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Abstract

We study a standard search and bargaining model of money, where goods are traded

only in decentralized markets and distributions of money holdings are non-degenerate in

equilibria. We assume fixed costs in each seller’s production, which allows an analytical

characterization of a tractable equilibrium. Each Nash bargaining solution satisfies

pay-all property, where the buyer pays the whole amount of cash as a corner solution,

and the seller produces goods as the interior solution. In the stationary equilibrium,

the aggregate variables, such as total production and the number of matchings, are

expressed by given parameters, i.e., determinate. On the other hand, individual-level

variables are indeterminate. Distributional monetary policies are effective in both the

short-run and the long-run.

1 Introduction

We propose a search and bargaining model of money and study a tractable equilibrium with

non-degenerate distributions of divisible money holdings. The model is a straightforward

extension of the basic search models with indivisible money such as Kiyotaki and Wright
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their comments and suggestions. This work is financially supported by the Zengin Foundation for Studies
on Economics and Finance in 2019.
†Research Institute for Economics & Business Administration (RIEB), Kobe University (E-mail:
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‡School of Political Science and Economics, Waseda University (E-mail: kubotaso@waseda.jp)
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(1993), Trejos and Wright (1995), and Shi (1995). That is, divisible money and goods are

traded on an environment of only random-matching and Nash bargaining. The crucial factor

is fixed costs in production, which generate a tractable equilibrium with a simple structure of

money holding distributions. We analytically characterize the equilibria, prove the existence,

and evaluate distributional monetary policies both in the short-run and the long-run.

Originated from Kiyotaki and Wright (1989), search theory provides a solid microfounda-

tion of money and implications for real-world economic phenomena. However, the literature

has struggled to handle the problem of heterogeneous money holdings. It is a fundamen-

tal consequence of the random matching assumption, where different amounts of money

are exchanged in each trade. But the characterization of dynamic equilibrium requires to

keep track of the distribution of money as a state variable. To overcome the problem, the

workhorse (so-called the third generation) models impose assumptions to make money hold-

ing distribution degenerate. The major approaches are large household model (Shi (1997))

and alternation between search and centralized markets (Lagos and Wright (2005)).

We consider a standard search model where agents randomly match and exchange goods

and money through Nash bargaining. We construct a particular type of tractable equilibrium

that satisfies Pay-All property. In each Nash bargaining problem, the production is decided

as the interior solution. On the other hand, the cash payment is solved as a corner solution,

that is, the buyer pays all the money holding. On top of that, a simple non-degenerate

money holding distribution arises. There is a mass of agents at 0 money holding, and the

others save different positive amounts. The transitional dynamics are also straightforward.

A positive money holder pays all cash in each matching and will carry 0 in the next period.

A no-cash agent takes a role as a seller and will save a positive amount. Indeed this model

has a full non-degenerate distribution; however, the individual-level dynamics is as simple

as the first and second-generation money search models.

The pay-all equilibrium is constructed by fixed costs in the production. The well-known

difficulty in dealing with the non-degenerate money holding distribution comes from each

agent’s dual roles. If each agent possibly becomes both a buyer and a seller, the mapping

from the current to next distribution becomes almost untraceable. In pay-all equilibrium,

there is a cut-off level of money holding where each agent always becomes only a seller

(buyer) if the money holding is lower (higher) than this level. This cut-off emerges by the

fixed costs. A seller has no incentive to trade with a partner who has a sufficiently small
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amount of money because it does not cover the fixed costs. Then, agents are sorted into

buyers and sellers according to their money holdings.

We find some interesting properties of the stationary equilibrium. That is, the aggre-

gate variables are determinate, i.e., the macroeconomic measures such as total production,

the number of matching, and the Benthamian welfare are uniquely determined. However,

individual-level variables are indeterminate: there is a continuum of steady-state distribu-

tions of money holdings, productions, consumptions, and individual lifetime utilities. In this

sense, the equilibrium is similar to the first and second-generation models in the aggregate

level but parallel to Green and Zhou (1998) regarding the individual level. About the quan-

tity theory of money, the equilibrium satisfies both neutrality and superneutrality of money

if cash is injected proportionally to each agent’s money holding.

We examine two types of distributional monetary policy. One is conducted on the steady-

state while keeping the total money supply and the money holding distribution unchanged.

In each match, the government levies a per-unit tax (subsidy) depending on the amount of

goods, and distributes (collects) money depending on after-trade money holding. The tax

rate is chosen so that the government budget is balanced each period. We show that this

policy improves welfare, although the direction depends on the parameters. Intuitively, it

modifies the intra-temporal condition of Nash bargaining depending on the bargaining power

and moves the equilibrium toward Hosios condition.

Another policy is a temporal expansion of the money supply. The same amount of money

is injected to all agents in one period. Then the same amount is subtracted in the next period

from agents holding sufficient amount of money. It also causes a short-run improvement in

relative buyer/seller allocation. Notably, there are multiple transition paths, that is, the

policy’s welfare effect is unpredictable. Since the individual-level allocation is indeterminate,

the transition paths caused by the redistribution policy is also uncertain.

There are some models in the literature which succeed in characterizing the non-degenerate

distribution of money holdings. The initial contribution is made by Green and Zhou (1998).

They consider a random-matching model with divisible money where each exchange is closed

by a take-it-or-leave-it offer, which is a special case of Nash bargaining. The key result is

the real indeterminacy of stationary equilibrium1: there exists a continuum of steady-state

1The general framework is constructed by Kamiya and Shimizu (2006). Note that the indeterminacy
emerges even if goods are divisible. See Kamiya and Shimizu (2007), Kamiya and Shimizu (2013), and
Kubota (2019) for the conditions of the indeterminacy.
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where each one has a different real allocation. Although the result itself is theoretically

appealing, this property obstructs applied researches. Another important model is Menzio

et al. (2013), which eliminates one-to-one Nash bargaining and instead assumes a competitive

search environment. They construct a block-recursive structure of equilibrium, which makes

a simple transitional process of agents on the non-degenerate distribution. However, the

construction of equilibrium still relies on the centralized labor market. Recently, Rocheteau

et al. (2018) analyze a discrete distribution caused by delayed money holding adjustment on

Lagos-Wright model. Another notable approach is numerical methods conducted by Molico

(2006), Chiu and Molico (2010), and Chiu and Molico (2020). Finally, Camera and Corbae

(1999) consider the countable amount of money. In contrast, the novelty of our approach is

(i) tractable equilibria constructed only on a random-matching market with Nash bargain-

ing, (ii) analytical characterization and proved existence of equilibria, and (iii) analyses of

distributional monetary policy.

The next section introduces the economic environment. Then, Section 3 illustrates the

equilibrium and its characterization. The existence of the equilibrium is proved in Section 4.

Section 5 and 6 consider distributional monetary policy in the long-run and the short-run,

respectively. Section 7 concludes this paper.

2 Economic Environment

Time is discrete and time horizon is infinite, as denoted by t = 1, 2, · · · . Goods are divisible.

There is a continuum of agents with measure one. Each agent can produce her production

goods with a cost (disutility) function

us(x) =

−d− cx if x > 0

0 if x = 0,

where x is an amount of goods, d > 0 is a fixed cost, and c > 0 is a unit cost. Each agent

cannot consume her production good for eliminating double-coincidence of wants. However,

4



she can consume some others’ production good with a temporal utility function

ub(x) =

k + x if x > 0

0 if x = 0,

where k > 0 is a given constant. This fixed utility is interpreted as an appetizer.2 Theoreti-

cally, k is introduced so that v(0) > 0 in the equilibrium. These assumptions about utility

and cost functions will be discussed in Section 3.2.

Each agent discounts her future payoff with a discount factor β ∈ (0, 1). Money is

perfectly divisible, and its total supply in the economy is fixed at M > 0. Each agent’s

money holding m is a real number with an upper-bound. We assume this upper-bound as

1 for normalization, that is, m ∈ [0, 1]. This assumption allows us to ignore the behavior of

very rich agent who exists only off-path, and then, simplifies the proof of the existence of

equilibrium (Zhou (1999)).

The timeline in each period is as follows. In the beginning of each period, agents observe

the current economy-wide money holdings distribution. Then, pairwise random matching

occurs with a probability 2α ∈ (0, 1). In each matching, each agent observes the partner’s

money holding. One agent becomes a seller with probability 1
2
, and the other becomes a

buyer. After that, bargaining over the price and the amount of goods proceeds through

Nash bargaining with the buyer’s bargaining power θ ∈ (0, 1). At the end of each period, the

matching resolves and proceeds to the next period. Let H be a money holdings distribution

(a Borel measure) on R+. In a meeting of a buyer (a seller) with money holding mb (ms),

the Nash bargaining decides the amount of goods x(mb,ms, H) and the amount of money

p(mb,ms, H) in the trade. No trade, x(mb,ms, H) = p(mb,ms, H) = 0, is also a solution

when the joint surplus cannot be positive. The stationary monetary equilibrium is defined

as follows.

