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Summary.We develop a new semiparametric Bayes instrumental variables
estimation method. We employ the form of the regression function of the
reduced-form equation and the disturbances are modelled nonparametrically
to achieve better preditive power of the endogenous variables, whereas we
use parametric formulation in the structural equation, which is of interest
in inference. Our simulation studies show that under small sample size the
proposed method obtains more e¢ cient estimates and very precise credible
intervals compared with existing IV methods. The existing methods fail to
reject the null hypothesis with higher probability, due to larger variance of
the estimators. Moreover, the mean squared error in the proposed method
may be less than 1/30 of that in the existing procedures even in the presence
of weak instruments. We applied our proposed method to a Mendelian ran-
domization dataset where a large number of instruments are available and
semiparametric speci�cation is appropriate. This is a weak instrument case;
hence, the non-Bayesian IV approach yields ine¢ cient estimates. We ob-
tained statistically signi�cant results that cannot be obtained by the existing
methods, including standard Bayesian IV.
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1. Introduction
This article presents a new semiparametric Bayes model for instumental vari-
ables problems. We treat the reduced-form equation (or the ��rst-stage�
regression model) and the joint distribution of the error terms as nonpara-
metric and potentially changing in form, corresponding to the values of the
instrumental variables. In addition, our emphasis is on the semiparamet-
ric model formulation. Structural equation models (or the �second-stage�
regression models), which are of interest in inference, are formulated para-
metrically, whereas the reduced-form equation and the disturbance terms are
formulated nonparametrically.
Instrumental variables (IV) methods have become increasingly important

in many empirical �elds. Initially, IV estimation and its application were re-
stricted to empirical economics. However, IV methods have been recently
applied in other �elds, such as epidemiology for causal inference (Ramsahai
and Lauritzen, 2011, Baiocchi et al., 2014, Wang et al., 2017). In particular,
IV approaches are employed when it is not feasible to carry out randomized
controlled trials (RCT) or standard causal inference methodology, which as-
sumes that no unobserved confounding exists. If it is possible to �nd su¢ cient
IV that are predictive of endogenous variables, have no direct e¤ect on the
outcome, and are independent of the unobserved confounders, then the e¤ect
of the unobserved confounders can be controlled.
However, inference based on IV is prone to be imprecise when the instru-

ments explain only a small portion of the variation in the endogenous variable
(weak instrument case). This problem is inherent in samples of small size, as
the data is insu¢ cient to identify the parameters of interest (Conley et al.,
2008). In general, frequentist methods depend on asymptotics and this prop-
erty can be a hindrance when the sample size is small. Therefore they are
not occasionally suitable for IV problems. By contrast, since Bayesian meth-
ods do not rely on asymptotics, applying these methods to IV problems is a
reasonable choice. Even though there are no direct incentives for adopting
Bayesian methods, Conley et al. (2008) showed that they incur smaller mean
squared error (MSE) and provide better interval estimation compared with
non-Bayesian methods when the structural equation and the reduced-from
equation are properly speci�ed. Moreover, Bayesian methods allow for more
�exible modeling of the structural equation, since Bayesian inference depends
only on the joint model of the structural and the reduced-form equation,
whereas classical methods require the development of di¤erent estimation
procedure according to whether we have discrete, clustered, or panel data.
One of the disadvantages of Bayesian methods is that they impose strong
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distributional assumptions on the parameters. This is the case in IV prob-
lems, since Bayesian IV generally assumes that the joint distribution of
disturbances is bivariate normal. Conley et al. (2008) proposed another
Bayesian IV method that uses a Dirichlet process mixture (DPM) model for
the error terms. It moderates the assumption on the disturbances by using
DPM nonparametric speci�cation.
Our proposed procedure is a semiparametric Bayesian IV method and

is more �exible than Conley�s method. We also assume that disturbances
have nonparametric structure. Moreover, we use nonparametric formulation
in the reduced-from equation. In general, the true functional form of the
reduced-from equation is unknown, and its parameters are not of interest. In
addition, if we use many instruments, parametric modeling of a large number
of variables may result in misspeci�cation bias (Chib, 2007). The approaches
assuming that the reduced-form equation has some speci�c functional form
(linear regression is often assumed), including frequentist and Conley�s IV
methods, yield unbiased estimates of the structural equation. However, they
are less e¢ cient. By contrast, if, for example, the reduced-from equation is
not a simple linear combination with additive disturbances, our semipara-
metric Bayes model �ts the data better and yields e¢ ciency gains compared
with classical parametric method and Conley�s method.
Since the parameters of the structural equation are important in applied

research, we assume that the structural equation regression model has para-
metric structure. Moreover, our model is di¤erent from other frequentist
nonparametric IV approaches in that these approaches use nonparametric
speci�cation in the structural equation and parametric speci�cation in the
reduced-form equation.
We employ a probit stick-breaking process mixture (PSBPM) model pro-

posed by Chung and Dunson (2009) to realize more �exible semiparametric
representations for IV. Nonparametrics based on Dirichlet process makes it
possible to represent a distribution by in�nite mixture of well-known �base�
distributions. Whereas the mean regression structure of the DPM is reduced
to a linear regression model, PSBPM is more �exible than DPM since it en-
ables us to make a probability weight of the components change by predictors
in the regression model. Hence, we can treat reduced-form equation and the
joint distribution of error terms as potentially changing in shape as the value
of instruments vary. Even in the case that the reduced-form equation and the
error terms are truly linear and bivariate normal, respectively, our procedure
has small e¢ ciency loss, since it is not necessary to prespecify the number
of components. The optimal number of components, which is needed for a
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�nite mixture of regression models, is de�ned by the data.
We conduct a Monte Carlo simulation study in order to evaluate the

performance of the proposed method. We investigate the �nite sample per-
formance of the estimators when the reduced-from model is not a simple
linear combination. The proposed method may incur as little as 1/30 of the
MSE incurred by existing procedures. Moreover, the coverage of nominal
95% con�dence (or credible) intervals of the proposed method is very close
to 0.95, whereas the other methods provide signi�cantly narrower or wider
interval estimates.
The proposed method is applied to a real Mendelian randomization dataset.

