what players expect to get in different coalitions. We thus search 

for a solution in the family of bargaining sets to select the coalition structure and the payoff 

allocation simultaneously, and study the existence and the efficiency of solution outcomes.  

The idea of the bargaining set starts from a study by Aumann and Maschler (1964) of a stable 

solution for the class of coalitional games with coalition structures. Their bargaining set  𝑀1
(𝑖)

 is 

defined in terms of  an “objection from a player to another player given a proposal” and a 

“counterobjection from the objected player to the objecting player.” The notion of the bargaining 

set depends on the particular definitions of objections and counterobjections being considered. 

Several alternative definitions have been since. In this paper, we define an “objection from a 

coalition to a proposal” and a “counterobjection from an objected coalition to the objecting 

coalition.” Here is the essence: Let 𝑥  be a recommended payoff profile. Then, a coalition 𝑆 has an 

objection if it can produce an alternative profile of payoffs for its members that make them strictly 

better off than at 𝑥. A coalition T  has a counterobjection to 𝑆 at 𝑥 if T can achieve a payoff profile 

that makes its members at least as well off as in 𝑥, and makes players belonging to both S and T at 

least as well off as they are in the objection. An objection to 𝑥  is “justified” if it has no 

counterobjection. 

Davis and Maschler (1963), and Peleg (1963) prove that, for transferable utility (TU) games, 

Aumann and Maschler’s bargaining set  𝑀1
(𝑖)

 is nonempty-valued for all coalition structures. Thus, 

𝑀1
(𝑖)

  is not a solution to select stable coalition structures. Aumann and Drèze (1974) investigate 

not only  𝑀1
(𝑖)

  but also the core of a coalitional game with a coalition structure, which is the set of 

payoff profiles feasible for the coalition structure with no objections from any coalition. Aumann 

and Drèze show that the core of a balanced TU game with a coalition structure is nonempty if and 

only if the coalition structure maximizes the sum of the “worths” of the partitions of the grand 

coalition [For details, see Shimomura (1997, P.295)].  This tells that the core selects stable pairs of 

coalition structure and payoff allocation for balanced TU games, but it does not work for the other 

types of TU games.  

For nontransferable utility (NTU) game, Mas-Colell (1989) proposes a modification of 𝑀1
(𝑖)

, 

now called the Mas-Colell bargaining set. Mas-Colell’s original is defined to be the set of efficient 

payoff profiles produced by the grand coalition with no justified objection. The Mas-Colell 

bargaining set of a coalitional game with a coalition structure, discussed in this paper, is the set of 

payoff profiles feasible for the coalition structure with no justified objection. In a TU game, it 

contains efficient payoff profiles for at least one coalition structure [Zhou (1994), Shimomura 

(1997)]. In fact, Mas-Colell (1989, P.138) points out that for many games, his bargaining set “can 

be quite large” regardless of the requirement of efficiency. Thus, the Mas-Colell bargaining set per 

se is not a solution to select stable payoff allocations.  

To our best knowledge, there has been no research on the Mas-Colell bargaining set of NTU 

games with coalition structures although Vohra (1991) gives sufficient conditions for the 

nonemptiness, which implies efficiency, of Mas-Colell’s original bargaining set of NTU games. In 
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this paper, we investigate refinements of the Mas-Colell bargaining set to identify stable coalition 

structures and internal payoff allocations for a reasonably large class of NTU games including all 

TU games. Zhou (1994) is the first author to challenge this project. We pursue a better notion of 

stability for a bargaining set based on the fact that the outcomes become more sophisticated as the 

requirements imposed on counterobjection to qualify are strengthened.  

To do so, we propose criterion to adopt counterobjections in the following ways. We first 

impose the intersection criterion, intensively investigated by Zhou (1994). In the definition of a 

counterobjection by Mas-Colell (1989) as well as Aumann and Maschler's (1964), a 

counterobjecting coalition may not include any member of the objecting coalition. That is, the 

coalitions making the objection and the counterobjection may have an empty intersection. Zhou 

(1994) points out the importance of this requirement on counterobjections of a nonempty 

intersection, what we call the "proper intersection condition." The resulting solution concept is the 

Zhou bargaining set. We will investigate how strong of an intersection requirement one can impose 

on counterobjections so as not to make the bargaining set empty for all coalition structures. 

The second is the improvement criterion. Mas-Colell (1989) and Vohra (1991) define an 

objection and a counterobjection as follows: an alternative payoff vector to the recommendation 𝑥 

in a coalition is proposed which keeps its members as well off as at 𝑥, and at least one of them 

strictly better off compared (and the objection to be counterobjected). Notice the symmetry in their 

definitions of objections and counterobjections: both are defined in terms of Pareto-improvement. 

We will examine the possibility of requring strict improvements, that is making all the members of 

the objecting and counterobjecting coalitions strictly better off than at 𝑥. Note that the concepts of 

objection-counterobjection defined by Pareto-improvement and strict improvement are not 

logically related. 

The third criterion is the dominance criterion. Suppose that a payoff vector is proposed for 

a society, and coalition 𝑆 has an objection. Counterobjections are defined objection by objection; 

which coalition is against 𝑆  depends on the objection proposed by 𝑆 . A coalition 𝑇  will be 

disinclined to counterobject if they know that 𝑆  has an alternate option to which  𝑇  has no 

counterobjection. The story is different if 𝑇  can make a counterobjection to every possible 

objection that 𝑆  can make against 𝑥 . That is, 𝑇  can break any deviation by 𝑆  from 𝑥 . We will 

require counterobjections to satisfy this criterion and define the steady bargaining set. 

The steady bargaining set is contained in the Zhou bargaining set, which passes the 

intersection and dominance tests. We propose the subset of the steady bargaining set obtained by 

imposing the improvement criterion for both objections and counterobjections. We call this the 

strong steady bargaining set. 

We discuss one more bargaining set. We refine the Mas-Colell bargaining set by requiring 

the objection to be in the core of the “reduced game” on the objecting coalition as well as both 

objections and counterobjections to be defined by strict improvements. We call it the precise 

bargaining set. The steady bargaining set is almost, but not quite, a subset of the precise bargaining 
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set. The strong steady bargaining set is contained in both the precise bargaining set and the steady 

bargaining set. 

We establish three theorems. First, for a NTU coalitional game satisfying the "restrictive non-

crossing condition," the steady bargaining set contains at least one efficient payoff profile for at least 

one coalition structure. Second, for a NTU coalitional game satisfying a “comprehensiveness” 

assumption as well as the “restrictive non-crossing condition,” the strong steady bargaining set 

contains at least one efficient payoff profile. The restrictive non-crossing condition, which all TU 

games satisfy, enables us to avoid the "balanced family" argument, which is used by Scarf (1967), 

Vohra (1991), and Zhou (1994). We also show by way of an example that the Zhou bargaining set 

may be empty and the Mas-Colell bargaining set may be inefficient without the restrictive non-

crossing condition. As corollaries, we deduce the possible emptiness of the steady bargaining set. 

This tells us that a stable compromise does not generally lead to efficiency; it is a problem shared by 

coalitional games and strategic games. Third, on the class of all NTU coalitional games, the precise 

bargaining set is nonempty for at least one coalition structure although it may not contain any 

efficient payoff vectors. To prove this, we need essentially no assumptions. The only condition used 

in our proof is that for every coalition, the set of all individually rational payoff profiles is compact. 

Zhou (1994) shows that on the class of TU games, the Zhou bargaining set contains at least 

one efficient payoff profile for at least one coalition structure. Our first theorem extends his result to 

NTU games similarly to the way Scarf (1967) had extended the core nonemptiness theorem of 

Bondareva (1963) and Shapley (1967). Shimomura (1997) proves that on the class of TU games, the 

steady bargaining set and the Zhou bargaining set are nonempty for every coalition structure that can 

produce the maximal sum of payoffs to all the players. Combining this result with our first theorem, 

we demonstrate that in a NTU coalitional game, it is not easily predictable which coalitions are likely 

to form, but the idea of the bargaining set helps explain how coalition structures and payoff 

allocations are determined.  

The paper is organized as follows. In Section 2, we present a model of an NTU coalitional 

game and define the Mas-Colell bargaining set. In Section 3, we propose, as refinements of the Mas-

Colell bargaining set, the Zhou bargaining set, the steady bargaining set, and the strong steady 

bargaining set, and investigate their nonemptiness and efficiency. In Section 4, we propose two 

subsolutions of the Mas-Colell bargaining set, which are the precise bargaining set and the natural 

bargaining set, and investigate their nonemptiness. Section 5 is for concluding remarks. The 

appendix provides the proofs of the results stated in Sections 3 and 4. 

 

2. The Model and the Mas-Colell Bargaining Set 
 

In this section, we define fundamental concepts underlying the bargaining set in the model of a 

coalitional game. The set of players is a nonempty finite set denoted by 𝑁 , and a coalition is a 

nonempty subset of 𝑁. For every coalition 𝑆, a payoff profile for 𝑆 is a point of ℝ𝑆 (throughout the 

paper, we denote by 𝑋𝐴 the set of functions from the set 𝐴 to the set 𝑋. If 𝐴 is finite, then every point 

𝑔 ∈ 𝑋𝐴  is identified with the bundle (𝑔(𝑎))
𝑎∈𝐴

 ). We simply call a payoff profile for 𝑁  a payoff 
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profile. Given a payoff profile 𝑥, we denote by 𝑥𝑖 ≡ 𝑥(𝑖) the payoff to player 𝑖 at profile 𝑥, and by 

𝑥𝑆  the projection of 𝑥  on ℝ𝑆 .  For each 𝐵 ⊂ ℝ𝑆 , we denote by int𝐵  and bd𝐵   respectively the 

interior and the boundary of 𝐵  relative to ℝ𝑆. Let 𝑆 ⊂ 𝑁, and 𝐹 ⊂ ℝ𝑆 . A representation for 𝐹 is a 

function 𝑓:ℝ𝑆 → ℝ such that  𝐹 = {𝑥 ∈ ℝ𝑆|𝑓(𝑥) ≤ 0} and int𝐹 = {𝑥 ∈ ℝ𝑆|𝑓(𝑥) < 0}. We define 

the following concepts: 

 

Coalitional Game: A coalitional game, simply a game, is a correspondence 𝑉 that associates with 

every coalition 𝑆 a set 𝑉(𝑆) ≡ {𝑥 ∈ ℝ𝑁|𝑥𝑆 ∈ 𝑉𝑆}, where 𝑉𝑆 ⊂ ℝ
𝑆, satisfying 

continuity: there is a representation for 𝑉𝑆 that is continuous. 

Moreover, there is a point 𝑥 ∈ ℝ𝑁  such that for every coalition 𝑆, the following hold: 

𝒙-compactness: 𝑉𝑆 ∩ ({𝑥𝑆} + ℝ+
𝑆 ) is compact;  

𝒙-interiority: 𝑥𝑆 ∈ int 𝑉𝑆; and  

  𝒙-compehensiveness: for every (𝑥𝑆, 𝑦𝑆) ∈ ℝ
𝑆 × 𝑉𝑆, 𝑥𝑆 ≤ 𝑥𝑆 ≪ 𝑦𝑆

1 ⇒ 𝑥𝑆 ∈ int𝑉𝑆 

 

Note that 𝑉(𝑆)  ⊂ ℝ𝑁  and 𝑉𝑆 ⊂ ℝ
𝑆.  The point 𝑥   plays a role similar to the reference point in 

cooperative bargaining games à la Nash. We interpret 𝑥 as a profile of reservation payoffs. Then, 𝑥-

interiority corresponds to the “survival condition” in a general equilibrium model: every consumer 

can reduce his utility and still live by discarding part of his endowment. 

We assume the continuity of representations to deal with games that are possibly bounded 

(such as games with 𝑉𝑆 compact)  and simplify the proofs. Continuity implies that every 𝑉𝑆 is a 

closed subset of ℝ𝑆. If 𝑉𝑆 is comprehensive (i.e., 𝑉𝑆 −ℝ+
𝑆 ⊂ 𝑉𝑆) and non-leveled (i.e., for every 

(𝑥𝑆, 𝑦𝑆) ∈ bd𝑉𝑆 × bd𝑉𝑆 , 𝑥𝑆 ≤ 𝑦𝑆 ⇒ 𝑥𝑆 = 𝑦𝑆 ), then  𝑉𝑆  is  𝑥 -compehensive. Then for every 

coalition 𝑆 , the frontier of 𝑉𝑆  is a connected surface. Note that, for every 𝑦𝑆 ∈ 𝑉𝑆 , the segment 

connecting 𝑦𝑆  with 𝑥𝑆 , [𝑥𝑆, 𝑦𝑆[ ≡ {𝑥𝑆 ∈ 𝑉𝑆|(∃𝑡 ∈ [0,1[)(𝑥𝑆 = (1 − 𝑡)𝑥𝑆 + 𝑦𝑆)} , is included in 

int𝑉𝑆, namely [𝑥𝑆, 𝑦𝑆[ ⊂ int𝑉𝑆. By continuity, 𝑥-comprehensiveness implies:  

Weak 𝒙-comprehensiveness: for every (𝑥𝑆, 𝑦𝑆) ∈ ℝ
𝑆 × 𝑉𝑆 , 𝑥𝑆 ≤ 𝑥𝑆 ≤ 𝑦𝑆 ⇒ 𝑥𝑆 ∈ 𝑉𝑆 

The converse is not always true: weak  𝑥-comprehensiveness does not imply  𝑥-comprehensiveness. 