Definition 1. Let v be a function on R+. A pair (H, v) is called a stationary monetary

equilibrium if

2It might be considered that a certain fixed amount of goods, of which utility is k, is produced by the
fixed cost d.
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Figure 1: Money holding distribution in Pay-All Equilibrium
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1. Bellman equation is consistently constructed as

v(m) = α

∫ [
ub
(
x(m,ms, H)

)
+ βv

(
m− p(m,ms, H)

)]
dH(ms)

+ α

∫ [
us
(
x(mb,m,H)

)
+ βv

(
m+ p(mb,m,H)

)]
dH(mb) + (1− 2α)βv(m),

2. H is a stationary distribution of the process under the transition p(mb,ms, H),

3. x(mb,ms, H) ≥ 0 and p(mb,ms, H) ≥ 0 solve each Nash bargaining problem.

4. v(m) > 0 for all m ≥ 0 and v(m) is strictly increasing.

The last condition represents the individual rationality and positive equilibrium value of

fiat money.

3 Pay-All Equilibrium

We consider an equilibrium with the following money holdings distribution. The support of

the distribution H is {0} ∪ [z, Z], where 0 < z < Z < 1. Let H(0) ∈ [0, 1] be the measure of
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agents without money and H be a function satisfying

∫ Z

z

dH = 1−H(0) (1)

∫ Z

z

mdH = M (2)

A Nash bargaining problem between a buyer with mb and a seller with ms is as follows:

• if there exists (x, p) such that x > 0, 0 ≤ p ≤ mb, and both the buyer and seller’s

surpluses are non-negative, i.e., k + x + β [v(mb − p)− v(mb)] ≥ 0 and −d − cx +

β [v(ms + p)− v(ms)] ≥ 0, then the trade (x∗, p∗) is determined by

(x∗, p∗) = arg max
x,p
{k + x+ β [v(mb − p)− v(mb)]}θ {−d− cx+ β [v(ms + p)− v(ms)]}1−θ

s.t. x > 0, 0 ≤ p ≤ mb, (3)

• otherwise x∗ = p∗ = 0.

This formulation assumes that the fixed utility and cost emerge only if positive amount of

money and good are traded.

We construct an equilibrium where (i) on the equilibrium-path, Nash bargaining is agreed

only if a buyer holds m ∈ [z, Z] and a seller has m = 0, otherwise any trade does not cover

the fixed costs for a seller. Moreover, we focus on the equilibrium where (ii) the monetary

payment is binding at p∗ = mb, while the good production x∗ is determined as the interior

solution. For simplicity, let m be the buyer’s money holding. Then, the first-order condition

with respect to x is

(1− θ)c{k + x∗ + β[v(0)− v(m)]} = θ{−d− cx∗ + β[v(m)− v(0)]}. (4)

Note that, under the condition (i), we can write x∗ = x(m).

We call a stationary monetary equilibrium with (i) and (ii) a Pay-All equilibrium, because

each buyer spends all amount of money holding. In parallel with this, (i) and (ii) are

collectively called the Pay-All property. The Bellman equation in the pay-all equilibrium is
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written as follows:

v(m) = αH(0)[k + x(m) + βv(0)] + [1− αH(0)]βv(m) (5)

v(0) = α

∫ Z

z

[−d− cx(m) + βv(m)]dH + {1− α[1−H(0)]}βv(0) (6)

3.1 Characterization

If a pay-all equilibrium exists, it satisfies the properties summarized in the following lemmas.

Define the consumption elasticity of discounted value as ξ(m) =
x′(m)

v′(m)
. It must be constant

in the equilibrium.

Lemma 1.

ξ(m) =
βθ(1− c)

c
+ β (7)

Proof. By (4),

cx(m) = θ[−d− βv(0)]− (1− θ)c[k + βv(0)] + θβv(m) + (1− θ)cβv(m),

⇒ cx′(m) = θβv′(m) + (1− θ)cβv′(m) = β[θ(1− c) + c]v′(m),

which leads to (7).

Next lemma derives another condition about ξ(m).

Lemma 2.

ξ(m) =
1− β
αH(0)

+ β (8)

Proof. The derivative of (5) is

v′(m) = αH(0)x′(m) + [1− αH(0)]βx′(m).

It is rearranged to (8).
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These two equations about ξ(m) determine H(0). That is, the measure of non-money holders

H(0) is explicitly pinned down by parameters. On the other hand, we will later show that

H(m) for m ∈ [z, Z] is indeterminate.

Lemma 3.

H(0) =
(1− β)c

αβθ(1− c)
(9)

Proof. By Equation (7) and Equation (8).

The measure of agents with positive amount of money, 1−H(0), is also uniquely determined.

Since they are potential buyers, the following corollary holds.

Corollary 1. The number of matching αH(0)(1−H(0)) is constant.

In the equilibrium, the aggregated discounted value of the potential buyers and sellers are∫ Z
z
v(m)dH and H(0)v(0), respectively. The next lemma shows that the ratio is constant.

Lemma 4.∫ Z
z
v(m)dH

H(0)v(0)
=

θ

(1− θ)c
(10)

Proof. Appendix.

On top of that, the discounted value of no-money holder is uniquely derived.

Lemma 5.

v(0) =
ck − d
β(1− c)

(11)

Proof. Appendix.

By Lemma 4, the total discounted value of buyers immediately follows.

9



Corollary 2.

∫ Z

z

v(m)dH =

(
ck − d
β(1− c)

)(
θH(0)

(1− θ)c

)
(12)

Note that, as will be shown, the shape of v(m) is indeterminate in the equilibrium. That is,

although the aggregated discounted value is unique, the distribution of welfare is uncertain.

Finally, define the total welfare as W = H(0)v(0) +
∫ Z
z
v(m)dH. By Lemma 5 and

Corollary 2, it is also constant.

Lemma 6.

W =
ξH(0)v(0)

β(1− θ)

Proof. Appendix.

3.2 Discussion about the model’s assumptions

Both the fixed and linear terms of the utility and production functions drastically make the

equilibrium tractable. The fixed costs d provides an incentive of sellers to decline trades

with buyers who hold small amount of money. If the revenue is sufficiently small, it does not

cover the fixed costs d. Then, the equilibrium money holding distribution H(m) is divided

into 0 and sufficiently large positive amount m ≥ z. It makes agents to play only one

role, either buyer or seller, depending on money holding m. As a consequence, each agent

alternates between buyer and seller, which makes a tractable transition of money holdings.

The fixed utility k is assumed to overcome the fixed costs d and assure the agent’s incentive

to participate the market, v(0) > 0.

The linearity of variable costs and utility are also crucial for tractability. They make the

consumption elasticity of discounted value, ξ(m), constant in Lemma 1. Then, this property

helps to pin down H(0) in Lemma 3. This uniqueness of H(0) makes Pay-All equilibrium

overcome the real indeterminacy of divisible money in random-matching search models in

the literature3. Green and Zhou (1998) derive both distributional and aggregate-level inde-

3The indeterminacy arises due to some identity hidden in monetary exchange. See, for the case of finite
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terminacy of real allocations. This indeterminacy is one-dimensional which is characterized

by the H(0). The Pay-All equilibrium erases this type of indeterminacy by anchoring H(0).

Although our model still has indeterminacy of money holding distribution among buyers,

the determinate H(0) makes the aggregated allocation determinate. The transition of agents

in Pay-All equilibrium is consistent with, so called, the second generation models such as

Trejos and Wright (1995) and Shi (1995), where the total money supply is 1−H(0). As in our

model, each seller becomes a buyer with probability α[1−H(0)], and each buyer turns to be a

seller with probability αH(0). Moreover, the Pay-All equilibrium decides only the quantity

of goods as an interior solution of Nash bargaining as in the second generation models.

Define the average discounted sum of utilities of buyers as vbuyer = 1
1−H(0)

∫ Z
z
v(m)dH(m).

Then, Pay-All equilibrium can be interpreted as an indivisible money model with v(0) for

each seller and vbuyer for each buyer. In short, given that buyers are aggregated as a kind

of one representative buyer with value vbuyer, Pay-All equilibrium is in line with the second

generation models, where H(0) is exogenously given. As Trejos and Wright (1995) and

Shi (1995) do not show Green and Zhou (1998)’s indeterminacy, the allocation in Pay-All

equilibrium becomes also determinate in the aggregate level.

Note that, although the aggregated allocation is indeterminate, the individual-level in-

determinacy among buyers is not nominal but real. As will be shown in the proof of the

existence of Pay-All equilibrium, it requires only inequality conditions about the shape of the

value function. Combinations of both indeterminate v(m) and H(m) lead to distributional

indeterminacy of each buyer’s real allocation and individual welfare.

4 Existence

In this section, we show the existence of a continuum of pay-all equilibrium by construction.

That is, we first present a candidate for a pay-all equilibrium (v,H) and show that it is

indeed an equilibrium. The following linear function is a candidate for a value function:

v(m) =

v(0) + am for m ∈ [0,m∗),

v(0) + F + bm, for m ∈ [m∗,∞],
(13)

support of money holdings distribution, Kamiya and Shimizu (2006) and Kamiya and Shimizu (2007), and
for the case of infinite support, Kamiya (2019).
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Figure 2: Value function
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where m∗ > 0, b > a > 0, and F > 0 will be determined later. A candidate for an equilibrium

money holding distribution H satisfies that :

the support of the distribution H is {0} ∪ [z, Z], (14)

where z, and Z are parameters satisfying (1), (2) and

m∗ ≤ z < Z ≤ 1−m∗. (15)

The above (v,H) is shown to be a pay-all equilibrium if the parameters are in some range.

