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1. Introduction 

 We experimentally investigate the predictability of classical economic theories 

of competitive market dynamics to predict paths of prices converging, diverging and 

switching. Smith (1965) has firstly discovered that price convergence in market 

experiments shows a close connection between theory of perfect competition originated 

by Walras (1874) and data drawn from a completely different environment. The abstract 

theory of the price change process is predictive even in environments with many noises 

that are totally different from the abstract model of perfect competition. The classical 

analysis of market behaviors does not address either the details of market institutions or 

individual decision makings (for details, see Negishi (1962), and Arrow and Hahn (1971)). 

In spite of that, Smith (1965) has shown by the continuous double auction that outcomes 

of the experimental market converge to predictions by the partial equilibrium models. 

Many studies of the experimental market have surprisingly shown that the market tends 

to balance with a pattern of prices that approximates the equilibrium of the fictional 

Walrasian auctioneers. It means that the standard market exchange follows the economic 

factors as if the Walrasian auctioneer manipulated prices. The experiment of continuous 

double auction, originated by Smith (1965), has been providing support for convergence 

to the competitive equilibrium and results of comparative statics with respect to shifts of 

excess demand function in the classical supply-demand model at which the equilibrium 

price is unique and dynamically stable in Walras’ sense. 

 It is well known that Scarf (1960) presents an example of three-commodity 

three-consumer exchange economy which generates limit cycles of the Walrasian price 

dynamics. His general equilibrium model cannot be reduced to a partial equilibrium 

model. Hirota (1981, 1985) and Mukherji (2007, 2012) have shown by using the exchange 

economy model of Scarf (1960) that, even given the total amount of commodities, the 

Walrasian price dynamics become either monotone convergence or limit cycles 

depending on distributions of individual endowments. Following Smith's pioneering 

experiment, Anderson et al. (2004), Goeree and Lindsay (2016) and Gillen et al.(2020) 

used the Scarf example to prove that the theory of unstable equilibrium is supported by 

data from experiments of continuous double auction.  

 Gale (1963) constructs a model of exchange economy with two kinds of 

commodities and two types of consumers having Leontief utility functions (L-shaped 

indifference curves). The Gale example can be reduced to a partial equilibrium model by 

normalizing the price of one good to be unity. This simplification enables us to consider 

the Walrasian price dynamics in terms of the market excess demand function for one 
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commodity, the functional form of which depends on the initial allocation of the two 

commodities to the consumers. In the Gale example, a positive equilibrium price uniquely 

exists, the price falls to zero once the excess demand for the good becomes negative, and 

the price keeps goes to infinity once the excess demand becomes positive. Crockett, Oprea 

and Plott (2011) call the unique equilibrium the “interior equilibrium,” and zero and 

infinity as the “corner equilibria,” and they gave strong support to the Walrasian price 

dynamics in their double auction experiment on the Gale example. They kept the excess 

demand curve so that stability properties of equilibria remain unchanged throughout the 

experiment: the interior equilibrium is unstable and conversely the corner equilibria are 

stable in the Walrasian price dynamics.  

 In this paper, we investigate the price dynamics in the Gale example by changing 

distributions of individual endowments such that the stability and instability of the three 

equilibria are reversed in the middle of the experiment. In our experiment, both of the 

supply and demand functions shift so that stability of the equilibria is reversed. We never 

inform previously subjects of when to change. More specifically, our experiment consists 

of two patterns: Treatments SU (Stable-Unstable) and US (Unstable-Stable). Treatment 

SU corresponds to the experimental setting of initial allocation with which the interior 

equilibrium is stable in Walrasian tatonnement dynamics in the first half of periods and 

unstable in the second half of periods. Treatment US means the experimental setting with 

which the interior equilibrium is unstable in the first half of periods and stable in the 

second half of periods. All subjects are never previously informed when their initial 

holdings of the commodities are to change although they know that their holdings may 

change from round to round of the experiment. Through this experiment, we test not only 

whether the Walrasian tatonnement system works for both of the stable and unstable 

equilibria but also whether the market mechanism recognizes changes in economic 

environment and how quickly it makes price adjustments. 

