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Abstract

We consider the implementation problem under incomplete information and pri-

vate values. We investigate double implementability of (single-valued) mappings in

dominant strategy equilibria and ex post equilibria. We call a mapping a “rule.”

We show that the notion of an ex post equilibrium is weaker than the notion of a

dominant strategy equilibrium. Then, this double implementability notion is not

trivial even under private values. We define a new strategic axiom that is stronger

than “strategy-proofness,” but weaker than “secure strategy-proofness.” We call it

“weak secure-strategy-proofness.” We show that a rule is doubly implementable if

and only if it is weakly securely-strategy-proof.
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1 Introduction

We investigate the implementation problem under incomplete information and private

values. The objective of a social planner is embodied by a “rule.” Mathematically, a

rule is a single-valued mapping which, for each possible preference profile, specifies an

outcome.1 The planner does not know the agents’ preferences. Then, she specifies a

message space for each agent and a single-value mapping which, for each possible message

profile, chooses an outcome. The pair consisting of the list of the message spaces and the

mapping is a “game form.” In the direct game form associated with a rule, the message

space for each agent is the set of his possible preferences and the mapping is the rule.

“Strategy-proofness”requires that in the direct game form associated with the rule, for

each agent, truth-telling is a dominant strategy. For each preference profile, the socially

desirable outcome, which is chosen by the rule for the preference profile, is achieved at

the dominant strategy equilibrium. An important point concerning a dominant strategy

equilibrium is that each agent needs only information about his own preference. He

need not care about the other agents’ preferences and strategies. However, laboratory

experiments concerning strategy-proof rules reported that in some games, some subjects

did not select dominant strategies.2

These observations raise a concern for implementation theory. Although in pivotal-

mechanism experiments, some subjects did not adopt dominant strategies, they frequently

selected a Nash equilibrium (Cason et al. [6]). There is an explanation for this observa-

tion. Suppose that there are only two subjects. If one of them, subject 1, finds a dominant

strategy but the other, subject 2, does not, then as long as subject 2 chooses a best re-

1A rule is also called a “social choice function.”
2For a summary of laboratory experiments concerning strategy-proof rules, see for example Cason et

al. [6].
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sponse to subject 1’s strategy, a Nash equilibrium outcome is achieved. It should be easier

to find a best response to subject 1’s strategy than a dominant strategy. This observation

led Saijo et al. [19] to formulate and investigate “secure implementation,” namely dou-

ble implementation in dominant strategy equilibria and Nash equilibria.3 They exclude

bad Nash equilibria inducing socially undesirable outcomes. However, in the laboratory

experiments in Cason et al. [6], each subject only knew his own preference, so that in-

complete information games were considered.4 Usually, to define the notion of a Nash

equilibrium, we investigate complete information games in which each agent knows the

true preference profile.5 Figure 1 illustrates this discussion.

Cason et al. [6] Saijo et al. [19]

(Laboratory experiments) (A theoretical prediction)

Information Incomplete Complete

structure information information

Result Subjects frequently selected Characterizations for

a Nash equilibrium secure implementability

Figure 1.

In an attempt to explain the laboratory experiments in Cason et al. [6], we study

3Another study focuses on extensive game forms. In an ascending auction and a second-price auction,
subjects were substantially more likely to play truth-telling under the former than under the latter (Kagel
et al. [14]). Inspired from this observation, “obvious” strategy-proofness is defined and characterized as
a cognitively limited agent can recognize that truth-telling is a dominant strategy (Li [16]).

4For other laboratory experiments under the incomplete information setting, see Attiyeh et al. [3]
and Kawagoe and Mori [15] for pivotal-mechanism experiments, and Harstad [12] and Kagel and Levin
[13] for second-price-auction experiments.

5One justification of secure implementation as a theoretical prediction for the laboratory experiments
in Cason et al. [6] is that a Nash equilibrium can be interpreted as a rest point of the dynamic learning
process (Cason et al. [6]). However, secure implementation is a theoretical prediction in a one-shot
game. Other justifications of secure implementation are characterizations by robust implementation
notions (Adachi [2], Saijo et al. [19]). Even though these implementation notions are under the incom-
plete information setting, we might not explicitly study the observation of experiments unlike secure
implementation.
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double implementability in dominant strategy equilibria and ex post equilibria. From

now on, “double implementability” is used in this sense. An ex post equilibrium is a

strategy profile in which, for each possible preference profile, the message profile for the

preference profile is a Nash equilibrium. We would like to exclude bad Nash equilibria

under incomplete information games.