Note again that H(0) and v(0) are unique.
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Proposition 1. If the following conditions are satisfied,

1− β
αβθ

<
1− c
c

, (16)

ck > d, (17)

φ ≡ θH(0)

(1− θ)[1−H(0)]c
> 1, (18)

(φ− 1)v(0) >
(1− θ)ck + θd

[(1− θ)c+ θ]β
, (19)

1−H(0)
M

[
(φ− 1) v(0)− (1−θ)ck+θd

[(1−θ)c+θ]β

]
[
1 +

(
1−H(0)
M

)(
(1−θ)(2−c)χ
2[(1−θ)c+θ]

)] < 2d, (20)

where H(0) = (1−β)c
αβθ(1−c) , v(0) = ck−d

β(1−c) , and χ ≡ αβ(1−θ)[1−H(0)]
αβ(1−θ)[1−H(0)]+1−β , then there exist a contin-

uum of stationary pay-all equilibrium. Moreover, there exist parameters c, d, k, α, β, θ, and

M satisfying the above conditions.

Proof. Appendix.

The first condition means that the unit cost c is sufficiently small and it assures H(0) < 1.

The second conditions means that, given c and d, the fixed utility k is sufficiently large and

it assures v(0) > 0. The third and the forth conditions assure that the slope of the value

function is positive. The last condition guarantee that if both a buyer and a seller have small

(large) amount of money, then they do not trade.

In the proof, we first derive conditions on (m∗, a, b, F ) that Nash bargaining reaches

a deal if ms < m∗ and mb ≥ m∗, and breaks down otherwise and the pay-all property

holds. Moreover, we find H and M which can be money holdings distribution and a money

supply. Then we confirm that all the conditions on (m∗, a, b, F,H,M) are satisfied under the

premises. Finally, we verify the consistency of (13) with (5) and (6). We also show that a

continuum of (m∗, a, b, F,H,M) can be equilibria.

5 The bargaining power and welfare

The Hosios condition, a condition on the bargaining power θ for efficiency, is often discussed

in the literature of search models. In this section, we discuss the impact of θ on the total

welfare W , i.e., ∂W
∂θ

.
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First, note that, for given the other parameters, a change in θ may violates the conditions

for the existence of a pay-all equilibrium. Namely, the pay-all property and/or H(0) ∈ (0, 1)

could be violated. In what follows in this section, we assume for simplicity that a pay-all

equilibrium exists for all θ given the other parameters.

Recall that W = H(0)v(0) +
∫ Z
z
v(m)dH. From Lemmas 3 and 5, the first term in the

RHS is (1−β)c
αβθ(1−c)

ck−d
β(1−c) . Thus ∂H(0)v(0)

∂θ
< 0. From Corollary 2 and Lemma 3, the second term

in the RHS is

(
ck − d
β(1− c)

)(
θ (1−β)c
αβθ(1−c)

(1− θ)c

)
.

Thus

∂

∂θ

(∫ Z

z

v(m)dH

)
> 0. (21)

Below, we investigate which dominates the other.

From Lemmas 1, 3, and 6, W is written as

W =

(
ξv(0)

β(1− θ)

)
H(0) =

(
v(0)(1− β)c

αβ2(1− c)

)(
θ(1− c)

c
+ 1

)(
1

θ(1− θ)

)
. (22)

The derivative of
(
θ(1−c)
c

+ 1
)(

1
θ(1−θ)

)
with respect to θ is

2θ − 1

θ2(1− θ)2
(θ(1− c) + c)

c
+

1− c
c

1

θ(1− θ)
=

1

cθ2(1− θ)2
((1− c)θ2 + 2cθ − c).

Since

(1− c)θ2 + 2cθ − c = 0

has a negative solution and a positive solution θ = c
c−
√
c

and θ = c
c+
√
c
. Note that c = θ2

(1−θ)2

holds at the positive solution. Thus, the following proposition holds.

Proposition 2. ∂W
∂θ

is positive, if θ > c
c+
√
c
, and it is negative, if θ < c

c+
√
c
.

Note that W is minimum at θ̄ = c
c+
√
c
, if a pay-all equilibrium exists at θ̄. Moreover,

from (22), W →∞ as θ → 1, if a pay-all equilibrium exists around θ = 1.
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6 Distributional monetary policy in the long-run: a

change in an effective bargaining power

Here, we consider a distributional monetary policy which keeps the total money supply and

the money holding distribution overtime. The government imposes tax and provide subsidy

so as to balance the budget. In each trade, they are transferred in the different way. Tax is

collected as linear per-unit tax tx, where t is tax rate and x is the amount of good sold. Then,

the collected money is injected to each seller depending on after-tax money holding. This

amount is g(m− tx), where g is the gross rate. Note that if t < 0, then it can be considered

as a subsidy rate. It will be shown that the policy changes the power of the bargaining

defined below as an effective bargaining power. Therefore, a Hosios-type condition on the

bargaining power can be derived as in the previous section, and the policy can improve the

welfare.

We assume the budget balance of the government. That is,

0 =

∫
(g − 1)mdH − g

∫
tx(m)dH.

Thus

(g − 1)M = gt

∫
x(m)dH. (23)

As in the original case, the system is characterized by three equations: the first-order condi-

tion of Nash bargaining problem, buyer’s value function, and seller’s value function. Under

pay-all equilibrium, the first one is obtained by the following problem:

max
x
{k + x+ β[v(0)− v(m)]}θ

{
−d− cx+ β

[
v
(
g(m− tx)

)
− v(0)

]}1−θ
.

Here, the seller’s money holding after the trade depends on g and t. Then, the first-order

condition is

(1−θ)
[
c+ βgtv′

(
g(m− tx)

)]
{k+x+β[v(0)−v(m)]} = θ

{
−d− cx+ β

[
v
(
g(m− tx)

)
− v(0)

]}
.

(24)
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The Bellman equation for buyer is unchanged from (5). Whatever the policy is, each buyer

pays the entire cash in pay-all equilibrium.

The value function of the seller is

v(0) = α

∫ Z

z

[
−d− cx(m) + βv

(
g(m− tx)

)]
dH + {1− α[1−H(0)]}βv(0) (25)

We assume a linear value function: v(m) = v(0) + F + bm hereafter. As shown in the proof

of existence, we can take such a linear value function. This assumption makes the system

drastically tractable because (25) becomes identical to the non-policy case.

Lemma 7. If the value function is linear, (25) coincides with (6)

Proof. Appendix.

From the linearity of the value function, v′
(
g(m − tx)

)
is a constant b. In what follows

we use v′ instead of b. Therefore, (24) becomes

(1−θ) [c+ βgtv′] {k+x+β[v(0)−v(m)]} = θ
{
−d− cx+ β

[
v
(
g(m− tx)

)
− v(0)

]}
. (26)

Therefore, compared to the case without policy, the difference is only the first order condition

of the Nash bargaining (26).

Recall that the first order condition of the Nash bargaining without policy derived in

Equation (4) is

(1− θ)c{k + x+ β[v(0)− v(m)]} = θ {−d− cx+ β [v(m)− v(0)]} .

Thus, the effective bargaining power of a buyer in the case of policy t, denoted by θe(t), is

defined as follows:

[1− θe(t)]c
θe(t)

=
(1− θ)[c+ βgtv′]

θ
.

Let G = gt. Note that G′ = g + tdg
dt

, and thus, at g = 1 and t = 0, G′ = g + tdg
dt

= 1.

Then, the following proposition holds for any real number t.
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Proposition 3. Suppose G′ > 0. Then ∂W
∂t

> 0 holds, if and only if

c+ βGv′

c−
√
c+ βGv′

< θ <
c+ βGv′

c+
√
c+ βGv′

.

In particular, in the case of t = 0, ∂W
∂t

> 0 holds, if and only if

θ <
c

c+
√
c
.

Proof. Appendix.

The key implication is that, if t = 0, the condition becomes identical with Proposition 2.

A small government intervention changes the bargaining power between buyer and seller. In

this case, θe(0) = θ, then an increase in t leads to a decrease in θe(t). But, globally, it also

depends on the shape of value function. Note that if the absolute value of t is not large, then

G′ > 0 holds, since G′ = 1 at t = 0. Note also that, if c+βGv′

c−
√
c+βGv′

< 0, then c+βGv′

c−
√
c+βGv′

< θ

can be replaced by 0 ≤ θ. In particular, this applies in the case of t = 0.

7 Distributional monetary policy in the short-run

In this section, we consider one-time helicopter drop of money. At the beginning of period

t, the central bank unexpectedly announces the following policy.

• The central bank injects the same τ unit of money to everybody at the beginning of

period t.

• The central bank will deprive τ unit of money at period t + 1. If an agent’s money

holding is m < τ , it will deprive m.

The collection of money at period t + 1 is for keeping Pay-All equilibrium. Otherwise, the

range of money holding distribution diverges to infinity4. For simplicity, assume that the

density function h(m) associated with H(m) exists for m ∈ [z, Z].

4Suppose the maximum money holding is mmax at period t− 1. At the beginning of period t, sellers also
hold τ . After the trade, the maximum amount increases to mmax + τ . If there is no reduction in money
holding, the maximum amount changes to mmax + 2τ at the end of period t+ 1. It will eventually diverges
and exceed the limit of money holding 1.
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Figure 3: Money holding distribution
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Given Pay-All equilibrium, the transition of the distribution is described as follows. Fig-

ure 3 draws an example of a triangle shape distribution.

