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1. Introduction

Issues regarding missing data are critical in observational and experimental research, as they

induce loss of information and biased result, and at times, lead to wrong decisions. The

National Research Council (2010) published a report including recommendations on treating

missing data in medical science research. According to the recommendation, researchers

should employ as many confounders as possible in order to obtain valid estimates from

analysis such as logistic regressions or Cox proportional hazards model. However, when they

employ more covariates, the number of observations with at least one missing component

increase. Also, if a researcher is interested in using a regression model containing missing

components in covariates, a complete case analysis results in biased estimates even when the

missing mechanism is missing at random (MAR) (Ibrahim et al., 2005).

In this case, if conditional distributions of incompletely observed covariates, given com-

pletely observed covariates, are correctly speci�ed, we can obtain consistent estimators using

the expectation-maximization (EM) algorithm or Bayesian estimation with the Markov chain

Monte Carlo (MCMC) method. However, it is usually di¢ cult to specify such a distribution

because both incompletely and completely observed covariates generally have large dimen-

sions, and the distributional form is not expressed by well-known distributional families owing

to the mixed-scale variables.

For datasets with mixed continuous and discrete variables in various study areas, multiple

imputation by chained equation (MICE), in which missing variables are iteratively imputed

based on full conditional speci�cation (FCS), has been cited numerous times by researchers

from several �elds including medical statistics (van Buuren, 2007,White et al., 2011,Paton

et al., 2014). This is because the researchers, especially the imputers, are not required to

construct an explicit joint multivariate model with mixed-scale variables (continuous, categor-

ical, ordinal, and so on). More speci�cally, the MICE-FCS approach speci�es a multivariate

imputation model using a sequence of seemingly "appropriate" univariate regression models
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corresponding to the types of missing variables; namely, one only needs to assign a univariate

linear regression with a normally distributed error term for an incomplete continuous vari-

able, a logistic regression for an incomplete binary variable, an ordered logistic regression

for an incomplete ordinal variable, and so on. Moreover, researchers can easily implement

MICE-FCS using several existing statistical software packages, such as the mice package in

R and S-plus, proc mi with the FCS option in SAS, and mi impute in STATA.

In spite of the widespread use of MICE-FCS, recent studies showed that it leads to

severely biased estimates in various setups. Liu et al. (2014) proved that using MICE-FCS

does not guarantee that the asymptotic distribution is equivalent with the existing Bayesian

MI estimator when the families of the conditional models are "incompatible" (see Section

4 in Liu et al. (2014)). In fact, simulation studies by Bartlett et al. (2015) showed that

MICE yields biased estimates when treating incompatible conditional models. Unfortunately,

violation of the compatibility assumption is not uncommon (the example of the violation of

the compatibility assumption is provided in section 2.1). Therefore, although MICE-FCS is

simple and convenient to use, it can provide statistically valid estimates in very limited cases.

1.1 Motivating example

We brie�y introduce a motivating example of a real world dataset in which it is very

hard to properly impute the missing components using FCS approach. The data used in this

article were obtained from the Alzheimer�s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),

other biological markers, and clinical and neuropsychological assessment can be combined to

measure the progression of mild cognitive impairment (MCI) and early Alzheimer�s disease

(AD). For up-to-date information, see www.adni-info.org.

Jack et al. (2010) used data from the ANDI to study baseline predictors that contribute
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to the progression of AD. Figure 1 shows the distributions of amyloid �1�42 (ABETA1�42),

tau (total tau protein), and p-tau (phosphorylated tau protein; P-tau181p) of MCI at baseline

subjects, and Jack et al. (2010) show that they are associated with time to conversion to AD.

Since the participants were not forced to contribute to the CSF measurement, around 50% of

the data for ABETA1�42; tau, and p-tau are missing. Jack et al. (2010) employed the Cox

proportional hazards model, in which the covariates include ABETA1�42; tau, and p-tau.

The analysis was restricted to 218 samples whose ABETA1�42 were available, nevertheless

the dataset contains approximately 400 subjects. If the researchers try to address the missing

components using the MI method, EM algorithm, or Bayesian estimation with the MCMC

technique, they must correctly specify the complex joint distribution of the covariates.

Fig.1. Histograms of observed ABETA1�42 (Amyloid beta 1-42), tau (total tau protein), and
p-tau (phosphorylated tau protein). The bold lines represent the kernel densities of the data.

Figure 1 shows that they are not normally distributed and seem to be skewed, following

a fat-tailed distribution. Accordingly, specifying the covariate distribution seems to be very

di¢ cult in such cases. Bartlett et al. (2015) employed the SMC-FCS approach to impute the

missing covariates and estimated the Cox regression. They added information pertaining to

the family history of Alzheimer�s patients, namely, whether the subject�s father and mother

had AD or not. However, their results seem to be biased owing to the violation of the model

compatibility assumption required be the FCS approaches; several covariates do not follow
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normal distributions, as seen from Figure 1. Also, more than two binary missing covariates

are employed. As shown in Section 2, the FCS approaches results in biased estimates when

missing covariates include two or more binary variables because of the model incompatibility.

Therefore, it is evident that the existing FCS approaches should not be applied to these kinds

of datasets, which are often found in the real world.

1.2 New contribution

In this paper, we propose a new �exible semiparametric Bayesian framework for MI, which

is capable of treating mixed-scale incomplete variables. The model formulation is di¤erent

from that seen in the existing literature in two ways.

First, we express the full model as the product of the covariate distribution (conditional

distribution of incompletely observed covariates given completely observed covariates) and

the substantive model (the regression model researchers are interested in). We assume the

parametric model to the substantive model since the researchers conducting applied research

are generally concerned with the parameters of the functions in the substantive model, which

should be built upon the existing theories or previous literature in the �eld of study. Exam-

ples of the parametric substantive model are the Cox regression and the logistic regression in

epidemiological and clinical research. On the other hand, with regard to the covariate distri-

bution, we specify a joint distribution of the missing variables using the probit stick-breaking

process mixture (PSBPM) model proposed by Chung and Dunson (2009), whose model spec-

i�cation is based on the Dirichlet process mixture (DPM) model. Ibrahim et al. (2005)

also pointed out that one of the caveats of treating missing covariates lies in specifying the

parametric model of the covariate distribution. However, it is nearly impossible to correctly

prespecify the covariate distribution based on existing theories or some inferences, because

the relationships of the missing variable and the complete variables are often "multivariate-to-

multivariate", they can be non-linear relationships, or they may be non-normally distributed.