In general, the number of instrumental variables in Mendelian randomization
(i.e. information of the genotype) is large, and correct speci�cation of the
reduced-form regression model is di¢ cult. In addition, the instruments may
not explain the endogenous variables satisfactorily, and non-Bayesian meth-
ods that rely on the asymptotic approximation yield biased results. There-
fore, the proposed Bayesian nonparametric formulation for the reduced-form
equation is appropriate and results in obtaining e¢ cient endogenous (causal)
parameters. In fact, we provide statistically signi�cant results that are not
obtained by the standard Bayesian IV approach.
The remainder of the paper is organized as follows. In the next section,

we propose and formulate a new semiparametric Bayes IV (SB-IV) method
that can overcome the drawbacks of the existing IV methods. MCMC al-
gorithm for our procedure is also presented in Section 2. The simulation
studies illustrating the performance of the proposed method compared with
the existing nonBayesian and Bayesian IV approaches are presented in Sec-
tion 3. In Section 4, we apply our proposed method to the real dataset for
the Mendelian randomization. Section 5 concludes after providing a short
discussion.

2. Semiparametric Bayes estimation for instrumental variable
2.1 The linear model and the existing approaches
We consider a dataset consisting of N (i = 1; :::; N) cases. We further

consider a case with one linear structural equation and one corresponding
reduced-form equation as follows:�

yi = xi� +wi
 + �1;i
xi = zi� + �2;i

(1)

where yi is the outcome variable, xi is the endogenous regressor (E(�1;ixi) 6=
0), wi is the k-dimensional vector of exogenous regressors, and zi is the
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m-dimensional vector of instruments (E(�1;izi) = 0) that includes wi. We
consider the situation that �1;i and �2;i are correlated, which causes the en-
dogeneity problem. We call the �rst line in (1) structural equation and the
second line reduced-form equation.
There is rich literature in econometrics that develops non-Bayesian and

Bayesian methods for IV model estimation. Two stage least squares (TSLS)
(Theil, 1953, Basmann, 1957) and limited information maximum likelihood
(LIML) (Anderson and Rubin, 1949, Hood and Koopmans, 1953) are the
most frequently used non-Bayesian approaches to IV problems. These meth-
ods do not specify the distribution of � � (�1; �2)t and are robust with respect
to the error distribution. However, these frequentist methods rely on asymp-
totics. This may be a problem when the sample size is not large enough.
Non-Bayesian methods for IV problems include nonparametric IV methods.
Newey and Powell (2003) proposed IV estimation of nonparametric models
that considers the structural equation to be the conditional expectation of
the endogenous variables. Later, Dreze (1976), and Kleibergen (1997) de-
veloped IV estimation methods from the Bayesian perspective. One of the
di¤erences between non-Bayesian and Bayesian methods for IV problems is
that non-Bayesian approaches do not rely on the assumption of some spe-
ci�c joint distribution regarding the error terms. By contrast, Bayesian ap-
proaches generally assume bivariate normal distribution (Chao and Phillips,
2011, Geweke, 1996, Kleibergen and Zivot, 2003, Rossi et al., 2005, Hooger-
heide et al., 2007).
However, explicit distributional assumptions can cause misspeci�cation

due to heterogeneity or outliers of the data. To overcome this, Conley
et al. (2008) considered a more �exible semiparametric Bayesian model for
instrumental variables problems. They employed a Dirichlet process prior for
the error terms in the structural and reduced-form equations. More specif-
ically, they considered �i � (�1;i; �2;i)t � N (0;�i) instead of �i � N (0;�),
where �i are i.i.d. following a discrete random distribution G, and G is
modeled with concentration parameter � and base distritbution G0, that is,
G � DP (�;G0); namely, an in�nite mixture of normal distributions where
the number of components and the shape parameters are determined by the
speci�ed prior and the observed data. Their Monte Carlo simulation study
showed that when the error terms do not follow the normal distribution,
their method is more e¢ cient than existing Bayesian and non-Bayesian ap-
proaches.
Even though the Bayesian method in Conley et al. (2008) moderates the

Bayesian strong assumption on the distribution of the error terms, existing
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Bayesian and non-Bayesian methods, as well as Conley�s method, specify
some functional form, usually a linear combination, for the reduced-form
equation. In fact, the true relationship between endogenous variables and
instrumental variables is unknown. Therefore, existing methods impose very
strong assumptions on IV regression. In addition, we are not generally inter-
ested in the parameters of reduced-form models, since these models are just
��rst-step�regression models.
We develop a new more �exible semiparametric Bayes IV model where

we use parametric formulation in the structural equation, whereas we use
nonparametric formulation in the reduced-form equation and the joint dis-
tribution of the error terms. We note that we do not use nonparametric
representation in the structural equation, since its parameters, such as the
gradient coe¢ cient of xi or wi, are usually of interest.