In addition,  𝑥-comprehensiveness is weaker than the following: 

Strict 𝒙-comprehensiveness: for every coalition 𝑆 and (𝑥𝑆, 𝑦𝑆) ∈ ℝ
𝑆 × 𝑉𝑆, 

𝑥𝑆 ≤ 𝑥𝑆 ≪ 𝑦𝑆 & 𝑥𝑆 ≠ 𝑦𝑆 ⇒ 𝑥𝑆 ∈ int𝑉𝑆 

A coalition structure is a partition of 𝑁. We denote by Π the class of all coalition structures. Let 

𝑉 be a game. The feasible set for coalition structure 𝒫 is 𝑉∗(𝒫) ≡ {𝑥 ∈ ℝ𝑁|∀𝑃 ∈ 𝒫, 𝑥𝑃 ∈ 𝑉𝑃} =

⋂ 𝑉(𝑃)𝑃∈𝒫 , and the feasible set of 𝑉 is 𝑉∗ ≡ ⋃ 𝑉∗(𝒫)𝒫∈Π  . For every coalition 𝑆, a payoff profile  

𝑥𝑆 for 𝑆 is individually rational if 𝑥𝑖 ≥ sup𝑉{𝑖} for all 𝑖 ∈ 𝑆. The individually rational set for the 

coalition structure 𝒫  is 𝐼(𝑉;𝒫) ≡ {𝑥 ∈ 𝑉∗(𝒫)|∀𝑖 ∈ 𝑁, 𝑥𝑖 ≥ sup𝑉{𝑖}} , and the individually 

rational set of  𝑉 is 𝐼(𝑉) ≡ ⋃ 𝐼(𝑉;𝒫)𝒫∈Π . A payoff profile 𝑥 is efficient if 𝑥 ∈ 𝑉∗, and there is no 

𝑦 ∈ 𝑉∗ such that 𝑦𝑖 > 𝑥𝑖 for all 𝑖 ∈ 𝑁. A coalition structure 𝒫  is efficient if there is at least one 

individually rational and efficient payoff profile 𝑥 ∈ 𝑉∗(𝒫).  

                                                 
1 Vector inequalities: 𝑥 ≤ 𝑦 if 𝑥𝑖 ≤ 𝑦𝑖 for all 𝑖, 𝑥 ≪ 𝑦 if 𝑥𝑖 < 𝑦𝑖 for all 𝑖. 
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A transferable utility (TU) game is a game 𝑉  such that for every coalition 𝑆 , there is a real 

number 𝑣(𝑆) such that 𝑉𝑆 = {𝑥 ∈ ℝ
𝑆| ∑ 𝑥𝑖𝑖∈𝑆 ≤ 𝑣(𝑆)}. The number 𝑣(𝑆) is the worth of 𝑆.  

Let 𝑆  and 𝑇  be two coalitions, 𝑥  a payoff profile, 𝑦 ∈ 𝑉𝑆 , and 𝑧 ∈ 𝑉𝑇 . Then the pair (𝑇, 𝑧) 

weakly improves upon (𝑆, 𝑦)  at 𝑥  if (𝑇, 𝑧) ≠ (𝑆, 𝑦)  and 𝑧 ≥ (𝑥𝑇\𝑆, 𝑦𝑇∩𝑆) ; it Pareto-improves 

upon (𝑆, 𝑦) at 𝑥 if 𝑧 ≥ (𝑥𝑇\𝑆, 𝑦𝑇∩𝑆) and 𝑧 ≠ (𝑥𝑇\𝑆, 𝑦𝑇∩𝑆); and it strictly improves upon (𝑆, 𝑦) at 

𝑥  if 𝑧 ≫ (𝑥𝑇\𝑆, 𝑦𝑇∩𝑆) . If (𝑇, 𝑧)  is such that 𝑧 ≫ 𝑥𝑇 , then (𝑇, 𝑧)  strictly improves upon 𝑥 . Note 

that  (𝑇, 𝑧) weakly improves upon (𝑆, 𝑦) at 𝑥 even if (𝑇, 𝑧) ≠ (𝑆, 𝑦) and  𝑧 = (𝑥𝑇\𝑆, 𝑦𝑇∩𝑆). 

With these terms, we define the following concepts. 

 

Objection: Let 𝑉 be a game and  𝑥 a payoff profile. Then the pair  (𝑆, 𝑦)  is an objection to 𝑥  if  𝑆 

is a coalition and 𝑦 ∈ 𝑉𝑆 strictly improves upon 𝑥. 

The Core: The core of a game 𝑉 for coalition structure 𝒫 is:  
𝐶0(𝑉;𝒫) = {𝑥 ∈ 𝐼(𝑉; 𝒫)|There is no objection to 𝑥} . 

The core of  𝑉 is: 𝐶0(𝑉) = ⋃ 𝐶0(𝑉;𝒫)𝒫∈Π . 

 

This is the definition of the core of a general coalitional game in terms of strict improvement [Scarf 

(1967), and Peleg (1985)]. Scarf (1967) proves a nonemptiness theorem for the core of  a “balanced” 

game with coalition structure {𝑁}. 2 

 

Counterobjection: Let 𝑉 be a game, 𝑥 a payoff profile, and (𝑆, 𝑦) an objection to 𝑥. Then the pair 

(𝑇, 𝑧)   is a counterobjection to (𝑆, 𝑦)  at 𝑥  if 𝑇  is a coalition and 𝑧 ∈ 𝑉𝑇  weakly improves upon 

(𝑆, 𝑦) at 𝑥.  

Mas-Colell bargaining set: The Mas-Colell bargaining set of a game 𝑉 for coalition structure 𝒫 is: 

𝑀𝐵(𝑉;𝒫)= {𝑥 ∈ 𝐼(𝑉; 𝒫)|For each objection to 𝑥, there is a counterobjection at 𝑥} . 

The Mas-Colell bargaining set of  𝑉 is: 𝑀𝐵(𝑉) = ⋃ 𝑀𝐵(𝑉;𝒫)𝒫∈Π . 

 

Our definition of 𝑀𝐵 differs from Mas-Colell’s (1989, Section 6) original definition. Mas-Colell 

does not require individually rationality, and defines both objections and counterobjections by 

Pareto-improvement within coalitions3 . We impose individual rationality constraint on 𝑀𝐵  and 

define counterobjections by weak improvement of counterobjecting coalitions. This is similar to the 

definition of the classical bargaining set 𝑀1
(𝑖)
, proposed by Aumann and Maschler (1964) [see also 

Aumann (1989, P.77)]: Aumann and Maschler impose individual rationality constraint on 𝑀1
(𝑖)

 . 

                                                 
2  A class ℱ  of coalitions is a balanced family if there is a function δ   that assigns to each 

coalition 𝑆  a real number δ(𝑆)  such that δ(𝑆)  > 0 for 𝑆 ∈ ℱ , δ(𝑆)  = 0 for 𝑆 ∉  ℱ , and 

∑ δ(𝑆)𝑆∈ℱ(𝑖)   = 1, where ℱ(𝑖)  = {𝑆 ∈ ℱ|𝑆 ∋ 𝑖}  for every player 𝑖 . A game 𝑉  with coalition 

structure 𝒫 is balanced if  ⋂ 𝑉(𝑆)𝑆∈ℱ ⊂ ⋂ 𝑉(𝑃)𝑃∈𝒫  for every balanced family ℱ. 
3 Mas-Colell (1989, Section 1) defines counterobjections by strict improvement in atomless 

economies. He says that it “cannot simply be replaced by” weak improvement for the 

equivalence between his bargaining set and the set of Walrasian allocations in this environment. 



7 

They define an “objection of player 𝑖 against player 𝑗 at 𝑥” as strict improvement on 𝑖 via coalition 

𝑆 such that 𝑖 ∈ 𝑆 and 𝑗 ∉ 𝑆 without making any members of 𝑆 worse off than at 𝑥. They also define 

a “counterobjection from player 𝑗 to player 𝑖” as weak improvement on 𝑗  via coalition 𝑇 such that 

𝑗 ∈ 𝑇 and 𝑖 ∉ 𝑇 without hurting any members of 𝑇\𝑆 or 𝑇 ∩ 𝑆 than at 𝑥 or at the objection via 𝑆. 

 

3. The Zhou Bargaining Set and the Steady Bargaining Set 

In this section, we develop the refinement of the Mas-Colell bargaining set proposed by Zhou (1994) 

in the NTU case. According to the above definition, a counterobjecting coalition may include no 

player in the objecting coalition. This means that the counterobjection is not really against the 

objection but the original proposal. To overcome this weakness, Zhou then proposes to require the 

intersection of the objection coalition and the counterobecting coalition to be a nonempty proper 

subset of the two coalitions respectively to overcome this weakness. Based on this, Zhou defines a 

refined bargaining set now called the "Zhou bargaining set."  

Further, we introduce a dominance relation between coalitions to identify powerful 

counterobjections. Given an initial recommendation, which coalitions have counterobjections to an 

objection depends on what payoffs can be alternatively assigned to the members of the objecting 

coalition. We select as "dominant" those coalitions having a counterobjection to every objection 

from the objecting coalition. We impose on counterobjections both Zhou's intersection condition 

and the dominance requirement. We then introduce the corresponding version, the "steady 

bargaining set," as a refinement of the Zhou bargaining set. We establish its nonemptiness under the 

"restrictive non-crossing condition. " In addition, we remove the asymmetry between the 

improvement requirement underlying the objections and counterobjections. We select 

counterobjections which strictly improve upon the counterobjecting coalitions, and focus on the 

associated subset of the steady bargaining set. This is the "strong steady bargaining set." We prove 

its nonemptiness under the assumption of “strict 𝑥-comprehensiveness.”  

Since the introduction of the bargaining set by Aumann and Maschler (1964), no 

intersection requirement has appeared in the definitions of alternative versions of the bargaining set, 

including 𝑀𝐵 [see Zhou (1994, Sections 2 and 3) and Iñarra et al.. (2020, pp.254-253) for details].  

Zhou (1994) proposes the following modification of the Mas-Colell bargaining set. 

 

Proper Intersection/Proper counterobjection: Let 𝑉  be a game, and 𝑆 , 𝑇  ⊂ 𝑁 . Then, 𝑇  has a 

proper intersection with 𝑆 if 𝑇 ∩ 𝑆 ≠ Ø, 𝑆\𝑇 ≠Ø, and 𝑇\𝑆 ≠ Ø. Let 𝑥 be a payoff profile, (𝑆, 𝑦) an 

objection to 𝑥, and  (𝑇, 𝑧) a counterobjection to (𝑆, 𝑦) at 𝑥. Then, (𝑇, 𝑧) is proper if 𝑇 has a proper 

intersection with 𝑆. 

Zhou bargaining set: The Zhou bargaining set of a game 𝑉 for coalition structure 𝒫 is: 

 𝑍𝐵(𝑉;𝒫)={𝑥 ∈ 𝐼(𝑉; 𝒫)|For each objection (𝑆, 𝑦) to 𝑥, there is a proper counterobjection to (𝑆, 𝑦) at 𝑥}  

The Zhou bargaining set of  𝑉 is: 𝑍𝐵(𝑉) = ⋃ 𝑍𝐵(𝑉;𝒫)𝒫∈Π . 

 

 

Figure 1: Coalition 𝑇  having a proper 

intersection with coalition 𝑆 
𝑇 ∩ 𝑆 ≠ Ø 

𝑇\𝑆 ≠ Ø 𝑆\𝑇 ≠Ø 

𝑆 
𝑇 
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Figure 1 illustrates coalitions 𝑆 and 𝑇 having a proper intersection. This captures the idea that some 

players outside of 𝑆 tempt some members of  𝑆 to form a new coalition 𝑇. For the objection made 

by 𝑆 to be valid, the players in 𝑇 ∩ 𝑆 should not have an incentive to move to 𝑇. 

We now propose a refinement of the Zhou bargaining set by invoking a dominance relation 

between coalitions: Consider a situation that, given a game 𝑉 and a coalition structure 𝒫, a payoff 

profile 𝑥 is proposed. Suppose that some players are not satisfied. They form a coalition 𝑆, not in 

𝒫, and formulate an objection to 𝑥. According to the Zhou bargaining set, the objection is justified 

unless at least one counterobjection is made by a coalition having a proper intersection with 𝑆. Then 

another coalition 𝑇 cannot neutralize 𝑆 if 𝑆 propose payoffs for its members to which  𝑇 can find 

no counterobjection at 𝑥. Our idea is that 𝑆 will never form if 𝑇 can make a counterobjection to 

every possible objection to 𝑥 that 𝑆 could make. We then say that " 𝑇 dominates 𝑆 at 𝑥.” Based on 

this relation between coalitions, we define a new solution to assign to each game a payoff profile to 

which an objecting coalition can form if and only if it is not "dominated" by any other coalition. 

 

Dominating coalition: Let 𝑉 be a game, 𝑥 a payoff profile, and 𝑆, 𝑇 coalitions. Then, 𝑇 dominates 

𝑆 at 𝑥 if for each objection (𝑆, 𝑦) to 𝑥, there is a proper counterobjection (𝑇, 𝑧)  to (𝑆, 𝑦) at 𝑥.  

Steady bargaining set: The steady bargaining set of a game 𝑉 for coalition structure 𝒫 is: 

𝑆𝐵(𝑉,𝒫)= {𝑥 ∈ 𝐼(𝑉;𝒫)|For each objection to 𝑥, there is a dominant coalition at 𝑥} . 

