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Summary.This paper considers the case where instrumental variable (IV)
are available to infer the e¤ect of interested variable to the outcome (or
the causal e¤ect), but some components of IV are missing with the missing
mechanism of not missing at random (NMAR). Although NMAR requires the
analysis to prespecify the missing mechanism, it is unknown for us and what
is worse, it is generally not identi�ed. We use the IV distribution of original
population as an auxiliary information, and show that missing mechanism
can be represented as identi�able nonparametric generalized additive model.
We also introduce MCMC algorithm that impute the missing values and
simultaneously estimate parameters of interested.

Key words: Instrumental variable; missing not at random; auxiliary in-
formation.

1. Introduction
When it is not feasible to conduct randomized controlled trials (RCT) or
quasi-randomized experiments, the IV approach can be a very useful tool to
infer the causal e¤ect if it is possible to �nd su¢ cient IVs. Since they can
properly eliminate the confoundings caused by unobserved factors, IV models
are developed and applied in many empirical economics researches, where
unobserved confoundings are ubiquitous. Therefore, introducing su¢ cient
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IVs can in itself be great invention, and many researchers are trying to �nd
them.
Despite the desperate e¤orts, IVs tend to be missing. For example, in-

formation of twin are often used as an instrument, but it is only observed
for sub-samples. Aaslund and Gronquist (2010) used twin birth as an instru-
ment to survey the e¤ect of family size on the quality of children. In this
case, a twin birth can be observed for families with twins. Of course, the
complete case analysis seems to result in biased results, and as an alternative
approach, restricting the sample to families with more than two children lose
the e¢ ciency in sample size. Variables on children, such as child BMI, are
also frequently employed as instruments. However, since child information
comes from di¤erent sources than the endogenous parents�information (e.g.
BMI), there is a tendency for the former to be missing. Real data analysis
section is an example wherein instruments are missing for many observations
since they are sourced from other surveys.
In addition to economics, missing IV is a common problem in other �elds.

Mendelian randomization uses genotype information as an instrumental vari-
able to infer the causal e¤ect of a biomarker to a disease. Since the appro-
priate genetic variant is independent of the confounders of the intermediate
phenotype-outcome association and can a¤ect the outcome only through the
causal intermediate phenotype as long as it is related to the intermediate
phenotype, it has recently been applied in economics as well as in biostatis-
tics. In general, as genetic variants explain only a small portion of the en-
dogenous population, Mendelian randomization requires large sample sizes
(Smith, 2006) to satisfy enough causal associations. However, Mendelian
randomization datasets are often missing (Palmer et al., 2012) and a large
enough sample size cannot be guaranteed.
These example of missing IV shows us that complete case analysis, namely,

only those samples where all the instruments are observed, are used in the
analysis, thus resulting in biased results and wrong decision-making. In this
paper, we develop a semiparametric method to impute the missing portion
of IV and simultaneously infer the causal e¤ect. As the most general case,
we consider the case with not missing at random (NMAR). Therefore, miss-
ingness of instruments remains associated with the missing instruments even
after controlling for other observed variables. In the NMAR case, the inter-
ested regression model cannot be identi�ed without an additional assump-
tion (Little and Rubin, 2002) . An example of such an assumption is strong
parametric assumption on the regression and missing mechanism (Kott and
Chang, 2010) . However, Miao et al. (2016) showed that probit speci�cation
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on the missing mechanism can identify normal and normal-mixture models
while logit speci�cation can less identify them.
Although there exists a lot of literature on IV, the model for missing in-

strument is scant (Kennedy and Small, 2017) except for (Burgess et al., 2011;
Mogstad and Wiswall, 2012; Chaudhuri and Guilkey, 2016). Burgess et al.
(2011) considered missing instruments for Mendelian randomization, and pro-
posed a Bayesian multiple imputation method. However, they considered the
case of missing at random. Mogstad and Wiswall (2012) proposed an IV es-
timator for partially missing instrument, but they also assume missing at
random. Chaudhuri and Guilkey (2016) developed semiparametric e¢ cient
GMM method for missing IV, assuming IV missing at random. As another
related work Ertefaie et al. (2017) considered the case of NMAR with ob-
served confonders, but they assume IVs are completely observed. Therefore,
there exist no literature which considered missing IV with NMAR.
We take an assumption that the IV distribution of the original population

is available as an auxiliary information. In many cases, the population-level
information is available from other data sources. Government statistics is
such an example and some researches utilize this auxiliary information to
estimate individual-level causality. Imbens and Lancaster (1994) and Heller-
stein and Imbens (1999) incorporated population-level information as mo-
ment conditions to infer individual-level models using the generalized method
of moments (GMM). Another instance where population-level information is
used is the empirical likelihood estimation (Qin, 2000; Chaudhuri et al.,
2008). Such approaches are also applied to the missing data issues. Nevo
(2003) proposed the propensity score weighting method using the moment
conditions obtained from auxiliary population-level information. Igari and
Hoshino (2018) introduced the Bayesian method with population-level infor-
mation that dealt with repeated durations under unobserved missing indica-
tors.
Although prior works incorporating population-level information to deal