Therefore, we employ the nonparametric Bayesian speci�cation; speci�cally, we use PSBPM
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modeling instead of DPM since the stick-breaking weights can vary depending on the pre-

dictors. Since our approach do not rely on FCS approach, we do not have to consider the

compatibility assumption holding. Murray and Reiter (2016) proposed fully nonparametric

multiple imputation method using DPM model with local dependence. However, they do not

consider the existence of the substantive model, hence their main scope of the inference is

the means or the variances of the imputed variables, and it cannot estimate the interested

parameters of the substantive model.

Second, we express mixed-scale variables through the transformation of the latent con-

tinuous variables for probit modeling. This underlying continuous variables approach is used

in the context of the DPM model, as in Kottas et al. (2005) for ordinal variables; in Canale

and Dunson (2011) for count variables; and in Kim and Ratchford (2013) for ordinal vari-

ables. This approach enables us to deal in a straightforward manner with many types of

variables in the joint covariate distribution without specifying the complicated conditional

joint distribution of mixed-scale variables.

1.3 Organization

The rest of the paper is organized as follows. In the next section, we propose and formulate

a semiparametric Bayesian multiple imputation (SB-MI) algorithm that can overcome the

drawbacks of the existing methods. In Section 3, we describe the model speci�cation, impu-

tation procedure and posterior computation of the proposed model in detail. The simulation

studies illustrating the performance of the proposed method compared with the MICE-FCS,

SMC-FCS, and missForest approaches are presented in Section 4. In Section 5, we apply

our proposed method to the real dataset described in the motivating example in Section

1.1. Section 6 concludes after providing a short discussion. The detailed descriptions of the

simulation design appear in the Appendix A. We are preparing an R package to implement

our algorithm. In advance, computer code in Matlab are provided, and may result in minor

variations, all of which will be resolved and covered by the R package.
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2. Model setup

In this paper, we consider a dataset consisting of N (i = 1; :::; N) cases, where the interest

of the researchers lies in a model with outcomes y : j � 1, completely observed covariates

v : p� 1; and incompletely observed covariates w : q � 1. Let aobs and amis be the observed

and missing subsets of variable a 2 (y;v;w) in the dataset, respectively. Let r be the vector

of observation indicators whose element equals 1 if the corresponding element of the dataset

is observed and 0 otherwise. Throughout this paper, we consider that the data are MAR,

that is, p(rjaobs;amis) = p(rjaobs). Additionally, we assume that all the observations are

independent and identically distributed.

Let #s be the parameter vectors of the substantive model p(yjw;v;#s). Note that the

researcher�s prime target of inference lies in #s; even in the context of missing data analysis.

We propose a SB-MI algorithm expressed by the following imputation model as the product

of two submodels:

p(y;wjv) / p(yjw;v;#s)p(wjv;#m) (1)

where p(wjv;#m) represents the covariate distribution with parameters of lower interest #m;

and p(yjw;v;#s) represents the substantive model with parameters of higher interest #s. We

assume the parametric model for the substantive model p(yjw;v;#s) since the researchers�

concern generally lies in the parameters of the substantive model #s: Additionally, the sub-

stantive model should be built upon the existing knowledge corresponding to the purpose

of the study. Accordingly, the researcher may assume a linear regression with an interac-

tion term, a Cox regression, or a logistic regression for p(yjw;v;#s). While we assume a

parametric structure for the substantive model, we do consider Bayesian nonparametric form

rather than a parametric form for the covariate distribution p(wjv;#m); because researchers

generally have no interest in #m and parametric modeling of a large number of covariates

can result in misspeci�cation bias (Chib, 2007). Moreover, we express mixed-scale variables
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through the transformation of latent continuous variables for probit modeling in order to

deal with many types of continuous and discrete variables in the joint covariate distribu-

tion in a straightforward manner. This transformation enables us to avoid considering the

compatibility assumption, which is required in MICE-FCS or SMC-FCS.

2.1 Existing method

In this situation, #s can be estimated by the existing MI methodology, EM algorithm, or

Bayesian MCMC estimation. For example, MI uses the MCMC approach, and researchers

iteratively draw the parameter of the joint model  from p( ja), and then draw amis from

p(amisjaobs; ) D times. However, as is the case with the maximum likelihood estimation of

the EM algorithm or the Bayesian MCMC estimation, it is di¢ cult to correctly specify the

joint distribution of all the variables that have missing elements p(amisjaobs; ), especially

when both continuous and discrete variables are missing.

The MICE-FCS method has become a more widely used methodology as researchers seek

to avoid the di¢ culty in specifying the conditional joint distribution p(amisjaobs; ). The

MICE-FCS approach speci�es a multivariate covariate distribution by a sequence of univari-

ate regressions for each missing variable. More speci�cally, MICE-FCS iterates drawing  j

from p( jja) and amis from p(amisj jamis�j ;a
obs; j) for each a

mis
j , where a�j, denoting the

components of a with aj removed. Because of the simplicity of its covariate distribution

speci�cation, MICE is popularly used to deal with missing data.

In spite of the widespread use of MICE-FCS due to its convenience, it was recently

proved that the asymptotic distribution drawn using MICE-FCS is not equivalent to the

existing Bayesian simulation in several settings. Liu et al. (2014) showed that the MICE-

FCS algorithm does not guarantee that the asymptotic distributions are consistent with

the existing Bayesian joint model MI estimator when the family of conditional models and

their joint distributions are incompatible. According to Liu et al. (2014), the compatibility

assumption is satis�ed when a parameter set of conditional models fj(amisj jamis�j ;a
obs; j) is
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represented by surjective mapping of a collection of the joint model p(amis;aobsj ) parameter

 , that is, gj( ) =  j and hence p(a
mis
j jamis�j ;a

obs; ) = fj(a
mis
j jamis�j ;a

obs; j); otherwise

they are said to be incompatible. Put simply, compatibility purports that the parameters

of the conditional distribution can be expressed by the parameters of the joint distribution

of the model. Liu et al. (2014) also showed that the MICE-FCS algorithm generates a

consistent estimator using Rubin�s rules, but the variance of the parameters cannot be applied

to Rubin�s rules if the family of the conditional models is semicompatible as a special case of

incompatibility. On the other hand, if the model is compatible, MICE-FCS is asymptotically

equivalent to the existing Bayesian simulation; hence, one can apply Rubin�s rule to calculate

the mean and variance of the parameters of interest.