 The main results obtained from our continuous double auction experiment are as 

follows. We observe that when the interior equilibrium is unstable in Walrasian 

tatonnement dynamics, transaction prices show a tendency diverging from the 

equilibrium. When the interior equilibrium is stable, prices show a tendency converging 

to the equilibrium. However, theoretical predictions on transaction prices movement work 

out better when the interior equilibrium is unstable than when the interior equilibrium is 

stable. In addition, efficiency is higher when the interior equilibrium is unstable than 

when the interior equilibrium is stable. Moreover, no matter when the interior equilibrium 

is unstable or stable, the mean payoffs of subjects who have more endowment in the 
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commodity are higher than those who have fewer, that is, commodity suppliers receive 

larger payoffs than commodity demanders do because of high transaction prices. 

 Our study is closely related to the following papers. Plott and George (1992), 

Plott and Smith (1999), and Plott (2000) examined economies with multiple competitive 

equilibria such that the Walrasian model and the Marshallian model of price dynamics 

provide opposite predictions on the stability property of each equilibrium. They 

investigated which model is appropriate by conducting the continuous double auction 

experiments in which the stability of equilibria was reversed by changing demand or 

supply functions in the middle of their experiments. After several periods in each session 

of the experiment, Plott and George (1992) changed demand functions while keeping the 

same downward-sloping supply curve attributed to “forward-falling” individual supplies 

due to external economies of scale. Plott and Smith (1999) modified supply curves in the 

middle of the experiment, while keeping the same demand function with a positive slope 

because of the existence of a consumption externality. Both observed that stability is 

supported by the Marshallian model of dynamics. On the other hand, Plott (2000) reported 

that in the case of the downward-sloping supply curve derived from “backward-bending” 

individual supplies due to negative income effects, stability is captured by the Walrasian 

model. These works are concerned with partial equilibrium models of economies with 

externalities. We find support for the Walrasian dynamics, in particular, in the case where 

the interior equilibrium is Walrasian unstable in our experiment. As Plott (2000) pointed 

out, which theory of Walrasian or Marshallian dynamics is appropriate for a double 

auction market depends on the underlying reasons for supply and demand shapes.  

 Crockett, Oprea and Plott (2011) conducted the first experiment of the Gale 

example and gave support to the Walrasian model of price dynamics in double auction 

experiment. They write: “In this paper we provide a particularly strong test of the 

Walrasian hypothesis by experimentally studying a simple economy in which Walrasian 

dynamics predict highly implausible outcomes” (Crockett, Oprea and Plott, 2011, P.3197, 

ll.18-20). Their point was to carry out a “stress-test” on the predictions of Walrasian 

dynamics by using the original Gale example, in which the interior equilibrium is 

Walrasian unstable and the two corner equilibria are Walrasian stable. We offer in this 

paper a “harder stress-test” than theirs by conducting intrinsically two experiments 

subject to different initial conditions in one sequence without telling subjects previously 

when the conditions swich. Our observations thus reinforce results on the predictability 

of the Walrasian dynamics in a continuous double auction experiment with multiple units 

of virtual commodities. 
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 The paper is organized as follows. In Section 2, we present the model of an 

exchange economy with three competitive equilibria which we used to conduct our 

experiment. In Section 3, we explain the design and procedures of our experiment. 

Namely, we describe how we transformed the theoretical model into the experiments. In 

Section 4, we analyze the results of the experiment to find tendencies of the data and 

effects of our scientific controls. Section 5 is for concluding remarks. The appendices 

contain a theoretical analysis on the stability properties of equilibria in our model as well 

as our experimental instructions. 

 

2. The Gale Example of an Exchange Economy 

2.1. The Basic Model 

Following Crockett, Oprea and Plott (2011), we consider the variation of Gale’s 

(1963) exchange economy model with two kinds of goods called X (commodity) and Y 

(money as numeraire) and two types of consumers named 1 and 2. The utility functions 

of consumers 1 and 2 are of Leontief types in the following forms: 

( , ) min{ , } i i i i i i iU x y a x y b    ( 1,2)i   

Given consumer 1’s endowment, 1 1( , )
yxw w , and consumer 2’s, 2 2( , )

yxw w , a unique 

interior competitive equilibrium price for good X relative to good Y is given by 

1 2 2 1 1 2( ) / ( )    p a m a m m m , where   
y x

i i i iim w b a w , if it exists. 

Throughout the experiment, we fix the preference parameters of consumers as 

1 25,a 2 720,a 1 2000, b  and 2 4000b  and the total available amount of each good 

as 1 2 20 x xw w  and 1 2 6000 
y y

w w .1 However, we prepare two different endowment 

distributions as described below. Under one endowment distribution, the interior 

equilibrium is Walrasian stable, whereas it is Walrasian unstable under the other. 