with missing variables use moment conditions, our proposed method uses
probability distribution of population as auxiliary information since the mo-
ment conditions have less information than original distribution. Under the
condition that the original population distribution of the missing IV is known,
followed by the theorem in Hirano et al. (2001), we show that the missing
mechanism is nonparametrically identi�ed with generalized additive model,
and the substantive IV regression models are also identi�ed. Figure 1 illus-
trates the model considered in this paper. In general, since fully nonparamet-
ric missing mechanism are not identi�ed, parametric missing mechanism are
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frequently assumed (Kott and Chang, 2010). However, misspeci�cation of
missing mechanisms results in severely biased estimates (Kim and Yu, 2011).
Kim and Yu (2011) developed a semiparametric missing mechanism approach
which incorporates nonparametric speci�cations on observed variables but
not on unobserved variables. However, their method, as well as other prior
works, cannot identify the nonparametric part of unobserved variables. On
the other hand, we assume the availability of the information of the origi-
nal population distribution of missing IV so that our proposed method can
specify the fully nonparametric missing mechanisms on observed and unob-
served variables. Furthermore, our missing mechanism can incorporate cross
terms of observed and unobserved variables, which cannot be identi�ed by
the existing methods.

Fig.1 The model considered in this paper

2. The challenges of handling missing IV
2.1 Setup and notations
Before discussing the methodologies for handling datasets with missing

IVs, we introduce the notations and setup.
IV approach aims to overcome the unmeasured confounders problem in or-

der to make causal inference. We consider potential outcome approach, then
de�ne the causal e¤ect. Let Y be the outcome variable, X be a treatment
variable or endogenous variable. Let Y (X

�)
i denote the potential outcome

that would be observed for unit i if the individual were to have the treat-
ment level ofX�. For each unit, only one possible realization of Y obsi = Yi and
Xobs
i = X is observed. In this potential outcome approach, although each
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unit has potential outocomes corresponding to the possible level of X, only
one potential outcome Yi = Y

(X�)
i can be observed. Let Zi be a instrumental

variable for unit i.
Let (Yi; Xi; Zi) ; (i = 1; :::; N) be an i.i.d. sample. We consider IV regres-

sion model with one structural equation or �second-stage�and one reduced
form equation or ��rst-stage�in the following form�

Yi =M (Xi; �0) + �1;i
Xi = f (Zi; �) + �2;i

: (1)

where M (Xi; �0) has only a �nite-dimensional unknown parameter �0; but
f (Zi) are an unknown functions. We consider the situation where �1;i and
�2;i are correlated, which causes the endogeneity problem. We assume Zi to
be independent of �2;i and E(�1;iZi) = 0. We call
We consider the case whereX and � are scalar, that isM (Xi; �0) = �0Xi:

In this case, our parameter of interest is the causal e¤ect of increasing X by
one unit: �0 = Y

(X�+1)
i � Y (X

�)
i :

Although some recent literature consider the case that the function M is
unknown and they estimate M nonparametrically, we assume M (Xi; �0) =
�0Xi because nonparametric estimation of M require us to very strong iden-
ti�ability assumptions (Newey and Powell, 2003; Hall and Horowitz, 2005;
Darolles et al., 2011; Liao and Jiang, 2011; Kato, 2013).
We consider the missingness of instrumental variables Z. We assume that

Z for some observations are missing and the other variables, Y and X are
completely observed. We denote the missing indicator as Ri which takes 1
when the corresponding element of the Zi is observed and 0 otherwise.
We assume the missing mechanism to be nonignorable (NMAR). We con-

sider the case with the missing probability as depending on all the other
observed variables p (R = 1jY;X;Z) (See also Figure 1).

2.2 Missing instruments and complete case analysis
The simplest and the most applied way to deal with missing IVs are

thought to be complete case analysis. We consider the results obtained from
complete case analysis using estimating equation. The estimating equation
of complete case analysis is

E [I (R = 1) �1 fY � f (Zi; �0) �g]
where �0 is the true value of � on the �rst stage, and I (R = 1) = 1 for
complete case and I (R = 1) = 0, otherwise.
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If the probability of missing depends only on Z (NMAR), that is, p (R = 1jZ),
then the estimates of � obtained from complete case analysis results has con-
sistency, as shown from the following estimating equation since E (�1jZ) is
assumed to be 0:

E [I (R = 1jZ) �1 fY � f (Zi; �0) �g]
= EZ (EY [I (R = 1jZ) �1 fY � f (Zi; �0) �g jZ])