Another possible way to explain the laboratory experiments in Cason et al. [6] is

to consider the notion of a Bayesian Nash equilibrium, instead of the notion of an ex

post equilibrium. Wilson [24] states that we should not rely on strong informational

assumptions, such as the common prior assumption: there is common knowledge of a

common prior on a fixed set of preferences. In this sense, game forms for Bayesian

Nash implementability are not practical, and it is difficult to impose the common prior

assumption in the laboratory experiments. On the other hand, neither the notion of a

dominant strategy equilibrium nor the notion of an ex post equilibrium refer to prior nor

posterior probability distributions of the preferences.

Bergemann and Morris [5] claim that “in an environment with private values, the

notion of ex post equilibrium is equivalent to the notion of dominant strategy equilibrium”

(pp. 532). Our first result is that in general, the former is weaker than the latter (Lemma

1, Example 1). Then, double implementability is not trivial even under private values.

For the direct game form associated with a rule, dominant strategy implementability is

weaker than ex post implementability (Lemma 2, Example 2).6

For double implementability, we need to consider dominant strategy implementability.

6By this result, for the direct game form associated with a rule, ex post “full”implementability is
weaker than dominant strategy “full” implementability. Note that under private values, ex post “truth-
ful” implementability is equivalent to dominant strategy “truthful” implementability by the definitions
(see for example Bergemann and Morris [4]). In other words, “ex post incentive compatibility” is equiv-
alent to strategy-proofness.
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By the revelation principle for dominant strategy implementability, strategy-proofness is

necessary (e.g., Gibbard [11]). Based on this result, secure implementability is char-

acterized by a stronger axiom, “secure strategy-proofness” (Saijo et al. [19]).7 Secure

strategy-proofness requires that the rule should be strategy-proof and for each preference

profile and each Nash equilibrium in the complete information game induced by the direct

game form and the preference profile, the outcome at the equilibrium should be equal to

the outcome chosen by the rule for the preference profile.

We define a new strategic axiom, “weak secure-strategy-proofness”. This axiom re-

quires that the rule should be strategy-proof and if a strategy profile is an ex post equi-

librium in the incomplete information game induced by the direct game form and the

set of preference profiles, then for each preference profile, the outcome at the equilibrium

should be equal to the outcome chosen by the rule for the preference profile. This axiom

is weaker than secure strategy-proofness (Proposition 4, Example 3).

We show that a rule is doubly implementable if and only if it is weakly securely-

strategy-proof (Theorem 1). The proof involves showing that any doubly implementable

rule is implemented by its associated direct game form (Corollary 1). Hence, for double

implementability, it suffices to focus on direct game forms.8

For secure implementation, negative results have been established for a number of

interesting rules (e.g., Fujinaka and Wakayama [9]). Even if a rule is not securely im-

plementable, it may be doubly implementable (Corollary 2).9 Are there such interesting

7In Saijo et al. [19], secure implementability is characterized by strategy-proofness and “rectangle
property.” For the definition of rectangle property, see Saijo et al. [19]. It is easy to show that a rule
satisfies strategy-proofness and rectangle property if and only if it is securely strategy-proof.

8Saijo et al. [19] and Saran [20] also provide revelation principles in which we can limit our attention
to direct game forms. Saran [20] investigates implementation with complete information when agents
are at least rational and at most k-rational, where k ≥ 2.

9Note that this comparison is controversial and not precise, since secure implementability is under
complete information, but double implementability is under complete information. In this comparison,
we just suggest that if a rule is securely implementable under complete information, then the rule is
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rules? We provide one negative answer and one positive answer. In a school choice

problem (Abdulkadiroğlu and Sönmez[1]) under incomplete information, the tentative

acceptance rule is not doubly implementable (Example 4).10 On the other hand, if the

set of preference profiles is “large,” then the rule may be doubly implemented (Example

5). Identifying general conditions concerning the set of preference profiles for double

implementability of the tentative acceptance rule is an open question.

2 Equilibrium notions

Let N = {1, · · · , n} be the set of agents and A be the finite or infinite set of outcomes.

For each i ∈ N , let Ri ∈ Ri be a preference for agent i, where Ri is the set of possible

preferences for agent i over A. The asymmetric and symmetric components of Ri ∈ Ri are

denoted by Pi and Ii, respectively. A preference profile is a list R ≡ (R1, · · · , Rn) ∈ R,

where R ≡ ×i∈NRi is the set of preference profiles. For each i ∈ N and each Ri ∈ Ri,

let ui : A → R be a utility representation for Ri such that for each pair a, b ∈ A, (1)

ui(a) > ui(b) if and only if a Pi b and (2) ui(a) = ui(b) if and only if a Ii b. Each

agent’s preferences do not depend on the other agents’ preferences, so that we study

private-values problems.11

A rule is a single-valued mapping f : R → A which, for each preference profile R ∈ R,

specifies an outcome f(R) ∈ A.

doubly implementable if the complete information setting is changed into the incomplete information
setting.

