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Abstract

It is known that stationary equilibria are indeterminate in some monetary models, especially in

money search models with divisible money. However, most of the indeterminacy results are limited

to the case that money holdings distributions have finite supports. In the case of infinite supports,

both determinacy and indeterminacy results are known. In this paper, using the Borsuk-Ulam

theorem in Banach Space, I investigate what determines the differences.
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1 Introduction

It is known that real indeterminacy of stationary equilibria arises in some monetary models, espe-

cially in money search models with divisible money. (See, for example, Green and Zhou (1998, 2002),

Kamiya and Shimizu (2006), Matsui and Shimizu (2005), and Zhou (1999).) However, most of the inde-

terminacy results are limited to the case that the supports of equilibrium money holdings distributions

are finite sets. The exceptions are Green and Zhou (1998) and Kamiya and Shimizu (2011). In the

former model, the money holdings distribution has a support {0, p, 2p, . . .} for some p > 0, and in the

latter model, it is a non-discrete money holdings distribution. On the other hand, Kamiya and Shimizu

(2013) suggest that a dynamic all-pay auction model with fiat money could have a determinate equilib-

rium, where the support is an interval. The purpose of this paper is to investigate what determines the

differences.

In the case that a money holdings distribution has a finite support {0, p, . . . , Np} for some p > 0

and some integer N > 0, Kamiya and Shimizu (2006) show that the condition for stationarity of

money holdings distribution always has a hidden identity (conservation law) in money search models.

Therefore, the number of equations in stationary condition is one less than the number of variables

due to the identity, and, applying the implicit function theorem, there is a continuum of stationary

equilibria. 1 More precisely, the variables are h0, h1, . . . , and hN , and strategies, where hn is a measure

of agents with np amount of money. On the other hand, the conditions for stationary equilibria are

fO
0 − f I

0 = 0, fO
1 − f I

1 = 0, . . ., and fO
N − f I

N = 0, and the Nash equilibrium condition, where fO
n and f I

n

are the outflow of agents from np and the inflow of agents to np, respectively. The number of equations

in Nash equilibrium condition is typically equal to the number of variables in strategies. Thus, from the

identity, the number of equations is one less than the number of variables. That is, the dimension of the

range is one less than that of the domain. Thus under some regularity condition the implicit function

theorem can be applied, and the set of stationary equilibria is one-dimensional.

In the case that a support B ⊂ R+ has an infinite number of elements, the variable is a distribution

on B and is an element in an infinite dimensional space. On the other hand, the condition for stationary

distribution cannot be expressed by a finite number of equations. Thus both the numbers of variables

and equations cannot be counted. In other words, the dimensions of the domain and range cannot

1Lagos and Wright (2005) present a model with both Walrasian markets and search markets, and there is a unique

stationary equilibrium. In their model, the identity does not hold due to the Walrasian Market.
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be directly comparable. In this paper, using the Borsuk-Ulam theorem in Banach space, I present a

method to compare two Banach spaces, and to apply the implicit function theorem in Banach spaces to

monetary models.

In order to compare the topological properties of two Euclidean spaces, the Borsuk-Ulam theorem

in a finite dimensional space can be applied. Let Rn and Sn be an n-dimensional Euclidean space and an

n-dimensional unit sphere. The theorem says that, for a continuous function f : Sn ⊂ Rn+1 → Rn, there

exists an x ∈ Sn such that f(x) = f(−x). This immediately implies that Rn+1 is not homeomorphic to

Rn.2 Similarly, if an infinite dimensional version of the Borsuk-Ulam theorem can be applied to infinite

dimensional spaces X and Y and a function f : X → Y , then X and Y are topologically different

spaces, and the dimension of X is in some sense larger than that of Y . Therefore, the implicit function

theorem in infinite dimensional spaces could be applied to X, Y and f . Conversely, if the condition for

the Borsuk-Ulam theorem in infinite dimensional space is not satisfied, then the stationary equilibria

could be determinate. Indeed, in the all-pay auction in Kamiya and Shimizu (2013), the condition for

the Borsuk-Ulam theorem is not satisfied, and the stationary equilibrium is determinate.