At period t− 1 and before, the stationary money holding distribution satisfies

• Ht−1(0) = (1−β)c
αβθ(1−c) > 0,

• ht−1(m) ≥ 0 for all m ∈ [z, Z],

and no agents hold m 6∈ {0} ∪ [z, Z] amount of money.

At the beginning of period t, τ is injected. Then, the distribution shifts to the right by

τ :

• Ht(τ) = Ht−1(0) = (1−β)c
αβθ(1−c) > 0,

• ht(m) = ht−1(m− τ) ≥ 0 for all m ∈ [z + τ, Z + τ ].

In period t, suppose that the Pay-All property still holds in the bargaining. Then, each

buyer m ∈ [z + τ, Z + τ ] pays all the amount of money. Each seller finds a buyer with

probability α[1−Ht(τ)], and each buyer makes a matching with αHt(τ). Let Hafter
t be the

money holding distribution after the trade in period t. Then,

• Hafter
t (0) = αHt(τ)[1−Ht(τ)] = αHt−1(0)[1−Ht−1(0)]

• Hafter
t (τ) = Ht(τ){1− α[1−Ht(τ)]} = Ht−1(0){1− α[1−Ht−1(0)]}

• For m ∈ [z + τ, z + 2τ), haftert (m) = [1− αHt(τ)]ht(m) = [1− αHt−1(0)]ht−1(m− τ)

• For m ∈ [z + 2τ, Z + τ ], haftert (m) = αHt(τ)ht(m − τ) + [1 − αHt(τ)]ht(m) =

αHt−1(0)ht−1(m− 2τ) + [1− αHt−1(0)]ht−1(m− τ).

• For m ∈ (Z + τ, Z + 2τ ], haftert (m) = αHt(τ)ht(m− τ) = [1− αHt−1(0)]ht−1(m− 2τ)

Finally, at the beginning of period t+ 1, money holdings of all agents except m = 0 are

declined by τ . The distribution is sustained stationary hereafter.

• Ht+1(0) = Hafter
t (0)+Hafter

t (τ) = αHt−1(0)[1−Ht−1(0)]+Ht−1(0){1−α[1−Ht(τ)]} =

Ht−1(0).

• For m ∈ [z, z + τ), ht+1(m) = haftert (m+ τ) = [1− αHt−1(0)]ht−1(m)
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• Form ∈ [z+τ, Z], ht+1(m) = haftert (m+τ) = αHt−1(0)ht−1(m−τ)+[1−αHt−1(0)]ht−1(m).

• For m ∈ (Z,Z + τ ], ht+1(m) = haftert (m+ τ) = αHt−1(0)ht−1(m− τ)

The measure of non-money holder is unchanged between old and new stationary distribu-

tion: H(0) = Ht+1(0) = Ht−1(0). The distribution of positive money holders spreads out.

Because of the indeterminacy of the money holding distribution h(m) for m ≥ z, the new

distribution holds a stationary Pay-All Equilibrium with the same social welfare. Then, we

can consider Period t allocation is on a transition path between the two steady-states. Let

v(0) ≡ vt−1(0) = vt+1(0). Note that vt−1(m) and vt+1(m) for m ≥ z are possibly different by

indeterminacy. Consider the bargaining problem of a seller holding τ and a buyer holding

mt = mt−1 + τ at period t:

max
xt
{k + xt + β[vt+1(0)− vt+1(mt−1)]}θ {−d− cxt + β[vt+1(mt−1 + τ)− vt+1(0)]}1−θ

In the first term, the buyer holds 0 at Period t+ 1 given Pay-All property. If the bargainig

fails, the buyer looses τ unit of money and hold mt+1 = mt−1 + τ − τ = mt−1 unit of money,

In the second term, the seller obtains mt = mt−1 + τ by the trade at Period t and looses

τ in the next, then mt+1 = τ + mt−1 + τ − τ = mt−1 + τ in total at Period t + 1. In case

of no trade, the τ unit of money holding needs to be returned to the central bank, then

mt+1 = mt−1 = 0. The first-order condition is

θ {−d− cxt + β[vt+1(mt−1 + τ)− vt+1(0)]} = (1− θ)c {k + xt + β[vt+1(0)− vt+1(mt−1)]}

⇔ cxt(mt−1) = β(1−θ)c[vt+1(mt−1)−vt+1(0)]+βθ[vt+1(mt−1+τ)−vt+1(0)]−[(1−θ)ck+θd]

= βθvt+1(mt−1 + τ) + β(1− θ)cvt+1(mt−1)− β[(1− θ)c+ θ]v(0)− [(1− θ)ck + θd]

Let the total production at period t as Xt.

Xt = αH(0)

∫ Z

z

xt(mt−1)ht−1(mt−1)dmt−1

=

(
αβH(0)

c

)
θ

∫ Z

z

vt+1(mt−1 + τ)ht−1(mt−1)dmt−1
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+

(
αβH(0)

c

)
(1− θ)c

∫ Z

z

vt+1(mt−1)ht−1(mt−1)dmt−1

−αβH(0)[1−H(0)]

c
{β[(1− θ)c+ θ]v(0) + [(1− θ)ck + θd]}

Now, we want to show that Xt is larger than the steady-state amount of production, X ≡
Xt−1 = Xt+1. By the linear utility and cost functions, it implies the welfare improvement by

the short-run monetary policy.

X = Xt+1 =
αβH(0)

c

{
[θ + (1− θ)c]

∫ Z+τ

z

vt+1(mt+1)ht+1(mt+1)dmt

}
.

−αβH(0)[1−H(0)]

c
{β[(1− θ)c+ θ]v(0) + [(1− θ)ck + θd]}

Then, the condition Xt > X is equivalent to

θ

∫ Z

z

vt+1(mt−1 + τ)ht−1(mt−1)dmt−1 + (1− θ)c
∫ Z

z

vt+1(mt−1)ht−1(mt−1)dmt−1

> [θ + (1− θ)c]
∫ Z+τ

z

vt+1(mt+1)ht+1(mt+1)dmt+1

By the transition of the money holding distribution,

∫ Z+τ

z

vt+1(mt+1)ht+1(mt+1)dmt+1

= [1− αH(0)]

∫ Z

z

vt+1(mt−1)ht−1(mt−1)dmt−1 + αH(0)

∫ Z+τ

z+τ

vt+1(mt−1)ht−1(m− τ)

= [1− αH(0)]

∫ Z

z

vt+1(mt−1)ht−1(mt−1)dmt−1 + αH(0)

∫ Z

z

vt+1(mt−1 + τ)ht−1(m)

Therefore,

Xt > X ⇔

{θ − [θ + (1− θ)c]αH(0)}
∫ Z

z

vt+1(mt−1 + τ)ht−1(m)
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> {[θ + (1− θ)c][1− αH(0)]− (1− θ)c}
∫ Z

z

vt+1(mt−1)ht−1(m)

⇔ {θ[1−αH(0)]−(1−θ)cαH(0)}

[∫ Z

z

vt+1(mt−1 + τ)ht−1(m)−
∫ Z

z

vt+1(mt−1)ht−1(m)

]
> 0

(27)

Since the value function is strictly increasing in Pay-All equilibrium, vt−1(mt−1 + τ) >

vt−1(mt−1) for all mt−1. Hence, the second term is positive. The sign of the production

change depends on the first-term.

Xt > X

⇔ θ[1− αH(0)] > (1− θ)cαH(0)

⇔ θ

[
1− (1− β)c

βθ(1− c)

]
> (1− θ) (1− β)c2

βθ(1− c)

⇔ θ2β(1− c)− θ(1− β)c > (1− θ)(1− β)c2

⇔ θ2β(1− c) > (1− β)c2 + θ(1− β)c(1− c)

⇔ θ2β(1− c) > (1− β)c[c+ θ(1− c)]

This condition holds for sufficiently large β.

Intuitively, the policy raises the production by changing each seller’s future welfare.

The money holding distribution will be diverged at t + 1. Sellers at t − 1 will hold m ∈
[z + τ, Z + τ ] at t + 1. They are larger than the average in the steady state after t + 1. It

makes more incentive for production in Nash bargaining since the seller’s threat point value

β[v(0)− v(m+ τ)] decreases.

Interestingly, this positive welfare improvement is indeterminate. The welfare improve-

ment depends on the second term of Equation (27). Hence, the quantitative difference hinges

on the shape of the value function vt+1(m). Therefore, the individual-level indeterminacy

leads to the aggregate level indeterminacy in the welfare improvement by the distributional

monetary policy.
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8 Conclusion

This paper shows that a class of standard search and bargaining models of money has

analytical characterizations of equilibrium aggregate variables, i.e., the welfare, the measure

of non-money holders, and the other aggregate variables are uniquely expressed by given

parameters. Due to the analytical characterization, the standard comparative statics can

be applied and the effects of policies can be well investigated. The model has two notable

features. First, it does not have centralized markets, as in Lagos and Wright (2005), so

that only the effect of policies on the decentralize market can be extracted. Second, the

assumption of large households, as in Shi (1997), is not made so that the effect of parameters

and policies on money holdings distributions can be investigated.