The steady bargaining set of a game 𝑉 is: 𝑆𝐵(𝑉) = ⋃ 𝑆𝐵(𝑉;𝒫)𝒫∈Π  

 

For every game 𝑉, the inclusion relation among the core, the Mas-Colell bargaining set, the Zhou 

bargaining set, and the steady bargaining set is following: 𝐶0(𝑉; 𝒫) ⊂ 𝑆𝐵(𝑉;𝒫) ⊂ 𝑍𝐵(𝑉;𝒫) ⊂

𝑀𝐵(𝑉;𝒫)  for every coalition structure 𝒫 , and 𝐶0(𝑉) ⊂ 𝑆𝑆𝐵(𝑉) ⊂ 𝑆𝐵(𝑉) ⊂ 𝑍𝐵(𝑉) ⊂ 𝑀𝐵(𝑉) . 

The steady bargaining set is generally a proper subset of the Zhou bargaining set. For example, let 

𝑉 be the three-person TU game such that the worth of 𝑆 is 0 if |𝑆| = 1, 𝑎 if |𝑆| = 2, and 1 if |𝑆| = 3. 

Then 𝑆𝐵(𝑉; {𝑁}) is a proper subset of 𝑍𝐵(𝑉; {𝑁}) if 2/3 < 𝑎 ≤1[see Shimomura (1997, Section 4) 

for details]. The Zhou bargaining set is also generally a proper subset of the Mas-Colell bargaining 

set. Zhou (1994, Example 3.2) presents a TU game of which the Zhou bargaining set does not 

contain the nucleolus while the Mas-Colell bargaining set does [see also Shimomura (1997, 

Example 4)]. We exhibit a game in which the Zhou bargaining set is empty and the Mas-Colell 

bargaining set is nonempty later (Example 2). To compare properties of these two solutions, we 

impose a new assumption on a game together with the basic four in the definition. 

 

Restrictive non-crossing condition: For every 𝑥 ∈ 𝑃(𝑉∗) , there is no triple (𝑆, 𝑅, 𝑄)  of disjoint 

coalitions, and two profiles 𝑦𝑆 , 𝑦𝑆′ ∈ [{𝑥𝑆} + ℝ++
𝑆 ] ∩ [{𝑟𝑆} + ℝ++

𝑆 ] such that 

 (𝑦𝑆 , 𝑥𝑅) ∈ int𝑉𝑆∪𝑅& (𝑦𝑆 , 𝑥𝑄) ∉ 𝑉𝑆∪𝑄& (𝑦𝑆′, 𝑥𝑄) ∈ int𝑉𝑆∪𝑄& (𝑦𝑆′, 𝑥𝑅) ∉ 𝑉𝑆∪𝑅 

where 𝑃(𝑉∗) ≡ {𝑥 ∈ 𝑉∗ ∩ [{𝑥} + ℝ+
𝑁]|There is no 𝑦 ∈ 𝑉∗ such that 𝑦 ≫ 𝑥 } and 𝑟𝑆 ≡ (sup𝑉{𝑖})𝑖∈𝑆. 
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This condition says the following: given an efficient payoff vector 𝑥, suppose that the coalition 𝑆 

can achieve new payoffs in collaboration with 𝑅 but not 𝑄 at which all the members of 𝑆 are strictly 

better off than at 𝑥  and at the individually rational levels. Then 𝑆  can realize with 𝑅  any such 

payoffs that can be produced with 𝑄. See Figure 2.4The top panel represents a game that satisfies 

the restrictive non-crossing condition, and the bottom panel describes a game that does not satisfy. 

Vohra (1991) points out the importance of almost, but not exactly, the same condition for a game to 

have an efficient payoff profile in the Mas-Colell bargaining set. He also gives pictures as in Figure 

2 to illustrate a case in which the condition is satisfied and a case in which it is not satisfied; the 

frontiers of the slices, 𝑉𝑆
𝑥𝑅(𝑆 ∪ 𝑅)   ≡ {𝑦𝑆 ∈ ℝ

𝑆|(𝑦𝑆 , 𝑥𝑅) ∈ 𝑉𝑆∪𝑅}  and 𝑉𝑆
𝑥𝑄(𝑆 ∪ 𝑄)   ≡

{𝑦𝑆 ∈ ℝ
𝑆|(𝑦𝑆 , 𝑥𝑄) ∈ 𝑉𝑆∪𝑄} cross. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Game that satisfies the restrictive non-crossing condition and one that does not, where 

𝑆 = {1,2}, 𝑥 ∈ 𝑃(𝑉∗), 𝐹 = 𝑉𝑆
𝑥𝑅(𝑆 ∪ 𝑅), and 𝐺 = 𝑉𝑆

𝑥𝑄(𝑆 ∪ 𝑄) 

 

                                                 
4 Demuynck and Potoms (2020) propose essentially the same condition for utility possibility 

sets named the “no intersection property.”   

payoff to player 1 

(𝑟1, 𝑟2) 

(𝑟1, 𝑟2) 

(𝑥1, 𝑥2) 

(𝑥1, 𝑥2) 

F 

G 

F 

G 

payoff to player 1 

payoff to player 2 

payoff to player 2 
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Notice the restriction “𝑥 ∈ 𝑃(𝑉∗).” The restrictive non-crossing condition does not say anything 

about the frontiers of slices through inefficient payoff profiles. If the feasible set 𝑉∗ is large enough 

and payoffs 𝑥 ∈ 𝑃(𝑉∗)  are too large, we may have either  (𝑥𝑆, 𝑥𝑅) ∉ int𝑉𝑆∪𝑅  or (𝑟𝑆, 𝑥𝑅) ∉

int𝑉𝑆∪𝑅 as long as 𝑆 ∪ 𝑅 ≠ 𝑁. Then the restrictive non-crossing condition is trivially satisfied even 

though the frontiers of the slices through some inefficient profiles may be crossing.  

All TU games and all three-person comprehensive games satisfy the restrictive non-crossing 

condition. A comprehensive game 𝑉  such that 𝑉(𝑆) ⊂ ⋂ 𝑉({𝑖})𝑖∈𝑆   for every 𝑆 ⊂ 𝑁  with |𝑆| ≥  3 

and 𝑆 ≠ 𝑁 also satisfies the condition. These are games in which the two-person coalitions are 

essential. "Roommate problems" are representable as such games, and may have an empty core [see 

Shubik (1984, p.221)]. We now examine the nonemptiness of the bargaining sets of a TU coalitional 

game with coalition structures. Zhou (1994) proves the following theorem. 

 

Theorem (Zhou, 1994): The Zhou Bargaining Set of a TU game contains at least one efficient 

payoff profile for at least one coalition structure. 

Zhou presents this theorem as an answer to the question of how players form coalitions. Our study 

is inspired by his work. We present the following result to which Zhou’s theorem is a corollary: 

Theorem 1: Given a game satisfying the non-crossing condition, the Steady Bargaining Set contains 

at least one efficient payoff profile for at least one coalition structure. 

We prove Theorem 1 in the appendix. By Theorem 3.2 in Shimomura (1997), we know the 

following: Let 𝒫  be a coalition structure such that 𝑚𝑎𝑥{∑ 𝑥𝑖𝑖∈𝑁 |𝑥 ∈ 𝑉∗(𝒫)} ≥

𝑚𝑎𝑥{∑ 𝑥𝑖𝑖∈𝑁 |𝑥 ∈ 𝑉∗(𝒬)}  for all coalition structures 𝒬 . If 𝑉  is a TU game, then the steady 

bargaining set contains at least one efficient payoff profile for coalition structure 𝒫. Call the value 

of  max{∑ 𝑥𝑖𝑖∈𝑁 |𝑥 ∈ 𝑉∗(𝒬)} the worth of coalition structure 𝒬. If a coalition structure produces 

maximal worth in a game, it is efficient and it admits a nonempty steady bargaining set. However, 

this holds only in the TU case. The following example shows an NTU game admitting a worth-

maximizing coalition structure such that even the associated Zhou bargaining set is empty. 

 

Example 1. A Couple and a Friend on Sunday. There are two women and a man: Andy, Beth, 

and Olive. We denote them by 𝑎, 𝑏, and 𝑜, respectively. The agents 𝑎 and  𝑏 are lovers, and 𝑜  is 

their friend. The problem is how to spend the next Sunday. The (maximal) payoff each of them can 

achieve alone is zero. When 𝑎 and  𝑏 are together, they can achieve (3, 3). When 𝑎  and  𝑜 , or  𝑏 

and  𝑜, are together, they can achieve (1, 1). When they all are together, they can achieve (2, 2, 2). 

Let 𝑁 = {𝑎, 𝑏, 𝑜}. Then the game 𝑉 describing the above situations is as follows: 

𝑉{𝑖} = {𝑥𝑖 ∈ ℝ
{𝑖}|𝑥𝑖 ≤ 0}  for every 𝑖 ∈ 𝑁, 

𝑉{𝑎,𝑏} = {𝑥{𝑎,𝑏} ∈ ℝ
{𝑎,𝑏}|(𝑥𝑎 , 𝑥𝑏) ≤ (3,3) }, 
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𝑉{𝑖,𝑜} = {𝑥{𝑖,𝑜} ∈ ℝ
{𝑖,𝑜}|(𝑥𝑖, 𝑥𝑜) ≤ (1,1) } for every 𝑖 ∈ {𝑎, 𝑏}, and 

𝑉𝑁 = {𝑥 ∈ ℝ
𝑁|(𝑥𝑎 , 𝑥𝑏 , 𝑥𝑜) ≤ (2,2,2)}. 

The efficient coalition structures are [{𝑎, 𝑏}, {𝑜}], and [𝑁], which are also worth-maximizing. The 

payoff profile (𝑥𝑎 , 𝑥𝑏 , 𝑥𝑜) = (3, 3, 0), which is achieved in the coalition structure [{𝑎, 𝑏}, {𝑜}], has 

no objection. Then it belongs to  𝑍𝐵(𝑉; {𝑎, 𝑏}, {𝑜}) as well as to 𝐶0(𝑉; {𝑎, 𝑏}, {𝑜}). On the other 

hand, ({𝑎, 𝑏}, (3,3)) is an objection to any payoff vector of  𝑉𝑁 with no counterobjection. Then, 

𝑍𝐵(𝑉;𝑁)  as well as 𝑀𝐵(𝑉;𝑁)  is empty (if payoffs are transferable in 𝑁 , i.e., 𝑉𝑁 =

{𝑥 ∈ ℝ𝑁|𝑥𝑎 + 𝑥𝑏 + 𝑥𝑜 ≤  2 + 2 +  2},  (3, 3, 0) also belongs to 𝐶0(𝑉; 𝑁) and to 𝑍𝐵(𝑉;𝑁)).  ∎ 

 

To establish a nonemptiness theorem for 𝑀𝐵(𝑉;𝑁) , Vohra (1991) proposes the assumption of  

"weak balancedness,” which is implied by the restrictive no-crossing condition if the game 𝑉 

satisfies strict 𝑥 -comprehensiveness. This assumption is weak, but as observed by Vohra, it may 

not be easy to verify by itself since the concept of a "justified objection" appears in the definition. 

Chang and Lee (1993) construct an example to show that weak balancedness is not necessary. Its 

counterpart here is stated as follows: "for every 𝑥 ∈ 𝑃(𝑉∗) ∩ [{𝑥} + ℝ+
𝑁], there is no pair (𝑆, 𝑆′) of 

distinct maximal coalitions having proper counterobjections such that 𝑆 ∩ 𝑆′ ≠ Ø." If we do not 

impose such a restriction on a game, not only can the Zhou bargaining set be empty, but also the 

Mas-Colell bargaining set may be inefficient. This means that some restrictions related to weak 

balancedness has to be included for the theorem. See the following example. 