10The tentative acceptance rule is also called the deferred acceptance algorithm or the Gale-Shapley
student optimal stable mechanism (Gale and Shapley [10]). For the terminology in this study, we follow
Thomson [22].

11If each agent’s preferences depend on the other agents’ preferences, then problems are under inter-
dependent values. We can extend our results to interdependent-value problems. However, for double
implementability, “dominant strategy incentive compatibility” (Bergemann and Morris [4]) is necessary
by the revelation principle for dominant strategy implementability. This axiom is stronger than ex post
incentive compatibility and it is difficult to find interesting rules satisfying this axiom.
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A game form Γ is a pair (M, g) such that M = ×i∈NMi, where for each i ∈ N , Mi

is the message space for agent i, and g : M → A is the outcome mapping which,

for each message profile m ∈ M , specifies an outcome g(m) ∈ A. Let Γf = (R, f) be the

direct game form associated with rule f .

Let (Γ,R) be the (incomplete information) game induced by Γ and R. A (pure)

strategy in (Γ,R) for agent i ∈ N is a single-valued mapping si : Ri → Mi which, for

each preference Ri ∈ Ri, specifies a message si(Ri) ∈ Mi. Let s = (si)i∈N be a strategy

profile and S be a set of strategy profiles.

In game (Γ,R), let us define the two equilibrium notions which are central to our

study.

Dominant strategy equilibrium: For each i ∈ N , each Ri ∈ Ri, each mi ∈ Mi, and

each m−i ∈ M−i,

g(si(Ri),m−i) Ri g(mi,m−i).

Let DS(Γ,R) ⊆ S be the set of dominant strategy equilibria of (Γ,R).

Ex post equilibrium: For each R ∈ R, each i ∈ N , and each mi ∈ Mi,

g(si(Ri), s−i(R−i)) Ri g(mi, s−i(R−i)).

Let EP (Γ,R) ⊆ S be the set of ex post equilibria of (Γ,R).

Bergemann and Morris [5] claim that “in an environment with private values, the

notion of ex post equilibrium is equivalent to the notion of dominant strategy equilibrium”

(pp. 532). Our first result is that in general, the notion of an ex post equilibrium is weaker

than the notion of a dominant strategy equilibrium (Lemma 1, Example 1).
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Lemma 1. For each game (Γ,R), DS(Γ,R) ⊆ EP (Γ,R).

Proof: Let s ∈ DS(Γ,R). Suppose that s /∈ EP (Γ,R). Then, there are R ∈ R, i ∈ N ,

and mi ∈ Mi such that g(mi, s−i(R−i)) Pi g(si(Ri), s−i(R−i)). Therefore, there are i ∈ N ,

Ri ∈ Ri, mi ∈ Mi, and m−i ≡ s−i(R−i) ∈ M−i such that g(mi,m−i) Pi g(si(Ri),m−i),

which contradicts s ∈ DS(Γ,R).■

The following example states that the converse of Lemma 1 does not hold by showing

that there is a game in which a strategy profile is an ex post equilibrium, but not a

dominant strategy equilibrium.

Example 1: There is a game (Γ,R) such that DS(Γ,R) ⊂ EP (Γ,R).

Let N = {1, 2}, A = {a1, a2, a3, a4}, R1 = {R1, R
′
1}, R2 = {R2, R

′
2}, and R =

×i∈NRi. Preferences are defined as follows:

R1 R′
1

a1, a2 a2, a3, a4

a3, a4 a1

R2 R′
2

a1, a2, a3 a2, a4

a4 a1, a3

Let (u1, u2) be a pair of utility representations for each preference profile such that for

each agent, the utility of the most preferred outcome is 2 and the utility of the least

preferred outcome is 1.

Let f be defined as follows:12

f R2 R′
2

R1 a1 a2

R′
1 a3 a4

12The rule in Example 1 seems artificial. However, in a specific model, we can find an interesting rule
f such that DS(Γf ,R) ⊂ EP (Γf ,R). See Example 4 in Section 6.
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The game induced by Γf and R has the following utilities:

true preference R2 R′
2

true preference message R2 R′
2 R2 R′

2

R1 R1 2,2 2,2 2, 1 2,2

R′
1 1, 2 1, 1 1, 1 1, 2

R′
1 R1 1, 2 2,2 1, 1 2,2

R′
1 2,2 2, 1 2, 1 2,2

Let (s1, s2) ≡ ((s1(R1), s1(R
′
1)), (s2(R2), s2(R

′
2)).