2.2 Semiparametric model formulation
We express the full model as the product of three submodels.

p(yi; xi;�jwi; zi) / p(yijxi;wi;#s;�)p(xijzi;#r;�)p(�)
where p(yijxi;wi;#s;�) represents the structural equation, p(xijzi;#r;�)
represents the reduced form equation, and p(�) represents the joint (prior)
distribution of error terms covariance matrix. #s and #r denote the para-
meters of the structural equation and the reduced form equation except for
�, respectively. We assume the parametric model for the structural equation
p(yijxi;wi;#s;�) since the researchers�concern generally lies in #s. On the
other hand, we consider nonparametric structure for the reduced form equa-
tion p(xijzi;#r;�) and p(�) because they are not generally interested in #r
or �. Speci�cally,�

yi = xi� +wi
 + �1;i
xi = g (zi; �) + �2;i

; �i �
�
�1;i
�2;i

�
� f (2)

We use DPM representation for the reduced-form equation and the joint
error distribution. According to Sethuraman (1994), when the Dirichlet
process prior is assumed for a random distribution G, denoted by G �
DP (�;G0); G is expressed as follows:

G =

1X
l=1

�l��l ; �l � G0

where � andG0 are the concentration parameter and the base distribution, re-
spectively. In this notation, �� is a point mass at � and �l = �l

Q
h<l (1� �h),
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where �1; �2; ::: are independent draw from a beta distribution Be(1; �) (refer
to Walker et al. (1999) for a detailed description of DPM). These repre-
sentations indicate that any distribution can be expressed as a mixture of
well-known distributions, such as the Gaussian distribution.
Fortunately, the DPM model can be estimated with a relatively simpler

MCMC algorithm by applying blocked Gibbs sampling (Ishwaran and James,
2011). Therefore, DPM modeling has been employed to avoid distributional
assumptions on the parameters within the Bayesian framework. In addition
to Conley et al. (2008), Hirano (2002) developed dynamic panel data models
where the error terms are represented by a DP prior. DPM models not only
treat disturbances of nonparametric classes but also a¤ord a good deal of
�exibility for a wide range of statistical models. Miyazaki and Hoshino (2009)
proposed a Bayesian semiparametric item response model with DP prior.
Kunihama and Dunson (2016) constructed a method for variable selection
within Bayesian nonparametric DPM. The theoretical properties of DPM
were investigated in Shen et al. (2013).
Even though DPM is often employed to avoid assumptions on parameter

distribution, it is restricted due to the fact that the probability weight �l
is constant across observations (Dunson et al., 2007). If the stick-breaking
weights �l are constant and independent of the predictor �i; the mean re-
gression structure is reduced to be linear, namely,

P1
l=1 �l�

T
l �i = �

T
�i,

where � =
�P1

l=1 �l�
T
l

�
. Therefore, instead of DPM, we apply the PSBPM

model proposed by Chung and Dunson (2009) since it can change probabil-
ity weights depending on the value of predictors � in the regression model.
In addition, since PSBPM uses Gaussian distribution as a base distribution,
the models a¤ords a conjugate structure and simpler posterior calculation.
PSBPM uses the probability weight �l(�) instead of �l,

�l(�) = �(�l(�))
Y

h<l
f1� �(�h(�))g : (3)

where �(�) is the cumulative distribution function of the standard Gaussian
distribution. PSBPM allows the probability weight �l(�) to vary as the
predictors � vary.
For example, Hoshino (2013) proposed a semiparametric Bayesian model

for causal inference where the irrelevant parameters are modeled using PS-
BPM. The statistical properties of PSBPM are described in Pati et al. (2013).
We apply PSBPM modeling to the reduced-form equation and the joint

error distribution. We rewrite the models as an in�nite mixture model of
simultaneous equations.
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f
� eyijfX i

�
=

1X
l=1

�l(z)N
�fX i

e�l;�l

�
where

eyi = � yi
xi

�
; fX i =

�
xi wi 0
0 0 zi

�
; e�l =

0@ �


�l

1A ;

e�l = � �1;l
�2;l

�
; e�l � N(0;�l):

We note that since we assume parametric speci�cation for the structural
equation, � and 
 are common parameters across classes, whereas �l varies
with l. Since we speci�ed PSBPM formulation for the reduced-form equation,
we let the probability weight be dependent on the instruments z, �l(z). As
in equation (3), �l(z) is expressed by the following �stick-breaking�process.