In what kinds of cases this compatibility assumption holds? If the all variables in the

datasets are consist only of continuous variables that follow an i.i.d. multivariate normal dis-

tribution and the conditional models are linear regressions with normally distributed error

terms, the conditionals and joint model are compatible, and the estimators of MICE-FCS

are applicable to Rubin�s rules. If one variable is binary variable and the rest are continuous,

one can also apply Rubin�s rules to the substantive model described in the form of a linear

regression with normally distributed error terms. However, when the researcher is interested

in binary outcome modeling with a logistic regression, wherein there exist binary covariates

in the datasets, and even if all the other covariates are continuous, the conditionals and sub-

stantive model (logistic model speci�cation) are incompatible, and the MICE-FCS estimators

are not equivalent to those corresponding to Gibbs sampling. In epidemiological and clinical

research, researchers often assume non-linear models such as the Cox proportional hazards

model, regression models with quadratic terms, or regression models with interaction terms.

Yet, unfortunately, these are examples of model incompatibility. In addition, the conditionals

of MICE-FCS are under the immediate control of the researcher, and hence, the joint distri-

bution is only implicitly known and may not exist (van Buuren, 2012). Therefore, although
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MICE-FCS is simple and convenient, the estimators are valid in a very limited number of

cases only.

Bartlett et al. (2015) recently developed SMC-FCS in order to relax the compatibility

assumption, which assigns the imputer compatibility of the joint distribution of covariates

only and not all the variables. However, it has hardly solved the problem of the compatibility

assumption holding because the number of covariates is generally larger than the outcome

variable. For example, if the missing covariates contain two or more binary variables, a

parameter set of conditional models cannot be represented by onto mapping of a collection

of joint model parameters. Hence, the model compatibility assumption among covariates is

violated, and the estimates from the SMC-FCS do not guarantee the consistency. Addition-

ally, if some covariates do not follow a normal or Bernoulli distribution (say, they follow a

log-normal distribution or a mixture of normal distributions), the compatibility assumption

of joint distribution among covariates required in the SMC-FCS method cannot be generally

satis�ed, as seen in the motivating example in Section 1.1.

3. Semiparametric Bayes multiple imputation

3.1 Semiparametric model formulation

As stated in Equation (1), we propose a SB-MI algorithm, expressed by imputaion model

p(y;wjv) as the product of two submodels p(yjw;v;#s)p(wjv;#m). Assuming the indepen-

dence of the priors p(#m) and p(#s), the posteriors are

p(#m;#sjy;v;w) / p(#m)p(#s)p(yjw;v;#s)p(wjv;#m)

#m and #s can be drawn from p(#m)p(wjv;#m) and p(#s)p(yjw;v;#s), respectively. Given

these parameters, the missing values are drawn from the density proportional to p(y;wjv).

The speci�cation of the substantive model p(yjw;v;#s) varies by the purpose of the

analysis and the properties of the outcome y. One may specify the linear regression to the
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continuous outcome or the logistic regression to the discrete outcome. Besides, one must

employ speci�ed model forms on p(yjw;v;#s), such as the Cox proportional hazards model

or quadratic models. Our proposed methodology, in any case, can properly estimate #s even

when MICE-FCS or SMC-FCS cannot because of model incompatibility.

3.2 Covariate distribution

On the other hand, we have to specify the complicated covariate distribution p(wjv;#m).

Usually, w will include continuous and discrete variables. In order to deal with mixed-

scale covariates, we employ a transformation of the latent continuous variables for probit

modeling. Thus, we rewritew asw = (wc;wd;wn) wherewc denotes the continuous variable

component, wd denotes the ordered variable component with Qd(= 1; :::; qd; :::; Qd) orders,

and wn denotes the nominal variable component with Qn(= 0; :::; qn; :::; Qn) choices. To deal

with discrete variables simply, we introduce continuous latent variables ud and un where

wd = qd if �qd�1 < ud � �qd

wn =

8><>: 0 if max (un) < 0

qn if max (un) = unqn > 0
.

We assume the following structure on the covariate distribution.

w�
i = f(vi) + �i

with wi = g(w�
i ), where w

� = (wc;ud;un) and g(�) represents the function converting the

latent continuous variables w�
i to wi. This enables us to deal with many types of continuous

and discrete variables in the covariate distribution in a straightforward manner.

More concretely, we employ DPM modeling to represent the covariate distribution. DPM

modeling is frequently utilized in applied statistical modeling when researchers intend to
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avoid making assumptions about parameter distribution within the Bayesian framework.

For example, Hirano (2002) developed autoregressive models with individual e¤ects where

the disturbances are not restricted to a parametric class. Rodriuez et al. (2009) used DPM to

develop a Bayesian semiparametric approach for functional data analysis. Kunihama et al.

(2016) developed a nonparametric Bayes model with DPM to incorporate sample survey

weights. The theoretical properties of DPM were investigated by Shen et al. (2013).

According to Sethuraman (1994), the Dirichlet process as a prior for a random distribution

G can be represented by the stick-breaking process. Let �1; �2; ::: be an independent draw

from a beta distribution Be(1; 
). If G follows the Dirichlet process prior with concentration

parameter 
 and base distribution G0, that is, G � DP (
;G0), G can be represented as

G =
1X
l=1

�l��l ; �l � G0

where �l = �l
Q

h<l (1� �h) and �� is a point mass at � (refer to Walker et al. (1999) for a

detailed description of DPM).

Although DPM is used to �exibly express a variety of parameters or distributions, they

are greatly restricted because probability weight �l is a constant (Dunson et al., 2007).

If the stick-breaking weights �l are constant and independent of predictor xi; as in DPM

and other nonparametric Bayesian models, the mean regression structure is reduced to a

linear one, namely,
P1

l=1 �l�
T
l xi = �

T
xi, where � =

�P1
l=1 �l�

T
l

�
. Therefore, in this paper,

we apply the PSBPM model proposed by Chung and Dunson (2009) since the algorithm

allows for greater �exibility through predictor-dependent stick-breaking weights �l (xi). In

addition, PSBPM results in a conjugate structure, and hence simpler posterior calculation.

The statistical properties of PSBPM are described in Pati et al. (2013). For example, Hoshino

(2013) proposed a semiparametric Bayesian model for causal inference where the parameters

of no interest for researchers are modeled using PSBPM.
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We apply PSBPM modeling to the covariate distribution speci�cation. The resulting

regression function of w� on v can be represented as

f(w�
i jvi) =

1X
l=1

�l(v)N(�lvi;�l)

with the probability weights

�l(v) = �(�l(v))
Y

h<l
f1� �(�h(v))g :

where �(�) is the cumulative distribution function of the standard normal distribution. To

make the probability weights �l(v) vary with covariates v, we let �l(v) = �l + fl(v), �l �

N(��; 1), �� � N(��0 ; �
2
�0
) and we introduce the following regression function as in Chung

and Dunson (2009):

fl(v) = �
qX

k=1

 lk jvk � 
lkj

with  lk � N(� k ; �
2
 k
)1R+ ;
lk �

PMk

m=1
1
Mk
�
�km(
lk), whereN(�U ; �

2
U )1U denotes a normal

distribution with mean �U and variance �2U truncated to the set U and 
�km are discrete

points over a reasonable range of the k-th covariate vk.