13 Then,DS(Γf ,R) = {((R1, R
′
1), (R2, R

′
2))},

and EP (Γf ,R) = {((R1, R
′
1), (R2, R

′
2)) , ((R1, R1), (R

′
2, R

′
2))}. Hence, the strategy pro-

file ((R1, R1), (R
′
2, R

′
2)) is an ex post equilibrium of (Γf ,R), but not a dominant strategy

equilibrium of (Γf ,R). Then, DS(Γf ,R) ⊂ EP (Γf ,R).♢

3 Implementability notions

For rule f , let us define the two implementability notions which are central to our study.

Dominant strategy implementability: There is a game form Γ = (M, g) such that

for each s ∈ DS(Γ,R) ̸= ∅,

g ◦ s = f.14

Ex post implementability: There is a game form Γ = (M, g) such that for each

s ∈ EP (Γ,R) ̸= ∅,

g ◦ s = f .

13Formally, let s1 be the mapping such that for R1 ∈ R1, agent 1 selects s1(R1) and for R′
1 ∈ R1,

agent 1 selects s1(R
′
1), and let s2 be the mapping such that for R2 ∈ R2, agent 2 selects s2(R2) and for

R′
2 ∈ R2, agent 2 selects s2(R

′
2).

14g ◦ s = f means that for each R ∈ R, g(s(R)) = f(R).
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For the direct game form associated with a rule, dominant strategy implementability

is weaker than ex post implementability (Lemma 2, Example 2).

Lemma 2. If a rule f is implemented by Γf in ex post equilibria, then it is implemented

by Γf in dominant strategy equilibria.

The proof of Lemma 2 is in Appendix.

The next example states that the converse of Lemma 2 does not hold by showing that

the rule in Example 1 is not ex post implementable. To prove this, we show that it does

not satisfy the following property of rule f , “ex post invariance.”15

First, we define notation. For each i ∈ N , a deception for agent i is a single-

valued mapping di : Ri → Ri which, for each preference Ri ∈ Ri, specifies a preference

di(Ri) ∈ Ri. We can interpret it as a strategy for agent i in the game induced by a game

form in which for each agent i ∈ N , Mi = Ri and the set of preference profiles. Let

d = (di)i∈N be a deception profile and D be the set of deception profiles.

Ex post invariance: For each d ∈ D with f ◦d ̸= f , there are R ∈ R, i ∈ N , and a ∈ A

such that a Pi f(d(R)), and for each R′
i ∈ Ri, f(R

′
i, d−i(R−i)) R

′
i a.

The following result is appiled in the next example.

Proposition 1. (Bergemann and Morris [5]). If a rule is not ex post invariant, then it

is not ex post implementable.

In the following example, we consider the same setting as in Example 1.

Example 2: The rule in Example 1 is not implementable in ex post equilibria.

15Ex post invariance is called “ex post monotonicity” by Bergemann and Morris [5].
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Let d ∈ D be such that for each R̃1 ∈ R1, d(R̃1) = R1 and for each R̃2 ∈ R2,

d(R̃2) = R′
2. Then, f ◦ d ̸= f :

f ◦ d R2 R′
2

R1 a2 a2

R′
1 a2 a2

Then, for each R ∈ R, f(d(R)) = a2 and for each i ∈ N , each Ri ∈ Ri, and each

a ∈ A, a2 Ri a. That is, for each R ∈ R, each i ∈ N , and each a ∈ A, f(d(R)) Ri a.

Therefore, f is not ex post invariant. By Proposition 1, f is not ex post implementable,

although f is implemented by Γf in dominant strategy equilibria by the logic of Example

1.♢

Figure 2 illustrates the relationship between dominant strategy implementability of

rule f by Γf and ex post implementability of f by Γf .

Dominant strategy

Ex post implementability by Γf

implementability by Γf

Example 2

Figure 2.

4 Strategy-proofness and related properties

The following axiom of rule f requires that in the direct game form associated with the

rule, for each agent, truth-telling should be a dominant strategy.
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Strategy-proofness: For each R ∈ R, each i ∈ N , and each R′
i ∈ Ri,

f(
truth

Ri , R−i)
truth

Ri f(
lie

R′
i, R−i).

The following results are the revelation principles for dominant strategy implementabil-

ity and ex post implementability.

Proposition 2. (1) (e.g., Gibbard [11]) If a rule is dominant strategy implementable, it

is strategy-proof.

(2) (Bergemann and Morris [5]) If a rule is ex post implementable, it is strategy-proof.

Figure 3 illustrates the relationships proposed in Proposition 2 in addition to Lemma

2.

Dominant strategy implementability

Ex post implementability

⇒

⇒

Dominant strategy implementability by Γf

Ex post implementability by Γf

⇒

⇒

Strategy-proofness⇑

Figure 3.

The following axiom of rule f is a necessary and sufficient condition for secure im-

plementation, namely double implementation in dominant strategy equilibria and Nash

equilibria (Saijo et al. [19]).