A long-run and a short-run distributional monetary policies are investigated. In the long-

run policy, the government levies a per-unit tax (subsidy) depending on the amount of goods,

and distributes (collects) money depending on after-trade money holdings in each period,

where they are chosen so that the government budget is balanced. Intuitively, it modifies

the intra-temporal condition of Nash bargaining changing the effective bargaining power and

moves the equilibrium toward the Hosios condition on the efficiency. In the short-run policy,

the government injects the same amount of money to all agents only in one period. Then the

same amount is subtracted in the next period. Intuitively, the policy raises the production

by changing the future welfare of each seller, and it leads to a short-run improvement in the

total welfare.

In the literature, long-term changes in the amount of money, such as the Friedman rule,

are often investigated. This type of policy is not covered in this paper, because our existence

proof cannot be applied to such policies. In the existence proof, we need an upper bound and

a lower bound of the support of money holdings distributions. However, in such policies,

they converge to infinity or to zero. Of course, an analysis of this type of policies is an

important future research topic.
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Appendix

The proof of Lemma 4

By (5),[
(1− β)(1− θc)

αH(0)

]
v(m) = (1− θ)c{k + x(m) + β[v(0)− v(m)]}

⇒
[

(1− β)(1− θc)
αH(0)

] ∫ Z

z

v(m)dH =

∫ Z

z

(1− θ)c{k+ x(m) + β[v(0)− v(m)]}dH (A.1)

By (6),

v(0) = α

∫ Z

z

[−d− cx(m) + βv(m)]dH + βv(0)− α
∫ Z

z

βv(0)dH

= α

∫ Z

z

{−d− cx(m) + β[v(m)− v(0])}dH + βv(0)

⇔
[

(1− β)θ

α

]
v(0) = θ

∫ Z

z

{−d− cx(m) + β[v(m)− v(0])}dH (A.2)

Integrating the FOC of Nash bargaining solution, (4), derives

∫ Z

z

(1− θ)c[k + x(m) + β[v(0)− v(m))]dH

=

∫ Z

z

θ{−d− cx(m) + β[v(m)− v(0)]}dH (A.3)

Substitute Equation (A.1) and (A.2) into (A.3), then

[
(1− β)(1− θ)c

αH(0)

] ∫ Z

z

v(m)dH =

[
(1− β)θ

α

]
v(0),

which leads to the Lemma .
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The proof of Lemma 5

By (5),(
1− β
H(0)

)
v(m) = α{k + x(m) + β[v(0)− v(m))]}

⇔
(

(1− β)c

H(0)

)
v(m) = α{ck + cx(m) + βcv(0)− βcv(m)}

⇔ α[ck + βcv(0)− βcv(m)]−
(

(1− β)c

H(0)

)
v(m) = α[−cx(m) + βcv(m)]

= α[d− d− cx(m) + βv(m)− β(1− c)v(m)]

= α[−d− cx(m) + βv(m)] + α[d− β(1− c)v(m)]

Then,

α[−d− cx(m) + βv(m)]

= αck + αβcv(0)−
(

(1− β)c

H(0)

)
v(m)− αd+ αβ(1− c)v(m)]

=

[
αβ(1− c)− (1− β)c

H(0)

]
v(m) + α[ck − d+ βcv(0)]. (A.4)

By integrating both sides of (A.4), we get

α

∫ Z

z

[−d− cx(m) + βv(m)]dH

=

[
αβ(1− c)− (1− β)c

H(0)

] ∫ Z

z

v(m)dH + α[1−H(0)][ck − d+ βcv(0)].

By (6),

{1− β + α[1−H(0)]β}v(0)

=

[
αβ(1− c)− (1− β)c

H(0)

] ∫ Z

z

v(m)dH + α[1−H(0)][ck − d+ βcv(0)].

⇔ {1− β + α[1−H(0)](1− c)β}v(0)
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=

[
αβ(1− c)− (1− β)c

H(0)

] ∫ Z

z

v(m)dH + α[1−H(0)](ck − d).

By Lemma 4,

{1− β + α[1−H(0)](1− c)β}v(0)

=

[
αβ(1− c)− (1− β)c

H(0)

] [
θH(0)v(0)

(1− θ)c

]
+ α[1−H(0)](ck − d).

Then,

{1− β + α[1−H(0)](1− c)β}(1− θ)cv(0)

= [αβ(1− c)H(0)− (1− β)c] θv(0) + α[1−H(0)](1− θ)c(ck − d).

Thus

v(0) =
αc(1−H(0))(1− θ)(ck − d)

c(1− β) + αβ(1− θ)(1− c)− (αβ(1− c)(c+ θ − cθ))H(0)
.

Substituting H(0) = (1−β)c
αβθ(1−c) into the denominator of the above, we obtain

c(1− β) + αβ(1− θ)(1− c)− c

θ
(1− β)(c+ θ − cθ) =

c(1− θ)(cβ + θαβ − c− cθαβ)

θ
.

Since

1−H(0) =
cβ + θαβ − c− cθαβ

αβθ(1− c)
,

we obtain

v(0) =
ck − d
β(1− c)

.

The proof of Proposition 1

The steps of the proof

1. Assuming the pay-all property, we derive some properties of the Nash bargaining so-

28



lution.

2. We present a candidate for (v,H).

3. We derive the conditions which guarantee the pay-all property. It can be seen that a

continuum of endogenously determined variables, including (v,H), satisfy the condi-

tions.

4. We show that the conditions in Step 3 are satisfied under the assumptions in Proposi-

tion 2,

5. Finally, we show the existence of equilibria. That is, (i) (v,H) in Step 2 is an equi-

librium, i,e., H is stationary and v satisfies Bellman equation, and (ii) there exist

parameters satisfying the assumptions in Proposition 2,

Step 1: Some properties of the Nash bargaining solution under the pay-all property

This step derives some properties the Nash bargaining solution in the case that a meeting

of a buyer holding mb and a seller holding ms, where the buyer pays all mb and the amount

of goods traded in the bargaining is positive. Note that in this step we do not assume the

linearity of v. The results will be used in the follwoing Steps. In these steps, the off-path

meetings will be also investigated, where agents hold non-equilibrium amount of money,

Lemma A.1. Suppose the pay-all property is satisfied, i.e., x(ms,mb, H) > 0 and q(ms,mb, H) =

mb, then

cx(ms,mb, H) = (1−θ)cβ[v(mb)−v(mb−q)]+θβ[v(ms+q)−v(ms)]−[(1−θ)ck+θd]. (A.5)

Moreover, the seller’s surplus is

(1− θ)
{
β[v(ms + q)− v(ms)]− cβ[v(mb)− v(mb − q)] + (ck − d)]

}
. (A.6)

and the buyer’s surplus is

(θ/c)
{
β[v(ms + q)− v(ms)]− cβ[v(mb)− v(mb − q)] + (ck − d)

}
(A.7)
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Proof. The first-order condition with respect to x is

−(1− θ)c[k + x+ β(v(mb − q)− v(mb))] + θ[−d− cx+ β(v(ms + q)− v(ms))] = 0.

Thus

cx = (1− θ)c[β(v(mb)− v(mb − q))] + θβ[v(ms + q)− v(ms)]− [(1− θ)ck + θd].

Using the above, the seller’s surplus is

−d− cx+ β(v(ms + q)− v(ms))

= −d−(1−θ)cβ[v(mb)−v(mb−q)]−θβ[v(ms+q)−v(ms)]+[(1−θ)ck+θd]+β[v(ms+q)−v(ms)]

= (1− θ)
{
β[v(ms + q)− v(ms)]− cβ[v(mb)− v(mb − q)] + (ck − d)]

}
.

Similarly, the buyer’s surplus is

k + x+ β(v(mb − q)− v(mb))

= k+(1−θ)β[v(mb)−v(mb−q)]+(θ/c)β[v(ms+q)−v(ms)]−[(1−θ)k+(θ/c)d]+β(v(mb−q)−v(mb))

= (θ/c)β[v(ms + q)− v(ms)]− θβ[v(mb)− v(mb − q)] + θk − (θ/c)d

= (θ/c)
{
β[v(ms + q)− v(ms)]− cβ[v(mb)− v(mb − q)] + ck − d

}

Step 2: The candidates for an equilibrium value function and an equilibrium money holding

distribution

First, note that v(0) = ck−d
β(1−c) and H(0) = (1−β)c

αβθ(1−c) are already given. The candidate for
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an equilibrium value function is as follows:

v(m) =

v(0) + am if m < m∗,

v(0) + F + bm if m ≥ m∗,
(A.8)

where a, b, F, and m∗ are parameters.

The candidate for a equilibrium money holding distribution satisfies Equation (14):

the support of the distribution H is {0} ∪ [z, Z].

In the following steps, it will be shown that H, z, and Z can be freely chosen, i.e., indeter-

minate, if they satisfy (1), (2), and Equation (15)

m∗ ≤ z < Z ≤ 1−m∗.

Next, we derive the relationship between the slopes a and b, The slope a is the marginal

life-time utility of money for sellers, and b is that for buyers. We show that a < b. A seller

needs to wait at least one period for being a buyer and purchasing goods; hence, the gain

from holding money is discounted by the time preference.