 

2.2. The Stable Case 

In the first case, we set the endowment of each type as 1 1( , ) (2,3500)
yxw w   and 

2 2( , ) (18,2500)
yxw w  . This endowment distribution and the preference parameters 

specified in the previous section generate an interior competitive equilibrium (ICE) 

                                                   
1 The total available amount of each good is the same as that in the experiment by Crockett, Oprea, and Plott (2011), 

but the endowment distribution and the preference parameters are different. 
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price, 
501

88250
* p  176.14 and the ICE allocation is given by  

( 1x , 1y ; 2x , 2y ) = 









139

30
1970,

139

944
4;

139

30
2230,

139

944
16 . 

Figure 1 illustrates the expansion paths of consumers and the ICE in an Edgeworth box.  

Figure 2 plots net supply and demand functions of good X with respect to the 

endowment in this economy. At any price above (below) the ICE price, type 2’s supply 

for good X is larger (smaller) than type 1’s demand, that is, there is an excess supply 

(demand), so that the price decreases (increases) according to Walrasian price adjustment 

process. Hence, the ICE is stable.2 

 

 

Figure 1. Exchange Economy with a Stable Interior Equilibrium 

                                                   
2 See the Appendix 1 for the formal definitions of Walrasian price adjustment process and stability as well as the 

derivations of market demand functions. 
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Figure 2. Supply and demand Curves for Good X with a Stable Interior Equilibrium 

 

In our experiment, subjects chose integers as trading units, not real numbers as in 

usual theory. Thus, it is significant to examine a discrete version of the exchange economy 

corresponding to the experimental setting to make a rigorous theoretical prediction. 

Figure 3 depicts the offer curves of two consumers and the ICE allocations in the 

Edgeworth box for the discretized exchange economy. The set of ICE allocations is the 

intersection of the two offer curves. It is the set of feasible integer allocations satisfying 

1 9 x  and 1 [2205,2380]y   in terms of consumer 1’s consumption bundles. Figure 4 

demonstrates net supply and demand curves for this discretized exchange economy. The 

set of ICE prices is drawn as an interval, 𝑝∗ ∈ [160,185] , with green dotted lines in 

Figure 4 (a cone with green dotted lines in Figure 1).  
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Figure 3. Discrete Version of the Exchange Economy with Stable Interior Equilibria 

 

Figure 4. Discretized Supply and demand Curves with Stable Interior Equilibria 
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2.3. The Unstable Case 

In the second case, we set the endowment distribution as 1 1( , ) (16,1100)
yxw w   

and 2 2( , ) (4,4900)
yxw w  . With this endowment distribution and the preference 

parameters described in Section I.1, a unique ICE price is given by 
236

39275
*p   

166.42 and the ICE allocation is given by 

( 1x , 1y ; 2x , 2y ) = 









139

30
1970,

139

944
4;

139

30
2230,

139

944
16 , 

which is identical with the ICE allocation in the stable case. Figure 5 shows the expansion 

paths of consumers and the ICE in an Edgeworth box. 

Figure 6 illustrates net supply and demand functions of good X with respect to the 

endowment. At any price above (below) the ICE price, type 1’s supply for good X is 

smaller (larger) than type 2’s demand, that is, there is an excess demand (supply), so that 

the price increases (decreases) according to Walrasian price adjustment process. Thus, the 

ICE is unstable. 

 

 

Figure 5. Exchange Economy with an Unstable Interior Equilibrium 
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Figure 6. Supply and demand Curves for Good X with an Unstable Interior Equilibrium 

Figure 7 demonstrates the offer curves of two consumers and the ICE allocations in 

the Edgeworth box for the discretized exchange economy. The set of ICE allocations, 

which is the intersection of the two offer curves, is the set of feasible integer allocations 

satisfying 1 9 x and 1 [2206,2409]y  in terms of consumer 1’s consumption bundles. 

There are also corner equilibrium allocations satisfying 1 15 x  and 1 [3351,6000]y . 