Secure strategy-proofness: (1) f is strategy-proof, and (2) for each pair R, R̃ ∈ R, if

for each i ∈ N and each R′
i ∈ Ri, f(R̃i, R̃−i) Ri f(R

′
i, R̃−i), then f(R̃) = f(R).

To interpret this axiom, let us define the following notions. For each R ∈ R, let (Γ, R)

be the complete information game induced by Γ and R. A message profile m ∈ M is
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a dominant strategy equilibrium in (Γ, R) if for each i ∈ N , each m′
i ∈ Mi, and each

m′
−i ∈ M−i, g(mi,m

′
−i) Ri g(m

′
i,m

′
−i). Let DS(Γ, R) be the set of dominant strategy

equilibria in (Γ, R). A message profile m ∈ M is a Nash equilibrium in (Γ, R) if for

each i ∈ N and each m′
i ∈ Mi, g(mi,m−i) Ri g(m

′
i,m−i). Let NE(Γ, R) be the set of

Nash equilibria in (Γ, R).

A rule f is securely implementable if there is a game form Γ = (M, g) such that

for each R ∈ R, {f(R)} = g(DS(Γ, R)) = g(NE(Γ, R)).

Secure strategy-proofness requires that f should be strategy-proof, and for each pref-

erence profile R ∈ R and each Nash equilibrium in (Γf , R), the outcome at the Nash

equilibrium should be equal to the outcome chosen by f for R. Secure implementability

is characterized by this axiom.

Proposition 3. (Saijo et al. [19]) A rule is securely implementable if and only if it is

securely strategy-proof.

The following axiom of rule f is weaker than secure strategy-proofness (Saijo et al.

[19]).

Non-bossiness (in welfare\outcome): For each R ∈ R, each i ∈ N , and each R′
i ∈ Ri,

if f(Ri, R−i) Ii f(R
′
i, R−i), then f(Ri, R−i) = f(R′

i, R−i).

The following axiom of rule f requires that f should be strategy-proof, and if a strategy

profile is an ex post equilibrium in (Γf ,R), then for each preference profile, the outcome

at the ex post equilibrium should be equal to the outcome chosen by f for the preference

profile.

Weak secure-strategy-proofness: (1) f is strategy-proof, and (2) for each d ∈ D, if

13



for each R ∈ R, each i ∈ N , and each R′
i ∈ Ri, f(di(Ri), d−i(R−i)) Ri f(R

′
i, d−i(R−i)),

then f ◦ d = f .

Weak secure-strategy-proofness is weaker than secure strategy-proofness (Proposition

4, Example 3). Note that an ex post equilibrium s ∈ S is a strategy profile in which, for

each preference profile R ∈ R, the message profile s(R) ∈ M is a Nash equilibrium.

Proposition 4. If a rule is securely strategy-proof, then it is weakly securely-strategy-

proof.

Proof. Let f be a securely strategy-proof rule. It suffices to show that it satisfies (2) of

weak secure-strategy-proofness.

Let d ∈ D. The proof is by contradiction. For each R ∈ R, each i ∈ N , and each

R′
i ∈ Ri, suppose that f(di(Ri), d−i(R−i)) Ri f(R

′
i, d−i(R−i)). Suppose also that there

is R′′ ∈ R such that f(d(R′′)) ̸= f(R′′). Let R̃ = d(R′′). We have that for each i ∈ N

and each R′
i ∈ Ri, f(R̃i, R̃−i) R

′′
i f(R′

i, R̃−i), but f(R̃) ̸= f(R′′), which contradicts (2) of

secure strategy-proofness.■

The following example shows that the converse of Proposition 4 does not hold.

Example 3: A rule is weakly securely-strategy-proof, but not securely strategy-proof.

Let N = {1, 2}, A = {a1, a2, a3, a4}, R1 = {R1, R
′
1}, R2 = {R2, R

′
2}, and R =

×i∈NRi. Preferences are defined as follows:

R1 R′
1

a1, a2 a3, a4

a3, a4 a1, a2

R2 R′
2

a1, a2, a3 a2, a4

a4 a1, a3

Let (u1, u2) be a pair of utility representations for each preference profile such that for
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each agent, the utility of the most preferred outcome is 2 and the utility of the least

preferred outcome is 1.