�l(z) = �(�l(z))
Y

h<l
f1� �(�h(z))g :

We employ the same structure of instruments depending weight �l(z)
as in Chung and Dunson (2009). That is, we let �l(z) = �l + fl(z), �l �
N(��; 1), �� � N(��0 ; �

2
�0
) and we introduce the following regression func-

tion:

fl(z) = �
mX
q=1

 lq jzq � 
lqj

with  lq � N(� q ; �
2
 q
)1R+ ;
lq �

PBq
q=1

1
Bq
�
�qb(
lq), where N(�U ; �

2
U )1U

denotes a normal distribution with mean �U and variance �
2
U truncated to

the set U , and 
�qb are discrete points over a reasonable range of the q-th
covariate zq.
Our semiparametric Bayes IV model in equation (2) is di¤erent from

the recent nonparametric IV approaches that consider the nonparametric
structural equation. Such examples are Newey and Powell (2003), Hall and
Horowitz (2005) and Darolles et al. (2011), which developed nonparamet-
ric IV regression models from non-Bayesian perspective, and Liao and Jiang
(2011), Florens and Simoni (2012), and Kato (2013), which employed quasi-
Bayesian approach to nonparametric Bayesian IV regression problem. On the
other hand, our semiparametric approach employ nonparametric reduced-
form model and disturbances, which are di¢ cult to correctly prespecify, and
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parametric structural model, which is of main interest. Therefore, our semi-
parametric method is practical when we can use many instruments and es-
pecially interested in the parameters of the structural equation.
Some of non-Bayesian and quasi-Bayesian IV methods employ GMM

(generalized method of moments) based approach, and it is well-known that
GMM attains semiparametric e¢ ciency bounds. However, this e¢ ciency is
obtained when the sample size is large enough. On the other hand, the pro-
posed method is based on Bayesian modeling, and therefore expected to be
more e¢ cient than exisitng GMM-based IV methods relying on asymptotic
theory when the sample size is not large enough, as indicated by Conley et al.
(2008). In fact, we will show that our proposed method obtains more e¢ -
cient and smaller MSE (mean squared error) estimates than GMM-based IV
approach in the simulation study section when the sample size is not large.

2.3 MCMC algorithm
We apply the blocked Gibbs sampler (Ishwaran and James, 2011) to

the posterior computation of the PSBPM parameters. Ishwaran and James
(2011) proved that the case with �nite number of classes l can be used to
approximate the inference that is based on in�nite classes with satisfactory
accuracy when the maximum number of classes L is large enough. There-
fore, blocked Gibbs sampler considers the case for truncation of the number
of classes (e.g. L = 20), hence the simpler posterior computation. It is very
similar to the Gibbs sampler except for the assignment of samples to each
class.
We provide the detailed posterior computation using the MCMC estima-

tion as follows.

1. Conditional for Ki (i = 1; :::; N)

Let Ki be the indicator denoting where case i belongs, and Ki = l if
case i belongs to class l: To assign samples to each class, generate Ki

by
PL

l=1 �li�l (�), where �li is

�li =
�l(zi)N(fX i

e�l;�l)XL

l=1
�l(zi)N(fX i

e�l;�l)
;

with �l(zi) = �(�l(zi))
Q

h<l f1� �(�h(zi))g.

2. Conditional for Z�il
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The latent variable Z�il is introduced in this step where Zil = 1(Z
�
il > 0)

and

Z�il �

8>>>><>>>>:
N

 
�l �

qX
k=1

 lq jziq � 
lqj ; 1
!
1R+ for l = Ki

N

 
�l �

qX
k=1

 lq jziq � 
lqj ; 1
!
1R� for l < Ki:

3. Conditional for �l(l = 1; :::; L� 1)
Simulate �l from the following normal distribution.

�l � N

�P
i:Ki�lW

�
il + ��

Nl + 1
;

1

Nl + 1

�
;

4. Conditional for  lq(l = 1; :::; L� 1; q = 1; :::;m)
Simulate  lq from the following left-truncated normal distribution.

 lq � N

 
�2 q� q +

P
i:Ki�l jziq � 
lqjU

�
il

�2 q +
P

i:Ki�l jziq � 
lqj
2 ;

1

�2 q +
P

i:Ki�l jziq � 
lqj
2

!
1R+ ;

5. Conditional for 
lq(l = 1; :::; L� 1; q = 1; :::;m)
Simulate 
lq from the following probability.

Pr
�

lq = 


�
qb

�
=

1

Bq

Y
i:Ki�l

N
�
Z�il;�
;1; 1

�
BqP
q=1

1

Bq

Y
i:Ki�l

N
�
Z�il;�
;2; 1

� :

where �
;1 = �l �
Pq

s=1;s 6=k  ls jzis � 
lsj �  lq
��ziq � 
�qb�� and �
;2 =

�l �
Pq

s=1;s 6=k  ls jzis � 
lsj �  lq
��ziq � 
�qb�� :

6. Conditional for ��
Simulate �� from the following normal distribution.

�� � N

 
(L� 1 + ��2�0 )

�1

"
L�1X
l=1

�l + ��2�0 ��0

#
; (L� 1 + ��2�0 )

�1

!
:
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7. Conditional for e�l
Let nl =

PN
i=1 1(Ki = l): Simulate e�l from the following multivariate

normal and inverted Wishart distribution given Ki = l.e�l � N
�
D�ld�l ;D�l

�
where

D�l =

 
nlX
i=1

fX t

il�
�1
l
fX il

!�1
; d�l =

nlX
i=1

�fX t

il�
�1
l eyil� ;

and

�l � IW

 "
nlX
i=1

�eyil �fX il
e�l��eyil �fX il

e�l�t
#
; nl

!
8. Conditional for � and 


Consistent with Rossi et al. (2005), the structural model parameters
� and 
 can be simulated by applying Bayesian linear regression draw
with N (0; 1) error terms

yi � E [�1;ij�2;i]
��1;ij�2;i

=
xi�

��1;ij�2;i
+

wi


��1;ij�2;i
+ ui; ui � N (0; 1)