 

Example 2: Four Researchers and a Research Project. There are four researchers: Alex, Billie, 

Cameron, and Darian. We denote them by 𝑎, 𝑏, 𝑐 and 𝑑, respectively. They are involved in a research 

project. It is not possible for any one of them or any two of them to carry it out. If three of them 

cooperate, they have two plans from which to choose. Every agent has a preference over options of 

whom to work with and how to divide the job. Let 𝑁 = {𝑎, 𝑏, 𝑐, 𝑑}.  

coalition\agents 𝑎 = Alex 𝑏 = Billie 𝑐 = Cameron 𝑑 = Darian 

{𝑎, 𝑏, 𝑐}:plan 1 
6 4 1 - 

{𝑎, 𝑏, 𝑐}:plan 2 
3 5 2 - 

{𝑏, 𝑐, 𝑑}:plan 1 
- 6 4 1 

{𝑏, 𝑐, 𝑑}:plan 2 
- 3 5 2 

{𝑎, 𝑐, 𝑑}:plan 1 
1 - 6 4 

{𝑎, 𝑐, 𝑑}:plan 2 
2 - 3 5 

{𝑎, 𝑏, 𝑑}:plan 1 
4 1 - 6 

{𝑎, 𝑏, 𝑑}:plan 2 
5 2 - 3 

𝑁 = {𝑎, 𝑏, 𝑐, 𝑑} 1.5 1.5 1.5 1.5 

others 0.5 0.5 0.5 0.5 

Table 1: Maximal payoffs players can get through cooperation 
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Table 1 gives payoffs associated with the preferences. Take  𝟎 = (0,0,0,0) as 𝑥. The game 𝑉 defined 

below represents the feasible sets of payoff profiles: 

𝑉{𝑎,𝑏,𝑐}={𝑥{𝑎,𝑏,𝑐} ∈ ℝ
{𝑎,𝑏,𝑐}|(𝑥𝑎 , 𝑥𝑏, 𝑥𝑐) ≤ (6,4,1)} ∪ {𝑥{𝑎,𝑏,𝑐} ∈ ℝ

{𝑎,𝑏,𝑐}|(𝑥𝑎, 𝑥𝑏, 𝑥𝑐) ≤ (3,5,2)} 

𝑉{𝑏,𝑐,𝑑}={𝑥{𝑏,𝑐,𝑑} ∈ ℝ
{𝑏,𝑐,𝑑}|(𝑥𝑏, 𝑥𝑐 , 𝑥𝑑) ≤ (6,4,1)} ∪ {𝑥{𝑏,𝑐,𝑑} ∈ ℝ

{𝑏,𝑐,𝑑}|(𝑥𝑏, 𝑥𝑐, 𝑥𝑑) ≤ (3,5,2)} 

𝑉{𝑎,𝑐,𝑑}={𝑥{𝑎,𝑐,𝑑} ∈ ℝ
{𝑎,𝑐,𝑑}|(𝑥𝑎, 𝑥𝑐 , 𝑥𝑑) ≤ (1,6,4)} ∪ {𝑥{𝑎,𝑐,𝑑} ∈ ℝ

{𝑎,𝑐,𝑑}|(𝑥𝑏, 𝑥𝑐 , 𝑥𝑑) ≤ (2,3,5)} 

𝑉{𝑎,𝑏,𝑑} = {𝑥{𝑎,𝑏,𝑑} ∈ ℝ
{𝑏,𝑐,𝑑}|(𝑥𝑏, 𝑥𝑐, 𝑥𝑑) ≤ (6,4,1)} ∪ {𝑥{𝑏,𝑐,𝑑} ∈ ℝ

{𝑎,𝑏,𝑐}|(𝑥𝑏, 𝑥𝑐, 𝑥𝑑) ≤ (3,5,2)} 

𝑉𝑁 = {𝑥 ∈ ℝ
𝑁|(𝑥𝑎 , 𝑥𝑏 , 𝑥𝑐 , 𝑥𝑑) ≤ (1.5,1.5,1.5,1.5)},  and 

      𝑉𝑆 = {𝑥 ∈ ℝ
𝑆|𝑥𝑖 ≤ 0.5 for every 𝑖 ∈ 𝑆} for other coalitions  𝑆. 

The game 𝑉  does not satisfy the restrictive non-crossing condition: let 𝑥 = (1.5,1.5,1.5,1.5) ∈

𝑉(𝑁). We can verify 𝑥 ∈ 𝑃(𝑉∗). Note that  

𝑉{𝑎,𝑏}
𝑥𝑐 ({𝑎, 𝑏, 𝑐})={𝑦{𝑎,𝑏} ∈ ℝ

{𝑎,𝑏}|(𝑦𝑎 , 𝑦𝑏) ≤ (3,5)}, and 

𝑉{𝑎,𝑏}
𝑥𝑑 ({𝑎, 𝑏, 𝑑})={𝑦{𝑎,𝑏} ∈ ℝ

{𝑎,𝑏}|(𝑦𝑎 , 𝑦𝑏) ≤ (5,2)} 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Slices of  𝑉({𝑎, 𝑏, 𝑐}) with 𝑥𝑐 fixed and 𝑉({𝑎, 𝑏, 𝑑}) with 𝑥𝑑 fixed 

𝑆 = {𝑎, 𝑏}, 𝑥 ∈ 𝑃(𝑉∗), 𝐹 = 𝑉{𝑎,𝑏}
𝑥𝑐 ({𝑎, 𝑏, 𝑐}), 𝐺 = 𝑉{𝑎,𝑏}

𝑥𝑑 ({𝑎, 𝑏, 𝑑}) 

 

These "slices" are drawn as in Figure 3. We see that 

 𝑉{𝑎,𝑏}
𝑥𝑐 ({𝑎, 𝑏, 𝑐}) ∩ [{𝑥{𝑎,𝑏}} + ℝ++

{𝑎,𝑏}
] ∩ [{𝑟{𝑎,𝑏}} + ℝ++

{𝑎,𝑏}
] \𝑉{𝑎,𝑏}

𝑥𝑑 ({𝑎, 𝑏, 𝑑}) ≠ ∅, and 

 𝑉{𝑎,𝑏}
𝑥𝑑 ({𝑎, 𝑏, 𝑑}) ∩ [{𝑥{𝑎,𝑏}} + ℝ++

{𝑎,𝑏}
] ∩ [{𝑟{𝑎,𝑏}} + ℝ++

{𝑎,𝑏}
] \𝑉{𝑎,𝑏}

𝑥𝑐 ({𝑎, 𝑏, 𝑐}) ≠ ∅ 

The efficient coalition structures are [{𝑎, 𝑏, 𝑐}, {𝑑}] , [{𝑏, 𝑐, 𝑑}, {𝑎}] , [{𝑎, 𝑐, 𝑑}, {𝑏}] , [{𝑎, 𝑏, 𝑑}, {𝑐}] , 

and [𝑁]. We can show that 

𝑀𝐵(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}) = {𝑥 ∈ ℝ+
𝑁|(𝑥𝑎, 𝑥𝑏, 𝑥𝑐, 𝑥𝑑) ≤ (1,1,1,0.5)}.  

(We give a proof in the appendix.) The point (1.5, 1.5, 1.5, 1.5) ∈ 𝑉∗(𝑁) strictly dominates in all 

components any payoff vector in 𝑀𝐵(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}), so that no profile is efficient. By 

symmetry, there is no efficient profile either in 𝑀𝐵(𝑉; {𝑏, 𝑐, 𝑑}, {𝑎}), 𝑀𝐵(𝑉; {𝑎, 𝑐, 𝑑}, {𝑏}), or 

𝑀𝐵(𝑉; {𝑎, 𝑏, 𝑑}, {𝑐}). We can also show that  

𝑀𝐵(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}) = {𝑥 ∈ ℝ+
𝑁|(𝑥𝑎, 𝑥𝑏, 𝑥𝑐, 𝑥𝑑) ≤ (1,1,1,1)}. 

payoff to player a 

payoff to player b 

5 

2 

0 3 5 

 

F 

G (1.5,1.5) 
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Hence, there is no efficient profile in 𝑀𝐵(𝑉;𝑁). Furthermore, given any payoff profile in all the 

above Mas-Colell bargaining sets, (𝑁 , (1.5, 1.5, 1.5, 1.5)) is an objection that has no proper 

counterobjection. For every coalition structure 𝒫, 𝑍𝐵(𝑉;𝒫) ⊂ 𝑀𝐵(𝑉;𝒫), and for every efficient 

coalition structure, 𝑍𝐵(𝑉;𝒫) = ∅. Let 𝑥′ be an individually rational payoff vector in a coalition 

structure that is not efficient. Such a payoff profile exists uniquely: 𝑥′ = (0.5, 0.5, 0.5, 0.5). Then, 

(𝑁, (1.5, 1.5, 1.5, 1.5)) is an objection to 𝑥′ that has no proper counterobjection. Hence, there is 

no coalition structure such that the Zhou bargaining set of 𝑉 is nonempty. ∎ 

 

The above game is 0-comprehensive. We can perturb it to construct a strictly 0-comprehensive game 

giving rise to the same results. One would think that the improvement notion in a counterobjection 

is rather weak. We now consider counterobjections that improve the payoff of every member of the 

counterobjecting coalitions, and define the class of counterobjections that pass this strict 

improvement test as well as the two we have already examined. We propose the associated version 

of the bargaining set, which is contained in all of the other versions discussed in the paper. 

 

Strict counterobjection: Let 𝑉  be a game, 𝑥  a payoff profile, (𝑆, 𝑦)  an objection to 𝑥 , and 𝑇  a 

coalition. Then a counterobjection  (𝑇, 𝑧)  to (𝑆, 𝑦)  at 𝑥  is strict if  (𝑇, 𝑧)  strictly improves upon 

(𝑆, 𝑦) at 𝑥.  

Strict dominating coalition: Let 𝑉  be a game, 𝑥  a payoff profile, and 𝑆 , 𝑇  coalitions.. Then 𝑇  is 

strictly dominates 𝑆  at 𝑥  if for each objection ( 𝑆 , 𝑦 ) to 𝑥 , there is a proper and strict 

counterobjection (𝑇, 𝑧)  to (𝑆, 𝑦) at 𝑥.  

The Strong Steady Bargaining Set: The strong steady bargaining set of a game V for coalition 

structure 𝒫 is: 

𝑆𝑆𝐵(𝑉,𝒫)= {𝑥 ∈ 𝐼(𝑉; 𝒫)|For each objection to 𝑥, there is a strictly dominant coalition at 𝑥} . 

The strong steady bargaining set of a game 𝑉 is: 𝑆𝑆𝐵(𝑉) = ⋃ 𝑆𝑆𝐵(𝑉;𝒫)𝒫∈Π  

 

Given a payoff vector 𝑥, the inclusion relation among the sets of objections 𝑂(𝑥), objections with 

no counterobjections 𝑀(𝑥) , those with no proper counterobjections 𝑍(𝑥) , those with no proper 

counterobjections 𝑆(𝑥) , and those with no proper and strict counterobjections 𝑆𝑆(𝑥)  satisfy the 

following inclusion relations: 𝑂(𝑥) ⸧ 𝑆𝑆(𝑥) ⸧ 𝑆(𝑥)⸧ 𝑍(𝑥) ⸧ 𝑀(𝑥). Then for every game 𝑉, we 

deduce the following inclusion relations among the core, the Mas-Colell bargaining set, the Zhou 

bargaining set, the steady bargaining set, and the strong steady bargaining set: 𝐶0(𝑉; 𝒫) ⊂

𝑆𝑆𝐵(𝑉;𝒫) ⊂ 𝑆𝐵(𝑉;𝒫) ⊂ 𝑍𝐵(𝑉;𝒫) ⊂ 𝑀𝐵(𝑉;𝒫)  for every coalition structure 𝒫 , and 𝐶0(𝑉) ⊂

𝑆𝑆𝐵(𝑉) ⊂ 𝑆𝐵(𝑉) ⊂ 𝑍𝐵(𝑉) ⊂ 𝑀𝐵(𝑉) . We establish a positive result for 𝑆𝑆𝐵(𝑉)  by assuming 

strict 𝑥-comprehensiveness additionally.  

 

Theorem 2: Given a game satisfying the restrictive non-crossing condition and strict 𝑥 -

comprehensiveness, the strong steady bargaining set contains at least one efficient payoff profile for 

at least one coalition structure. 
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In the appendix, we give a proof of Theorem 2 that immediately follows from the proof of Theorem 

1. Zhou (1994, p.520) argues that the definition of counterobjections by weak inequalities may be 

the "price" we have to pay in order to obtain the nonemptiness of a bargaining set for every TU 

game. Theorem 2 shows that this price is unnecessary as long as we assume the two properties all 

TU games satisfy of restrictive non-crossing condition and strict 𝑥-comprehensiveness 

 

4. The Natural Bargaining Set and the Precise Bargaining Set 

 

One might feel that the proper intersection condition is too restrictive. In this section, we consider 

counterobjections defined by strict inequalities and weaker intersection conditions than the proper 

intersection condition. We define two associated versions of the bargaining set, the "natural 

bargaining set" and the "precise bargaining set." Their nonemptiness can be demonstrated under 

essentially no assumptions. We start with the weakest intersection condition to define the following 

type of counterobjections and the associated bargaining set: 

 

Natural counterobjection: Let 𝑉  be a game, 𝑥  a payoff profile, (𝑆, 𝑦)  an objection to 𝑥 . Then a 

counterobjection  (𝑇, 𝑧)  to (𝑆, 𝑦) at 𝑥 is natural if 𝑇 ∩ 𝑆 ≠ Ø. 

The Natural Bargaining Set: The natural bargaining set of a game V for coalition structure 𝒫 is: 

𝑁𝐵(𝑉;𝒫) 

={𝑥 ∈ 𝐼(𝑉;𝒫)|For each objection to 𝑥, there is a natural and strict counterobjection at 𝑥}  

The natural bargaining set of  𝑉 is: 𝑁𝐵(𝑉) = ⋃ 𝑁𝐵(𝑉;𝒫)𝒫∈Π . 

 

 

 

Figure 4: Coalition 𝑆 making an objection and coalition 𝑇 making a natural counterobjection 

 

Figure 4 illustrates the possible configurations of pairs of a coalition 𝑆 making an objection and a 

coalition 𝑇 making a natural counterobjection. We next propose a stronger version of the bargaining 

set by imposing a restriction on the class of natural counterobjections: 

 

Precise counterobjection: Let 𝑉  be a game, 𝑥  a payoff profile, (𝑆, 𝑦)  an objection to 𝑥 . Then a 

counterobjection (𝑇, 𝑧)  to (𝑆, 𝑦) at 𝑥 is precise if 𝑇 ∩ 𝑆 ≠ Ø and 𝑆\𝑇 ≠ Ø. 

The Precise Bargaining Set: The precise bargaining set of a game V for coalition structure 𝒫 is: 

𝑃𝐵(𝑉;𝒫) 

= {𝑥 ∈ 𝐼(𝑉; 𝒫)|For each objection to 𝑥, there is a precise and strict counterobjection at 𝑥} . 

The precise bargaining set of  𝑉 is: 𝑃𝐵(𝑉) = ⋃ 𝑃𝐵(𝑉;𝒫)𝒫∈Π . 