3.3 Imputation and analysis procedure

Data imputation and analysis procedures are as follows.

1. Assign each case i to any class l of the Dirichlet mixture.

2. Generate #(i)m from the posterior distribution based on the likelihood of p(wjv;#m)

calculated on the complete case dataset or pseudo-complete dataset.

3. If w is missing, generate the missing component of w proportional to p(y;wjv):

4. If y is missing, generate the missing component of y from p(yjw;v;#(i�1)s ). If case i
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has missingness both on wi and yi, generate yi from p(yjw;v;#(i�1)s ), where missing

wi is imputed in step 3.

5. Given the pseudo-complete dataset, generate #(i)s from the posterior distribution based

on the likelihood of p(yjw;v;#s):

3.4 Posterior computation of the proposed model

Let Ki be the indicator denoting where case i belongs, and Ki = l if case i belongs to

class l. Recall that #m and #s are the parameter vectors for the covariate distribution p(wjv)

and the substantive model p(yjw;v), respectively. This yields the following hierarchical

representation of the �nite-dimensional PSBPM model:

yijwi;vi;#s � p (yijwi;vi;#s) ;

wijvi;#m;Ki � p (wijvi;#m;Ki) ;

Kj� �
1P
l=1

�l(vij�l)�l (�) (i = 1; :::; N);

�� � p (��j��) ;

#s � p (#sj� #s) ;#m � p (#mj� #m) ;

� � p(� );

where �� =
�
�l; �11; :::; �Lq;
11; :::;
Lq

�
and � = (� T�; �

T
#s
; � T#m)

T .

The blocked Gibbs sampler (Ishwaran and James, 2011) is applied to the posterior com-

putation of the PSBPM parameters #m. The blocked Gibbs sampler is very similar to the

Gibbs sampler except for the assignment of samples to each class. Since we employ PSBPM

modeling, we can directly apply the estimation algorithm of Chung and Dunson (2009) for

the simulation of #m. Each case i is assigned to one of L class in the blocked Gibbs sampling,

where L denotes the maximum number or truncation of classes. As stated above, w may

include continuous and discrete variables. We employ the transformation of the latent con-

tinuous variables w� for probit modeling through a function g such that w = g(w�). Given
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the draw of #m, the missing components of y and w are imputed, and then, the substantive

model parameter #s is simulated. We obtain the detailed posterior computation using the

MCMC estimation as follows.

1. Update Ki (i = 1; :::; N)

To assign samples to each class, generate Ki by
PL

l=1 �li�l (�), where �li is

�li =
�l(vi)N(�lvi;�l)XL

l=1
�l(vi)N(�lvi;�l)

with �l(vi) = �(�l(vi))
Q

h<l f1� �(�h(vi))g.

2. Update Z�il

We introduce latent variable Z�il where Zil = 1(Z
�
il > 0) and

Z�il �

8>>>><>>>>:
N

 
�l �

qX
k=1

 lk jvik � 
lkj ; 1
!
1R+ for l = Ki

N

 
�l �

qX
k=1

 lk jvik � 
lkj ; 1
!
1R� for l < Ki:

3. Update �l(l = 1; :::; L� 1)

Draw �l from the following normal distribution.

�l � N

�P
i:Ki�lW

�
il + ��

Nl + 1
;

1

Nl + 1

�
;

where Nl =
PN

i=1 1(Ki � l) and W �
il = Z�il +

Pq
k=1  lk jvik � 
lkj.

4. Update  lk(l = 1; :::; L� 1; k = 1; :::; q)
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Draw  lk from the following left-truncated normal distribution.

 lk � N

 
�2 k� k +

P
i:Ki�l jvik � 
lkjU

�
il

�2 k +
P

i:Ki�l jvik � 
lkj
2 ;

1

�2 k +
P

i:Ki�l jvik � 
lkj
2

!
1R+ ;

where U�il = �l � Z�il �
Pq

s=1;s 6=k  ls jvis � 
lsj.

5. Update 
lk(l = 1; :::; L� 1; k = 1; :::; q)

Draw 
lk from the following probability.

Pr (
lk = 

�
km) =

1

Mk

Y
i:Ki�l

N

 
Z�il;�l �

qX
s=1;s 6=k

 ls jvis � 
lsj �  lk jvik � 
�kmj ; 1
!

MkP
m=1

1

Mk

Y
i:Ki�l

N

 
Z�il;�l �

qX
s=1;s 6=k

 ls jvis � 
lsj �  lk jvik � 
�kmj ; 1
! :

6. Update #m(= �l;�l)

Draw #m(= �l;�l) from the following multivariate normal and inverted Wishart dis-

tribution.

�ljrest � N
�
vec(b�);�l 


�
V T

l V l

��1�
;

�ljrest � IW
�
f0 +N;G�1

0 + (W �
l � �lV l)

T (W �
l � �lV l)

�
;

where b� = �V T
l V l

��1
V T

l W l, V =
�
vT1 ; :::;v

T
N

�T
,W � =

�
w�T
1 ; :::;w

�T
N

�T
, and V l and

W �
l denote the subset of V andW � whose case i belong to class l. f0 andG�1

0 denotes

the parameter of the prior distribution of �l; �l � IW (f0;G
�1
0 ).

7. Update ��
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Draw �� from the following normal distribution

�� � N

 
(L� 1 + ��2�0 )

�1

"
L�1X
l=1

�l + �
�2
�0
��0

#
; (L� 1 + ��2�0 )

�1

!
:

8. Update the missing components

Draw the missing component of w from a density proportional to p(y;wjv). Since it

is di¢ cult to draw the missing w, we employ the Metropolis-Hastings algorithm and

use p(wjv;#m) as a proposal density in order to draw a candidate of wi; w
c
i . Note

that the candidates are obtained after the transformation w = g(w�). We accept the

candidates with the following probability:

min

�
p(yjwc;v;#s)

p(yjw;v;#s)
; 1

�
: (2)

If any component of y is missing, we draw ymis from

p(ymisjw;v;#s)

9. Update #s

Draw #s from the density proportional to

p(#s)p(yjw;v;#s)

For example, if we are interested in inferring the binary logistic regression coe¢ cients,

the acceptance probability in Equation (2) can be written as

min

 �
exp(�Txci)=

�
1 + exp(�Txci)

�	yi �
1=
�
1 + exp(�Txci)

�	1�yi�
exp(�Txi)=

�
1 + exp(�Txi)

�	yi �
1=
�
1 + exp(�Txi)

�	1�yi ; 1
!
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where � is a vector of coe¢ cients, xi =
�
wT
i ;v

T
i

�T
, and xci is the vector xi whose missing

components are replaced by the candidate value.