where

��1;ij�2;i = �11;!i �
�212;!i
�211;!i

and
E [�1;ij�2;i] =

�12;!i
�22;!i

�2;i

3. Simulation study
We conduct two simulation studies in order to illustrate the performance of
the proposed method when the reduced-form equation is not a linear com-
bination with additive disturbance that follows Gaussian distribution. Sim-
ulation 1 considers the case where the reduced-form equation is a mixture
model of two classes (l = 2). Simulation 2 considers the case of a non-linear
reduced-form equation with skewly distributed (log-normally distributed) er-
ror terms. Each simulation is designed to cover the cases of weak instruments
and strong instruments, namely, our simulation results in a experiment with
four cells. We classify instruments as weak or strong according to the classi-
cal criteria proposed by Staiger and Stock (1997) and Stock and Yogo (2005).
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These stipulate that when the F-statistics of the �rst stage regression is less
than 10, we have a weak instrument case, otherwise we have a strong instru-
ment case. We evaluate the proposed method by comparison with existing
non-Bayesian and Bayesian IV methods.
In the two simulation studies, we evaluate the �nite sample property

of the estimators. We consider 1; 000 replications of the dataset and con-
�rm if the true value of endogenous variable coe¢ cient � can be recovered.
Throughout the simulations, the sample size for each dataset is set to be
N = 200. We calculate standard performance measures, such as empirical
mean, standard deviation, the coverage of nominal 95% con�dence (or cred-
ible) intervals (CI) of the estimate, and the deviation (MSE) from the true
value. Moreover, we con�rm, if the point estimate of � is positively sta-
tistically signi�cant at 95% con�dence level for non-Bayes approaches, and
the 95% credible interval of � includes �zero�for Bayes approaches (denoted
as �% of sig.� in Table 1). Although it could be sometimes inappropriate,
we take more practical perspective to compare the Bayesian credible inter-
vals with the classical con�dence intervals as Conley et al. (2008) did. The
detailed experimental design is described in Supplementary Materials.
For comparison, we consider �ve non-Bayesian estimators and two Bayesian

estimators. The �rst is the most widely used approach, namely, two-stage
least squares (TSLS). The second alternative is limited information maxi-
mum likelihood (LIML). The third is a modi�cation of the LIML estimator,
namely, Fuller�s procedure (F-LIML) (Fuller, 1977), which obtains better es-
timates when the instruments are weak. We also emplyed GMM based IV
estimation (GMM-IV) as an alternative. Moreover, we compare the results
from ordinary least squares (OLS). As for Bayesian alternatives, we employ
the standard Bayesian IV method, which assumes that the joint distribution
of the error terms is bivariate Gaussian (BayesIV), and Conley�s semipara-
metric Bayesian IV method (C-BayesIV). For BayesIV and C-BayesIV, as
well as the proposed method, burn-in of 5,000 iterations followed by 10,000
iterations were used for the posterior inference. All algorithms except for the
proposed method and GMM-IV assume an ordinary linear regression model
for the reduced-form equation, that is, xi = zi� + �2;i: GMM-IV used the
moment condition of E(�1;izi) = 0, therefore GMM-IV does not prespecify
the functional form of the reduced-form equation. We used inverse variance
of the moments as a weighting matrix, namely, the optimal weighting ma-
trix. We calculated the intervals based on large sample approximations for
the classical estimators.
This section presents the results of simulation study 1. The results of
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simulation 2 are provided in Supplementary Materials.

Fig.1. The solid horizontal line is the �true�coe¢ cient value � = 1. The boxes
span the range from the 25th to the 75th percentiles, and the whiskers extend to
an area no more than 1.5 times the range from the 25th to the 75th percentiles
from the box. The circles above and below the whiskers represent outliers. OLS,
ordinary least squares; TSLS, two stage least squares; LIML, limited imformation
maximum likelihood; F-LIML, Fuller�s modiication of the LIML; BayesIV, stan-
dard Bayes IV method; C-BayesIV, Conley�s semiparametric Bayes IV method
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Table 1 shows the results of simulation 1, including the empirical mean,
standard deviation, the coverage of nominal 95% con�dence intervals (CI) of
the estimate, the mean squared error (MSE) from the true value of �, and
�% of sig.�. Figure 1 shows the box plot of the estimates for � obtained by
1; 000 replications.
For both the weak and the strong instrument cases, OLS obtain overes-

timated results, since they ignore the existence of the instrumental variable.
Therefore, the coverage of nominal 95% con�dence intervals for OLS is very
poor.
As for the weak instrument case, all estimation methods except for the

proposed and C-BayesIV seem to be biased due to the weakness of the in-
struments. Moreover, the standard deviations of the estimates are totally
di¤erent among the methods. The proposed method exhibits the best e¢ -
ciency (the smallest standard deviation). Even though GMM-IV does not
prespecify the reduced-from regression model and the distribution of the error
terms, as is the case with the proposed, it shows the larger standard deviation
than our semiparametric approach. The best coverage is obtained by the pro-
posed method, which is very close to 0:95. For other Bayes models, BayesIV
results in narrower credible intervals. Furthermore, C-BayesIV yields slightly
wider intervals. Regarding non-Bayes methods, TSLS, LIML, F-LIML, and
GMM-IV, show overly wider coverage and do not seem to obtain correctly
the con�dence intervals. These results indicate that weak instruments and
misspeci�cations of IV models provide incorrect CI. Therefore, wrong para-
metric assumptions on the IV equations may lead to poor prediction power
of the reduced-form equation and incorrect decision making in �elds where
results of statistical signi�cance (or hypothesis testing) are crucial. The �fth
and the sixth column shows the MSE from the true value of � = 1 and the
MSE ratio when the MSE of the proposed method is set to be 1. It is seen
that the existing methods yield from 4:7 to 37:1 times larger MSE than the
proposed approach. All estimates from the proposed method do not contain
zero for its credible intervals, by contrast, �% of sig.�of the estimates from
the other methods are only 60% to 91%.
As far as the strong instrument case is concerned, all estimation methods