The plan of this paper is as follows. In Section 2, some mathematical tools are presented. Section 3

is the main part of this paper and is devoted to a general monetary model and a condition for the implicit

function theorem in Banach space. In Section 4, a model with a determinate stationary equilibrium is

presented, where the condition for the implicit function theorem is not satisfied. Section 5 concludes

the paper.

2 Implicit Function Theorem and Borsuk-Ulam Theorem in

Banach Space

Let X and Y be Banach spaces, and L(X,Y ) be the set of continuous linear function from X to Y .

For C ∈ L(X,Y ), if there exists a D ∈ L(Y,X) such that CD = IY , where IY is the identity function

on Y , then D is called a right inverse of C.

Theorem 1. : The image of the right inverse of Y , denoted by D(Y ), is a closed linear subspace of X

and X = Ker C +D(Y ), where + denotes the direct sum of two linear spaces and Ker C is the kernel

2If there exists a homeomorphism f : Rn+1 → Rn, then for all x, y ∈ Sn such that x ̸=y, f(x) ̸= f(y) holds. However,

there exists an x ∈ Sn such that f(x) = f(−x). This is a contradiction.
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of C.

Proof. 3 For x ∈ X, let x = (x−DC(x))+DC(x). Then x−DC(x) ∈ Ker C. Let K = IX −DC. Then

K = L(X,X) and Ker K = D(Y ). Clearly, DC(X) ⊂ D(Y ). Moreover, for y ∈ Y , D(y) = DCD(y) and

thus D(Y ) ⊂ DC(X). Thus D(Y ) is a closed linear space and X = K(X)+D(Y ) = Ker C+D(Y ).

Next, I present the implicit function theorem in Banach space.

Theorem 2. (Theorem 5.9 in Chapter 1 in Lang (1999)): Let X, Y , and Z be Banach spaces and

f : X × Y → Z be a Fréchet differentiable function. Suppose f(x0, y0) = 0 at (x0, y0) ∈ X × Y

and y → df(x0,y0)(0, y) is isomorphism between Banach spaces Y and Z, where df(x0,y0) is the Fréchet

differential at (x0, y0). Then there exist neighborhoods U of x0 and V of y0, and a Fréchet differentiable

function g : U → V such that

g(x0) = y0 and ∀x ∈ U, f(x, g(x)) = 0.

Next, I present an infinite dimensional version of the Borsuk-Ulam Theorem.

Definition 1. : f : X → Y is said to be an odd function if f(−x) = −f(x).

Definition 2. : f : X → Y is said to be a completely continuous function if for a weak convergent

sequence {xq}, {f(xq)} is norm convergent.

Theorem 3. (Gel′man (2002)): Let α : X → Y be a surjective continuous linear function, and f :

Sr(0) → Y be an odd completely continuous function, where Sr(0) is a sphere with radius r > 0 in X.

If dim(Ker α) ≥ 1, then the equation

α(x) = f(x)

has a nonempty solution set N(α, f) and the dimension of the set is larger than or equal to dim(Ker α)−

1.

This theorem is a generalized version of the Borsuk-Ulam theorem. Indeed, for a function g :

Sr(0) → Y , let f(x) = g(x)− g(−x). Then f is an odd function, and applying the above theorem there

exists an xλ ∈ Sr(0) such that λα(xλ) = f(xλ), where λ > 0. Then, if Sr(0) is sequentially compact,

3This proof is based on Omori (1978).
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then there exists a converging subsequence of {xλ}, and from the complete continuity the limit point

x∗ ∈ Sr(0) satisfies 0 = f(x∗) = g(x∗)− g(−x∗).

A linear function is clearly an odd function. Then the following theorem can be proved.

Theorem 4. (Gel′man (2002)): Let α : X → Y be a surjective linear continuous function, and k :

X → Y be a completely continuous linear function. If dim(Ker α) ≥ 1, then the function α + k has a

non-trivial kernel and dim(Ker α+ k) ≥ dim(Ker α).

The following Theorem will be used in the following section.

Theorem 5. (Theorem 8.6.2. in Bogachev (2007)): Let (G, ρ) be a separable and complete metric

space, where ρ is a metric on a set G. Let Ω be the set of signed Borel measures on (G, ρ) with weak

convergence topology. Then the following two statements are equivalent.