4. Simulation study

We conduct the following four simulation studies in order to illustrate the performance of

the proposed method when MICE-FCS cannot draw from a Bayesian joint model: (i) lin-

ear regression with a quadratic term, (ii) linear regression with an interaction term, (iii)

proportional hazards model with a binary covariate, and (iv) logistic regression with a bi-

nary covariate. Through the simulation study, we consider the case N = 400; and 30% of

the incomplete covariates are set to be missing. We generate the missing values based on

p(rjy;w;v) = p(rjy). We compare the following imputation methods with SB-MI: MICE-

FCS, SMC-FCS, and missForest.

Stekhoven and Buhlmann (2012) proposed the missForest algorithm, which imputes miss-

ing values from the random forest predictors and they are reported to provide lower impu-

tation errors than the FCS method (Liao et al., 2014,Waljee et al., 2013). The detailed

simulation design, results, and detailed discussion appear in Appendix A.

This section summarizes the results of simulation study (iv). We specify the substantive

model of the logistic function as follows:

logit(y = 1) = �0 + �1w1 + �2w2 + �3v

with �0 = 1; �1 = 2; �2 = �2, and �3 = 3: In this simulation, we consider three scenarios

where the missing covariates follow (a) a multivariate normal distribution, (b) a multivariate

log-normal distribution, and (c) a multivariate normal mixture distribution. We consider a

case where one of the incompletely observed covariates w1 is binary, where wi;1 = 1 if the

latent variable, which is simulated based on above three process, w�i;1 > 0 and wi;1 = 0 if the

latent variable w�i;1 � 0: The detailed data generating process is described in Appendix A.
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Table 1 describes the results of the simulation, including the empirical mean, standard

deviation, the coverage of nominal 95% con�dence intervals (CIs) of the estimate, and the

mean squared error (MSE) from the true value of �. The last row for each scenario shows

each sum of the MSE ratio for MICE-FCS. With Scenario (a), namely, the normally dis-

tributed covariates, SB-MI gives the most accurate estimates, with an empirical CI coverage

of approximately 0:95. However, MICE-FCS, SMC-FCS, and missForest result in biased

estimates, and their CI coverages are also considerably poor for all �s. With Scenario (b),

namely, the log-normally distributed missing covariates, MICE-FCS and SMC-FCS continue

to be biased with incorrect empirical CI coverage. missForest provides relatively good esti-

mates in terms of MSE, but, once again, the CIs are poor. SB-MI gives relatively correct

estimates, with the CI coverage closer to 0:95 compared with MICE-FCS, SMC-FCS, and

missForest. In Scenario (c), namely, the mixture of normally distributed covariates, MICE-

FCS, SMC-FCS, and missForest once again result in biased estimates, and end with poor

empirical CI coverages for some �s. On the other hand, MSE of SB-MI provides the best

result among the three, and the CI coverages are very close to 0:95 for all �s.

Figure 2 compares the results of MSE and the coverage of nominal 95% CIs. We observe
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that the proposed method gives the smallest MSE and the best coverage.

Fig.2. The thinner lines with markers and the thicker lines correspond to the left vertical axis

(MSE) and the right vertical axis (Cov), respectively. The solid, dashed, and dotted lines represent

the results of the following scenarios, respectively: (a) multivariate normal distribution, (b) mul-

tivariate log-normal distribution, and (c) multivariate normal mixture distribution. CC: complete

case analysis, MICE-FCS: multiple imputation by chained equation-fully conditional speci�cation,

SMC-FCS: substantive model compatible-fully conditional speci�cation, SB-MI: semiparametric

Bayes-multiple imputation (proposed method).

For the other three simulations, the summarized main results are as follows. First, in terms

of the MSE, the proposed method gives estimates equivalent to those found with SMC-FCS

when the latter gives consistent estimates, but MICE-FCS results in biased estimates because

of the violation of the model compatibility assumption. The coverage of nominal 95% CIs for

the proposed method is very close to that of SMC-FCS. Note that missForest shows unbiased

estimates in some situations, but produces underestimated standard deviations, and hence,

poor CIs. This indicates that missForest is occasionally good at inferring unbiased estimates,
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but it should not be applied in �elds such as medical or epidemiologyical research, where the

results of statistical signi�cance (or hypothesis testing) are crucial.

Second, the proposed method shows smaller MSEs when the model compatibility as-

sumptions of MICE-FCS and SMC-FCS are not satis�ed. Our simulation study includes

the missing covariate that follows a log-normal or mixture of normal distribution. Although

MICE-FCS and SMC-FCS result in larger MSEs in these simulation settings, our proposed

method gives considerably smaller MSEs. Even in these situations, the coverage of the CIs

is better compared to that under the imputation methods. This indicates that the proposed

method can deal with more complicated covariate distributions that the researcher cannot

prespecify. Therefore, these results suggest that SB-MI approach is very practical for treating

missing datasets in the real world.

5. Real data analysis

In this section, we apply our proposed algorithm to the real dataset with missing compo-

nents. The data used in this implementation are sourced from the ADNI dataset described

in the motivating example in Section 1:1. The substantive model in this example is the Cox

proportional hazards model, which helps us study the time to conversion to AD. The samples

comprise 382 observations of MCI in baseline subjects who had at least one follow-up after

the �rst diagnosis. Of these subjects, 167 participants converted to AD during the data pe-

riod. The dataset contains missing covariates ABETA1�42, the square of ABETA1�42, tau,

p-tau, the dummy variable of whether or not the subject�s mother had AD, and the dummy

variable of whether or not the subject�s father had AD. The dataset also contains the com-

pletely observed dummy variable APOE4, which equals 1 if the subject has the APOE4 gene,

and 0 otherwise. Jack et al. (2010) found evidence that ABETA1�42 is positively associated,

p-tau is positively associated after controlling the e¤ect of tau, and APOE4 is positively

associated with the hazard of converting to AD. Bartlett et al. (2015) showed that contrary
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to expectations, "mother had AD" and "father had AD" are negatively associated with the

hazard of converting to AD. We should note that ABETA1�42 of 190 observations, tau of 193

observations, p-tau of 189 observations, "mother had AD" of 77 observations, and "father

had AD" of 93 observations are missing.