=

Z
Z

p (R = 1jZ) �1
�Z

Y

fY � f (Zi; �0) �g f (Y jZ) dY
�
f (Z) dZ

=

Z
Z

p (R = 1jZ) �1
�Z

�1

�1f (�1jZ) d�1
�
f (Z) dZ

= 0

On the other hand, for example, if the probability of missing only depends
on X (MAR), that is, p (R = 1jX),

E [I (R = 1jX) �1 fY � f (Zi; �0) �g]
= EX (EY [I (R = 1jX) �1 fY � f (Zi; �0) �g jX])

=

Z
X

p (R = 1jX) �1
�Z

Y

fY � f (Zi; �0) �g f (Y jX) dY
�
f (X) dX

=

Z
z

p (R = 1jZ) �1
�Z

�1

�1f (�1jX) d�1
�
f (Z) dZ

6= 0

shows complete case analysis results in inconsistent result since E (�1jX) 6= 0:
In the setting, since E [� (R = 1jY;X;Z) �1 fY � f (z; �0) �g] 6= 0, the

complete case analysis results in biased estimates. Therefore, we must specify
the missing mechanism to obtain the consistent estimates of the interested
parameters.

2.3 Missing instruments and existing imputation methods
As stated above, no method has proposed to impute missing instruments

when the pattern of missingness is NMAR.We review some imputation meth-
ods which can just imputed missing components, though they are not ex-
pected to obtain consistent estimates.

2.3.1 Multiple imputation by chained equation Multiple imputation by
chained equation (MICE) (van Buuren, 2007) is one of the most applied im-
putation method since researchers can avoid the di¢ culty in specifying the
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distributional assumptions. MICE speci�es a multivariate distribution by a
sequence of univariate regressions for each missing variable. Moreover, it can
easily implement using existing several software packages, such as the �mice�
package in R, �proc mi�with the FCS option in SAS, and �mi impute� in
STATA.
However, Liu et al. (2014) showed that the imputations with MICE do

not guarantee the asymptotic distributions to be consistent with the exist-
ing Bayesian joint model multiple imputation estimator when the family of
conditional models and their joint distributions are not �compatible�. The
violation of compatible is ubiquitous and MICE is shown to result in severely
biased estimated in many cases using simulation studies (Kato and Hoshino,
2019). What is worse, since it do not specify the pattern of missingness which
is required to NMAR, MICE result in biased in the case. Then the situation
considered here are not appropriate for MICE. In fact, the simulation study
conducted in this paper shows considerable biased results when missing IV
is imputed using MICE.

2.3.2 Imputation by machine learning method Recently, machine leaning
based method has been applied to impute the missing values. Especially,
Stekhoven and Buhlmann (2012) proposed the missForest algorithm, in which
the missing values are imputed by the predictors from the random forest.
Since missForest predicts missing values based on random forest, it accom-
modate interactions and nonlinearities. Therefore, we do not have to specify a
particular regression model for imputation. missForest is often implemented
to the real world dataset since they are reported to provide lower imputation
errors than the FCS method (Waljee et al., 2013; Liao et al., 2014).
However, it is reported that missForest approach results in biased esti-

mates in some cases when the number of covariates are small (Kato and
Hoshino, 2019). Moreover, even if the algorithm correctly estimates the
mean, it always underestimates the variance of the estimates and results
in poor CIs (Shah et al., 2014) since they do not rely on the probabilistic
model. Therefore, it is not suitable for the case applying IV method where
the results of statistical signi�cance (or hypothesis testing) are crucial (such
as economics, medical, or epidemiological research). In fact, the simulation
study conducted in this paper shows considerable biased results when missing
IV is imputed using missForest.
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3. Semiparametric Bayes model for instrumental variable with
nonignorable missing

In this section, we proposed semiparametric Bayesian model for instrumen-
tal variable with nonignorable missing that overcome the shortcomings of
existing imputation methods.

3.1 Identi�cation
We are interested in recovering the joint distribution of (Y;X;Z) or pos-

sibly the conditional distribution (Y;XjZ) with missing problem of Z. Since

p (Y;X;Z) =
f (Y;X;ZjR = 1) p (R = 1)

p (R = 1jY;X;Z)
and f (Y;X;ZjR = 1) and p (R = 1) can be directly estimated, identi�cation
of p (Y;X;Z) depends on the identi�cation of p (R = 1jY;X;Z) : Because
the missing probability of Z depends on Z itself: p (R = 1jY;X;Z), this is
NMAR case.
Generally, the identi�cation of missing mechanism is di¢ cult under NMAR

(Little and Rubin, 2002). However, by considering following assumptions, we
can identify the model.