𝑇 ∩ 𝑆 ≠ Ø 

𝑇\𝑆 ≠ Ø 

𝑇\𝑆 ≠ Ø 

𝑇 ∩ 𝑆 ≠ Ø 

𝑆\𝑇 ≠Ø 

𝑆 𝑇 

𝑇 ∩ 𝑆 ≠ Ø 

𝑆 𝑇 

𝑆\𝑇 ≠Ø 

𝑇 

𝑆 
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Figure 5: Coalition 𝑆 making an objection and coalition 𝑇 making a precise counterobjection 

 

Figure 5 represents the possible configurations of coalitions making an objection and a precise 

counterobjection. The reason we impose the above two intersection conditions is that 

counterobjections to  (𝑆, 𝑦) at 𝑥 satisfying them coincide with objections to 𝑦 in the reduced game 

on 𝑆 at 𝑥. This is a generalization of the definition of a reduced game in the TU case proposed by 

Aumann and Drèze (1974) in a similar way that Peleg (1985) generalized the definition of a reduced 

game introduced by Davis and Maschler (1965). The formulation is as follows: let 𝑉 be a game, 𝑆 a 

coalition, and 𝑥 a payoff profile. The reduced game of 𝑉 on 𝑆 at 𝑥 is the game 𝑉𝑥𝑁\𝑆 defined by 

𝑉𝑆
𝑥𝑁\𝑆

 = 𝑉𝑆, and 𝑉𝑃
𝑥𝑁\𝑆

 = ⋃ {𝑦𝑃|(𝑦𝑃 , 𝑥𝑄) ∈ 𝑉𝑃∪𝑄}𝑄⊂𝑁\𝑆  if 𝑃⊂𝑆 and 𝑃 ≠ 𝑆.5 

We can see that (𝑆, 𝑦) is an objection to 𝑥 with no precise counterobjections if there is no objection 

dominating 𝑦 in 𝑉𝑆
𝑥𝑁\𝑆

, that is, 𝑦 is in the core of the reduced game. The converse is true if the 

possibility of improvement over (𝑦𝑃, 𝑥𝑄) implies strict improvement (consider the case where 𝑥 ≫

𝑥  and 𝑉  satisfies strict 𝑥 -comprehensiveness). In general, the precise bargaining set is strictly 

included in the natural bargaining set. See the example below. 

 

Example 3: Two Chinese Cooks and Two Japanese Cooks. There are four cooks. Two are Chinese, 

and the others are Japanese: Guang, Huan, Ichiro, and Jiro. We denote them by 𝑔, ℎ, 𝑖, and 𝑗. The 

problem is how to run a restaurant. Neither a single individual nor a pair of cooks from different 

countries can make a complete meal. Their capabilities are measured in terms of money. Let 𝑁 = 

{𝑔, ℎ, 𝑖, 𝑗} . The TU game 𝑉  describing their options is as follows: 𝑣({𝑔}) =  𝑣({ℎ}) =  𝑣({𝑖})  =

 𝑣({𝑗})  =  𝑣({𝑔, 𝑖})  =  𝑣({𝑔, 𝑗})  =  𝑣({ℎ, 𝑖})  =  𝑣({ℎ, 𝑗})  = 0, 𝑣({𝑔, ℎ})  = 2.3, 𝑣({𝑔, ℎ, 𝑖}) =

𝑣({𝑔, ℎ, 𝑗}) = 3.5, 𝑣({𝑖, 𝑗})= 1.3, 𝑣({𝑔, 𝑖, 𝑗}) = 𝑣({ℎ, 𝑖, 𝑗}) = 2.5, and 𝑣(𝑁) = 4, where  𝑣(𝑆) is the 

worth of coalition 𝑆. Consider the payoff profile 𝑥 = (𝑥𝑔, 𝑥ℎ , 𝑥𝑖 , 𝑥𝑗) = (1, 1, 1, 1). The coalitions 

having objections are {𝑔, ℎ}, {𝑔, ℎ, 𝑖}, and {𝑔, ℎ, 𝑗}. Note that {𝑔, ℎ}⊂{𝑔, ℎ, 𝑖} and {𝑔, ℎ}⊂{𝑔, ℎ, 𝑗}. 

We can see that 𝑥 is in 𝑁𝐵(𝑉; {𝑁}), but not in 𝑃𝐵(𝑉; {𝑁}). ∎ 

 

Given a payoff profile 𝑥, the inclusion relation among the sets of objections 𝑂(𝑥), those with no 

counterobjections 𝑀(𝑥) , those with no proper and strict counterobjections 𝑆𝑆(𝑥) , those with no 

natural and strict counterobjections 𝑁(𝑥), and those with no precise objections 𝑃(𝑥) is as follows: 

                                                 
5 This is the reduced game in the NTU case proposed by Peleg (1985). For details about reduced 

games in both the TU case and the NTU case, see Thomson (2021, forthcoming). 

𝑇\𝑆 ≠ Ø 

𝑇 ∩ 𝑆 ≠ Ø 
𝑇\𝑆 ≠ Ø 

𝑆 

𝑇 ∩ 𝑆 ≠ Ø 

𝑆 𝑇 𝑇 
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𝑂(𝑥) ⸧ 𝑆𝑆(𝑥) ⸧ 𝑃(𝑥)⸧ 𝑁(𝑥) ⸧ 𝑀(𝑥). Then for every game 𝑉, we deduce the following inclusion 

relations among the core, the Mas-Colell Bargaining Set, the strong steady bargaining set, the natural 

bargaining set, and the precise bargaining Set: 𝐶0(𝑉; 𝒫) ⊂ 𝑆𝑆𝐵(𝑉;𝒫) ⊂ 𝑃𝐵(𝑉;𝒫) ⊂ 𝑁𝐵(𝑉;𝒫) ⊂

𝑀𝐵(𝑉;𝒫) for every coalition structure 𝒫, and  𝐶0(𝑉) ⊂ 𝑆𝑆𝐵(𝑉) ⊂ 𝑃𝐵(𝑉) ⊂ 𝑁𝐵(𝑉) ⊂ 𝑀𝐵(𝑉). 

Neither the natural bargaining set nor the precise bargaining set contains the steady 

bargaining set. The counterobjections to determine the steady bargaining set satisfy a stronger 

intersection condition than that of the precise bargaining set, but they are not defined by strict 

inequalities. The intersection requirments make the natural, and the precise, bargaining sets larger, 

and the strict inequalities make them smaller than the steady bargaining set. 

The following theorem tells us that the above two refinements of the Mas-Colell bargaining 

set are nonvacuous in every coalitional game. 

 

Theorem 3: The Precise bargaining set of a game contains at least one payoff profile for at least 

one coalition structure. 

Corollary: The Mas-Colell Bargaining Set and the Natural Bargaining Set of a game contain at 

least one payoff profile for at least one coalition structure. 

 

As long as 𝑉𝑆 ∩ ({𝑟𝑆} + ℝ+
𝑆 ) is compact for every coalition 𝑆, we do not need all four conditions of 

a coalitional game to establish the result. Notice that Theorem 3 does not say anything about 

efficiency, and recall Example 2; the Mas-Colell bargaining set may not contain any of the efficient 

profiles if the game does not satisfy the non-crossing condition. Thus, there may be no efficient 

profile in 𝑃𝐵(𝑉) or 𝑁𝐵(𝑉). 

 

5. Concluding Remarks 

In cooperative game theory, some solutions describe stable compromises in noncooperative 

situations among coalitions [see Mas-Colell (1987), and Vohra (1995) for surveys]. Although there 

are several studies of the bargaining set of NTU games [see Iñarra et al. (2020), p.260], little 

research has been done on the bargaining set of NTU games with coalition structures. Our model, 

as well as Zhou’s (1994), describes coalition formation as an outcome of the bargaining set. By 

applying the bargaining set, we have explained how coalition formations and payoff allocations are 

simultaneously determined in coalitional NTU games. The theory of the core successfully explains 

coalition formation in limited classes of NTU games, such as one-to-one matchings. Even though 

the core is empty for many problems, other classical solutions work for coalitional games. Hence, 

there is no doubt that cooperative solutions will continue to be useful in considering multi-person 

coalition formation together with payoff allocation in various contexts. 
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Appendix 

Proof of Theorem 1. We use a fixed-point argument. The key to the proof is the construction of 

the fixed-point correspondence. In particular, the homeomorphism ℎ, defined in Step 1, plays a 

crucial role. The existence of ℎ  heavily depends on where 𝑥  is, namely the conditions of  𝑥 -

interiority and 𝑥-comprehensiveness. 

 

Step 1. We define functions 𝑓𝑆  for  𝑆 ⊂ 𝑁 to use for construction of the fixed-point correspondence. 

Let 𝒩 be the class of coalitions. For every coalition 𝑆 with 1 < |𝑆| < |𝑁|, define  𝒯(𝑆) ≡{ 𝑇 ∈ 𝒩| 
𝑇 ∩ 𝑆 ≠ ∅ &𝑆\𝑇 ≠ ∅ &𝑇\𝑆 ≠ ∅ .. There is 𝑥 ∈ ℝ𝑁 such that 𝑉  satisfies 𝑥 -compactness, 𝑥 -
interiority and 𝑥-comprehensiveness. By 𝑥-interiority, 𝑥 ∈ ⋂ int𝑖∈𝑁 𝑉({𝑖}). Then 𝑥 ∈int𝑉*. By 𝑥-

compactness, 𝑉𝑆 ∩ [{𝑥𝑆} + ℝ+
𝑆 ]  is compact for every 𝑆 ∈ 𝒩 . Hence, 𝑉+

∗ ≡ 𝑉∗ ∩ [{𝑥} + ℝ+
𝑁]  is 

compact. Let 𝑍 ≡ {𝑧 ∈ ℝ+
𝑁|𝑧 ∙ 𝑒 ≤ 1} and ∆≡ {𝑧 ∈ ℝ+

𝑁|𝑧 ∙ 𝑒 = 1}, where 𝑒 = (1, …,1).  
Define the function ℎ: 𝑍 → 𝑉+

∗ by 

 ℎ(𝑧) ≡ {
𝑥                                 if 𝑧 = 0

𝑥 + 𝑐(𝑧/(𝑧 ∙ 𝑒))𝑧    if  𝑧 ≠ 0
  

for all 𝑧 ∈ 𝑍 , where 𝑐(𝑦) ≡ {𝑡 ∈ ℝ+|𝑥 + 𝑡𝑦 ∈ 𝑃(𝑉
∗)}  for every 𝑦 ∈ ∆ . By 𝑥 -interiority and 𝑥 -

comprehensiveness, 𝑐(𝑧/(𝑧 ∙ 𝑒))  uniquely exists for each 𝑧 ∈ 𝑍\{0}  and ℎ  is a homeomorphism 

from 𝑍 onto 𝑉+
∗ (See Figures 6). For every (𝑧, 𝑖) ∈ 𝑍 × 𝑁, note that 𝑧𝑖 = 0 if and only if ℎ𝑖(𝑧) = 𝑥𝑖. 

In addition, ℎ(𝑧) ∈ 𝑃(𝑉∗) if 𝑧 ∈ ∆.  
Let 𝑆 ∈ 𝒩. By continuity, there is a continuous representation  𝑣𝑆: ℝ𝑁 → ℝ  for 𝑉𝑆. Let 𝑖 ∈ 𝑁. By 
𝑥 -compactness, max𝑉{𝑖}  exists. Define 𝑟 ∈ ℝ𝑁  by 𝑟𝑖 ≡  max𝑉{𝑖}  for all 𝑖 ∈ 𝑁 . For every 𝑥𝑆 ∈ ℝ

𝑆, 
define [𝑥𝑆] ≡ {𝑧𝑆 ∈ ℝ

𝑆|𝑧𝑖 = max{𝑥𝑖, 𝑟𝑖} for each 𝑖 ∈ 𝑆}.  
For all 𝑆 ∈ 𝒩, define 𝑓𝑆: 𝑍 → ℝ+ as follows: If |𝑆| = 1,or |𝑁|, then 

𝑓𝑆(𝑧) ≡max {−𝑣𝑆(ℎ𝑆(𝑧)), 0}  
for every 𝑧 ∈ 𝑍. If 1 < |𝑆| < |𝑁|, let 𝐷𝑆 ≡ {𝑧 ∈ 𝑍|𝑣𝑆([ℎ𝑆(𝑧)]) < 0}, and define 

𝑂𝑇
𝑆(𝑧) ≡ {𝑦𝑆∩𝑇 ∈ {[ℎ𝑆∩𝑇(𝑧)]} + ℝ++

𝑆∩𝑇|𝑣𝑆 (𝑦𝑆∩𝑇 , ℎ𝑆\𝑇(𝑧)) < 0} , where 𝑇 ∈ 𝒯(𝑆), 

 𝑚𝑇(𝑧) ≡ max {𝑣𝑇 (𝑦𝑆∩𝑇 , ℎ𝑆\𝑇(𝑧)) |𝑦𝑆∩𝑇 ∈ cl𝑂𝑇
𝑆(𝑧)}, where 𝑇 ∈ 𝒯(𝑆), and 

𝑒𝑆(𝑧) ≡ min{𝑚𝑇(𝑧)|𝑇 ∈ 𝒯(𝑆)} 

where cl𝑂𝑇
𝑆(𝑧) is the closure of 𝑂𝑇

𝑆(𝑧), for every  𝑧 ∈ 𝐷𝑆. Finally, define 

𝑓𝑆(𝑧) ≡ {
max {−𝑣𝑆([ℎ𝑆(𝑧)]), 0}max{𝑒

𝑆(𝑧), 0}     if  𝑧 ∈ 𝐷𝑆

max {−𝑣𝑆(ℎ𝑆(𝑧)), 0}                                        if  𝑧 ∈ 𝑍\𝐷
𝑆 

 

Step 2. For every 𝑆 ∈ 𝒩, 𝑓𝑆 is continuous on 𝑍. 