Figure 8 shows net supply and demand curves for the discretized exchange economy. The 

set of ICE prices is drawn as an interval, 𝑝∗ ∈ [158,187] , with green dotted lines in 

Figure 8 (a cone with green dotted lines in Figure 5).  
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Figure 7. Discrete Version of the Exchange Economy with Unstable Interior Equilibria 

 

 

Figure 8. Discretized Supply and demand Curves with Unstable Interior Equilibria 
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Table 1 summarizes the equilibrium predictions. Notice that the set of discrete 

equilibrium prices and the set of discrete equilibrium allocations are almost the same 

between in the stable case and in the unstable case. In particular, there is no difference 

in the equilibrium distribution of good X. Moreover, the Euclidean distance between the 

endowment point and an interior equilibrium allocation point in the Edgeworth box is 

almost the same. Nevertheless, the stability property of equilibrium is opposite in the 

two cases. 

 

Table 1. Theoretical Predictions about Discrete Interior Equilibria 

 Endowment Price 

Px/Py 

Allocation 

Walrasian 

Stability 
Type 1        Type 2        Type 1        Type 2        

stable 
1 2xw   

1 3500
y

w   

1 18xw   

1 2500
y

w   
[160, 185] 

1 9x   

1y  [2205, 2380] 

2 11x   

2y  [3620, 3795] 

unstable 
1 16xw   

1 1100
y

w    

1 4xw   

1 4900
y

w   
[158, 187] 

1 9x   

1y  [2206, 2409] 

2 11x   

2y  [3591, 3794] 

 

3. Experimental Design and Procedures 

Our experiment studies the effects of endowment changes on price adjustment 

dynamics. It consists of two treatments: Treatments SU and US. Treatment SU 

corresponds to the setting in which the interior equilibrium is stable in Walrasian 

tatonnement dynamics with the endowments in each of the first half of periods, whereas 

it is unstable with the endowments in each of the second half of periods. Treatment US 

corresponds to the setting in which the interior equilibrium is unstable with the 

endowments in the first half of periods, whereas it is stable with the endowments in the 

second half of periods. 

 We conducted two sessions in each of the two treatments at Tokyo Institute of 

Technology during December of 2016 and July of 2017. Twenty subjects participated in 

each session (80 separate subjects in total). We recruited the student subjects by campus-

wide advertisement. These students were told that there would be an opportunity to earn 

money in a research experiment. None of them had prior experience in a market 

experiment. No subject attended in more than one session. Each session took 

approximately three hours to complete. The mean payoff per subject was $43.22 ($1=100 

yen) in Treatment SU and it was $42.59 in Treatment US. 

In each of four sessions, the twenty subjects were seated at computer stations that 
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were separated with visual partitions in the Experimental Economics Laboratory at Tokyo 

Institute of Technology. In each session, half of subjects played the role of type 1 

consumer and the other half did the role of type 2 consumer, forming a replica of the 

economy described above. Their roles were fixed throughout the experiment. Subjects are 

possible to buy and sell units of x using the numeraire y as the medium of exchange. Trade 

was conducted via computerized continuous double auction using the z-Tree program 

(Urs Fischbacher, 2007). 

At the beginning of a session, each subject received one experimental instruction, 

one record sheet, and one payoff table indicating how his/her payoff depends on the 

amounts of x and y. Subjects were possible to track their potential earnings using their 

payoff tables that allowed them to calculate the payoff consequences of prospective trades. 

We explicitly noticed to each of them that he/she was not allowed to reveal any 

information regarding his/her payoff table or endowment to any other subject. We also 

told that his/her initial holdings of the commodities may change from round to round of 

the experiment although he/she was not informed when such a change is to happen. 

Each session was divided into a sequence of 13 trading periods, each lasting 6 

minutes. We conducted a stationary repetition procedure, following the assumption of 

tatonnement price adjustment dynamics with a fixed endowment. Holdings of 

commodities were reset at the end of each period: allocations and induced payoffs were 

returned to endowment levels for the next period of trade.3 In Treatment SU, we changed 

subjects’ endowments at the beginning of period 7. The interior equilibrium is stable with 

the endowments for periods 1-6, while it is unstable with the endowments for periods 7-

13. On the other hand, in Treatment US, we altered subjects’ endowments at the beginning 

of period 8. The interior equilibrium is unstable with the endowments for periods 1-7, 

while it is stable with the endowments for periods 8-13. 

 

4. Results 

4.1. Transaction Price 

Figures 9 displays the plotted raw transaction prices from each session of the 

experiment. The vertical green lines refer to periods, the vertical purple lines indicate that 

endowments were changed after this period, and the horizontal dotted and solid red lines 

represent the bounds of the equilibria. 