except for OLS can recover the true value � = 0:1, since they have con-
sistency, even when they misspecify the reduced-form equation. However,
e¢ ciency varies greatly among the methods. Hence, the MSE results are
dispersed. Speci�cally, except for OLS estimates of inconsistency, the mean
of the standard deviations of the proposed method is the smallest, indicating
that misspeci�cation of the reduced-form equation and the joint distribution
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of the error terms results in less e¢ cient estimates. GMM-IV has the prop-
erty of semiparametric e¢ ciency, but in this simulation study of �nite sample
with N = 200, GMM-based methodology seems to be less e¢ cient even in
the strong instruments case. Thus, our semiparametric speci�cation is more
suitable even in the strong instrument case. Existing methods yield at most
18:4 times larger MSE than the proposed. In addition, there is more than
92% chance that the estimates from the proposed method are �positively
signi�cant�(CIs do not cotain zero), whereas the estimates from the exist-
ing methods are signi�cant with probability less than 30%. This indicates
that even in the case of strong instruments, the proposed semiparametric
approach can correctly detect signi�cant variables.

4. Real data analysis
Herein, we apply our methods to a real data example of Mendelian random-
ization. Mendelian randomization uses genotype information as an instru-
mental variable to correctly estimate the causal e¤ect of a biomarker to a
disease. It is an outstanding IV approach in that the appropriate genetic
variant is independent of the confounders of the intermediate phenotype-
outcome association. Moreover, it can a¤ect the outcome only through the
causal intermediate phenotype as long as it is related to the intermediate
phenotype (Burgess et al., 2015).
The data used in this implementation are sourced from the Orkney Com-

plex Disease Study (ORCADES) study, which is a genetic epidemiology study
based on an isolated population in the north of Scotland (http://www.orcades.
ed.ac.uk/orcades/). The data is open sourced and published in (http://www.
homepages.ed.ac.uk/pmckeigu/instrumental/). It is based on the dataset de-
scribed in McKeigue et al. (2010).
The aim of the analysis is to uncover the causal relationship between

plasma urate level and the �metabolic syndrome�. There exist two con�ict-
ing opinions on this issue. Feig et al. (2008) indicates that uric acid and the
metabolic syndrome are positively related. Therefore, they are said to be
have positive association (Lohsoonthorn et al., 2006, Onat et al., 2006, Choi
and Ford, 2007, Hjortnaes et al., 2007, Sui et al., 2008). By contrast, there is
indirect evidence in Waring et al. (2003) and Waring et al. (2006) support-
ing that uric acid is bene�cial in avoiding the metabolic syndrome. Using
Mendelian randomization with the dataset described in this section, McK-
eigue et al. (2010) showed the negative e¤ect of uric acid on the metabolic
syndrome. However, the e¤ect was statistically not signi�cant, with 95%
credible interval of the logistic regression coe¢ cient (�2:91; 0:05).
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In this example, plasma urate level is an endogenous variable and the
metabolic syndrome is an outcome. As an instrumental variable for Mendelian
randomization, we can use six SNPs (single nucleotide polymorphisms) in
the urate transporter gene SLC2A9 which were typed using a TaqMan assay,
rs737267, rs13129697, rs1014290, rs6449213, rs13131257, and rs4447863. In
addition, the dataset include the information on age (average:53 years) and
sex (40 % male). We include them in both the reduced-form and the struc-
tural equation. The plasma urate level is standardized to have mean 0 and
standard deviation 1. The age is also scaled to have mean 0.
The outcome, the metabolic syndrome, is a dichotomous variable (equals

one if the sample indicates metabolic syndrome, otherwise zero; 20 % of the
sample is regarded as metabolic syndrome). Therefore, we consider the pro-
bit regression model for the structural equation. The original sample size is
1; 017, and the SNP information is available for 706 of these individuals. We
used a complete-case sample, that is, individuals for whom all variables, in-
cluding the outcome (metabolic syndrome), the endogenous variable (plasma
urate level), the covariates (age and sex), and the instrumental variables (six
SNP) were observed. The sample size resulting from the complete-case analy-
sis is 647.
For comparison, we �rst used OLS regression. The estimated coe¢ cient of

plasma urate level is 0:44 and is statistically signi�cant (p < 0:01). Moreover,
we considered the classical method for the IV probit model. In this case, the
plasma urate level coe¢ cient is �0:67. However, this is not statistically sig-
ni�cant, with con�dence interval (�1:52; 0:18). In addition, the F-statistics
of the reduced-form equation (regression model of plasma urate level against
six SNP) is 3:56. Hence, this is considered to be a weak instrument case.
Therefore, the results obtained from a non-Bayesian IV method, in which
the precision of the estimates depends on asymptotic approximation, are not
reliable.
Subsequently, we applied the standard Bayesian IVmethod to the dataset.