Proof of Step 2. Let 𝑆 ∈ 𝒩 be with |𝑆| = 1, or |𝑁|. Since 𝑣𝑆 is continuous, so is 𝑓𝑆. 

Next, fix 𝑆 ⊂ 𝑁 such that 1 < |𝑆| < |𝑁|. Let 𝑇 ∈ 𝒯(𝑆) and 𝑧 ∈ 𝐷𝑆. Since 𝑣𝑆([ℎ𝑆(𝑧)]) < 0 and 

[ℎ𝑆\𝑇(𝑧)] ≥ ℎ𝑆\𝑇(𝑧),   𝑥 -compehensiveness implies 𝑣𝑆 ([ℎ𝑆∩𝑇(𝑧)], ℎ𝑆\𝑇(𝑧))  < 0. Since 𝑣𝑆  is 

continuous, there exist 𝑦𝑆∩𝑇 ∈ {[ℎ𝑆∩𝑇(𝑧)]} + ℝ++
𝑆∩𝑇  such that 𝑣𝑆 (𝑦𝑆∩𝑇 , ℎ𝑆\𝑇(𝑧))  < 0. Thus, 

𝑂𝑇
𝑆(𝑧) ≠ Ø. Then, cl𝑂𝑇

𝑆 is the correspondence from 𝐷𝑆 to ℝ𝑆∩𝑇 that assigns to each 𝑧 ∈ 𝐷𝑆 the 

closure of  𝑂𝑇
𝑆(𝑧).  
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Figures 6:Homeomorphisms  for two − person and three − person games  
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We show that the correspondence cl𝑂𝑇
𝑆 is compact-valued, upper-hemicontinuous, and lower-

hemicontinuous on 𝐷𝑆 . Since 𝑉𝑆 ∩ [{𝑥𝑆} + ℝ+
𝑆 ]  is compact and ℎ𝑆(𝑧) ≥ 𝑥𝑆 , cl𝑂𝑇

𝑆  is compact-

valued. Since 𝑍 is compact and ℎ is continuous, ℎ𝑆\𝑇(𝑍) is compact, so that the range of  cl𝑂𝑇
𝑆  is 

included in a compact subset of  ℝ𝑆∩𝑇.  

To show the upper-hemicontinuity of  cl𝑂𝑇
𝑆, we prove that the graph of  cl𝑂𝑇

𝑆  is closed in 

𝐷𝑆 ×ℝ𝑆∩𝑇. Let (𝑧, 𝑦𝑆∩𝑇) ∈ 𝐷
𝑆 × ℝ𝑆∩𝑇 and {(𝑧𝑞 , 𝑦𝑆∩𝑇

𝑞
)} be a sequence in 𝐷𝑆 × ℝ𝑆∩𝑇 such that  

𝑦𝑆∩𝑇
𝑞

∈ cl𝑂𝑇
𝑆(𝑧𝑞)  and (𝑧𝑞 , 𝑦𝑆∩𝑇

𝑞
) → (𝑧, 𝑦𝑆∩𝑇) .  We show 𝑦𝑆∩𝑇 ∈ cl𝑂𝑇

𝑆(𝑧) . For each 𝜀 > 0  and 

every 𝑥𝑆∩𝑇 ∈ ℝ
𝑆∩𝑇, define 𝐵(𝜀; 𝑥𝑆∩𝑇) ≡ {𝑦𝑆∩𝑇 ∈ ℝ

𝑆∩𝑇|‖𝑦𝑆∩𝑇 − 𝑥𝑆∩𝑇‖ < 𝜀} (the open ball with 

𝑥𝑆∩𝑇 center and 𝜀  radius). Since 𝑦𝑆∩𝑇
𝑞

→ 𝑦𝑆∩𝑇, there is a subsequence {𝑞(𝑘)} of {𝑞} such that 

∀𝑘 ∈ ℕ, ∀𝑞 ∈ ℕ[𝑞 ≥ 𝑞(𝑘) ⇒ 𝑦𝑆∩𝑇
𝑞

∈ 𝐵(1/𝑘; 𝑦𝑆∩𝑇)] 

Since 𝑦𝑆∩𝑇
𝑞(𝑘)

∈ cl𝑂𝑇
𝑆(𝑧𝑞(𝑘)), it follows that  

𝐵(1/𝑘; 𝑦𝑆∩𝑇) ∩ ({[ℎ𝑆∩𝑇(𝑧
𝑞(𝑘))]} + ℝ++

𝑆∩𝑇) ∩ {𝑦𝑆∩𝑇 ∈ ℝ
𝑆∩𝑇|𝑣𝑆 (𝑦𝑆∩𝑇 , ℎ𝑆\𝑇(𝑧

𝑞(𝑘))) < 0} ≠ ∅. 

Take 

𝑦𝑆∩𝑇
𝑘 ∈ 𝐵(1/𝑘; 𝑦𝑆∩𝑇) ∩ ({[ℎ𝑆∩𝑇(𝑧

𝑞(𝑘))]} + ℝ++
𝑆∩𝑇) ∩ {𝑦𝑆∩𝑇 ∈ ℝ

𝑆∩𝑇|𝑣𝑆 (𝑦𝑆∩𝑇 , ℎ𝑆\𝑇(𝑧
𝑞(𝑘))) < 0} 

Then, 𝑦𝑆∩𝑇
𝑘 ∈ 𝐵(1/𝑘; 𝑦𝑆∩𝑇), and 𝑦𝑆∩𝑇

𝑘 → 𝑦𝑆∩𝑇. Since 𝑧𝑞 → 𝑧, we have  𝑧𝑞(𝑘) → 𝑧. In addition, 

𝑦𝑆∩𝑇
𝑘 ∈ ({[ℎ𝑆∩𝑇(𝑧

𝑞(𝑘))]} + ℝ++
𝑆∩𝑇) ∩ {𝑦𝑆∩𝑇 ∈ ℝ

𝑆∩𝑇|𝑣𝑆 (𝑦𝑆∩𝑇 , ℎ𝑆\𝑇(𝑧
𝑞(𝑘))) < 0} .  Since 

𝑦𝑆∩𝑇
𝑘 ≫ [ℎ𝑆∩𝑇(𝑧

𝑞(𝑘))],  it follows by the continuity of ℎ𝑆∩𝑇  that 𝑦𝑆∩𝑇 ≥ [ℎ𝑆∩𝑇(𝑧)] . Note that 

𝑣𝑆 (𝑦𝑆∩𝑇 , ℎ𝑆\𝑇(𝑧
𝑞(𝑘))) < 0. By the continuity of ℎ𝑆\𝑇 and 𝑣𝑆,   𝑣𝑆 (𝑦𝑆∩𝑇 , ℎ𝑆\𝑇(𝑧)) ≤ 0. Thus, 

𝑦𝑆∩𝑇 ∈ cl𝑂𝑇
𝑆(𝑧). Hence cl𝑂𝑇

𝑆 has a closed graph, so that cl𝑂𝑇
𝑆 is upper-hemicontinuous.  

   We next show that cl𝑂𝑇
𝑆 is lower-hemicontinuous on 𝐷𝑆. Let 𝑧 ∈ 𝐷𝑆, and 𝑈 be an open subset 

of ℝ𝑆∩𝑇   such that 𝑂𝑇
𝑆(𝑧) ∩ 𝑈 ≠  Ø. Then there is 𝑦𝑆∩𝑇 ∈ 𝑈  such that 𝑦𝑆∩𝑇 ≫ [ℎ𝑆∩𝑇(𝑧)]  and 

𝑣𝑆 (𝑦𝑆∩𝑇 , ℎ𝑆\𝑇(𝑧)) < 0. Since ℎ is continuous, there is an open neighborhood 𝑊 of 𝑧 such that 

𝑦𝑆∩𝑇 ≫ [ℎ𝑆∩𝑇(𝑧′)]  and 𝑣𝑆 (𝑦𝑆∩𝑇 , ℎ𝑆\𝑇(𝑧′)) < 0  for all 𝑧′ ∈ 𝑊 . Hence, 𝑦𝑆∩𝑇 ∈ 𝑂𝑇
𝑆(𝑧′) ∩ 𝑈 , 

namely 𝑂𝑇
𝑆(𝑧′) ∩ 𝑈 ≠ Ø for every 𝑧′ ∈ 𝑊. Thus, 𝑂𝑇

𝑆 is lower-hemicontinuous, and so is cl𝑂𝑇
𝑆.  

Recall 𝑚𝑇(𝑧)  = max {𝑣𝑇 (𝑦𝑆∩𝑇 , ℎ𝑆\𝑇(𝑧)) |𝑦𝑆∩𝑇 ∈ cl𝑂𝑇
𝑆(𝑧)}.  Since  𝑣𝑇   is continuous, by the 

Berge maximum theorem, 𝑚𝑇  is continuous. Recall 𝑒𝑆(𝑧) ≡ min{𝑚𝑇(𝑧)|𝑇 ∈ 𝒯(𝑆)}, then 𝑒𝑆 is 

also continuous. Since there is a compact subset of ℝ𝑆 including the range of cl𝑂𝑇
𝑆   and 𝒯(𝑆) is 

finite, 𝑒𝑆 has an upper bound.  

We finally show that  𝑓𝑆   is continuous on 𝑍. Let 𝑧 ∈ 𝐷𝑆, then 𝑒𝑆 and 𝑓𝑆   is continuous 

at 𝑧. Next choose 𝑧∗ ∈ 𝑍\𝐷𝑆, then  𝑣𝑆([ℎ𝑆(𝑧
∗)]) ≥ 0 and  𝑓𝑆(𝑧) =max {−𝑣𝑆([ℎ𝑆(𝑧

∗)]), 0} = 0. 

Let {𝑧𝑞} be a sequence in 𝑍 such that  𝑧𝑞 → 𝑧∗, then max{−𝑣𝑆([ℎ𝑆(𝑧
𝑞)]), 0} → 0. Since  𝑒𝑆 has 

an upper bound, max {−𝑣𝑆([ℎ𝑆(𝑧
𝑞)]), 0}max{𝑒𝑆(𝑧𝑞), 0} → 0, so that 𝑓𝑆(𝑧𝑞) → 0.  Hence, 𝑓𝑆   is 

continuous at 𝑧∗.   Thus,  𝑓𝑆   is continuous on 𝑍.  ∎ 

 

Step 3. We construct the fixed-point correspondence φ  by 𝑓𝑆, and apply the Kakutani theorem. 

Define the function 𝐹: 𝑍 → ℝ+
𝑁 by  
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𝐹𝑖(𝑧) ≡ max{𝑓
𝑆(𝑧)|𝑆 ∈ 𝒩 with 𝑖 ∈ 𝑆} 

for every 𝑧 ∈ 𝑍, then 𝐹 is continuous. Define the correspondence φ: ∆→ ∆ by  

φ(𝑧) ≡ {𝑧∗ ∈ ∆|(∀𝑧′ ∈ ∆)(𝑧∗ ∙ 𝐹(𝑧) ≥ 𝑧′ ∙ 𝐹(𝑧)) } 

for every 𝑧 ∈ ∆. Note that φ(𝑧) = ∆ if 𝐹(𝑧) = 0. By the Berge maximum theorem, φ is compact-

valued, and upper-hemicontinuous. Further, φ  is convex-valued. By the Kakutani fixed-point 

theorem [Kakutani (1941)], there exists 𝑧∗ ∈ ∆  such that 𝑧∗ ∈ φ(𝑧∗) . That is, 𝑧∗ ∙ 𝐹(𝑧∗) ≥ 𝑧 ∙

𝐹(𝑧∗) for all 𝑧 ∈ ∆. 

 

Step 4. The payoff profile 𝑥∗ associated with a fixed-point is efficient. 

Proof of Step 4.Let 𝑥∗ = ℎ(𝑧∗). Since 𝑧∗ ∈ ∆, 𝑥∗ ∈ 𝑃(𝑉∗). Thus, 𝑥∗ is an efficient payoff profile. ∎ 

 

Step 5. If there are two distinct maximal coalitions 𝑄 and 𝑅  such that  𝑓𝑄(𝑧∗) > 0 and 𝑓𝑅(𝑧∗) > 0, 

then they are disjoint, namely 𝑄 ∩ 𝑅 = Ø. 

Proof of Step 5. Let 𝑄, 𝑅 ∈ 𝒩 be two distinct maximal coalitions such that 𝑓𝑄(𝑧∗) > 0 and 𝑓𝑅(𝑧∗)> 

0. We show that 𝑄 ∩ 𝑅 = Ø. We must have that  |𝑄| < |𝑁|, and |𝑅| < |𝑁|. If  |𝑄| = 1 or |𝑅| = 1, then 

it follows by maximality that 𝑄 ∩ 𝑅 = Ø. If |𝑄| > 1 and |𝑅| > 1, then 

𝑣𝑄([𝑥𝑄
∗ ]) < 0 & (∀𝑇 ∈ 𝒯(𝑄)) (∃𝑦𝑄 ∈ cl𝑂𝑇

𝑄(𝑧∗)) (𝑣𝑇(𝑦𝑇∩𝑄 , 𝑥𝑇\𝑄
∗ ) > 0) 

𝑣𝑅([𝑥𝑅
∗ ]) < 0 & (∀𝑇 ∈ 𝒯(𝑅)) (∃𝑦𝑅

′ ∈ cl𝑂𝑇
𝑄(𝑧∗)) (𝑣𝑇(𝑦𝑇∩𝑅

′ , 𝑥𝑇\𝑅
∗ ) > 0). 