We employ a gamma process prior to the cumulative baseline hazard proposed by Kalb�eisch

(1978), namely, H0 � GP (c0H
�; c0). We specify the hyperparameters to be c0 = 0:01, and

H� follows an exponential distribution with parameter �. Note that Kalb�eisch (1978) and

Sinha et al. (2003) showed that the estimates from the gamma process prior to the cumu-

lative baseline hazard are equivalent to the non-Bayesian estimates based on Cox�s partial

likelihood (Cox, 1975) when c0 ! 0 (see Chen et al. (2006) for a detailed description of the

MCMC method for a Bayesian Cox regression).

Table 2 shows the results of the coe¢ cients estimated using the Cox proportional hazards

model. A positive coe¢ cient indicates that the variable is associated with hazard of the

subject converting to AD. We compare these results with those obtained using the other

imputation methods, namely, MICE-FCS, SMC-FCS, and missForest. Note that the results

of MICE-FCS and SMC-FCS can be biased because the model compatibility assumption

is violated, as noted in Section 2. The estimated results of our proposed method (SB-MI)

are di¤erent from those of MICE-FCS, SMC-FCS, missForest, as well as the complete case

analysis in some ways. The results of SB-MI suggest that the e¤ect of increasing ABETA1�42

to the hazard of conversion is non-linear as in Bartlett et al. (2015), whereas the coe¢ cient

of ABETA1�42 is not statistically signi�cant for the estimates of the complete case samples,

MICE-FCS, SMC-FCS, and missForest at the 5% level. The coe¢ cients of ABETA1�42

and (ABETA1�42)2 from MICE-FCS are statistically signi�cant at the 10% and 5% level,

respectively, but they show signs opposite to those of SB-MI. In addition, the estimated

coe¢ cient of p-tau from SB-MI is much larger and closer to that of the complete case analysis

compared to the other methods. Like the other existing methods, the hazard of the presence
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of parents who had AD is not statistically signi�cant. The presence of the APOE4 gene,

which is suspected to be associated with the development of AD, is positively associated with

the hazard of converting to AD for SB-MI. This relationship cannot be found when we use

complete case samples only. In addition, compared with the complete case analysis, several

coe¢ cients from SB-MI are statistically signi�cant because they avoid the restrictions posed

by the complete case sample. We conduct a logistic regression and �nd that data availability

of each biomarker is not related to time to conversion to AD at the 1% level, which suggests

that the missing of the data do not depend on the outcome, and assuming unbiased results

from the complete case analysis is reasonable. However, the analysis based on the restricted

sample fails to detect statistically signi�cant variables related to the hazard of converting to

AD.

On the other hand, the results from SB-MI are consistent with the �ndings of previous

studies, such as Hansson et al. (2006) and Okello et al. (2009), in terms of their signs. These

studies employed separate longitudinal datasets and not the ADNI dataset. In conclusion, our

method is very practical when applied to a real dataset, which often contains non-normally

distributed and mixed-scale missing variables.

6. Discussion and conclusions

In this study, we proposed a SB-MI approach for regression models with missing mixed

continuous and discrete covariates, in which the substantive model of the researcher�s interest
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is a parametric formulation, and the covariate distributions are nonparametric formulations

employing PSBPM modeling.

If the covariate model can be correctly speci�ed, the EM algorithm or Bayesian MCMC

approach can estimate unbiased results. However, prespecifying a covariate distribution is

generally impossible, especially in cases where the missing variables are continuous and dis-

crete. The FCS approach including MICE and SMC has been widely used because researchers

are not required to specify the covariate distribution among mixed-scale variables. However,

these methods yield severely biased estimates if the compatibility assumption of the model

is violated.

On the other hand, the SB-MI framework, which is proposed in this paper, is capable

of easily dealing with incompletely observed mixed-scale variables in the covariate distrib-

ution without using FCS. Therefore, we do not have to consider whether the compatibility

assumption holds, and thus, we can assume a non-linear regression, such as a linear regres-

sion with quadratic terms, Cox proportional hazards model, or logistic regression model on

the substantive model even when the variables include discrete and non-normal continuous

variables. The simulation studies show that the proposed method gives the best estimator in

terms of MSE in cases where MICE-FCS and SMC-FCS result in biased estimates due to the

violation of the model compatibility assumption. Furthermore, the proposed model is more

robust when the distributions of the missing variables are non-normal. Since it is usual that

some variables do not follow the normal distribution, and hence, the compatibility assump-

tion is not satis�ed, the results suggest that the SB-MI approach is very practical. Although

missForest, which accommodates the random forest approach, can sometimes give estimates

closer to the "true" value compared to the proposed and existing methods, it underestimates

the variance of the estimates, resulting in poor CIs. Consequently, it should not be applied

to �elds where the results of statistical signi�cance (or hypothesis testing) are concern to

researchers. The results of the real data analysis show that our proposed method can pro-
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vide new insights that cannot be obtained from existing and/or and statistically improper

methods.

Further study is needed to improve the e¢ ciency of the SB-MI algorithm. Since our

inference is based on the MCMC algorithm, the computation time required to obtain valid

estimates is higher than that of the existing imputation method. In addition, our model can

be extended to missing not at random (MNAR) by adding a submodel of the missing mecha-

nism to our semiparametric speci�cation using PSBPMmodeling. However, it is very di¢ cult

to correctly specify the missing mechanism even if we assume a nonparametric formulation.

Consequently, we did not consider the missing mechanism to be MNAR.
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Appendix A

Detailed simulation design and results

In this appendix, we describe the simulation study mentioned in Section 4 in detail. We illus-

trate the performance of the proposed method in cases where MICE-FCS cannot draw from

a Bayesian joint model. The situations considered are (i) linear regression with a quadratic

term, (ii) linear regression with an interaction term, (iii) the Cox proportional hazards mod-

els, and (iv) logistic regression with a binary covariate. Throughout the simulation studies,

we consider the situation outcomes of the substantive model y to be univariate. For simplic-

ity, we also assume y contains no missing components; however, imputing from the predictive

distribution (as in Step 8 in the MCMC algorithm in Section 3) allows us to address the case

y contains missing components in a straightforward manner.