As shown in the figure, prices begin similarly near the equilibrium in each session. 

Then, they show a tendency away from the bounds of the equilibria in the two sessions 

                                                   
3 Subjects earned cash payments based on payoffs of their allocations at the end of one period that was randomly 

chosen from 13 periods at the end of the session. 
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of Treatment US (especially in US1) and a tendency close to the bounds in the two 

sessions of Treatment SU (especially in SU2). After changing endowments, prices 

primarily away from the equilibria bounds in the sessions of US1 and US2 start to fall 

and reach near to the equilibria bounds at the end. In contrast, those primarily near to the 

equilibria bounds in the sessions of SU1 and SU2 begin to rise and never fall in their 

bounds of the equilibria at the end. These provide us with our first observation. 

 

OBSERVATION 1: When the interior equilibrium is unstable in Walrasian tatonnement 

dynamics, transaction prices show a tendency moving away from the equilibrium. When 

the interior equilibrium is stable, prices show a tendency moving toward the equilibrium.  

 

Figure 10 shows the weighted average prices per period in each session of the 

experiment. The weighted average prices per period are the mean of subjects’ weighted 

prices per period. A subject’s weighted price per period is calculated by dividing the sum 

of traded y by the sum of traded x. As indicated in the figure, the weighted average prices 

obviously re-exhibit OBSERVATION 1.  
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Figure 9. Prices Plotted in Four Sessions 

 

 

Figure 10. Weighted Average Prices Per Period in Four Sessions 
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To test OBSERVATION 1, we estimate the following linear equation by fixed effects 

model for panel data. 

isp is s s s ispln(PRICE ) Period Period Unstable Unstable                 (4.1) 

where ln(PRICEisp) is a log specification of the weighted price of individual i in period p 

of session s. Unstable is a dummy for the periods with an unstable equilibrium. 

 

Regression results are presented in Table 2. In the US1 session (resp. US2 session), 

the estimates of s  is – 0.218 (resp. –0.042), which indicates that there is a significant 

19.6% (resp. 4.1%) decrease in transaction price each period when the interior 

equilibrium is changed from the unstable to the stable. The estimates of s   are 

significantly positive at 0.500 (resp. 0.195) in the US1 session (resp. US2 session), which 

demonstrates a clear difference between price movements in the periods with unstable 

and stable interior equilibria. Summing s  and s  and exponentiating it, we find that 

transaction prices rise by 32.6% (resp. 16.5%) per period in the US1 session (resp. US2 

session) when the interior equilibrium is unstable.  

 

Table 2. Regressions of Transaction Price 

 US1 session US2 session SU1 session SU2 session 

Constant  8.152 

 (0.176) 

  6.125 

(0.128) 

  4.786 

 (0.062) 

  5.698 

 (0.056) 

Period   –0.218 

 (0.019) 

 –0.042 

 (0.012) 

  0.090 

 (0.006) 

  0.001 

 (0.015) 

Period×Unstable 0.500 

 (0.021) 

  0.195 

 (0.134) 

 –0.026 

 (0.020) 

  0.294 

 (0.018) 

Unstable  –3.331 

 (0.186) 

 –1.030 

 (0.134) 

  0.116 

 (0.143) 

 –1.906 

 (0.130) 

     

R2 (overall)   0.676   0.487   0.393   0.838 

Observations    258   258   259   260 

Notes: Standard errors are in the parentheses. 
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The signs of s  are estimated significantly negative, which means that the initial 

prices in the periods with unstable equilibrium are significantly lower than those with 

stable equilibrium. In the SU1 and SU2 sessions, the significance of our estimates is 

mixed. Prices in the SU1 session are implied a significantly positive increase in the 

periods with a stable equilibrium. Although Figure 9 displays an increase tendency in the 

latter periods with an unstable equilibrium, this tendency is not significant. In contrast, 

prices in the SU2 session are indicated a significantly positive increase in the periods with 

an unstable equilibrium, but the estimates also suggest that there is no significant 

tendency in the periods with a stable equilibrium. 