1. Ω is sequentially compact.

2. Ω is uniformly tight and uniformly bounded.

3 A General Monetary Model and a Condition for Indetermi-

nacy

3.1 A General Model

The set of agents is represented by the interval [0, 1]. The support of real money holdings distri-

butions is a closed interval [0, m̄], where m̄ > 0. A real money holdings distribution is expressed as a

Borel probability measure φ on [0, m̄] satisfying
∫
dφ = 1. For a given money supply M > 0, nominal

money holding distribution is obtained by adjusting the support using p = M∫
ηdφ

. For example, for a real

money holdings distribution φ expressed by (h0, h1, . . . , hN ), where hi is a measure of {ηi} ⊂ [0, m̄], the

corresponding nominal money holdings distribution is (h0, h1, . . . , hN ), where hi is a measure of {pηi}

with p = M∫
ηdφ

= M∑N
i=0 ηihi

.

Time is discrete and infinite horizon, denoted by t = 1, 2, . . .. In each period, agent i ∈ [0, 1] chooses

ai ∈ A(ηi), where A(ηi) is the set of feasible strategies and ηi ∈ [0, m̄] is her money holding. The

temporal utility of agent i is g(ai, a−i, φ), where a = {ai}i∈[0,1] and ai ∈ A(ηi). Let fO(a, φ) and

f I(a, φ) are an outflow and an inflow of agents, respectively. For example, fO(a, φ)(C) (f I(a, φ)(C))
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is the outflow (inflow) from (to) a Borel set C ⊂ [0, m̄]. Each agent maximizes the discounted sum of

temporal utilities with a discount factor β ∈ (0, 1).

Since an agent in an outflow at η ∈ [0, m̄] must be in an inflow at some η′ ∈ [0, m̄],
∫
d(fO(a, φ)−

f I(a, φ)) = 0 holds. Moreover, as shown in Kamiya and Shimizu (2006), if the total money holding

before trades is equal to that after trades even out of equilibria, then
∫
ηd(fO(a, φ) − f I(a, φ)) = 0

always holds, i.e., an identity. This identity typically holds in money search models and some dynamic

auction models with fiat money. Therefore, I make the following assumption.

Assumption 1. For any strategy a and any Borel probability measure φ,
∫
d(fO(a, φ)− f I(a, φ)) = 0

and
∫
ηd(fO(a, φ)− f I(a, φ)) = 0 hold.

Let E be the set of signed Borel measures on [0, m̄]. The domain of fO and f I can be extended

to E as follows. For a signed Borel measure φ, let |φ| = φ+ + φ− be the total variation of φ, where

φ+ and φ− are the positive and negative parts of φ. Let ∥φ∥ be the total variation norm of φ. First,

fO and f I can be extended to f̃O and f̃ I on the space of signed Borel measures φ with total variation

norm one, i.e., ∥φ∥ = 1, as follows:

f̃O(a, φ) = fO(a, |φ|) and f̃ I(a, φ) = f I(a, |φ|).

f̃O and f̃ I can be extended to f̂O and f̂ I on the space of signed Borel measure E as follows:

f̂O(a, φ) = ∥φ∥f̃O

(
a,

φ

∥φ∥

)
and f̂ I(a.φ) = ∥φ∥f̃ I

(
a,

φ

∥φ∥

)
.

Define f̂O(a, 0) = f̂ I(a, 0) = 0. Below, I use fO and f I instead of f̂O and f̂ I . Note that, from the

construction, Assumption 1 holds for all signed Borel measures.

Let F be the product space of two sets, the set of signed Borel measure φ satisfying
∫
dφ = 0

and
∫
ηdφ = 0, and the set of real numbers R. That is, F is the set of values of fO(a, φ) − f I(a, φ)

and 1−
∫
dφ. Note that E is a Banach space with total variation norm, and so is F with the product

topology of total variation norm and Euclidean norm on R. Let f(a, φ) = (fO(a, φ)−f I(a, φ), 1−
∫
dφ).

For a given a, a stationary distribution is a solution to f(a, φ) = (0, 0), where the first 0 is the zero

measure and the second zero is the real number 0.