We consider the following throughout the simulation study: N = 400, the number of

completely observed covariates v (q = 1), and the number of incompletely observed covari-

ates w (p = 2): In order to compare the performance with MICE-FCS and SMC-FCS even

when the normality assumptions are violated, we consider three cases, where the covari-

ates xi = (wi;1; wi;2; vi;1)
0
have a di¤erent data generating process from (a) a multivariate

normal distribution, (b) a multivariate log-normal distribution, or (c) a multivariate normal

mixture distribution. For (a), namely, the multivariate normal distribution, xi is generated

as MVN(0;�x) for i = 1; :::; N , where �x denotes the covariance structure with diagonal

elements set to 1; and the pairwise o¤ diagonal elements corr(xir; xir0 ) (r = 1; 2; 3) are set

to �jr�r
0 j

x
. �x is simulated from the uniform distribution over the interval [0:2; 0:8]. For

(b), namely, the multivariate log-normal distribution, the missing variable wi is simulated by

exponentiating a draw from case (a). For (c), namely, the multivariate normal mixture distri-

bution, xi is generated fromMVN(0:5;�1
x) with probability 0:5 and fromMVN(�0:5;�2

x)

with probability 0:5, where �1
x and �

2
x are independently drawn in the same way as �x.

We also assume the MAR missing mechanism. The elements of y are transformed to
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�i;j = Ui;j�logit�1(yi) (j = 1; 2), where Ui;j are i:i:d: uniform distributions over the interval

[0; 1], and the corresponding case of wi;j to the highest (�=2)% of each �i;1 and �i;2 are

converted to be missing. We consistently set � = 30. For each simulation study setting, the

missing components of wi;j are �rst imputed by wi � N(�̂
MLE

l vi; �̂
MLE

l ), where �̂
MLE

l and

�̂
MLE

l represents the maximum likelihood estimators of the complete case analysis.

We adopt the same default choices for hyperparameters as in Chung and Dunson (2009),

namely, L = 20, ��0 = 0, �
2
�0
= 1, � k = 0, �

2
 k
= 100, and 
�km are 50 equally spaced grid

points in (�3:5; 3:5), except for exponentiated wi;1 in each simulation Scenario (b), where 
�

are 50 equally spaced grid points in (0; 10):

In order to con�rm the performance of the proposed SB-MI under di¤erent model se-

tups, we compare it with the MICE-FCS, SMC-FCS, and missForest algorithms. For FCS

imputation approaches, we simulate 100 imputed datasets, and the estimates are computed

using Rubin�s rules. We employ, as FCS, a linear regression covariate model for continuous

incomplete covariates and a logistic regression for binary ones.

A1. Linear regression with quadratic term

A1.1 Simulation setup

First, we simulate the case where the substantive model is a linear regression with nor-

mally distributed error terms, in which the covariates include a quadratic e¤ect term. In

this setting, the standard covariate model speci�cation of MICE-FCS is incompatible. We

specify the substantive model as follows:

y = �0 + �1w1 + �2w2 + �3w
2
2 + �4v

with �0 = 1; �1 = 1; �2 = �1; �3 = 1; �4 = 1; and � � iid N(0; 0:5). These true coe¢ cients

are chosen as we consider a U-shaped association between the outcome y and missing variable

w through the quadratic covariate e¤ects.
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In this simulation setup, the acceptance probability of the missing components discussed

in Equation (2) can be written as

min

0@exp
n
� 1
2�2�
(yi � �Txci)2

o
exp

n
� 1
2�2�
(yi � �Txi)2

o ; 1
1A

where � = (�0;�1;�2;�3;�4)
T , xi = (1; w1i; w2i; w

2
2i; v1i), and x

c
i is the vector xi whose

missing components are replaced by the candidate value. The missing values of w22 are

passively imputed as the squared of the imputed values of w2.

A1.2 Results

Table A1 describes the results of the simulation, namely, the empirical mean, standard

deviation, the coverage of nominal 95% CIs of the estimate, and the MSE from the true

value of �. The last row in each scenario shows each sum of the MSE ratio for MICE-FCS.

With Scenario (a), namely, normally distributed covariates, SMC-FCS, missForest, and SB-

MI give smaller MSEs for all �s. Also, the CI coverage of SMC-FCS and SB-MI is very close

to 0:95, although missForest results in poor CIs. However, since the imputaion model is not

compatible with the substantive model, as expected, MICE-FCS results in biased estimates,

not only for the quadratic term coe¢ cient �3 but also for the other coe¢ cients. CI coverages

are also slightly poor for all �s. With Scenario (b), namely, log-normally distributed missing

covariates, MICE-FCS, once again, results in severely biased estimates and poor empirical

CI coverages. SMC-FCS gives comparatively correct estimates and CI coverage. missForest

and SB-MI provide better estimates from the viewpoint of error from the true value, but the

CI coverages of missForest are far from 0:95: Estimates of �2 by SMC-FCS are more variable

than those of SB-MI. With Scenario (c), namely, mixture of normally distributed covariates,

MICE-FCS results in very biased estimates, and the CIs shows coverage of only 0:17� 0:82.

SMC-FCS also provides slightly biased results for some �s since the speci�ed distributions
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for the covariates are incorrect. CI coverages are also smaller than 0:95 for several �s. SB-MI

gives the smallest MSE and CI coverages are very close to 0:95 for all �s. This indicates that

the SB-MI is more robust to the complicated missing mechanism than SMC-FCS as well as

MICE-FCS.

A2. Linear regression with an interaction term

A2.1 Simulation setup

Next, we simulate the case where the substantive model is a linear regression with nor-

mally distributed error terms and the covariates include the cross-term e¤ect. In this setting,

the standard covariate model speci�cation of MICE-FCS is incompatible. We consider the

case where one of the incompletely observed covariates w1 is binary, where wi;1 = 1 if the

latent variable (which is simulated in each three case) w�i;1 > 0 and wi;1 = 0 if the latent

variable w�i;1 � 0: Since w1 is a binary, we do not exponentiate w�i;1 in the study for Scenario

(b): We specify the substantive model as follows.

y = �0 + �1w1 + �2w2 + �3w1w2 + �4v1 + �
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with �0 = 1; �1 = 1; �2 = 1; �3 = 1; �4 = 1, and � � iid N(0; 0:5).

In this simulation setup, the acceptance probability of the missing components discussed

in Equation (2) can be written as

min

0@exp
n
� 1
2�2�
(yi � �Txci)2

o
exp

n
� 1
2�2�
(yi � �Txi)2

o ; 1
1A

where � = (�0;�1;�2;�3;�4)T , xi = (1; w1i; w2i; w1iw2i; v1i), and xci is the vector xi whose

missing components are replaced by the candidate value.

A2.2 Results

Table A2 describes the results of the simulation, including the empirical mean, standard

deviation, the coverage of nominal 95% CIs of the estimate, and the MSE from the true value

of �. The last row of each scenario describes each sum of the MSE ratio for MICE-FCS.