 

To confirm the above regression results, we also conduct the Mann-Kendall trend 

test on period weighted average price, pooled individual raw price, and weighted price 

of each subject. These results are presented in Table 3. In periods with unstable 

equilibrium, both period weighted average price and pooled individual raw price indicate 

highly significant increasing trends. In periods with stable equilibrium, both period 

weighted average price and pooled individual raw price indicate significant decreasing 

trends in the two sessions of Treatment US, while in the two sessions of Treatment SU, 

the results are mixed with significantly positive trend, significantly negative trend, and 

no significant trend. With respect to weighted price of each subject, in periods with 

unstable equilibrium, 95%, 70%, 90%, and 95% subjects show significant (at the 0.05 

level or below) increasing trends in the US1, US2, SU1, and SU2 sessions, respectively. 

In periods with stable equilibrium, 75% and 40% subjects show significant (at the 0.05 

level or below) decreasing trends in the US1 and US2 sessions, respectively, while most 

of the subjects do not show significant trends in the SU1 and SU2 sessions. These 

statistical evidences obtained from the regression analysis and Mann-Kendall trend test 

generate our first result. 

 

RESULT 1: Theoretical predictions on transaction prices movement work better when 

the interior equilibrium is unstable in Walrasian tatonnement dynamics than when the 

interior equilibrium is stable. 
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Table 3. Results of Mann-Kendall Trend Test 

Period weighted average price US1 

session 

US2 

session 

SU1 

session 

SU2 

session 

Periods with stable equilibrium  – 

(p=0.009) 

 – 

(p=0.003) 

 + 

(p=0.26) 

 – 

(p=0.452) 

Periods with unstable 

equilibrium 

+ 

(p=0.003) 

+ 

(p=0.003) 

+ 

(p=0.003) 

+ 

(p=0.003) 

Pooled individual raw price US1 

session 

US2 

session 

SU1 

session 

SU2 

session 

Periods with stable equilibrium  – 

(p<0.0001) 

 – 

(p<0.0001) 

 + 

(p=0.001) 

 – 

(p=0.004) 

Periods with unstable 

equilibrium 

+ 

(p<0.0001) 

+ 

(p<0.0001) 

+ 

(p<0.0001) 

+ 

(p<0.0001) 

Weighted price of each subject US1 

session 

US2 

session 

SU1 

session 

SU2 

session 

Periods with stable equilibrium* 75% –   40% – 10% +; 5% 

– 

5% +; 5% 

– 

Periods with unstable 

equilibrium* 

  95% +   70% +   90% +   95% + 

Notes: + and – stand for the positive and negative trends, respectively. The p values of 

testing whether these trends are significant or not are provided in the parentheses.  

*Results in this row denote the percentages of the significant positive or negative trends 

at the 0.05 level or below. 

 

4.2. Payoffs 

We plot mean payoffs of types 1 and 2 subjects by stable and unstable 

conditions in Figure 11. The payoff for the interior equilibrium is marked red 

diamond in the figure (i.e., 3075 for type 1 subjects and 7200 for type 2 

subjects). It is shown that in each session the mean payoffs of type 1 subjects 

are higher when the interior equilibrium is unstable than when the interior 

equilibrium is stable. This is because the prices moved upward from the 

interior equilibrium when it is unstable, which made the type 1 subjects who 

had more endowments in x better off. In contrast, the prices did not fall 

toward to the interior equilibrium when it is stable, which made the type 1 

subjects who had fewer endowments in x worse off. However, it is oppositely 

observed for type 2 subjects. Their mean payoffs in each session are higher 

when the interior equilibrium is stable than when the interior equilibrium is 
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unstable. The above-mentioned price movements can also explain this 

phenomenon. These provide us with our second observation. 

 

Figure 11. Mean Payoffs of Types 1 and 2 Subjects by Stable and Unstable Conditions 

 

OBSERVATION 2: No matter when the interior equilibrium is unstable or stable in 

Walrasian tatonnement dynamics, the mean payoffs of subjects who have more 

endowment in x are higher than those who have fewer.  

 

In addition, we also plot mean payoffs of types 1 and 2 subjects by periods and 

sessions in Figure 12. The horizontal axis refers to the mean payoff of 10 type 1 subjects 

in one session, and the vertical axis refers to the mean payoff of 10 type 2 subjects in the 

same session. The numbers from 1 to 13 correspond to period 1 to period 13. The payoff 

for the interior equilibrium is marked red, and the utility possibility frontier is exhibited 

by the blue line in the figure. As can be seen from the figure, most of the data are plotted 

around the utility possibility frontier, which indicates that subjects seem to have 

performed efficiently in the experiment. In the next subsection, we discuss the issue of 

efficiency more formally and test statistically whether efficiency is the same between 

when the interior equilibrium is stable and when the interior equilibrium is unstable. 
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Figure 12. Mean Payoffs of Types 1 and 2 Subjects by Periods and Sessions 

 

4.3. Efficiency 

We create an index named frequency of inefficient pairs to investigate the issue 

of efficiency. To calculate this index, at the end of each period, for each pair of 20 subjects, 

we examine whether their allocations could be Pareto-improved by trading. Then this 

index is defined as the number of the improved pairs divided by the number of all pairs 

(190). Figure 13 displays the frequency of inefficient pairs in each session, and provides 

us with our third observation. 