Theorem 1:
Assume that the following conditions hold.
(A1) the support of f (y; x; z) coincides with f (y; x; zjR = 1) ;
(A2) f (y; x; z) and f (y; x; zjR = 1) are square integrable;
(A3) the marginal distribution of Z, p(Z) is known.
Then the missing mechanism is identi�ed through the form of

p (Ri = 0jY = y;X = x; Z = z) = h (k0 + k1 (y; x) + k2 (z)) (2)

where h is a known function which is di¤erentiable, strictly increasing with
lima!�1 g(a) = 0 and lima!1 g(a) = 1, and k1 (�) ; k2 (�) ; k3 (�) are unique
set of functions subject to normalization k1 (0) = k2 (0) = k3 (0) = 0:

Proof:
The proof for theorem 1 is very similar to that of Hirano et al. (2001). By

regarding the set (Y;X) as time-variant completely observed variables, and
Z as time-variant incompletely observed variable as in the variable de�nition
of Hirano et al. (2001), we can straightforwardly obtain the desired result.

We can also include measured confounders (exogenous variables) in the
second stage regression model. We denote Wi as a k-dimensional vector of
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measured confounders which contains Zi. We consider following system of
equations �

Yi =M (Xi; �0) + g (Wi; 
) + �1;i
Xi = f (Zi; �) + �2;i

: (3)

where g (�) is an unknown functions. With this speci�cation, we can identify
the missing mechanism with some assumptions.

Theorem 2
Assume that the following conditions hold.
(A10) the support of f (y; x; zjw) coincides with f (y; x; zjw;R = 1) ;
(A20) f (y; x; zjw) and f (y; x; z; wjR = 1) are square integrable almost

surely with respect to w;
(A30) the marginal distribution of Z, p(Z) is known.
Then the missing mechanism is identi�ed through the form of

p (Ri = 0jY = y;X = x; Z = z;W = w)= h(k 00 (w)+k
0
1 (y; x; w)+k

0
2 (z; w) )

(4)
where h is a known function which is di¤erentiable, strictly increasing with
lima!�1 g(a) = 0 and lima!1 g(a) = 1, and k1 (�) ; k2 (�) ; k3 (�) are unique
set of functions subject to normalization k01 (0) = k

0
2 (0) = k

0
3 (0) = 0:

Proof:
The proof for theorem 2 is the same as that of Hirano et al. (2001).

By regarding the set (Y;X) as time-variant completely observed variables,
Z as time-variant incompletely observed variable, and W as time-invariant
covariates as in the variable de�nition of Hirano et al. (2001), we can straight-
forwardly obtain the desired result.

The advantages of this missing mechanism speci�cation is: (i) we can
specify nonparametric forms on the observed variables and missing variables
(IVs), and (ii) we can consider cross term e¤ect of observed variables and
missing variables. Neither of these formulations are identi�ed by the semi-
parametric models proposed by Kott and Chang (2010) or Kim and Yu (2011)
(Because the method of Kott and Chang (2010) is developed for nonignor-
able nonresponse and Kim and Yu (2011) is for mean functionals, they are
not applied to IV regression).

3.2 Semiparametric formulation
We formulate the conditional distribution of the missing IV z given all

the other variables as follows.
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p (ZjY;X;W;R = 0) =
p (R = 0jY;X;W;Z) p (ZjY;X;W )R

z
p (R = 0; ZjY;X;W ) dZ

/ p (R = 0jY;X;W;Z) p (Y;XjW;Z) p (ZjW ) p (Z)

where p (R = 0jY;X;W;Z) is the missing mechanism, p (Y;XjW;Z) is the
substantive IV model (the structural equation and the reduced-form equa-
tion), p (ZjW ) is conditional instrumental variables distribution, and p (Z)
is known and true marginal distribution of Z:
As stated in the identi�cation issue, we can specify nonparametric miss-

ing mechanism for p (R = 0jY;X;W;Z) using generalized additive model in
equation (4). Needless to say, parametric probit or logistic regression can be
prespeci�ed to p (R = 0jY;X;W;Z).

3.2.1 Substantive model and conditional IV distribution We formulate the
substantive model p (Y;XjZ;W ) = p (Y jX;W ) p (XjZ) in the semiparamet-
ric form. As stated, p (XjZ) represents the �rst stage: Xi = f (Zi; �) + �2;i,
and p (Y jX;W ) represents the second stage: Yi =M (Xi; �0)+g (Wi; 
)+�1;i
in equation (3), respectively. Therefore, we consider p (Y;XjZ;W ) to be
semiparametric IV regression model. Moreover, we specify the conditional
IV distribution p (ZjW ) to be nonparametric.
We use DPM representation to represent semiparametric IV regression

model. Fortunately, the DPM model can be estimated with a relatively
simpler MCMC algorithm by applying blocked Gibbs sampling (Ishwaran and
James, 2011). Therefore, DPM modeling has been often employed to avoid
distributional assumptions on the parameters within the Bayesian framework
(e.g. Hirano, 2002; Xue et al., 2007; Conley et al., 2008; Shahbaba and Neal,
2009). The theoretical properties of DPM were investigated in Shen et al.
(2013).
Dirichlet process prior is assumed for a random distribution G, denoted

as G � DP (�;G0) is expressed as follows:

G =
1X
l=1

�l��l ; �l � G0

where � is the concentration parameter and G0 is the base distribution. ��
is a point mass at � and

�l = �l
Y

h<l
(1� �h)
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where �l � Be (1; �) :
By applying DPM, the resulting multivariate regression function of yi; xi,

and zi is represented by following mixture model;

p (yi; xi; zijwi) = p (yi; xijzi; wi) p (zijwi)
=

X1

l=1
�lN

�eyijfX i
e�l;�l�N(zij�lwi;�l)

where

eyi = � yi
xi

�
; fX i =

�
xi wi 0
0 0 zi

�
; e�l =

0@ �

 l
�l

1A ;
e�l = � �1;l

�2;l

�
; e�l � N(0;�l):

4. MCMC algorithm
Blocked Gibbs sampler (Ishwaran and James, 2011) is applied to the posterior
computation of the DPM parameters. It is proved that the case with �nite
number of classes l can be used to approximate the inference that is based
on in�nite classes with satisfactory accuracy when the maximum number of
classes L is large enough. Therefore, blocked Gibbs sampler considers the
case for truncation of the number of classes (e.g. L = 20), hence the simpler
posterior computation.
We obtain the detailed posterior computation using the MCMC estima-

tion as follows.

1. Conditional for Ki (i = 1; :::; N)

Let Ki be the indicator denoting where case i belongs, and Ki = l if
case i belongs to class l: To assign samples to each class, generate Ki

by
PL

l=1 �li�l (�), where �li is

�li =
�lN

� eyijfX i
e�l;�l�N(zij�lwi;�l)XL

l=1
�lN

� eyijfX i
e�l;�l�N(zij�lwi;�l)

;

with �l = �l
Q
h<l (1� �h).
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2. Conditional for �(l = 1; :::; L� 1)
Simulate �l from the following normal distribution.

�l � N
�P

i:Ki�lW
�
il + ��

Nl + 1
;

1

Nl + 1

�
;

3. Update �l;�l

Draw �l and �l from the following multivariate normal and inverted
Wishart distribution.

�ljrest � N
�
vec(b�);�l 


�
W T

l W l

��1�
;

�ljrest � IW
�
f0 +N;G

�1
0 + (Z l � �lW l)

T (Z l � �lW l)
�
;

where b� = �W T
l W l

��1
W lZ l,W l =

�
wT
1 ; :::;w

T
N

�T
, Z l =

�
zT1 ; :::; z

T
N

�T
,

and W l and Z l denote the subset of W l and Z l whose case i belong
to class l. f0 and G�1

0 denotes the parameter of the prior distribution
of �l; �l � IW (f0;G�1

0 ).

4. Update the missing mechanism

If we assume parametric probit or logistic model to the missing mech-
anism, we can use Gibbs sampling proposed by Albert and Chib (1993)
for probit andM-H algorithm for the logistic, given the pseudo-complete
dataset. If we assume generalized additive model to the missing mech-
anism, we can directly employ Bayesian GAM estimation proposed by
Klein et al. (2015) given the pseudo-complete dataset.

5. Update the missing components

Draw the missing component of zi from a density proportional to
p (zijyi; xi;wi; ri = 0). Since it is di¢ cult to draw the missing zi, we
employ the Metropolis-Hastings algorithm and use p (zijwi) as a pro-
posal density in order to draw a candidate of zi; z

;c
i . We accept the

candidates with the following probability:

min

"
1;

p (ri = 1jyi; xi;wi; z
�
i ) p (yi; xijz�i ;wi) p(z

�
i jwi)

p
�
ri = 1jyi; xi;wi; z

l�1
i

�
p
�
yi; xijzl�1i ;wi

�
p(zl�1i jwi)

#

6. Conditional for �l
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The standardized reduced model is used to draw. Substituting in for x
in the second stage regression, the followings are obtained�

xi
yi �wi
 l

�
=

�
zi
�zi

�
�l + �i

where V ar (�i) =
�
1 0
� 1

�
�l

�
1 �
0 1

�
: Then we draw �l using Bayesian

regression with unit normal errors.