With Scenario (a), namely, the normally distributed covariates, SMC-FCS and SB-MI give

the correct estimates. Both show empirical CI coverages of approximately 0:95: The MSEs are

also similar to each other. Since the imputation model is incompatible with the substantive

model, as expected, MICE-FCS, once again, results in biased estimates, and CI coverages

are also considerably poor for all �s:With Scenario (b), namely, the log-normally distributed

missing covariates, MICE-FCS continues to be biased with incorrect empirical CI coverage.

SMC-FCS gives biased estimates, with CI coverage of only 0:46 � 0:89. However, SB-MI

provides the estimate closest to the "true" value, the CI coverage being very close to 0:95:

SB-MI seems to be more robust in situations where the distribution is skewed. With Scenario

(c), namely, the mixture of normally distributed covariates, MICE-FCS again continues to

give biased estimates ending in poor empirical CI coverages because of model incompatibility.

SMC-FCS also provide slightly biased results for some �s since the speci�ed distributions for

the covariates are incorrect. CI coverages are also slightly smaller than 0:95 for several �s. On
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the other hand, SB-MI gives estimates closely match the "true" value, and the CI coverages

are also very close to 0:95 for all �s. The estimates from missForest show somewhat larger

MSEs. The results of the simulation for case (ii) indicates that the proposed SB-MI method

is more robust than SMC-FCS and MICE-FCS in situations where the normality assumption

is violated.

A3. Proportional hazards models

A3.1 Simulation setup

Next, we simulate a case where the substantive model is the proportional hazards models.

In this setting, the standard covariate model speci�cation of MICE-FCS is incompatible. We

consider the case where one of the incompletely observed covariates w1 is binary, where

wi;1 = 1 if the latent variable (which is simulated in each three case) w�i;1 > 0 and wi;1 = 0 if

the latent variable w�i;1 � 0: Since w1 is binary, we do not exponentiate w�i;1 in the study for

Scenario (b): We specify the substantive model of the hazard function as follows:
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h(tjw; v) = 0:002 exp(�1w1 + �2w2 + �3v1)

with �1 = 1; �2 = 2, and �3 = 4: We generate censoring times from an exponential distribu-

tion with hazard � = 0:002.

In this simulation setup, we assume aWeibull distribution for the hazard function, and the

acceptance probability of the missing components discussed in Equation (2) can be written

as

min

 
exp

�
d
�
�Txci + log(��) + (�� 1) log(�t)

�
� exp

�
�Txci

�
(�t)�

	
exp

�
d
�
�Txi + log(��) + (�� 1) log(�t)

�
� exp

�
�Txi

�
(�t)�

	 ; 1!

where � = (�0;�1;�2;�3)
T , xi = (w1i; w2i; v1i), and xci is the vector xi whose missing

components are replaced by the candidate value.

A3.2 Results

Table A3 shows the simulation results, including the empirical mean, standard deviation,

coverage of nominal 95% CIs of the estimate, and MSE from the true value of � are described.

The last row of each scenario in Table A3 provides each sum of the MSE ratio on MICE-FCS.

With Scenario (a), namely, normally distributed covariates, SMC-FCS and SB-MI result in

estimates with the smallest MSE for all �s. Also, the CI coverage in both case is very

close to 0:95: The MSE of SB-MI is somewhat smaller than that of SMC-FCS. On the other

hand, MICE-FCS results in biased estimates for all the coe¢ cients owing to the violation of

model compatibility. Hence, CI coverages are also poor for all �s. missForest gives relatively

smaller MSEs, but the empirical coverages are very poor. With Scenario (b), namely, log-

normally distributed missing covariates, MICE-FCS again shows severely biased estimates

and poor empirical coverages. SMC-FCS gives biased estimates, and the CI coverages of �s

are much lower than 0:95. These biased results arise from the model incompatibility on FCS.

missForest, once again, shows poor empirical coverages. Of all these results, SB-MI gives the

most valid estimates, with the CI coverage being closest to 0:95: The MSEs from SB-MI are
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much smaller than those from SMC-FCS. With Scenario (c), namely, a mixture of normally

distributed covariates, where FCS does not satisfy the model compatibility assumption, the

results are similar to Scenario (b).

A4. Logistic regression with a binary covariate

A4.1 Simulation setup

Last, we simulate the case where the substantive model is a logistic regression with a

binary outcome, in which the incomplete covariates include a binary variable. In this setting,

the standard covariate model speci�cation of MICE-FCS is incompatible and incapable of

drawing from a Bayesian joint model. We consider the case where one of the incompletely

observed covariates w1 is binary, where wi;1 = 1 if the latent variable (which is simulated in

each three case) w�i;1 > 0 and wi;1 = 0 if the latent variable w
�
i;1 � 0: Since w1 is binary, we do

not exponentiate w�i;1 in the study for Scenario (b): In addition, the outcome y is also binary;

hence, the substantive model is a logistic regression. We specify the substantive model as

follows:

logit(y = 1) = �0 + �1w1 + �2w2 + �3v1 + �

with �0 = 1; �1 = 2; �2 = �2, and �3 = 3:
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In this simulation setup, the acceptance probability of the missing components discussed

in Equation (2) can be written as

min

 �
exp(�Txci)=

�
1 + exp(�Txci)

�	yi �
1=
�
1 + exp(�Txci)

�	1�yi�
exp(�Txi)=

�
1 + exp(�Txi)

�	yi �
1=
�
1 + exp(�Txi)

�	1�yi ; 1
!

where � = (�0;�1;�2;�3)
T , xi = (1; w1i; w2i; v1i), and xci is the vector xi whose missing

components are replaced by the candidate value.

A4.2 Results

The results and discussions are described in the main paper and Table 1. In this sup-

plementary material, we additionally provide Figure A1. Figure A1 presents the boxplot of

biases in the estimates of coe¢ cient �0 compared with those of the "true" value �0 = 1.

Figure 3 indicates that the simulation using the proposed SB-MI method gives estimates

most similar to the complete data for all scenarios.
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Fig.A1. The solid horizontal line is the �true� coe¢ cient value �0= 1, and the dashed hori-
zontal lines show empirical standard error �1. The boxes span the range from the 25th to the
75th percentiles, and the whiskers extend to an area no more than 1.5 times the range from the
25th to the 75th percentiles from the box. The circles above and below the whiskers represent
outliers. CC: complete case analysis, MICE-FCS: multiple imputation by chained equation-fully
conditional speci�cation, SMC-FCS: substantive model compatible-fully conditional speci�cation,
SB-MI: semiparametric Bayes-multiple imputation (proposed method).
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