We considered an ordinary linear regression model as the reduced-form model
and assumed that the distribution of the error terms is bivariate normal.
Burn-in of 5; 000 iterations followed by 10; 000 iterations were used for the
posterior inference. The posterior mean of the coe¢ cient of plasma urate
level is �0:42, with credible interval of (�0:98; 0:03).
Finally, we applied the proposed method. We considered a truncation of

the components L = 20. The prespeci�ed parameters were same as in the pre-
vious simulation study. Burn-in of 5; 000 iterations followed by 10; 000 itera-
tions were used for the posterior inference. The posterior mean of the plasma
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urate level coe¢ cient is �0:48, with credible interval of (�1:01;�0:02). The
interval obtained from the proposed is shorter than the standard Bayesian
IV method and do not contain 0 in the interval. The results obtained from
the proposed method are the opposite of OLS results, which do not consider
the presence of the instruments.
In line with McKeigue et al. (2010), this indicates that high level of uric

acid is negatively related to the metabolic syndrome. However, the results
may be controversial, since they not consistent with an established theory
supported by a large number prior studies. This article focuses on statistical
methods for IV rather than the relationship between the urate acid level
and the metabolic syndrome. The results, as well as the plausibility of the
assumptions in the IV approach, should be veri�ed by additional studies.

5. Conclusion and discusions
We proposed a semiparametric Bayes instrumental variable estimation method.
Our method does not specify the distribution of the reduced-form and the
disturbances and is robust in the weak instrument case, as shown in the
simulation studies. Therefore, application in Mendelian randomization is
bene�cial, since the instruments of genetic information are numerous and
occasionally explain only a small portion of the variation in the biomarker.
There are several directions for future research. We considered the case

of the structural equation is an ordinary linear regression model or probit
regression model. An extension to the logistic regression model or other
regression models is natural. As stated in Section 1, Bayesian methods are
able to develop these models straightforwardly. In addition, further study
is required to improve the computational speed of the proposed algorithm.
Since our inference is based on the MCMC algorithm with nonparametric
Bayes parameters, the computation time required to obtain valid estimates
is greater than that of the existing non-Bayesian and Bayesian methods.

Supplementary Materials

1. MCMC algorithm for binary outcome case
We can extend MCMC algorithm for binary outcome case. Consider the
following representation of probit model by latent variable y�i :�

y�i = xi� +wi
 + �1;i
xi = g (zi; �) + �2;i

; �i �
�
�1;i
�2;i

�
� f

and
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yi =

�
1; y�i > 0
0; y�i � 0

Posterior simulation requires following 3 steps in addition to the main
MCMC computation described above, and replace yi in the algorithm by
latent variable y�i .

1. Conditional for y�i (i = 1; :::; N)

Simulate y�i from the following truncated normal distribution.

y�i �

8<: TN(0;1)

�
xi� +wi 
+

�12;l
�222;l

[xi � zi�l] ;
�
1� �212;l

�222;l

��
TN(�1;0)

�
xi� +wi 
+

�12;l
�222;l

[xi � zi�l] ;
�
1� �212;l

�222;l

�� ;

where �l =

�
1 �12;l
�12;l �222;l

�
:

2. Conditional for �12;l (l = 1; :::; L)

Simulate �12;l from the following normal distribution.

�12;l � N(D�d�; D�);

where D� =
�Pnl

i=1 (y
�
i � xi� +wi
)

2 =�2v;l + V �1
0;l

��1
;

d� =
Pnl

i=1 (y
�
i � xi� +wi
) (xi�zi�l)=�2v;l+V �1

0;l �0;l, and �
2
v;l = �222;l�

�212;l, and the prior for �12;l � N(�0;l; V0;l).

3. Conditional for �2v;l(l = 1; :::; L)

Simulate �2v;l from the following inverse Gamma distribution.

�2v;l � IG

 
nl
2
+ a; b�1 +

1

2

nlX
i=1

fxi � zi�l � �12;l (y
�
i � xi� +wi
)g

!
;

with the prior for �2v;l � IG(a; b).

2. Detailed simulation design and results
Herein, we describe in detail the simulation study mentioned in Section 3.
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2.1 Experimental design
Throughout the simulation, we consider the case of linear structural equa-

tion with one endogenous variable. This experimental design is justi�ed by
the survey conducted in Chernozhukov and Hansen (2008); they noticed that
in the leading journals of economics from 1999 to 2004, 89 out of 129 articles
regarded only one explanatory variable as endogenous.
Figure 2 shows boxplots of the F-statistics distribution of simulation 1

and simulation 2 for the weak and strong instrument case. We classify in-
struments as weak or strong according to the classical criteria proposed by
Staiger and Stock (1997) and Stock and Yogo (2005) as noted in the main
paper.
Through the simulation studies, we adopt the same default choices for

hyperparameters as in Chung and Dunson (2009), namely, L = 20, ��0 = 0,
�2�0 = 1, � q = 0, �

2
 q
= 100, and 
�qb are 50 equally spaced grid points in

(�3:5; 3:5):

Fig.2. The boxes span the range from the 25th to the 75th percentiles, and
the whiskers extend to an area no more than 1.5 times the range from the 25th to
the 75th percentiles from the box. Sim.1 weak, simulation 1 for weak instruments;
Sim.1 strong, simulation 1 for strong instruments; Sim.2 weak, simulation 2 for
weak instruments; Sim.2 strong, simulation 2 for strong instruments