7. Conditional for � and 
 l
The structural model parameters � and 
 can be simulated by applying
Bayesian linear regression draw with N (0; 1) error terms

yi � E [�1;ij�2;i]
��1;ij�2;i

=
xi�

��1;ij�2;i
+

wi


��1;ij�2;i
+ ui; ui � N (0; 1)

where

��1;ij�2;i = �11;!i �
�212;!i
�211;!i

and
E [�1;ij�2;i] =

�12;!i
�22;!i

�2;i

When we draw �, we consider linear regression model with standard
normal error

ywi =
xi�

��1;ij�2;i
+ ui; ui � N (0; 1)

where ywi = (yi � E [�1;ij�2;i]�wi
 l) =��1;ij�2;i :

When we draw 
 l, we consider linear regression model with standard
normal error

yxi =
wi
 l
��1;ij�2;i

+ ui; ui � N (0; 1)

where yxi = (yi � E [�1;ij�2;i]� xi�) =��1;ij�2;i :
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5. Simulation study
We conduct two simulation studies in order to illustrate the performance
of the proposed method when some components of instruments are missing
with NMAR and the original population information is available. Simula-
tion 1 considers the case where the original population distribution of IV is
log-normally distributed with a linear reduced-form equation and additive
disturbance that follows the Gaussian distribution. The missing mechanism
contains the cross-term of IV and observed variables, which may not be iden-
ti�ed by existing methods that do not have population-level information.
Simulation 2 considers the case where the original population distribution
of IV is log-normally distributed with the mixture of two classes� (l = 2)
reduced-form equation. The missing mechanism also contains the cross-term
of IV and observed variables. Through the simulation study, 30% of the
incomplete covariates are set to be missing. We generate the missing values
based on p (ri = 0jyi; xi; wi; zi) (see Appendix for detailed missing probability
setting).
In the two simulation studies, we evaluate the �nite sample property of

the estimators. We consider 1; 000 replications of the dataset and con�rm
if the true value of endogenous variable coe¢ cient � = 1 can be recovered.
Throughout the simulations, the sample size for each dataset is set to be
N = 400. We calculate standard performance measures, such as empirical
mean, standard deviation, the coverage of nominal 95% con�dence (or cred-
ible) intervals (CI) of the estimate, and the deviation (MSE) from the true
value. Although it could be sometimes inappropriate, we take more practi-
cal perspective to compare the Bayesian credible intervals with the classical
con�dence intervals in Conley et al. (2008).
We evaluate the proposed method by comparing it with other data im-

putation methods, i.e., MICE-GMM and �pseudo-proposed method� (Ps-
Proposed). As described, the MICE approach speci�es a multivariate co-
variate distribution by a sequence of univariate regressions for each missing
variable. In our simulation settings, where the conditional models (set of
univariate regressions) and their joint distributions are incompatible, MICE
estimates do not guarantee consistency. After creating multiple datasets
from MICE, the IV estimates are obtained by GMM (generalized meth-
ods of moments). We call this competitor MICE-GMM. We also employed
missForest imputation followed by IV estimation with GMM (MF-GMM).
�Pseudo-proposed method�(Ps-Proposed) is the alternative which does not
use the original population information, but where the missing instruments
are imputed from p (zijyi; xi; wi; ri = 0). Ps-Proposed might not have identi-
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�cation. We also compared this method with IV estimates from other clas-
sical methods based on complete case analysis by GMM (CC-GMM), and
OLS estimates which ignore the existence of endogeneity (CC-OLS). As for
Bayesian methods, burn-in of 5,000 iterations followed by 10,000 iterations
were used for the posterior inference. MICE-GMM and CC-GMM assumes
an ordinary linear regression model for the reduced-form equation, that is,
xi = zi� + �2;i: MICE-GMM and GMM-CC used the moment condition of
E(�1;izi) = 0, therefore GMM based methods do not prespecify the functional
form of the reduced-form equation. We used inverse variance of the moments
as a weighting matrix, namely, the optimal weighting matrix. We calculated
the intervals based on large sample approximations for the classical estima-
tors.
This section presents the results of simulation study 1. The detailed sim-

ulation settings and the results of simulation 2 are provided in the Appendix.
Table 1 shows the results of simulation 1, including the empirical mean,

standard deviation, the coverage of nominal 95% con�dence intervals (CI)
of the estimate, and the mean squared error (MSE) from the true value of
�. Figure 2 shows the box plot of the estimates for � obtained by 1; 000
replications.

As can be seen from the table and �gure, all estimation methods except
the proposed seem to be biased. Since Ps-Proposed do not have the infor-
mation of the original distribution of IV, the missing mechanism cannot be
identi�ed and the obtained estimates are upwardly biased. The coverage of
95% credible intervals is also poor at 32.3%. As a result, the quasi-proposed
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yields an MSE over 1,000 times larger compared with the proposed. The
results indicate that population-level information is very useful to NMAR IV
regression case. Another imputation approach is MICE-GMM, which also
shows biased results. The biased results seem to be caused by incompatibil-
ity. Therefore, the standard deviation and the MSE are much larger than
the proposed method.
The complete case analysis-based methods also show poor results. CC-

GMM estimates have large standard deviation and range in very wide region.
The MSE is about 900 times larger than the proposed method. The complete
case analysis results as biased are indicated in Section 2.2. The coverage of
95% con�dence intervals of CC-OLS is only 1.1%. This is because CC-OLS
ignores the existence of IV and missing values.
As can be seen from comparison with the results from the complete data,

as well as the competing methods, the proposed semiparametric approach
shows very good estimates.