The stationary equilibrium is defined as follows.

Definition 3. Let ai : [0, m̄] → A, i ∈ [0, 1], and a = {ai}i∈[0,1]. A pair (a, φ) is said to be a stationary

equilibrium, where φ is a Borel probability measure on [0, m̄], if
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1. ∀i ∈ [0, 1], ai maximizes discounted sum of expected utilities for given a−i, φ, and her money

holding,

2. fO(a, φ)− f I(a, φ) is a zero measure, i.e., (fO(a, φ)− f I(a, φ))(C) = 0 for all Borel set C.

In a stationary equilibrium, if the discounted sum is not constant in money holdings, then it is

called a monetary equilibrium. Below, I suppose that an equilibrium strategy a∗ is fixed, and thus fO

and f I are functions of only a measure. I redefine f(φ) = f(a∗, φ).

3.2 A Condition for Implicit Function Theorem

In order to apply the Borsuk-Ulam theorem in Banach space, it is shown that there exists a surjective

linear continuous function α : E → F .

Lemma 1. There exists a surjective linear continuous function α : E → F . Moreover, the dimension

of the kernel of α is larger than or equal to one.

Proof. From the construction, F = E1 ×R, where E1 is the linear subspace in E which consists of

ν ∈ E satisfying
∫
dν = 0 and

∫
ηdν = 0.

Let φ̄ be a measure with a support {0} and a mass h0 > 0 on {0}. Consider the product space of

E1 and the space spanned by the measure φ̄. Denote the product space by E2. φ ∈ E can be expressed

as φ = φ1 + cφ̄+φ−2, where φ1 ∈ E1, c is a scalar, and φ−2 ∈ E \E2. Let α(φ) = (φ1, c) ∈ F . Then α

is a surjective and continuous linear function.

Below, I show that E \ E2 is at least one dimensional. Let φ′ be a measure with a support {q}

and a mass hq > 0 on {q}, where q > 0 is in [0, m̄]. Suppose φ′ is in E2. Then φ′ = φ′
1 + c′φ̄ for

some φ′
1 ∈ E1 and c′. Then φ′

1 has masses −c′h0 and hq on {0} and {q}, respectively, and the support

is {0, q}. However,
∫
ηdφ′ = −0c′h0 + qhq = qhq > 0 contradicts the definition of E1 and therefore

φ′ ∈ E \E2. Thus E \E2 is at least one dimensional and the dimension of kernel of α is at least one.

Below, I show that the kernel of dfφ∗ , denoted by Ker dfφ∗ , is at least one-dimensional.

Lemma 2. Suppose dfφ∗ is a completely continuous function. Then Ker dfφ∗ is at least one-

dimensional.

7



Proof. Let S be the set of signed Borel measures of which total variation norms are one. Since dfφ∗ is

a completely continuous function, then, from Lemma ??, Theorem 4 can be applied and there exists a

nontrivial solution to

(α+ dfφ∗)(φ) = 0.

Since λα, λ > 0, is a surjective linear continuous function, then there exists a nontrivial solution to

(λα+ dfφ∗)(φ) = 0.

Since the solution is nontrivial, then from the linearity of λα+dfφ∗ there exists a solution φλ ∈ S. In our

environment, the support of measure is a compact set [0, m̄]. Thus, from Theorem 5, S is sequentially

compact. Indeed, the set of signed Borel measures on [0, m̄] is uniformly tight and uniformly bounded.4

Let λ → 0. Then, from sequential compactness there exists a subsequence {φλq} weakly converging to

some φ̂ ∈ S. Then, from complete continuity and λq → 0, dfφ∗(φ̂) = 0. Since φ̂ ̸= 0, the linear space

spanned by φ̂ is one dimensional and Ker dfφ∗ is at least one-dimensional.

If dfφ∗ is completely continuous and has a right inverse, then from Theorems 1 and 2 the set of

stationary equilibria is at least one-dimensional.

Theorem 6. Let U ⊂ E be an open set. Suppose f is a Fréchet differentiable function from U to F

and f(φ∗) = 0. Suppose dfφ∗ ∈ L(E,F ) is a completely continuous function and has a right inverse D.