Lemma A.2. The coefficients a and b satisfy

a = χb, (A.9)

where χ ≡ αβ(1−θ)[1−H(0)]
{αβ(1−θ)[1−H(0)]+1−β} < 1.

Proof. Consider a meeting in which a seller holds ms < m∗ and a buyer holds mb ∈ [z, Z].

Note that from (15), the money holding of the seller after the trade does not exceeds the

maximum money holding 1. By (A.6),

v(ms) = α

∫
mb∈[z,Z]

[−d− cx(ms,mb, H) + β(v(ms +mb)− v(ms))]h(mb)dmb + βv(ms)
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Thus

ams = α(1− θ)
∫
mb∈[z,Z]

β[v(ms +mb)− cv(mb)]h(mb)dmb + α(1− θ)[h(Z)− h(z)][−βv(ms) + cβv(0)− (ck − d)] + βv(ms)

= α(1− θ)
∫
mb∈[z,Z]

βv(0) + F + b(ms +mb)− c[v(0) + F + bmb]}h(mb)dmb

−α(1− θ)[1−H(0)][aβms + (βc− 1)v(0) + ck − d] + βams + βv(0)

= α(1− θ)[1−H(0)](1− c)β[v(0) + F ] + α(1− θ)[1−H(0)]βbms + α(1− θ)(1− c)βb(M/m)

−α(1− θ)[1−H(0)](aβms + (βc− 1)v(0) + ck − d) + βams + βv(0)

Comparing the coefficients of ms in the LHS and the RHS yields

a = α(1− θ)[1−H(0)]β(b− a) + βa.

Step 3: The conditions on the parameters which guarantee the pay-all property We first

present a sufficient condition that there is no trade if ms + q(ms,mb, H) < m∗ or ms ≥ m∗.

Lemma A.3. Suppose

b(1−m∗) < d. (A.10)

Then the bargaining can reach the agreement if only if ms < m∗ < ms + q(ms,mb, H).

Proof. Suppose ms < m∗ < ms + q(ms,mb, H) does not hold and the bargaining reaches

the agreement with x(mb,ms) > 0 and q(ms,mb, H). The seller’s surplus does not contain

F . Then the maximum increase in the discounted utility by earning money is am∗, b(Z) or

b(1 −m∗). By a < b and (15), b(1 −m∗) is the largest among them. Then, the maximum

amount of the surplus does not exceed

−d+ b(1−m∗),

which is negative under (A.10). Note that −d is the cost of production in the case of

x = 0.
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We next present a condition that the all-pay property holds in a bargaining between a seller

without money and a buyer with mb ≥ m∗.

Lemma A.4. If

[(1− θ)c+ θ]βF > (1− θ)ck + θd, (A.11)

then x(ms,mb, H) > 0 and q(ms,mb, H) = mb hold in the bargaining between a seller with

ms = 0 and a buyer with mb ≥ m∗.

Proof. If x(ms,mb, H) = 0 in the Nash bargaining, then q(ms,mb, H) = 0, i.e., no trade,

and thus the surpluses of the agents are zero. As shown below, they can be positive and the

buyer and the seller trade.

If x(ms,mb, H) > 0, then by Lemma (A.1), q(ms,mb, H) = mb. Indeed, x(ms,mb, H) >

0 will be shown below, and the surpluses are positive.

From Lemma (A.1),

cx = (1− θ)cβ(F + bmb) + θβ(F + bmb)− [(1− θ)ck + θd]

= [(1− θ)c+ θ]β(F + bmb)− [(1− θ)ck + θd].

From (A.11), this is positive and thus x(ms,mb, H) > 0.

[(1− θ)c+ θ]β(F + bm∗) > [(1− θ)ck + θd]

The seller’s surplus is positive, because

−d− cx+ β(v(mb)− v(0))

= (1− θ) {(1− c)β[F + b(mb −m∗)] + (ck − d)} > 0

holds by mb ≥ m∗. Since the seller’s surplus is positive, so is the buyer’s one. Thus

x(ms,mb, H) > 0 and q(ms,mb, H) = mb hold.

33



Next, we show that the pay-all property holds in the bargaining between a seller with ms <

m∗ and a buyer with mb ∈ [z, Z].

Lemma A.5. If (A.11) and

[(1− θ)c+ θ]βF < (1− θ)ck+ θd+ (1− θ)(2− c)aβm∗− [(1− θ)c+ θ]bβ(Z−m∗) (A.12)

Hold, then, in the bargaining between a seller with ms < m∗ and a buyer with mb ∈ [z, Z],

x(ms,mb, H) > 0 and q(ms,mb, H) = mb hold.

Proof. If x(ms,mb, H) = 0 in the Nash bargaining, then q(ms,mb, H) = 0, i.e., no trade,

and thus the surpluses of the agents are zero. As shown below, they can be positive and the

buyer and the seller trade.

If q satisfies ms+q < m∗, then from Lemma (A.3), it can not be q(ms,mb, H). Therefore,

below we consider the case ms+q ≥ m∗. As for a buyer, we consider the cases (i) mb−q < m∗

and (ii) mb − q ≥ m∗.

Case (i): If x(ms,mb, H) > 0, then from Lemma (A.1), q(ms,mb, H) = mb holds. Indeed,

x(ms,mb, H) > 0 will be shown below, and the surpluses are positive. From Lemma (A.1),

cx = (1− θ)cβ(F + bmb) + θβ [F + b(mb +ms)− ams]− [(1− θ)ck + θd]

= [(1− θ)c+ θ]β(F + bmb) + θ(b− a)βms − [(1− θ)ck + θd]

hold. From (A.11), this is positive, and thus x(ms,mb, H) > 0.

The seller’s surplus is

−d−cx+βv(mb+ms)−βv(ms)) = (1−θ) [(1− c)β(F + bmb) + (b− a)βms + (ck − d)] > 0.

(A.13)

Similarly, the buyer’s surplus is positive.

Case (ii): In this case, q ≤ mb − m∗ and ms + q > m∗. Note that the buyer’s surplus

does not contain −F . The seller’s surplus is

−d− cx+ βv(ms + q)− βv(ms) = −d− cx+ aβms + βF + βb(ms + q)
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< −d+ βF + (b− a)βms + bβ(mb −m∗) (A.14)

Below. we show that the surplus in (A.14) is smaller than that in (A.13), i.e., Case (ii) does

not occur in the bargaining. The inequality is expressed as:

−d+βF+(b−a)βms+bβ(mb−m∗) < (1−θ) [(1− c)β(F + bmb) + (b− a)βms + (ck − d)] .

Since the RHS is equal to

(1− θ)(1− c)βF + (1− θ)(1− c)bβmb + (1− θ)(b− a)βms + (1− θ)(ck − d),

The above inequality is equivalent to

[(1− θ)c+ θ]βF < (1− θ)ck + θd+ bm∗ − θ(b− a)βms − [(1− θ)c+ θ]bβmb. (A.15)

Since ms < m∗,

[(1− θ)c+ θ]βF < (1− θ)ck + θd+ bβm∗ − θ(b− a)βm∗ − [(1− θ)c+ θ]bβmb (A.16)

is a sufficient condition for (A.15). Since mb < Z,

[(1− θ)c+ θ]βF < (1− θ)ck + θd+ [a+ (1− θ)b]βm∗ − [(1− θ)c+ θ]bβZ

is a sufficient condition for (A.16), and it is equivalent to

[(1−θ)c+θ]βF < (1−θ)ck+θd+aβm∗+[(1−θ)(1−c)−θ]bβm∗− [(1−θ)c+θ]bβ(Z−m∗).

(A.17)

Since b > a,

[(1−θ)c+θ]βF < (1−θ)ck+θd+aβm∗+[(1−θ)(1−c)−θ]aβm∗− [(1−θ)c+θ]bβ(Z−m∗)

is a sufficient condition for (A.17), and it is equivalent to (A.12).
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Step 4: The conditions in the Lemmas

Lemma A.6. Under the assumptions in Proposition 1, there exists a continuum of (z, Z,H,m∗,M, a, b, F )

satisfying the following conditions in the previous Lemmas:

• b > 0

• (15): m∗ ≤ z < Z ≤ 1−m∗

• H is a Borel measure on R satisfying that the support is {0}∪ [z, Z],
∫
dH = 1−H(0),

and
∫
mdH = M

• (A.10): b(1−m∗) < d

• (A.11): [(1− θ)c+ θ]βF > (1− θ)ck + θd

• (A.12): [(1−θ)c+θ]βF < (1−θ)ck+θd+(1−θ)(2−c)aβm∗− [(1−θ)c+θ]bβ(Z−m∗)

Proof. For simplicity, we denote x(m) = x(0,m,H). Assuming x(m) > 0, we first calculate

F . From the first order condition,

−d− cx(m) + β(v(m)− v(0)) =

(
(1− θ)c

θ

)
[k + x+ β(v(0)− v(m))].

On the other hand,

v(0) = α
∫ Z
z

[−d− cx(m) + βv(m)]dH + (1− α(1−H(0)))βv(0)

= α
∫ Z
z

[−d− cx(m) + β(v(m)− v(0))]dH + βv(0).