2.2 Setup for simulation study 1
In this study, we evaluate the �nite sample property of the estimators

when the true reduced-form equation is a �nite mixture regression model.
We consider the case with a sample size N = 200 and a mixture model with
two classes (l = 2). We assume 1-dimensional endogenous regressor xi, 3-
dimensional exogeneous regressorwi, whose �rst elements are set to be 1 (i.e.
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intercept), and 5-dimensional instruments zi, whose �rst elements are set to
be 1 and are independent of �2;i. The true relationship of the full model is
as follows. 8<:

yi = xi� +wi
 + �1;i

xi =
2P
l=1

1i2lzi�l + �2;i
; �i �

�
�1;i
�2;i

�
� N (0;�l) (.1)

For weak instrument case, we set (�1; �2) = (0:5; 0:5); �1 = (�1; 2; 2; 0; 0)t ;

�2 = (�1;�2;�2; 0; 0)t ; 
 = (1; 2; 3)t ; (�1;�2) =

��
1 0:5
0:5 1

�
;

�
2 1
1 2

��
;

and the interested parameter � = 1: We generate the exogeneous random

variables from w�1;i � MVN

��
0
0

�
;

�
1 0:5
0:5 1:5

��
; where w�1;i denote

the components of wi with the �rst component 1 removed. As for zi, we

�rst generate z��1;i � MVN

��
0
0

�
;

�
1 0:5
0:5 1

��
; where z��1;i denotes

the components of zi without the �rst component 1 and the component of
wi, and set zi to be zi =

�
1; z��1;i;wi

�
:

For the case of strong instruments with small coe¢ cients, we replace �l
with �1 = (�1; 2; 2; 0; 0)t and �2 = (�1;�1; 0; 0; 0)t and the parameter of
interest � with � = 0:1. The other true parameters remain unchanged.
In this simulation setup, the mean of the F-statistics of the reduced-

form model for the weak and the strong instrument case is 2:40 and 29:11,
respectively.
The results are provided in the main article.

2.3 Setup for simulation study 2
In this study, we consider the case with a sample size N = 200, a non-

linear reduced-form equation, and skewly distributed (log-normally distrib-
uted) error terms. We assume 1-dimensional endogenous regressor xi, 3-
dimensional exogeneous regressor wi whose �rst elements are set to be 1
(i.e., intercept), and 4-dimensional instruments zi that are independent of
�2;i. The true relationship of the model is as follows.

�
yi = xi� +wi
 + �1;i

xi = 2 ln
���z��1;i � 1��+ 1� sgn �z��1;i � 1�+ �2;i

; �i �
�
�1;i
�2;i

�
= v�c; v � lnN (0;�)

(.2)
where sgn(�i) takes the value 1; 0;�1 if �i is positive, zero, and negative,
respectively. c is taken so that the mean of �i is zero. In this setting,
there is S-shaped relationship between xi and z��1;i. Again, z

�
�1;i denotes
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the components of zi with the �rst component 1 and the component of wi

removed. Hence, in this data generating process, z��1;i is one dimension.

For weak instrument case, we set 
 = (1; 2; 3)t ; � =

�
1 0:5
0:5 2:5

�
; and

the interested parameter � = 1:We generate the exogenous random variables

from wi � MVN

��
0
0

�
;

�
1 0:5
0:5 1:5

��
; z��1;i � N (0; 1) : For strong in-

strument with small coe¢ cient case, we replace � with � =
�

1 0:5
0:5 1:25

�
and the interested parameter � with � = 0:3. The other true parameters are
remained to be unchanged.
In this simulation setup, the mean of the F-statistics of the reduced-

form model for the weak and the strong instrument case is 5:13 and 29:85,
respectively.

2.4 Results of Simulation study 2
Table 2 shows the results of simulation 2. It is seen that for both cases,

OLS obtains overestimated results. Therefore, the coverage of nominal 95%
con�dence intervals is very poor.
Regarding the weak instrument case, all estimation methods except for

the proposed approach are unstable. Speci�cally, the standard deviation
of the estimates is larger than that of the proposed approach. The best
coverage is obtained by the proposed method. This is very close to 0:95.
As for the other Bayes models, BayesIV and C-BayesIV obtain somewhat
narrower credible intervals. By contrast, non-Bayes approaches again yield
overly wider credible intervals. These results also indicate that weak instru-
ments and misspeci�cations of IV models yield incorrect CI. The results on
the MSE and the MSE ratio show that existing methods yield from 5:6 to 36:7
times larger MSE than the proposed approach. In addition, �% of sig.�of
the existing methods are only with probability 86% at minimum, whereas all
estimates of � from the proposed method do not include zero for its credible
intervals.
As for the strong instrument case, all estimation methods except for OLS

can recover the true value � = 0:3. However, e¢ ciency varies among the
methods. More speci�cally, except for OLS, the mean of the standard devi-
ations of the proposed model is the smallest. In the simulation 2 settings,
which consider the non-normal disturbances with �nite samples, GMM-IV
does not outperform the proposed for both weak and strong instruments
case even though it do not require the normality of the error terms. Addi-
tionally, �% of sig.�of the proposed method is 96%, whereas those of the
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competitors are only 39% to 59%.
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