Fig.2 The solid horizontal line is the �true�coe¢ cient value � = 1. The boxes
span the range from the 25th to the 75th percentiles, and the whiskers extend to an
area no more than 1.5 times the range from the 25th to the 75th percentiles from
the box. The circles above and below the whiskers represent outliers. Complete,
complete case analysis; Ps-Proposed, pseudo-proposed method which does not use
population-level information; MICE-GMM, IV estimates by generalized method
of moments based on multiple imputation by chained equation; MF-GMM, IV
estimates by generalized method of moments based on missForest imputation;
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CC-GMM, IV estimates by generalized method of moments based on complete
case; CC-OLS, ordinary least squares regression based on complete case

6. Real data analysis
We applied our methods to an example from Acemoglu et al. (2001), which
consider the e¤ect of institutions on economic performance. Acemoglu et al.
(2001) surveyed the causal relationship between �institution�(such as, more
secure property rights and less distortionary policies) and �economic perfor-
mance�proxied by GDP per capita. It is indicated that better institution
and GDP per capita has positive relationship, but the causal relationship had
not been proven. To solve the endogeneity problem, Acemoglu et al. (2001)
employed European settlers mortality as an instrument. They argue that
countries with higher mortality rate are �xed to be extractive institutions.
We used the same dataset as Acemoglu et al. (2001) and complete case

analysis results in N = 64. However, if instruments are available, 111 sam-
ples are ready for analysis given they completely observed other variables.
The outcome in this dataset is natural logarithm of GDP (logGDP ), and
the endogenous variable is Average Protection Against Ex-propriation Risk
(APER). Available exogenous variables are latitude and country dummy
(Asia, Africa, and other countries). We use the natural logarithm of annu-
alized European settlers�mortality per thousand mean strength (logSM) as
an instrument, of which 36:9% are missing. Since Acemoglu et al. (2001)
constructed the IV sourced from and estimated by other research, i.e., Curtin
(1989) and Curtin (1998), it tends to be missing. The F-statistic of reduced-
form equation is 2:25, indicating weak instruments; hence, using more sam-
ples is e¤ective in obtaining reliable results.
As population-level information, we use the information obtained from

Albouy (2012), which improved the data for logSM . Based on AIC �tted to
Albouy (2012)�s logSM , we use log-normal distribution with mean parameter
1:50 and standard deviation parameter 0:28 (AL-ln), and normal distribution
with mean 4:65 and standard deviation 1:24 (AL-n). Another candidate is the
complete case of Acemoglu et al. (2001), which has log-normal distribution
with mean parameter 1:47 and standard deviation parameter 0:35 (AC-ln).
Figure 3 describes the density of AL-ln, AL-n, and AC-ln.
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Fig.3 Probability density function of assumed population distribution of logSM
based on AL-ln, AL-n, and AC-ln.

Burn-in of 25; 000 iterations followed by 50; 000 iterations were used for
the posterior inference.
We also compared the results obtained from the pseudo-proposed method

with do not consider the original population distribution (Ps-Proposed),
MICE-GMM, FM-GMM, CC-GMM.
The results are described in Table 2. Three estimates based on the pro-

posed method (AL-ln, AL-n, and AC-ln) imputed the missing values, and
none of the three have 0 for their credible intervals. However, they em-
ployed di¤erent distributional information and all the posteriors are di¤erent.
Pseudo-proposed methods, which do not have identi�cation, yield uninter-
pretable results. MICE-GMM and CC-GMM show signi�cant coe¢ cients,
but the means are smaller than the proposed methods (AL-ln, AL-n, and
AC-ln). MF-GMM shows the smallest coe¢ cient with statistical signi�cance.
As discussed before, the estimates from missForest result in smaller standard
deviation, hence the obtained s.d. seems to abnormally small.
Given that the original population distributions are true, the causal e¤ects

of APER to GDP is much larger than the prior surveys.
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7. Discussion
We have proposed semiparametric Bayes IV method which incorporates the
missing instruments with NMAR using the original population information of
IV. In this paper, we assume that the missing IV is one-dimensional. Within
the �eld of economics, our method can deal with several datasets, since almost
all the data have only one IV. However, if we consider application to other
�elds such as biometrics, the extension to multiple instruments might be
required. As described, for example, Mendelian randomizations use multiple
instruments, and IV used for them can be missing since they are genetic
information. We should consider another identi�cation condition for multiple
IVs with NMAR. The condition might vary by assumptions, for instance, if
joint distribution of original population is available, or if just the original
marginal distribution of each IV is available.
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Appendix A
Detailed simulation design