Thus, from (5),

v(0) =
1

1− β
α

∫ Z

z

[−d− cx(m) + β(v(m)− v(0))dH

=

(
(1− θ)c
θH(0)

)∫ Z

z

[v(0) + F + bm]dH

=

(
(1− θ)c
θH(0)

)
{Mb+ [1−H(0)][v(0) + F ]} .
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Thus

⇔ [1−H(0)]F =

(
θH(0)− (1− θ)c[1−H(0)]

(1− θ)c

)
v(0)−Mb

holds. Define φ ≡ θH(0)
(1−θ)[1−H(0)]c

. Then, from the above,

F = (φ− 1) v(0)−
(

M

1−H(0)

)
b,

and thus

b =
1−H(0)

M
[(φ− 1) v(0)− F ] . (A.18)

For some ε > 0, (A.11) can be rewritten as

[(1− θ)c+ θ]βF = (1− θ)ck + θd+ ε. (A.19)

Substituting Equation (A.19) into (A.18) derives

b =
1−H(0)

M

[
(φ− 1) v(0)− (1− θ)ck + θd+ ε

[(1− θ)c+ θ]β

]
. (A.20)

For a sufficiently small δ > 0, let m∗ = 1
2
− δ, Z̄ = 1

2
− δ

3
, z = 1

2
− 2δ

3
. Then Z̄ −m∗ = 2

3
δ.

We can choose M satisfying

[1−H(0)]z < M < [1−H(0)]Z̄. (A.21)

Then there exists a measure H on [z, Z̄] satisfying
∫ Z
z
dH = M and

∫ Z
z
dH = 1−H(0).

Next, we show that there exists b > 0 satisfying (A.12). Let

χ ≡ αβ(1− θ)[1−H(0)]

αβ(1− θ)[1−H(0)] + 1− β
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Then the sum of the last two terms in the right hand side of (A.12) is denoted by LTT:

LTT = (1− θ)(2− c)χβm∗b− [(1− θ)c+ θ]β(Z −m∗)b
= (1− θ)(2− c)χβ

(
1
2
− δ
)
b− [(1− θ)c+ θ]β

(
2
3
δ
)
b

= (1− θ)(2− c)χβ b
2
−
[
(1− θ)(2− c)χβ + [(1− θ)c+ θ]β

(
2
3

)]
δb.

Note that the conditions(A.11) and (A.12) are.

[(1− θ)c+ θ]βF = (1− θ)ck + θd+ ε,

[(1− θ)c+ θ]βF < (1− θ)ck + θd+ LTT

If, for some ε > 0 and γ > 1,

(1− θ)(2− c)χβ b
2

= γε, (A.22)

then both conditions hold for sufficiently small δ > 0. Solving (A.22) for ε and substituting

it to (A.20) yields

b =
1−H(0)

M

(φ− 1) v(0)−
(1− θ)ck + θd+ (1− θ)(2− c)χβ

(
b
2γ

)
[(1− θ)c+ θ]β

 .
Thus [

1 +

(
1−H(0)

M

)(
(1− θ)(2− c)χ
[(1− θ)c+ θ]

)(
1

2γ

)]
b

=
1−H(0)

M

[
(φ− 1) v(0)− (1− θ)ck + θd

[(1− θ)c+ θ]β

]
For b > 0, φ must be larger than one and

(φ− 1)v(0) >
(1− θ)ck + θd

[(1− θ)c+ θ]β
.
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Finally, b(1−m∗) < d holds for a γ close to one and a sufficiently small δ > 0 if

1−H(0)
M

[
(φ− 1) v(0)− (1−θ)ck+θd

[(1−θ)c+θ]β

]
[
1 +

(
1−H(0)
M

)(
(1−θ)(2−c)χ
2[(1−θ)c+θ]

)] < 2d.

Step 5: The existence of equilibria

Below, we show that the linear value function considered in Proposition 1 satisfies the

Bellman equation (5) and (6), (Lemmas A.8 and A.9) and the money holdings distribution

presented in the previous step is stationary. (Lemma A.7) That is, there exist equilibria. Note

that there exist a continuum of pay-all equilibria, since (z, Z,H,m∗,M, a, b, F ) satisfying the

conditions in Lemma A.6 is also a continuum.

In the following three Lemmas, we assume the assumptions in Proposition 1, and thus

all the Lemmas in the previous Steps can be used.

Lemma A.7. Under the assumptions in Proposition 1, (m∗, z, Z,H) given in the previous

step is stationary.

Proof. In the distribution H, some agents do not have money, and the other agents have

money in [z, Z]. From Lemma A.3, a buyer without money does not trade. Similarly, a

seller with money in [z, Z] does not trade. Thus, on an equilibrium path, a trade occurs

only in the case that a seller does not have money and a buyer has money mb ∈ [z, Z]. From

Lemma A.4, the pay-all property holds and, after the trade, the seller has money mb ∈ [z, Z]

and the buyer does not have money. Therefore, the money holdings distribution remains the

same.

Lemma A.8. Under the assumptions in Proposition 1, the linear value function defined as

Equation (13) is consistent with Equation (5).

Proof. We substitute Equation (13) to the right-hand side of Equation (5) and then check

it is actually v(m). For convinience, Equation (5) is

v(m) = αH(0)[k + x(m) + βv(0)] + [1− αH(0)]βv(m)

= αH(0){k + x(m) + β[v(0)− v(m)]}+ βv(m)
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Consider the buyer’s surplus from the bargaining, k+ x(m) + β[v(0)− v(m)]. Under pay-all

equilibrium, the buyer pays m. By Equation (A.7), this buyer’s surplus is

k + x(m) + β[v(0)− v(m)] =
θ

c

{
β[v(m)− v(0)]− cβ[v(m)− v(0)] + ck − d

}
=
θ

c

[
β(F + bm) + cβ(F + bm) + ck − d

]
=
θ

c
[(1− c)β(F + bm) + (ck − d)] .

Then, the right-hand-side of Equation (5) is

αH(0){k + x(m) + β[v(0)− v(m)]}+ βv(m)

= αH(0)

(
θ

c

)
[(1− c)β(F + bm) + (ck − d)] + βv(m),

by Lemma 3,

= α

(
(1− β)c

αβθ(1− c)

)
θ

c
[(1− c)β(F + bm) + (ck − d)] + βv(m)

= (1− β)

(
F + bm+

ck − d
β(1− c)

)
+ βv(m),

by Lemma 5,

= (1− β) [F + bm+ v(0)] + βv(m),

= (1− β)v(m) + βv(m),

= v(m),

which is Equation (5).

Lemma A.9. Under the assumptions in Proposition 1, the linear value function defined as

Equation (13) is consistent with Equation (6).

Proof. Before the derivation of Equation (13), we first consider the seller’s surplus. By
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Equation (A.6),

= −d− cx(m) + β[v(m)− v(0)]

= (1− θ)
{
β[v(m)− v(0)]− cβ[v(m)− v(0)] + (ck − d)]

}
,

given Equation (13),

= (1− θ)[(1− c)β(F + bm) + ck − d],

= (1− θ)[(1− c)β(v(0) + F + bm)− (1− c)βv(0) + ck − d],

by Lemma 5,

= (1− θ)[(1− c)βv(m)− (ck − d) + ck − d],

= (1− θ)(1− c)βv(m). (A.23)

Now we show the consistency. Note that Equation (6) is

v(0) = α

∫ Z

z

[−d− cx(m) + βv(m)]dH + {1− α[1−H(0)]}βv(0).

Here, we substitute Equation (A.23) to the right-hand side of Equation (6) and derive v(0).

The right-hand side is equivalent to

α

∫ Z

z

[−d− cx(m) + βv(m)]dH + βv(0)−
∫ Z

z

αβv(0)dH

= α

∫ Z

z

{−d− cx(m) + β[v(m)− v(0)]}dH + βv(0).

By Equation (A.23), it is equivalent to

= α

∫ Z

z

(1− θ)(1− c)βv(m)dH + βv(0).

= α(1− θ)(1− c)β
∫ Z

z

v(m)dH + βv(0),
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by Lemma 4,

= α(1− θ)(1− c)β
[
θH(0)v(0)

(1− θ)c

]
+ βv(0)

=

[
α

(
1− c
c

)
θH(0) + 1

]
βv(0),

by Lemma 5,

=

[
α

(
1− c
c

)
θ

(
(1− β)c

αβθ(1− c)

)
+ 1

]
βv(0)

=

[
1− β
β

+ 1

]
βv(0)

= v(0).

This is the left-hand side of Equation (6).

Finally, c = 0.3, d = 0.7, k = 40, α = 0.8, β = 0.9.θ = 0.9, and M = 0.5 satisfy the

conditions in the proposition.

The proof of Lemma 7

By the government budget constraint (23), (25) is rewritten as

v(0) = α

∫ Z

z

(
−d− cx(m) + β{v(0) +F + bg[m− tx(m)]}

)
dH + {1−α[1−H(0)]}βv(0)

= α

∫ Z

z

{
−d−cx(m)+β[v(0)+F+bgm]

}
dH−α

∫ Z

z

βbgtx(m)dH+{1−α[1−H(0)]}βv(0)

= α

∫ Z

z

{
−d− cx(m) +β[v(0) +F + bgm]

}
dH −αβb(g− 1)M + {1−α[1−H(0)]}βv(0)

= α

∫ Z

z

{
−d−cx(m)+β[v(0)+F+bgm]

}
dH−αβb(g−1)

∫ Z

z

mdH+{1−α[1−H(0)]}βv(0)

= α

∫ Z

z

{
−d− cx(m) + β[v(0) + F + bm]

}
dH + {1− α[1−H(0)]}βv(0)
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= α

∫ Z

z

[
−d− cx(m) + βv(m)

]
dH + {1− α[1−H(0)]}βv(0)

The proof of Proposition 3

First, We will derive key equations.