Then E = Ker dfφ∗ +D(F ) and φ∗ = (x0, y0), where x0 ∈ Ker dfφ∗ and y0 ∈ D(F ).5 Moreover, there

exist neighborhoods U1 of Ker dfφ∗ , U2 of D(F ), and V of F such that U1 + U2 ⊂ U and there exists a

unique Fréchet differentiable function g : Ker dfφ∗ → F such that

(*) g(x0) = y0, (x0, g(x0)) ∈ U , and f(x, g(x)) = 0 for all x ∈ U1.

Proof. From Theorem 1, E = Ker dfφ∗ +D(F ) and φ∗ = (x0, y0), where x0 ∈ Ker dfφ∗ and y0 ∈ D(F ).

First, I show that both Ker dfφ∗ and D(F ) are Banach spaces and the implicit function theorem can

be applied. Beside the completeness of the space, all the properties of Banach space are satisfied.

4The set of signed Borel measures on [0, m̄] is called uniformly tight if for all ε > 0 there exists a compact set Kε such

that |φ|([0, m̄]\Kε) < ε for all signed Borel measure φ in the set, where |φ| is the total variation of φ. Clearly, Kε = [0, m̄]

satisfies the condition.
5The product and direct sum of finite number of linear spaces are the same. Therefore, I will use x+ y and (x, y) for

the same object.
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Consider a Cauchy sequence aq ∈ Ker dfφ∗ , q = 1, 2, . . . , where aq norm converges to some a ∈ E. Since

norm convergence implies weak convergence, then from the complete continuity of dfφ∗ , dfφ∗(aq) norm

converges to dfφ∗(a). That is,

0 = lim
q→∞

∥dfφ∗(aq)− dfφ∗(a)∥ = ∥ − dfφ∗(a)∥

Therefore, a ∈ Ker dfφ∗ and thus Ker dfφ∗ is complete. Since E = Ker dfφ∗ + D(F ) is complete and

D(F ) is closed from Theorem 1, then D(F ) is complete.

Next, D is clearly an isomorphism between F and D(F ) so that y → dfφ∗(0, y) = df(x0,y0)(0, y) is also

an isomorphism between F and D(F ). Thus, applying Theorem 2, (*) holds.

From Lemma ??, Ker dfφ∗ is at least one-dimensional. Therefore, from Theorem ??, the set of

stationary equilibria is at least one-dimensional.

Theorem 7. Let U ⊂ E be an open set. Suppose f is a Fréchet differentiable function from U to F

and f(φ∗) = 0. Suppose dfφ∗ ∈ L(E,F ) is a completely continuous function and has a right inverse.

Then the set of stationary equilibria is at least one-dimensional.

4 A Model with a Determinate Equilibrium

Kamiya and Shimizu (2013) suggest that a dynamic all-pay auction model with fiat money has a

determinate stationary equilibrium. In the model, all bidders must pay regardless of whether they win

the prize. Although the identity exists, the stationary equilibrium is determinate. This is due to the

fact that the support of money holdings distribution in the all-pay auction markets cannot be confined

to a finite set and the outflow minus outflow is NOT a completely continuous function.

Below, I precisely explain a dynamic all-pay auction model with fiat money. In the model, there

is only one type of indivisible good. At the beginning of each period, an agent chooses either to be a

buyer or a seller. If she becomes a seller, then she can produce one unit of good with cost c ≥ 0. When

she becomes a buyer, without knowing the other agents’ choices, she chooses a nonnegative bid price

which cannot exceeds her money holding. If she buys a good, then she obtains utility u > 0, where

βu > c. Let the measure of sellers be ms and the distribution of bid price be φb, where ms +
∫
dφb = 1.