A1. Setup for simulation study 1
In this study, we assume 1-dimensional endogenous regressor xi, 4-dimensional
exogenous regressor wi, whose �rst elements are set to be 1 (i.e. intercept),
and 1-dimensional instruments zi, whose �rst elements are set to be 1 and
are independent of �2;i. The true relationship of the full model is as follows.�

yi = xi� +wi
 + �1;i
xi = zi� + �2;i

; �i �
�
�1;i
�2;i

�
� N (0;�)

We set � = (1; 1; 0; 1; 1)t ; 
 = (1; 1;�1:1)t ; � =

�
1 �0:5

�0:5 1

�
; and

the interested parameter � = 1: As for zi, we �rst generate z��1;i from
log-normal distribution with mean parameter 0 and variance parameter 0:5:

Then, w�1;i � MVN

0@z��1;i
0@ 0:2
�0:2
0:2

1A ;
0@ 1 0:3 0:2
0:3 1 0:3
0:2 0:3 1

1A1A ; where w�1;i

denote the components of wi with the �rst component 1 removed, and set
zi to be zi =

�
1; z��1;i;wi

�
:

After creating complete dataset, we set some components of IV to be
missing. We �rstly calculated

�i = Ui � ��1 (�1yi + �2xi + �3wi + �4zi + �5yizi + �6xizi + �7wizi)

where Ui � uniform(0; 1); and corresponding i of zi which has the top
30% of �i are converted to be missing. � are set to be (�1; �2; :::; �7) =
(0:25; 0:25;0; 0:25; 0;�0:5;0) : Since the missing probability of IV depends
on IV, this is the NMAR case. We assume parametric probit model with
cross terms.
The results are provided in the main article.

A2. Setup for simulation study 2
Simulation study 2 consider the �nite dimensional mixture of regression
model to the reduced-form equation. In this study, we assume 1-dimensional
endogenous regressor xi, 4-dimensional exogenous regressor wi, whose �rst
elements are set to be 1 (i.e. intercept), and 1-dimensional instruments zi,
whose �rst elements are set to be 1 and are independent of �2;i. The true
relationship of the model is as follows.
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8<:
yi = xi� +wi
 + �1;i

xi =
2P
l=1

1i2lzi�l + �2;i
; �i �

�
�1;i
�2;i

�
� N (0;�l)

where c is taken so that the mean of �i is zero. For weak instrument case,

we set (�1; �2) = (0:5; 0:5); �1 = (�1; 2; 2; 0; 0)t ; �2 = (�1;�1; 0; 0; 0)t ;


 = (1; 1;�1:1)t ; (�1;�2) =
��

1 0:5
0:5 1

�
;

�
2 1
1 2

��
; and the inter-

ested parameter � = 1: As for zi, we �rst generate z��1;i from log-normal
distribution with mean parameter 0 and variance parameter 0:5: Then, w�1;i

� MVN

0@z��1;i
0@ 0:2
�0:2
0:2

1A ;
0@ 1 0:3 0:2
0:3 1 0:3
0:2 0:3 1

1A1A ; where w�1;i denote the

components of wi with the �rst component 1 removed, and set zi to be
zi =

�
1; z��1;i;wi

�
:

The data missing process and the hyperparameters are the same as sim-
ulation 1.

A2.1 Results of Simulation study 2
Table A1 shows the results of simulation 2, including the empirical mean,

standard deviation, the coverage of nominal 95% con�dence intervals (CI)
of the estimate, and the mean squared error (MSE) from the true value of
�. Figure 5-1 shows the box plot of the estimates for � obtained by 1; 000
replications.
As can be seen from the table, this simulation study considers the case

where MICE works relatively well. However, it shows biased results and
the coverage is poor (75.3%). The MSE is about 5.0 times larger than the
proposed. MF-GMM shows the largest MSE, and the coverage is very poor.
Ps-Proposed, which does not have the information of the original distribution
of IV, contains missing mechanism that cannot be identi�ed and the obtained
estimates are slightly upwardly biased. It should be noted that standard
deviation obtained from Ps-Proposed is much lower than others, but the
coverage is poor (72.6%). As a result, the MSE of Ps-Proposed is 4.1 times
that of the proposed. The proposed obtained the smallest MSE with smaller
s.d. and better coverage. Comparing the results of the proposed with Ps-
Proposed and MICE-GMM, original population information combined with
semiparametric IV model speci�cation seems very useful.
The complete case analysis-based methods also shows poor results. CC-

GMM estimates have upwardly biased results and the MSE is about 7.1 times
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that of the proposed method. The coverage of 95% con�dence intervals of
CC-OLS is only 3:3%, since OLS-CC ignores the presence of endogeneity.
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