Lemma A.10.

H(0) =
(1− β)(c+ (1− θ)βgtv′)

αβθ(1− c)
(A.24)

Proof. Shown below.

The seller’s population H(0) depends on g and t, that is, the policy alters the distri-

bution of money holdings. By changing the seller’s marginal welfare, the policy affects the

relative surplus in (24). Then, the associated distribution is also reshaped so as to keep the

stationarity.

Lemma A.11.∫ Z
z
v(m)dH

H(0)v(0)
=

θ

(1− θ)(c+ βgtv′)
(A.25)

Proof. Shown below.

This Lemma shows that the shift in bargaining surplus also affects the ratio of discounted

values between the two groups. The numerator,
∫ Z
z
v(m)dH, and the denominator, H(0)v(0),

represents the aggregate discounted sum of utilities of buyers and sellers, repsectively. The

long-run policy with g > 1 and t > 0 shifts welfare from buyers to sellers.

Lemma A.12.

v(0) =
ck − d
β(1− c)

. (A.26)

Proof. Shown below.

The proof of Lemma A.10
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First, we derive the consumption elasticity of discounted value ξ(m) =
x′(m)

v′(m)
. By (24),

(c+ (1− θ)βgtv′)x′ = (θβ + (1− θ)cβ + (1− θ)β2gtv′)v′,

⇔ ξ(m) =
βθ(1− c)

c+ (1− θ)βgtv′
+ β

Since the buyer’s value function is unchanged, we can also derive ξ(m) as in (7). Therefore,

βθ(1− c)
c+ (1− θ)βgtv′

+ β = ξ(m) =
1− β
αH(0)

+ β,

which leads to the expression of H(0).

The proof of Lemma A.11

From (5)[
(1− β)(1− θ)c)

αH(0)

]
v(m) = (1− θ)c{k + x(m) + β[v(0)− v(m)]}

⇒
[

(1− β)(1− θc)
αH(0)

] ∫ Z

z

v(m) =

∫ Z

z

(1− θ)c{k + x(m) + β[v(0)− v(m)]} (A.27)

By (6),

v(0) = α

∫ Z

z

[−d− cx(m) + βv(m)]dH + βv(0)− α
∫ Z

z

βv(0)dH

= α

∫ Z

z

{−d− cx(m) + β[v(m)− v(0])}dH + βv(0)

⇔
[

(1− β)θ

α

]
v(0) = θ

∫ Z

z

{−d− cx(m) + β[v(m)− v(0])}dH (A.28)
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Integrating the FOC of Nash bargaining solution, (24), derives

∫ Z

z

(1− θ)(c+ βgtv′)[k + x(m) + β[v(0)− v(m))]dH

=

∫ Z

z

θ{−d− cx(m) + β[v(m)− v(0)]}dH (A.29)

Substitute Equation (A.27) and (A.28) into (A.29), then

[
(1− β)(1− θ)c

αH(0)
+
βgtv′(1− β)(1− θ)c

cαH(0)

] ∫ Z

z

v(m)dH =

[
(1− β)θ

α

]
v(0),

which leads to the Lemma .

The proof of Lemma A.12

By (5),(
1− β
H(0)

)
v(m) = α{k + x(m) + β[v(0)− v(m))]}

⇔
(

(1− β)c

H(0)

)
v(m) = α{ck + cx(m) + βcv(0)− βcv(m)}

⇔ α[ck + βcv(0)− βcv(m)]−
(

(1− β)c

H(0)

)
v(m) = α[−cx(m)]

= α[d− d− cx(m) + βv(m)− βv(m)]

= α[−d− cx(m) + βv(m)] + α[d− βv(m)]

Then,

α[−d− cx(m) + βv(m)]

= αck + αβcv(0)−
(

(1− β)c

H(0)

)
v(m)− αd+ αβ(1− c)v(m)]

=

[
αβ(1− c)− (1− β)c

H(0)

]
v(m) + α[ck − d+ βcv(0)]. (A.30)
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By integrating both sides of (A.30), we get

α

∫ Z

z

[−d− cx(m) + βv(m)]dH

=

[
αβ(1− c)− (1− β)c

H(0)

] ∫ Z

z

v(m)dH + α[1−H(0)][ck − d+ βcv(0)].

By (6),

{1− β + α[1−H(0)]β}v(0)

=

[
αβ(1− c)− (1− β)c

H(0)

] ∫ Z

z

v(m)dH + α[1−H(0)][ck − d+ βcv(0)].

⇔ {1− β + α[1−H(0)](1− c)β}v(0)

=

[
αβ(1− c)− (1− β)c

H(0)

] ∫ Z

z

v(m)dH + α[1−H(0)](ck − d).

Let

X =

(
1 +

βGv′

c

)
.

Then by Lemma A.11,

{1− β + α[1−H(0)](1− c)β}v(0)

=

[
αβ(1− c)− (1− β)c

H(0)

] [
θH(0)v(0)

(1− θ)cX

]
+ α[1−H(0)](ck − d)

= [αβ(1− c)H(0)− (1− β)c]

[
θv(0)

(1− θ)cX

]
+ α[1−H(0)](ck − d).

Then,

⇔ {1− β + α[1−H(0)](1− c)β}(1− θ)cXv(0)

= [αβ(1− c)H(0)− (1− β)c] θv(0) + α[1−H(0)](1− θ)cX(ck − d).

Solving the above with respect to v(0), we obtain
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v(0) = Xcα (θ − 1) d−ck
θ(c(β−1)−H(0)αβ(c−1))+Xc(θ−1)(−β+αβ(H(0)−1)(c−1)+1)

(H(0)− 1) .

Substituting H(0) = (1−β)(c+(1−θ)βGv′)
αβθ(1−c) , the RHS of the above is equal to

Xc(d−ck)(c−cβ+Gv′β−θαβ−Gv′β2−Gv′θβ+cθαβ+Gv′θβ2)
β(c−1)(cθ+Xc2−Xcθ−cθβ−Xc2β+Gv′θβ+Xcθβ−Gv′θβ2+Xc2θαβ+Gv′Xcβ−Xcθαβ−Gv′Xcβ2−Gv′Xcθβ+Gv′Xcθβ2)

Substituting X = 1 + βGv′

c
, into

(c−cβ+Gv′β−θαβ−Gv′β2−Gv′θβ+cθαβ+Gv′θβ2)
(cθ+Xc2−Xcθ−cθβ−Xc2β+Gv′θβ+Xcθβ−Gv′θβ2+Xc2θαβ+Gv′Xcβ−Xcθαβ−Gv′Xcβ2−Gv′Xcθβ+Gv′Xcθβ2)

we obtain

c−cβ+Gv′β−θαβ−Gv′β2−Gv′θβ+cθαβ+Gv′θβ2

(c+Gv′β)(c−cβ+Gv′β−θαβ−Gv′β2−Gv′θβ+cθαβ+Gv′θβ2)
= 1

c+Gv′β
.

Therefore,

v(0) = Xc(ck−d)
β(1−c)(c+Gv′β) .

Since X =
(

1 + βGv′

c

)
,

v(0) = (ck−d)
β(1−c) .

The proof of Proposition 3

Define the total welfare as W = H(0)v(0) +
∫ Z
z
v(m)dH. Then, from Lemma A.11 and

Lemma A.12, it can be rewritten as

W = QH(0)v(0), (A.31)

where Q =
(

1 + θ
(1−θ)(c+βGv′)

)
.

Then,

∂W

∂t
=
∂Q

∂t
H(0)v(0) +

∂H(0)

∂t
Qv(0) +

∂v(0)

∂t
QH(0). (A.32)

From the definition of Q,

∂Q

∂t
=

−θβG′v′

(1− θ)(c+ βGv′)2
. (A.33)

From Lemma A.10,

∂H(0)

∂t
=

(1− β)(1− θ)βG′v′

αβθ(1− c)
. (A.34)
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From (A.26),

∂v(0)

∂t
= 0. (A.35)

Below, we obtain ∂W
∂t

. From (A.33), (A.34), and (A.35),

∂Q
∂t
H(0)v(0) + ∂H(0)

∂t
Qv(0) + ∂v(0)

∂t
QH(0) = βG′v′(1−β)(Gv′β(1−θ)2(2c+Gv′β)+c((c−1)θ2−2cθ+c))

αθ(1−c)(1−θ)(c+GV β)2

(A.36)

This is positive, if and only if

Gv′β (1− θ)2 (2c+Gv′β) + c((c− 1) θ2 − 2cθ + c) > 0. (A.37)

Considering (A.37)= 0 as an equation with respect to θ, it has two solutions c+βGv′

c−
√
c+βGv′

and

c+βGv′

c+
√
c+βGv′

. Suppose G′ > 0. Then ∂W
∂t

> 0, if and only if c+βGv′

c−
√
c+βGv′

< θ < c+βGv′

c+
√
c+βGv′

, since

the coefficient of θ2 is negative.
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