Suppose that 𝑄 ∩ 𝑅 ≠ Ø. By maximality, 𝑄\𝑅 ≠ Ø and 𝑅\𝑄 ≠ Ø, so that 𝑅 ∈ 𝒯(𝑄) and 𝑄 ∈

𝒯(𝑅). Further, recall the definition of 𝑂𝑇
𝑆(𝑧). By continuity, we may assume that 

(∃𝑦𝑄 ∈ 𝑂𝑅
𝑄(𝑧∗)) (𝑣𝑅(𝑦𝑄∩𝑅 , 𝑥𝑅\𝑄

∗ ) > 0)&(∃𝑦𝑅
′ ∈ cl𝑂𝑄

𝑅(𝑧∗)) (𝑣𝑄(𝑦𝑄∩𝑅
′ , 𝑥𝑄\𝑅

∗ ) > 0). 

Note that 𝑦𝑄 ∈ 𝑂𝑅
𝑄(𝑧∗)  means 𝑦𝑄 ≫ [ℎ𝑄(𝑧

∗)] = 𝑥𝑄
∗   and 𝑣𝑄(𝑦𝑄∩𝑅 , 𝑥𝑄\𝑅

∗ ) < 0 . Similarly, 𝑦𝑅
′ ∈

cl𝑂𝑄
𝑅(𝑧∗) means  𝑦𝑅′ ≫ [ℎ𝑅(𝑧

∗)] = 𝑥𝑅
∗  and 𝑣𝑅(𝑦𝑄∩𝑅 , 𝑥𝑅\𝑄

∗ ) < 0. Then  

[𝑥𝑄∩𝑅
∗ ] ≪ 𝑦𝑄∩𝑅 & 𝑣𝑄(𝑦𝑄∩𝑅 , 𝑥𝑄\𝑅

∗ ) < 0 & 𝑣𝑅(𝑦𝑄∩𝑅 , 𝑥𝑅\𝑄
∗ ) > 0 

[𝑥𝑄∩𝑅
∗ ] ≪ 𝑦𝑄∩𝑅

′  & 𝑣𝑅(𝑦𝑄∩𝑅
′ , 𝑥𝑅\𝑄

∗ ) < 0 & 𝑣𝑄(𝑦𝑄∩𝑅
′ , 𝑥𝑄\𝑅

∗ ) > 0 

Hence, 

𝑣𝑄(𝑦𝑄∩𝑅 , 𝑥𝑄\𝑅
∗ ) < 0 < 𝑣𝑄(𝑦𝑄∩𝑅

′ , 𝑥𝑄\𝑅
∗ )&𝑣𝑅(𝑦𝑄∩𝑅

′ , 𝑥𝑅\𝑄
∗ ) < 0 < 𝑣𝑅(𝑦𝑄∩𝑅

′ , 𝑥𝑅\𝑄
∗ ), 

i.e., (𝑦𝑄∩𝑅 , 𝑥𝑄\𝑅
∗ ) ∈ int𝑉𝑄 &  (𝑦𝑄∩𝑅

′ , 𝑥𝑄\𝑅
∗ ) ∉ 𝑉𝑄&(𝑦𝑄∩𝑅

′ , 𝑥𝑅\𝑄
∗ ) ∈ int𝑉𝑅 & (𝑦𝑄∩𝑅

′ , 𝑥𝑅\𝑄
∗ ) ∉ 𝑉𝑅 

Note that  𝑦𝑄∩𝑅 ≫ [𝑥𝑄∩𝑅
∗ ] ≥ 𝑟𝑄∩𝑅 and 𝑦𝑄∩𝑅

′ ≫ [𝑥𝑄∩𝑅
∗ ] ≥ 𝑟𝑄∩𝑅. Since 𝑥∗ ∈ 𝑃(𝑉∗), this contradicts 

the restrictive non-crossing condition. Thus, 𝑄 ∩ 𝑅 = Ø. ∎ 

 

Step 6. For all 𝑆 ∈ 𝒩, 𝑓𝑆(𝑧∗) = 0. 

Proof of Step 6. The proof is by contradiction. Suppose there is 𝑆 ∈ 𝒩 with 𝑓𝑆(𝑧∗)> 0.  

        We first prove that there is a partition 𝒫  of 𝑁  such that  𝑓𝑄(𝑧∗)  > 0 for all 𝑄 ∈ 𝒫 : Let 

 𝑓𝑆(𝑧∗)  > 0, then  𝐹(𝑧∗) ≥ 0  and 𝐹(𝑧∗) ≠ 0 . Let 𝑖 ∈ 𝑁 .  If 𝐹𝑖(𝑧
∗)  = 0, then 0 = 𝑓{𝑖}(𝑧∗)  = 

max {−𝑣{𝑖}(ℎ𝑖(𝑧
∗)), 0} = max {−𝑣{𝑖}(𝑥𝑖

∗), 0}. Thus, 𝑣{𝑖}(𝑥𝑖
∗) ≥ 0. Since 𝐹(𝑧∗) ≥ 0, 𝐹(𝑧∗) ≠ 0 
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and  𝑧∗ ∈ φ(𝑧∗) , we have 𝑧𝑖
∗ = 0 . By the construction of  ℎ  and 𝑥 -interiority, we have 𝑥𝑖

∗ =

ℎ𝑖(𝑧
∗) =  𝑥𝑖 ∈ int𝑉{𝑖} . This contradicts the inequality 𝑣{𝑖}(𝑥𝑖

∗) ≥ 0 . Thus, for every 𝑖 ∈ 𝑁 , 

𝐹𝑖(𝑧
∗) > 0. Hence, for every 𝑖 ∈ 𝑁, there is 𝑆(𝑖) ∈ 𝒩 such that 𝑖 ∈ 𝑆(𝑖) and 𝑓𝑆(𝑖)(𝑧∗) > 0.  Note 

that ⋃ 𝑆(𝑖)𝑖∈𝑁 = 𝑁. Then, there exist a class 𝒫 of maximal coalitions such that  𝑓𝑄(𝑧∗) > 0 for 

all 𝑄 ∈ 𝒫 and ⋃ 𝑄𝑄∈𝒫 = 𝑁. By Step 5, 𝒫 is a partition of 𝑁.  

Let 𝑆 ∈ 𝒫. Since 𝑣𝑆([𝑥𝑆
∗]) < 0 and 𝑥𝑆

∗ ≤ [𝑥𝑆
∗], we have 𝑣𝑆(𝑥𝑆

∗) < 0, so that 𝑥𝑆
∗ ∈ int𝑉𝑆. Thus, 

𝑥𝑆
∗ ∈ int𝑉𝑆 for all 𝑆 ∈ 𝒫. Hence, 𝑥∗ ∈ int𝑉∗. Recall 𝑥∗ ∈ 𝑃(𝑉∗). This is a contradiction. Hence, 

there is no 𝑆 ∈ 𝒩 such that 𝑓𝑆(𝑧∗)> 0. That is, all 𝑆 ∈ 𝒩, 𝑓𝑆(𝑧∗) = 0. ∎ 

 

Step 7.  𝑥∗ ∈ 𝑆𝐵(𝑉). 

Proof of Step 7. Let 𝑖 ∈ 𝑁. Since 0 = 𝑓{𝑖}(𝑧∗) , 𝑣{𝑖}(𝑥𝑖
∗) ≥ 0, namely 𝑥𝑖

∗ ∉ int𝑉{𝑖}. Thus, 𝑥𝑖
∗ ≥ 𝑟𝑖, 

and  𝑥𝑆
∗ = [𝑥𝑆

∗] ≫ 𝑥𝑆 for all 𝑆 ∈ 𝒩. Since  0= 𝑓𝑁(𝑧∗) = max {−𝑣𝑁(ℎ(𝑧∗)), 0} = max {−𝑣𝑁(𝑥∗), 0},  

we also have 𝑥∗ ∉ int𝑉𝑁 . Let 𝑆 ∈ 𝒩  with 1 < |𝑆|  < |𝑁|  satisfy 0 >  𝑣𝑆([𝑥𝑆
∗]) =  𝑣𝑆(𝑥𝑆

∗) . Then, 

max {𝑒𝑆(𝑧∗), 0} = 0, so that 𝑒𝑆(𝑧∗) ≤ 0.  By 𝑥 -comprehensiveness, 𝑦𝑆∩𝑇 ∈ cl𝑂𝑇
𝑆(𝑧∗)  if 𝑇 ∈

𝒯(𝑆), 𝑦𝑆∩𝑇 ≫ 𝑥𝑆∩𝑇
∗  and 𝑣𝑆(𝑦𝑆∩𝑇 , 𝑥𝑆\𝑇

∗ ) ≤ 0 . By the definition of 𝑒𝑆, there is 𝑇 ∈ 𝒯(𝑆) such that 

∀𝑦𝑆∩𝑇 ∈ {𝑥𝑆∩𝑇
∗  } + ℝ++

𝑆∩𝑇 s.t. 𝑣𝑆(𝑦𝑆∩𝑇 , 𝑥𝑆\𝑇
∗ ) ≤ 0, 𝑣𝑇(𝑦𝑆∩𝑇 , 𝑥𝑇\𝑆

∗ ) ≤ 0 (**) 

Let (𝑆, 𝑦)  be an objection to 𝑥∗ . Then 𝑦 ≫ 𝑥𝑆
∗ . Since 𝑦𝑆∩𝑇 ≫  𝑥𝑆∩𝑇

∗  , 𝑣𝑇(𝑦𝑆∩𝑇 , 𝑥𝑇\𝑆
∗ ) ≤ 0.  Thus, 

there is a proper counterobjection (𝑇, (𝑦𝑆∩𝑇 , 𝑥𝑇\𝑆
∗ )) to (𝑆, 𝑦) at 𝑥∗. Hence, 𝑥∗ ∈ 𝑆𝐵(𝑉). ∎ 

This completes the proof of Theorem 1. ∎ 

 

Proof of Theorem 2. Suppose  𝑉 satisfies strict 𝑥-comprehensiveness. Let 𝑥∗, (𝑆, 𝑦), and 𝑇 be 

respectively the same profile, objection, and dominant coalition to 𝑆 at  𝑥∗ as in the proof of 

Theorem 1. Recall 𝑦 = (𝑦𝑆∩𝑇 , 𝑦𝑆\𝑇) ≥ (𝑦𝑆∩𝑇 , 𝑥𝑆\𝑇
∗ ), 𝑦 ≠ (𝑦𝑆∩𝑇 , 𝑥𝑆\𝑇

∗ ), and (𝑦𝑆∩𝑇 , 𝑥𝑆\𝑇
∗ ) ≥ 𝑥𝑆. 

By strict 𝑥 -comprehensiveness, (𝑦𝑆∩𝑇 , 𝑥𝑆\𝑇
∗ ) ∈ int𝑉𝑆,  and there is 𝑦′ = (𝑦𝑆∩𝑇

′ , 𝑥𝑆\𝑇
∗ ) ∈ 𝑉𝑆  such 

that 𝑦𝑆∩𝑇
′ ≫ 𝑦𝑆∩𝑇 . Note that 𝑦𝑆∩𝑇

′ ≫ 𝑦𝑆∩𝑇 ≫ 𝑥𝑆∩𝑇
∗  and 𝑣𝑆(𝑦𝑆∩𝑇 , 𝑥𝑆\𝑇

∗ ) < 0. By (**) in the proof 

of Theorem 1, 𝑣𝑇(𝑦𝑆∩𝑇
′ , 𝑥𝑇\𝑆

∗ ) ≤ 0 . Note that (𝑦𝑆∩𝑇
′ , 𝑥𝑇\𝑆

∗ ) ≥ (𝑦𝑆∩𝑇 , 𝑥𝑇\𝑆
∗ ) , (𝑦𝑆∩𝑇

′ , 𝑥𝑇\𝑆
∗ ) ≠

(𝑦𝑆∩𝑇 , 𝑥𝑇\𝑆
∗ ), and (𝑦𝑆∩𝑇 , 𝑥𝑇\𝑆

∗ ) ≥ 𝑥𝑇. By strict 𝑥-comprehensiveness, (𝑦𝑆∩𝑇 , 𝑥𝑇\𝑆
∗ ) ∈ int𝑉𝑇, so 

that there is 𝑧 ∈ 𝑉𝑇  such that 𝑧 ≫  (𝑦𝑆∩𝑇 , 𝑥𝑇\𝑆
∗ ) . Thus, (𝑇, 𝑧)  is a strict and proper 

counterobjection to 𝑦 at 𝑥∗, and 𝑇 is strictly dominant to 𝑆 at 𝑥∗. Hence, 𝑥∗ ∈ 𝑆𝑆𝐵(𝑉). ∎ 

 

Proof of (*) in Example 2. We have 𝐼(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}) = {𝑥 ∈ ℝ+
𝑁|(𝑥𝑎, 𝑥𝑏 , 𝑥𝑐 , 𝑥𝑑) ≤ (6,4,1,0).. 