Let f be defined as follows:16

f R2 R′
2

R1 a1 a2

R′
1 a3 a4

The game induced by Γf and R has the following utilities:

true preference R2 R′
2

true preference message R2 R′
2 R2 R′

2

R1 R1 2,2 2,2 2, 1 2,2

R′
1 1, 2 1, 1 1, 1 1, 2

R′
1 R1 1, 2 1, 2 1, 1 1, 2

R′
1 2,2 2, 1 2, 1 2,2

Let (d1, d2) ≡ ((d1(R1), d1(R
′
1)), (d2(R2), d2(R

′
2))) = ((R1, R

′
1), (R2, R

′
2)). Then,DS(Γf ,R) =

EP (Γf ,R) = {(d1, d2)} and NE(Γf , (R1, R2)) = {(d1(R1), d2(R2)), (R1, R
′
2)}. The rule

f is strategy-proof and f ◦ d = f . Therefore, it is weakly securely-strategy-proof. On the

other hand, for (R1, R2) ∈ R, (R1, R
′
2) ∈ NE(Γf , (R1, R2)), but f(R1, R

′
2) ̸= f(R1, R2).

Hence, it is not securely strategy-proof. The rule does not satisfy non-bossiness either.

For (R1, R2), agent 2, and R′
2 ∈ R2, f(R1, R2) = a1 I2 a

2 = f(R1, R
′
2), but a

1 ̸= a2.♢

Figure 4 illustrates the relationship between secure strategy-proofness and weak secure-

strategy-proofness.

16The rule in Example 3 seems artificial. However, in a specific model, we can find an interesting rule
f that is weakly securely-strategy-proof, but not securely strategy-proof. See Example 5 in Section 6.
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Weak secure-strategy-proofness

Secure

strategy-proofness

Example 4

Figure 4.

5 Results

As we have discussed in Section 1, we would like to investigate double implementability

in dominant strategy equilibria and ex post equilibria.

Double implementability: There is a game form Γ = (M, g) such that:

(1) for each s ∈ DS(Γ,R) ̸= ∅,

g ◦ s = f ,

(2) for each s ∈ EP (Γ,R),

g ◦ s = f .

Our main result is provided as follows:

Theorem 1. A rule is doubly implementable if and only if it is weakly securely-strategy-

proof.

The proof is in Appendix. It involves showing that any doubly implementable rule is

also doubly implemented by the direct game form associated with it. Hence, for double

implementability, it suffices to focus on direct game forms.

16



Corollary 1. A rule f is doubly implementable if and only if it is doubly implemented

by the direct game form associated with f .17

By Proposition 4 and Theorem 1, secure strategy-proofness is sufficient for double

implementation.

Corollary 2. If a rule is securely strategy-proof, then it is doubly implementable.

Figure 5 illustrates the relationship between secure implementability and double im-

plementability. Note that this comparison is controversial and not precise, since secure

implementability is under complete information, but double implementability is under

complete information. In this comparison, we just suggest that if a rules is securely im-

plementable under complete information, then the rule is doubly implementable if the

complete information setting is changed into the incomplete information setting.

Double implementability

Secure

Example 4

implementability

Figure 5.

6 Discussion

In the public-good-provision problem under a restricted domain, the Groves-Clarke rules

are securely implementable (Saijo et al. [18][19]).18 Also, in direct game forms, whether

17The proof of Theorem 1 also involves showing that any ex post implementable rule is also imple-
mented in ex post equilibria by the direct game form associated with it.

18For the definition of the Groves-Clarke rules, see for example Saijo et al. [18].

17



the Groves-Clarke rules work well in laboratory experiments has been investigated and

one of the rules worked better than a rule that is dominant strategy implementable, but

not securely implementable (Cason et al. [6]). By Corollary 2, the rules are also doubly

implementable.

For secure implementability, negative results have been established for a number of

interesting rules (e.g., Fujinaka and Wakayama [9]). Even if a rule is not securely im-

plementable, it may be doubly implementable (Corollary 2). Are there such interesting

rules? We provide one negative answer and one positive answer.

We consider the school choice problem (Abdulkadiroğlu and Sönmez [1]) under in-

complete information. Let N be a set of students, X be a set of schools, and ϕ means

that for each student, he does not have any school and for each school, it gets an empty

seat. Let R ≡ ×i∈NRi be a set of strict preference profiles over X ∪{ϕ}. Let c ≡ (cx)x∈X

be a capacity profile such that for each x ∈ X, cx ∈ N, where N is the set of positive

integers.19 A capacity for a school is the maximum number of students whom the school

can accept. Let ≿≡ (≿x)x∈X be a priority profile such that for each x ∈ X, ≿x is a strict

ordering over N ∪ {ϕ}. Let (N,X,R, c,≿) be a school choice problem under incomplete

information.

Let (a1, · · · , an) ∈ A ≡ (X ∪ {ϕ})N be an outcome such that for each x ∈ X,

|{i ∈ N : ai = x}| ≤ cx. Note that for each i ∈ N , each Ri ∈ Ri, and each pair a, b ∈ A

such that a = (a1, · · · , an) and b = (b1, · · · , bn), ai Ri bi if and only if a Ri b. Then, each

agent’s preferences over X ∪ {ϕ} are extended to over A.