Suppose ms >
∫
dφb. Then all the buyers obtain the goods, all the sellers equally share the total bids

and randomly chosen sellers with measure 1 − ms produces goods, and the transaction price is the
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lowest bid. Note that if the lowest bid does not exist, then the infimum of the bids is the transaction

price. Suppose ms ≤
∫
dφb. Then all the sellers produce goods and the transaction price is determined

as the highest p satisfying ms ≤
∫∞
p

dφb. Note that if there is no mass of φb at the highest p, then

ms =
∫∞
p

dφ. Then the buyers with a bid price larger than or equal to p obtain goods. If there is a

mass at the highest p, then the buyers who bid larger than p obtain goods and the buyers who bid p are

randomly chosen and obtain goods. Note that, in the all-pay auction, the total money holdings before

trades is always equal to that after trades, i.e., the identity in the previous section holds.

As in the general model in the previous section, a stationary equilibrium is a pair of agents’ strategies

and a money holdings distribution satisfying that (i) each agent maximizes discounted sum of expected

utilities given the other agents’ strategies, her money holding, and a money holdings distribution, and

(ii) the distribution is stationary. Below, I focus on monetary equilibria.

Suppose the strategy is symmetric across agents. Then, from the stationarity of distribution,

the transaction price p is uniquely determined, since, for a given strategy, it only depend on money

holdings distribution. Thus, in a stationary equilibrium, the support of money holdings distribution is

{0, p, 2p, . . .} or some distribution which has essentially the same support, e.g., {ε, p + ε, 2p + ε, . . .},

where ε has no value. For simplicity, I only consider {0, p, 2p, . . .}. Since each agent can choose either

to be a buyer or a seller, then an agent with η ≥ p always chooses to be a buyer. This is because if

she becomes a seller, she postpones the opportunity of consumption. Thus the support of stationary

equilibrium distribution is {0, p}. Let (h0, 1 − h0) be the money holdings distribution, where h0 is a

measure of agents without money and 1− h0 is a measure of agents with p amount of money. Suppose

all agents without money choose to be sellers and all agents with p choose to be buyers. Below, it will be

checked that the above choices are optimal strategies. From the definition of all-pay auction, the sellers’

money holding become p(1−h0)
h0

after trades. From stationarity, p(1−h0)
h0

= p holds and thus h0 = 1
2 .

Note that, from p(1− h0) = M , p = 2M holds.

Below, the optimality of the above equilibrium strategy is rigorously checked. Let v(np), n =

0, 1, 2, . . . be the value of np. Then the Bellman equation is as follows.

v(0) = max{−c+ βv(p), βv(0)}

v(np) = max{u+ βv((n− 1)p),−c+ βv((n+ 1)p), βv(np)}, n = 1, 2 . . . .
(1)

The strategy is (i) an agent without money chooses to be a seller and (ii) an agent with np, n ≥ 1, amount

of money chooses to be a buyer and bids p. From the strategy, v(0) = βu−c
1−β2 , v(p) =

u−βc
1−β2 , . . . , v(np) =
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∑n−1
k=1 β

k−1u+ βn−1 u−βc
1−β2 , . . . hold. It can be easily checked that the strategy is optimal.

Below, it is shown that the outflow minus inflow is NOT completely continuous. To see this,

consider a sequence of probability measure {φq}, where φq has masses 1
2 −

1
2q at 0 and 1

2 +
1
2q at M

1
2+

1
2q
,

respectively. Clearly, {φq} weakly converges to the measure of which masses are 1
2 at 0 and 1

2 at 2M .

On the other hand, the sequence of outflow minus inflow has masses 1
2 −

1
2q −( 12 +

1
2q ) = − 2

2q at 0, 1
2 +

1
2q

at M
1
2+

1
2q
, and −( 12 − 1

2q ) at M
1
2−

1
2q
, respectively. As q → ∞, the sequence of the outflow minus inflow

clearly converges weakly to zero measure, but it is not norm convergent. Indeed, for all q, one can take

an open neighborhood of p = 2M such that the total variation measure is one. Thus the outflow minus

inflow is not completely continuous and the argument in the previous section cannot be applied.

5 Conclusion

In this paper, I investigate monetary models with fiat money and present a condition for indeter-

minacy of stationary equilibria. More precisely, the conditions for implicit function theorem in Banach

space are the complete continuity of Fréchet differential and the existence of the right inverse. More-

over, if the conditions are not satisfied, then the stationary equilibrium could be determinate. Indeed,

in Section 4, I present a dynamic all-pay auction model with a determinate equilibrium.
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