Let 𝑥∗ ∈ 𝑀𝐵(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}).  Note that 𝑀𝐵(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}) ⊂ 𝐼(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}) . The pair 

({𝑏, 𝑐, 𝑑}, (6, 4, 1)) is an objection to any payoff profile of 𝐼(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}). For 𝑥∗ to be in 

𝑀𝐵(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}), there need to be a counterobjection to ({𝑏, 𝑐, 𝑑}, (6, 4, 1)) at 𝑥∗. We see 

that {𝑎, 𝑐, 𝑑} is the only coalition that can make such a counterobjection if and only if 𝑥𝑎
∗  ≤ 1. 

We then suppose 𝑥𝑎
∗  ≤1. The pair ({𝑎, 𝑐, 𝑑}, (2, 3, 5)) is an objection to any payoff profile of 
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𝐼(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}) ∩ {𝑥 ∈ ℝ+
𝑁|(𝑥𝑎 , 𝑥𝑏 , 𝑥𝑐 , 𝑥𝑑) ≤ (1,1,1,0)}.  For  𝑥∗ ∈ 𝑀𝐵(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}) , 

there need to be a counterobjection to ({𝑎, 𝑐, 𝑑}, (2, 3, 5)) at 𝑥∗. We see that {𝑎, 𝑏, 𝑑} is the only 

coalition that can make such a counterobjection if and only if 𝑥𝑏
∗ ≤1. Hence,  

𝑀𝐵(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}) ⊂ 𝐼(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}).. 

Conversely, let 𝑥∗ ∈ {𝑥 ∈ ℝ+
𝑁|(𝑥𝑎 , 𝑥𝑏 , 𝑥𝑐 , 𝑥𝑑) ≤ (1,1,1,0)}. Then given 𝑥∗, any objection from 

{𝑎, 𝑏, 𝑐}  (resp., {𝑏, 𝑐, 𝑑} , {𝑎, 𝑐, 𝑑} , and {𝑎, 𝑏, 𝑑} ) has the counterobjection ({𝑏, 𝑐, 𝑑} , (6, 4, 1)) 

(resp., ({𝑎, 𝑐, 𝑑}, (1, 6, 4)), ({𝑎, 𝑏, 𝑑}, (4, 1, 6)), and ({𝑎, 𝑏, 𝑐}, (6, 4, 1)). In addition, given 𝑥∗, 

any objection from 𝑁  has the counterobjection ( {𝑎, 𝑏, 𝑐} , (3, 5, 2)). Hence, we have 

{𝑥 ∈ ℝ+
𝑁|(𝑥𝑎 , 𝑥𝑏 , 𝑥𝑐 , 𝑥𝑑) ≤ (1,1,1,0)} ⊂ 𝑀𝐵(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}). It therefore follows that 

𝑀𝐵(𝑉; {𝑎, 𝑏, 𝑐}, {𝑑}) = {𝑥 ∈ ℝ+
𝑁|(𝑥𝑎 , 𝑥𝑏 , 𝑥𝑐 , 𝑥𝑑) ≤ (1,1,1,0)}. ∎ 

 

Proof of Theorem 5. We define the following concept: 

P-justified objection: Let 𝑉 be a game, 𝑥 a payoff profile, (𝑆, 𝑦) an objection to 𝑥. Then, 

  (𝑆, 𝑦) is P-justified if there is no precise and strict counterobjection to (𝑆, 𝑦) at 𝑥. 

Let 𝑉 be a game. For convenience, we identify 𝒫 ∪ {Ø} with 𝒫 for every coalition structure 𝒫, and 

define 𝑉(Ø) ≡ ℝ𝑁  and {{𝑖}|𝑖 ∈ Ø} ≡ Ø . Let 𝑥0 ≡ 𝑟 ∈ ℝ𝑁 , where 𝑟𝑖  = max𝑉{𝑖}  for all 𝑖 ∈ 𝑁 . If 

there is no P-justified objection to 𝑥0, then 𝑥0 ∈ 𝑃𝐵(𝑉; {{𝑖}|𝑖 ∈ 𝑁}). Otherwise, go to Stage 1. 

 

Stage 1. Choose a P-justified objection (𝑆(0), 𝑦0) to 𝑥0 so that there is no 𝑦′ ∈ 𝑉𝑆(0) such that 𝑦′ ≫

𝑦0 . Consider the coalition structure {𝑆(0)} ∪ {{𝑖}|𝑖 ∈ 𝑁\𝑆(0)} , and define 𝑥1 ≡ (𝑦0, 𝑟𝑁\𝑆(0)) . 

Then, 𝑥0 ≤ 𝑥1, 𝑥0 ≠ 𝑥1 and  𝑥1 ∈ 𝑉(𝑆(0)) ∩ ⋂ 𝑉({𝑖}).𝑖∈𝑁\𝑆(0)  If there is no P-justified objection 

to 𝑥1, then 𝑥1 ∈ 𝑃𝐵(𝑉; {𝑆(0)} ∪ {{𝑖}|𝑖 ∈ 𝑁\𝑆(0)}). Otherwise, go to Stage 2. 

 

Stage 2. Choose a P-justified objection (𝑆(1), 𝑦1) to 𝑥1 in the same way as above. Since  𝑥0 ≤ 𝑥1, 

(𝑆(1), 𝑦1)  is also an objection to 𝑥0  and strictly improves upon (𝑆(0), 𝑦0)  at 𝑥0  . Since the 

objection (𝑆(0), 𝑦0)  to  𝑥0   is P-justified, we have  𝑆(1) ∩ 𝑆(0) =  Ø   or 𝑆(0)\𝑆(1) =  Ø . 

Consider the coalition structure {𝑆(1), 𝑆(0)\𝑆(1)} ∪ {{𝑖}|𝑖 ∈ 𝑁\(𝑆(1) ∪ 𝑆(0))}.  The possible 

features of {𝑆(0)\𝑆(1)} are {𝑆(0)} and  {∅}. Define  𝑥2 ≡ (𝑦1, 𝑦𝑆(0)\𝑆(1)
0 , 𝑟𝑁\(𝑆(1)∪𝑆(0))), where 

(𝑦𝑆(0)\𝑆(1)
0 , 𝑟𝑁\(𝑆(1)∪𝑆(0))) ≡ {

(𝑦0, 𝑟𝑁\(𝑆(1)∪𝑆(0)))         if 𝑆(0)\𝑆(1) = 𝑆(0)

𝑟𝑁\𝑆(1)                        if  𝑆(0)\𝑆(1) =   ∅
 

Then, 𝑥2 ∈ 𝑉(𝑆(1)) ∩ 𝑉(𝑆(0)\𝑆(1)) ∩ ⋂ 𝑉({𝑖}).𝑖∈𝑁\(𝑆(1)∪𝑆(0))  If there is no P-justified objection, 

𝑥2 ∈ 𝑃𝐵 (𝑉; {𝑆(1), 𝑆(0)\𝑆(1)} ∪ {{𝑖}|𝑖 ∈ 𝑁\(𝑆(1) ∪ 𝑆(0))}). Otherwise, go to Stage 3. 

 

Stage 3. Choose a P-justified objection (𝑆(2), 𝑦2) to 𝑥2 in the same way as above. Since  𝑥0 ≤ 𝑥2,  

(𝑆(2), 𝑦2)  is also an objection to 𝑥0  and strictly improves upon  (𝑆(0), 𝑦0)  at 𝑥0 . Since the 

objection (𝑆(0), 𝑦0) to 𝑥0  is P-justified, we have 𝑆(2) ∩ 𝑆(0) = Ø or 𝑆(0)\𝑆(2) = Ø. Similarly, 
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(𝑆(2), 𝑦2)  is an objection to 𝑥1 ≤ 𝑥2  and the objection (𝑆(1), 𝑦1)  to 𝑥1   is P-justified, so that 

𝑆(2) ∩ 𝑆(1)  = Ø or 𝑆(1)\𝑆(2)  = Ø. Consider the coalition structure  {𝑆(2), 𝑆(1)\𝑆(2), 𝑆(0)\

(𝑆(2) ∪ 𝑆(1))} ∪ {{𝑖}|𝑖 ∈ 𝑁\(𝑆(2) ∪ 𝑆(1) ∪ 𝑆(0))}. The possible features of {𝑆(1)\𝑆(2), 𝑆(0)\

(𝑆(2) ∪ 𝑆(1))}  are {𝑆(1), 𝑆(0)}, {𝑆(1)} , {𝑆(0)} and {∅}.  

Define  𝑥3 ≡ (𝑦2, 𝑦𝑆(1)\𝑆(2)
1 , 𝑦𝑆(0)\(𝑆(2)∪𝑆(1))

0 , 𝑟𝑁\(𝑆(2)∪𝑆(1)∪𝑆(0))), where 

(𝑦𝑆(1)\𝑆(2)
1 , 𝑦𝑆(0)\(𝑆(2)∪𝑆(1))

0 , 𝑟𝑁\(𝑆(2)∪𝑆(1)∪𝑆(0))) 

≡

{
 
 

 
 (𝑦1, 𝑦0, 𝑟𝑁\(𝑆(2)∪𝑆(1)∪𝑆(0))) if  {𝑆(1)\𝑆(2), 𝑆(0)\(𝑆(2) ∪ 𝑆(1))} = {𝑆(1), 𝑆(0)}

(𝑦1, 𝑟𝑁\(𝑆(2)∪𝑆(1)))       if {𝑆(1)\𝑆(2), 𝑆(0)\(𝑆(2) ∪ 𝑆(1))} = {𝑆(1)}

(𝑦0, 𝑟𝑁\(𝑆(2)∪𝑆(0)))           if {𝑆(1)\𝑆(2), 𝑆(0)\(𝑆(2) ∪ 𝑆(1))} = {𝑆(0)}  

  𝑟𝑁\𝑆(2)                                                       if {𝑆(1)\𝑆(2), 𝑆(0)\(𝑆(2) ∪ 𝑆(1))} = {∅}                               

 

Then, 𝑥3 ∈ 𝑉(𝑆(2)) ∩ 𝑉(𝑆(1)\𝑆(2)) ∩ 𝑉 (𝑆(0)\(𝑆(2) ∪ 𝑆(1))) ∩ ⋂ 𝑉({𝑖}).𝑖∈𝑁\(𝑆(2)∪𝑆(1)∪𝑆(0))  

If there is no P-justified objection, then  

𝑥3 ∈ 𝑃𝐵 (𝑉; {𝑆(2), 𝑆(1)\𝑆(2), 𝑆(0)\(𝑆(2) ∪ 𝑆(1))} ∪ {{𝑖}|𝑖 ∈ 𝑁\(𝑆(2) ∪ 𝑆(1) ∪ 𝑆(0))}). 

Otherwise, go to Stage 4. 

 

Suppose that this process does not terminate at Stage 𝑘 − 1. Then we go to Stage 𝑘. 

 

Stage 𝑘. For every 𝑡 = 1,⋯ , 𝑘 − 1, (𝑆(𝑡), 𝑦𝑡) is a P-justified objection to 

  𝑥𝑡 ≡ (𝑦𝑡−1, 𝑦𝑆(𝑡)\𝑆(𝑡−1)
𝑡−2 , ⋯ , 𝑦𝑆(0)\(𝑆(𝑡−1)∪⋯∪𝑆(1))

0 , 𝑟𝑁\(𝑆(𝑡−1)∪⋯∪𝑆(1)∪𝑆(0))), 

which is chosen in the same way as above.  

Note that  𝑆(𝑡′) ∩ 𝑆(𝑡) = ∅  or 𝑆(𝑡′)\𝑆(𝑡) = ∅   for each 𝑡′, 𝑡 = 1,⋯ , 𝑘 − 1 with 𝑡′ < 𝑡 . For each 

 𝑡 = 0,1,⋯ , 𝑘 − 1,   let 𝑈(𝑡) ≡ 𝑆(𝑘 − 1) ∪ ⋯∪ 𝑆(𝑡).  Consider the coalition structure {𝑆(𝑘 −

1), 𝑆(𝑘 − 2)\𝑈(𝑘 − 1),⋯ , 𝑆(0)\𝑈(1)} ∪ {{𝑖}|𝑖 ∈ 𝑁\𝑈(0)}, and define 

𝑥𝑘 ≡ (𝑦𝑘−1, 𝑦𝑆(𝑘−2)\𝑈(𝑘−1)
𝑘−2 , ⋯ , 𝑦𝑆(0)\𝑈(1)

0 , 𝑟𝑁\𝑈(0)), 

Then  

𝑥𝑘 ∈ 𝑉(𝑆(𝑘 − 1)) ∩ 𝑉(𝑆(𝑘 − 1)\𝑈(𝑘 − 1)) ∩ ⋯𝑉(𝑆(0)\𝑈(1)) ∩⋂ 𝑉({𝑖}).
𝑖∈𝑁\𝑈(0)

 

 If there is no P-justified objection to 𝑥𝑘, then  

𝑥𝑘 ∈ 𝑃𝐵(𝑉; {𝑆(𝑘 − 1), 𝑆(𝑘 − 1)\𝑈(𝑘 − 1),⋯ , 𝑆(0)\𝑈(1)} ∪ {{𝑖}|𝑖 ∈ 𝑁\𝑈(0)}) 

Otherwise, go to Stage 𝑘 + 1. 

By construction, each coalition can make a P-justified objection at most once. Since the 

number of coalitions is finite, this process terminates in finite stages. Then, we can find a point of 

𝑃𝐵(𝑉;𝒫)  for at least one coalition structure 𝒫. ∎ 
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