 

Figure 13. Frequency of Inefficient Pairs in Four Sessions 
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OBSERVATION 3: Efficiency is higher when the interior equilibrium is unstable than 

when the interior equilibrium is stable, because the frequency of inefficient pairs is lower 

when the interior equilibrium is unstable than when the interior equilibrium is stable, 

especially in US1 and SU2 sessions.  

 

To test OBSERVATION 3, we use the random effect panel probit model in the 

regression. The dependent variable is a dummy variable of Inefficiency that equals to 1 if 

a subject can improve his/her efficiency, 0 otherwise. Unstable is a dummy for the periods 

with an unstable equilibrium. Table 4 reports the regression results. In US1, US2, and 

SU2 sessions, Unstable is estimated with significantly negative signs, indicating that the 

probability of a subject can improve his/her efficiency (i.e., a subject behaves 

inefficiently) is lower when the interior equilibrium is unstable than when the interior 

equilibrium is stable. In addition, the marginal effect of Period is also significantly 

negative in these sessions, which suggests that the probability of Inefficiency decreases 

with the passing the trading periods. Furthermore, both Unstable and Period are not 

significant in SU1 session. These statistical evidences generate our second result. 

 

RESULT 2: Efficiency is higher when the interior equilibrium is unstable in Walrasian 

tatonnement dynamics than when the interior equilibrium is stable. 

 

 

Table 4. Probit Regressions of Inefficiency (Marginal Effects) 

 US1 session US2 session SU1 session SU2 session 

Period   –0.015 

 (0.004) 

 –0.022 

 (0.004) 

 –0.004 

 (0.003) 

–0.010 

 (0.004) 

Unstable  –0.188 

 (0.029) 

 –0.122 

 (0.032) 

 –0.030 

 (0.024) 

 –0.181 

 (0.027) 

     

log-likelihood  –1002.665  –1268.640  –810.442  –882.511 

Observations    2470   2470   2470   2470 

Notes: Standard errors are in the parentheses. 

 

 

  



22 

 

5. Concluding Remarks 

We have studied price dynamics by changing endowments so that the stability of 

equilibria is reversed in the middle of our double auction experiment. We observed that 

when the interior equilibrium was unstable (resp. stable) in Walrasian tatonnement 

dynamics, transaction prices displayed a tendency moving away from (resp. toward to) 

the equilibrium. However, theoretical predictions on transaction prices movement worked 

better when the interior equilibrium was unstable than when the interior equilibrium was 

stable. In addition, efficiency was higher when the interior equilibrium was unstable than 

when the interior equilibrium was stable. 

There are several open questions to be examined. In this paper we have focused on 

a double auction as one type of market organization. However, there are much recent 

experimental work pointing out that market organization is potentially important. Plott 

and George (1992) confirmed robustness of their results by studying sealed bid/offer 

auctions and the tatonnment process in addition to double auctions. In order to examine 

the stability of competitive equilibrium of Scarf’s (1960) economy, Anderson et al. (2004) 

conducted a double auction market experiment and Goeree and Lindsay (2016) 

investigated a laboratory schedule market. Plott and Pogorelskiy (2017) showed that in 

their call market experiments, the Newton-Jaws model based on the Newton method 

provides a better description of how the markets operate than the Walrasian model. Shen 

et al. (2016) and Qin et al. (2018) analyzed a trading pit market experiment regarding a 

model of exchange economy with three equilibria. It remains to check whether our results 

in the double auction market hold in these market organizations. 