The following example is one negative result on double implementability.

19A capacity for a school is also called its “quota”.
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Example 4: The tentative acceptance rule is not doubly implementable.20

Let (N,X,R, c,≿) be such that N = {1, 2}, X = {a, b}, for each i ∈ N , Ri =

{Ri, R
′
i}, and R = ×i∈NRi. Preferences and (c,≿) are defined as follows: for each i ∈ N ,

Ri R′
i

a b

b a

ϕ ϕ

ca = 1 cb = 1

≿a ≿b

2 1

1 2

ϕ ϕ

Let (u1, u2) be a pair of utility representations for each preference profile such that for

each agent, the utility of the most preferred school is 2, the utility of the second preferred

school is 1, and the utility of the third preferred school is 0.

By computing the tentative acceptance rule, TA, for each preference profile, the

outcome is chosen as follows:

TA R2 R′
2

R1 (b, a) (a, b)

R′
1 (b, a) (b, a)

20For the definition of the tentative acceptance rule, see for example Abdulkadiroğlu and Sönmez [1].
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The game induced by ΓTA and R has the following utilities:

true preference R2 R′
2

true preference message R2 R′
2 R2 R′

2

R1 R1 1, 2 2, 1 1, 1 2, 2

R′
1 1, 2 1, 2 1, 1 1, 1

R′
1 R1 2, 2 1, 1 2, 1 1, 2

R′
1 2, 2 2, 2 2, 1 2, 1

Let (d1, d2) ≡ ((R1, R
′
1), (R2, R

′
2)). Then,DS(ΓTA,R) = {(d1, d2)}, and EP (ΓTA,R) =

{(d1, d2), ((R′
1, R

′
1),(R2, R2))}. Hence, for the preference profile (R1, R

′
2) ∈ R, the ex post

equilibrium ((R′
1, R

′
1), (R2, R2)) does not induce the outcome chosen by TA for (R1, R

′
2),

although for each preference profile, the outcome at the dominant strategy equilibrium

(s1, s2) is equal to the outcome chosen by TA for the preference profile. Therefore, the

tentative acceptance rule does not satisfy (2) of weak secure-strategy-proofness, so that

the rule cannot be doubly implemented by the direct game form associated with TA. By

Corollary 1, the tentative acceptance rule is not doubly implementable.21♢

For the other models, some interesting rules are not doubly implementable: (1) For

auctions with an indivisible good and quasi-linear preferences, the second-price-auction

rule is not doubly implementable.22 (2) In the location problem with single-peaked pref-

erences, the median rule is not doubly implementable.23 (3) In the house reallocation

problem, the top-trading-cycle rule is not doubly implementable.24

21In the same example, the top-trading-cycle rule is not doubly implementable. For the definition of
the top-trading-cycle rule, see for example Abdulkadiroğlu and Sönmez [1].

22For the definition of the second-price-auction rule, see Vickrey [23].
23For the definition of the median rule, see Moulin [17].
24For the definition of the top-trading-cycle rule, see Shapley and Scarf [21].
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In contrast to Example 4, if the set of preferences for agent 1 includes a preference

at which the ordering of school a is first, the ordering of ϕ is second, and the ordering of

school b is third, then the tentative acceptance rule is doubly implementable. Therefore,

if the set of preference profiles is “large”, then the rule may be doubly implemented.

Identifying general conditions on the set of preference profiles for double implementabil-

ity of the tentative acceptance rule is an open question.25

Example 5: The tentative acceptance rule is doubly implementable under some condi-

tion on the set of preference profiles.

Let (N,X,R, c,≿) be the same setting as in Example 4 except for thatR1 = {R1, R
′
1, R

′′
1}.

Preferences for agent 1 are defined as follows:

R1 R′
1 R′′

1

a b a

b a ϕ

ϕ ϕ b

Let (u1, u2) be a pair of utility representations for each preference profile such that for

each agent, the utility of the most preferred school is 3, the utility of the second preferred

school is 2, and the utility of the third preferred school is 1.

By computing TA, for each preference profile, the outcome is chosen as follows:

25For laboratory experiments concerning the tentative acceptance rule, see for example Chen et al. [7]
and Chen and Sonmez [8]. Although Chen et al. [7] consider the complete information setting, Chen and
Sonmez [8] study the incomplete information setting. The two papers use relatively large sessions: there
are 36 students and 36 school slots across seven schools. Then, in order to find whether the tentative
acceptance rule is doubly implementable or not in the two laboratory experiments, we should investigate
general conditions on the set of preference profiles for double implementability of the rule.
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TA R2 R′
2

R1 (b, a) (a, b)

R′
1 (b, a) (b, a)

R′′
1 (ϕ, a) (a, b)