In our experiment, we allowed prices to initiate freely and there was no price control 

over all periods. On the other hand, Crockett, Oprea and Plott (2011) controlled the sign 

of initial excess demand using price controls. Following several periods with no price 

control, they tried to reverse observed price dynamics by switching the sign of the 

market’s excess demand using price controls. They found that dynamics once established 

were typically sticky and difficult to reverse with price controls. It is interesting to check 

whether dynamics are sticky once seeded by introducing price controls, such as imposing 

a price floor above the interior equilibrium or imposing a price ceiling below the interior 

equilibrium, in our experiment. 
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Appendix A. Global Stability and Instability of Equilibrium in the Gale Example 

 

A.1.  Basic Model  

In the exchange economy model under investigation, there are two consumers of 

types 1 and 2, who trade goods and . Denote by and  consumption level by 

{1,2} of and , respectively.  The consumer of type {1,2} has a Leontief 

utility function 

 = , 

where  is a positive real number and  is a real number. For consumer , the ray 

 = is the expansion path, which is the locus of kinked points of L-shaped 

indifference curves. Let , and  represent consumer ’s endowment of and , 

respectively.  Then, a Leontief exchange economy is characterized by the list of 

parameters (  ,  ,  ,  ;  ,  ,  ,  ). We choose   as numeraire so as to 

normalize its price to be one. Denote by  the price of , which is a positive real 

number. Then the budget constraint of consumer  is: 

. 

Consumer   solves the following utility maximization problem under the budget 

constraint: 

Maximize  

subject to . 

Then the individual demand functions   and   for goods  and   of 

consumer  are derived as follows: 

 

Case 1:  

 

Case 2:  
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. 

The market excess demand function  for good  is defined by 

. 

By Walras’ law,   if  . Namely, 

the market clearing of  is achieved by that of . Thus, we only need to focus on the 

market of  in order to investigate the price adjustment process out of equilibrium. We 

define the key concepts in the theory of competitive market with two commodities. 

 

Definition. The positive price   is an ICE price (interior competitive equilibrium 

price) if  . The adjustment process is Walrasian if there is a positive real 

number  such that , where  is the derivative of  with respect to time. 

The ICE price   is globally stable if the adjustment process is Walrasian and  

converges to  given any  and any initial value of . The ICE price  is 

globally unstable if the adjustment process is Walrasian and  never converges to  

given any initial value of . 

 

By definition,  is globally stable if and only if  for all  and 

 for all , and  is globally unstable if and only if  for all 

 and  for all .  

 

A.2.  The Stable Case 

The stable case is a Leontief exchange economy with the parameters 

, , , ; 

, , ,  

Then,  

<0, 

< 0.  

The utility functions of types 1 and 2 are respectively: 

 = , and 

 = . 

The expansion paths of types 1 and 2 are respectively: 
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( , ; , ) =  

=  

The individual demand functions for  are: 

 

As long as we consider positive prices only, we have 

 

 

Then, the market excess demand function for  is: 

 

The unique ICE price is =176.14… The associated consumptions * and 

*  of  are: 

= = = ,and 

= = , 

which are consistent with the intersection of the expansion paths. The associated utilities 

of consumers 1 and 2 are 32000/139 and 1080000/139, respectively. In addition, 

  if  , and   if  . Hence, the ICE price 

 is globally stable.  

 

Remark. In the stable case, there are two “extreme competitive prices”: one is 0, which 

gives the horizontal budget line, and the other is , which gives the vertical budget line. 

These two budget lines support the upper contour sets of both types of consumers. Recall 

that  if , then price never converges to 0. In addition,  if 
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 implies that price never diverges to . 

 

Remark. An ICE price is not always globally unstable even if it is not globally stable.  

 

A.3.  The Unstable Case 

The unstable case is a Leontief exchange economy with the parameters 

, , , ; 

, , ,  

Note that the values of  ( , ; , )  are the same as in the stable case. In addition, 

<0, 

> 0.  

The utility functions of types 1 and 2 are respectively: 

 = , and 

 = . 

The expansion paths of types 1 and 2 are respectively the same as in the stable case, so 

that the intersection of the two paths remains unchanged: 

 ( , ; , ) =  

=  

The individual demand functions for  are: 

 

Thus,  
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Then, the market demand function for  is: 

 

The ICE price is  =166.42… Notice that 56.25 <  < 3150.  The 

associated consumptions * and * of  are: 

= = = , and 

= = , 

which are consistent with the intersection of the expansion paths. The associated utilities 

of consumers 1 and 2 are 32000/139 and 1080000/139, respectively. In addition, 

  if  , and   if  , so that   is globally 

unstable. 
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