The game induced by ΓTA and R has the following utilities:

true preference R2 R′
2

true preference message R2 R′
2 R2 R′

2

R1 R1 2, 3 3, 2 2, 2 3, 3

R′
1 2, 3 2, 2 2, 2 2, 2

R′′
1 1, 3 3, 2 1, 2 3, 3

R′
1 R1 3, 3 2, 2 3, 2 2, 3

R′
1 3, 3 3, 2 3, 2 3, 2

R′′
1 1, 3 2, 2 1, 2 2, 3

R′′
1 R1 1, 3 3, 2 1, 2 3, 3

R′
1 1, 3 1, 2 1, 2 1, 2

R′′
1 2, 3 3, 2 2, 2 3, 3

Let (d1, d2) ≡ ((R1, R
′
1, R

′′
1), (R2, R

′
2)). Then,DS(ΓTA,R) = EP (ΓTA,R) = {(d1, d2)}.

Hence, for each preference profile, the outcome at both the dominant strategy equilibrium

and the ex post equilibrium is equal to the outcome chosen by the rule for the preference

profile. Therefore, the rule is doubly implemented by the direct game form associated

with TA.♢
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Appendix

Proof of Lemma 2. Let f be a rule that is implemented by Γf in ex post equilibria.

Then, for each s ∈ EP (Γf ,R) ̸= ∅, f ◦ s = f . Since by Proposition 2 (2), f is strategy-

proof, DS(Γf ,R) ̸= ∅. Since f is implemented by Γf in ex post equilibria, by Lemma 1,

for each s ∈ DS(Γf ,R) ⊆ EP (Γf ,R), f ◦ s = f . Therefore, f is implemented by Γf in

dominant strategy equilibria.■

Proof of Theorem 1. First, we consider the if part. Let f be a weakly securely-

strategy-proof rule. We show that Γf = (R, f) doubly implements f . By (1) of weak

secure-strategy-proofness and Lemma 1, ∅ ̸= DS(Γf ,R) ⊆ EP (Γf ,R). By Lemma 2, it

suffices to show that for each s ∈ EP (Γf ,R), f ◦ s = f . Note that in (Γf ,R), for each

i ∈ N , si : Ri → Ri so that s ∈ D. By the definition of an ex post equilibrium, for each

R ∈ R, each i ∈ N , and each R′
i ∈ Ri, f(si(Ri), s−i(R−i)) Ri f(R

′
i, s−i(R−i)). By (2) of

weak secure-strategy-proofness, f ◦ s = f .

Next, we prove the only if part. Let f be a doubly implementable rule. Then, let

Γ = (M, g) be a game form which doubly implements f . By Proposition 2 (1), f is

strategy-proof. Therefore, it suffices to show that f satisfies (2) of weak secure-strategy-

proofness.

Let d ∈ D. Let the hypothesis of (2) be satisfied: for each R ∈ R, each i ∈ N , and

each R′
i ∈ Ri, f(di(Ri), d−i(R−i)) Ri f(R

′
i, d−i(R−i)). We show that f ◦ d = f .

Since Γ doubly implements f , DS(Γ,R) ̸= ∅. Let s ∈ DS(Γ,R). Since Γ implements

f in dominant strategy equilibria, i.e., g ◦ s = f , we have g ◦ s ◦ d = f ◦ d. That is, for

each R ∈ R, g(s(d(R))) = f(d(R)). Similarly, since Γ implements f in dominant strategy

equilibria, for each i ∈ N , each R′
i ∈ Ri, and each R−i ∈ R−i, g(si(R

′
i), s−i(d(R−i))) =
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f(R′
i, d(R−i)). Since f(di(Ri), d−i(R−i)) Ri f(R′

i, d−i(R−i)) by the hypothesis of (2)

in weak secure-strategy-proofness, g(s(d(R))) = f(d(R)), and g(si(R
′
i), s−i(d−i(R−i))) =

f(R′
i, d−i(R−i)), we have g(si(di(Ri)), s−i(d−i(R−i))) Ri g(si(R

′
i), s−i(d−i(R−i))). When

R′
i = Ri, since s ∈ DS(Γ,R), for eachmi ∈ Mi, g(si(Ri), s−i(d−i(R−i))) Ri g(mi, s−i(d−i(R−i))).

Therefore, for each R ∈ R, each i ∈ N , and each mi ∈ Mi, g(si(di(Ri)), s−i(d−i(R−i))) Ri

g(mi, s−i(d−i(R−i))). Thus, s ◦ d is an ex post equilibrium. Since Γ implements f in ex

post equilibria, g ◦ (s ◦ d) = f . Since f ◦ d = g ◦ s ◦ d and g ◦ s ◦ d = f , we have

f ◦ d = f . Therefore, f is weakly securely-strategy-proof.■
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