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Abstract

A policy change that involves a redistribution of income or wealth
is typically controversial, affecting some people positively but others
negatively. In this paper we extend the “robust comparative statics”
result for large aggregative games established by Acemoglu and Jensen
(2010, 49th IEEE Conference on Decision and Control, 3133–3139) to
possibly controversial policy changes. In particular, we show that
both the smallest and the largest equilibrium values of an aggregate
variable increase in response to a policy change to which individuals’
reactions may be mixed but the overall aggregate response is positive.
We provide sufficient conditions for such a policy change in terms of
distributional changes in parameters.
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1 Introduction

Recently, Acemoglu and Jensen (2010, 2015) developed new comparative
statics techniques for large aggregative games, where there are a continuum
of individuals interacting with each other only through an aggregate vari-
able. Rather surprisingly, in such games, one can obtain a “robust compara-
tive statics” result without considering the interaction between the aggregate
variable and individuals’ actions. In particular, Acemoglu and Jensen (2010)
defined a positive shock as a positive parameter change that positively af-
fects each individual’s action for each value of the aggregate variable. Then
they showed that both the smallest and the largest equilibrium values of the
aggregate variable increase in response to a positive shock.

Although positive shocks are common in economic models, many im-
portant policy changes in reality tend to be controversial, affecting some
individuals positively but others negatively. For example, a policy change
that involves a redistribution of income necessarily affects some individuals’
income positively but others’ negatively. Such policy changes of practical
importance cannot be positive shocks.

The purpose of this paper is to show that Acemoglu and Jensen’s (2010,
2015) analysis can in fact be extended to such policy changes. Using Ace-
moglu and Jensen’s (2010) static framework, we consider possibly controver-
sial policy changes by defining an “overall positive shock” to be a parameter
change to which individuals’ reactions may be mixed but the overall aggre-
gate response is positive for each value of the aggregate variable. We show
that both the smallest and the largest equilibrium values of the aggregate
variable increase in response to an overall positive shock. Then we provide
sufficient conditions for an overall positive shock in terms of distributional
changes in parameters.1 These conditions enable one to deal with various
policy changes, including ones that involve a redistribution of income.

This paper is not the first to study comparative statics for distributional
changes. In a general dynamic stochastic model with a continuum of individ-
uals, Acemoglu and Jensen (2015) considered robust comparative statics for
changes in the stationary distributions of individuals’ idiosyncratic shocks,

1The concept of overall positive shocks is related not only to that of positive shocks but
also to Acemoglu and Jensen’s (2013) concept of “shocks that hit the aggregator,” which
were defined as parameter changes that directly affect the “aggregator” positively along
with additional restrictions. Such parameter changes are not considered in this paper, but
they can easily be incorporated by slightly extending our framework.
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but their analysis was restricted to positive shocks in the above sense. Jensen
(2016) and Nocetti (2016) studied comparative statics for more general distri-
butional changes, but neither of them considered robust comparative statics.
This paper bridges the gap between robust comparative statics and distribu-
tional comparative statics in large aggregative games.2

Before showing our robust comparative statics results, we establish the
existence of the smallest and the largest equilibrium values of the aggregate
variable. This result is closely related to the literature on the existence of
a Nash equilibrium for games with a continuum of players. The seminal
result in this literature is Schmeidler’s (1973) existence theorem. Mas-Colell
(1984) reformulated Schmeidler’s model and equilibrium concept in terms of
distributions rather than measurable functions, offering an elegant approach
to the existence problem. In this paper, while we use measurable functions
to obtain our existence result, we consider distributions to develop sufficient
conditions for robust comparative statics. Mas-Colell’s (1984) distributional
approach was extended by Jovanovic and Rosenthal (1988) to sequential
games.

Rath (1992) provided a simple proof of Schmeidler’s (1973) existence
theorem, which was extended by Balder (1995). Although the existence of
an equilibrium in this paper follows from one of his results, the existence
of the smallest and the largest equilibrium values of the aggregate variable
does not directly follow from the existence results available in the literature,
including more recent results (e.g., Khan et al., 1997; Khan and Sun, 2002;
Carmona and Podczeck, 2009). The existence of extremal equilibria were
shown by Vives (1990), Van Zandt and Vives (2007), and Balbus et al. (2015)
for different settings.

The rest of the paper is organized as follows. In Section 2 we provide
a simple motivating example of income redistribution and aggregate labor
supply. In Section 3 we present our general framework along with basic as-
sumptions, and show the existence of the smallest and the largest equilibrium
values of the aggregate variable. In Section 4 we formally define overall posi-
tive shocks. We also introduce a more general definition of “overall monotone
shocks.” We then present our general robust comparative statics result. In
Section 5 we provide sufficient conditions for an overall monotone shock in
terms of distributional changes in parameters based on first-order stochastic

2See Balbus et al. (2015) for robust comparative statics results on distributional
Bayesian Nash equilibria with strategic complementarities.
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dominance and mean-preserving spreads. In Section 6 we apply our results
to the example of income redistribution.

2 A Simple Model of Income Redistribution

Consider an economy with a continuum of agents indexed by i ∈ [0, 1]. Agent
i solves the following maximization problem:

max
ci,xi≥0

u(ci)− xi (2.1)

s.t. ci = wxi + ei + si, (2.2)

where u : R+ → R is strictly increasing, strictly concave, and twice continu-
ously differentiable, w is the wage rate, si is a lump-sum transfer to agent i,
and ci, xi, and ei are agent i’s consumption, labor supply, and endowment,
respectively. We assume that ei + si ≥ 0 for all i ∈ [0, 1]. If si < 0, agent
i pays a lump-sum tax of −si. For simplicity, we assume that the upper
bound on xi is never binding for relevant values of w and is thus not explic-
itly imposed. This simply means that no agent works 24 hours a day, 7 days
a week. The government has no external revenue and satisfies∫

i∈I
sidi = 0. (2.3)

Aggregate demand for labor is given by a demand function D(w) such that
D(0) < ∞, D(w) = 0 for some w > 0, and D : [0, w] → R+ is continuous
and strictly decreasing. The market-clearing condition is

D(w) =

∫
i∈I

xidi. (2.4)

Given (2.3), any change in the profile of si affects some agents’ income
positively but others’ negatively. Hence it cannot be a positive shock in the
sense of Acemoglu and Jensen (2010). However, one may still ask, for exam-
ple, how does a policy change that widens income inequality affect aggregate
labor supply and the wage rate?

This question cannot be answered using standard methods such as the
implicit function theorem if the policy change in question is a discrete jump
from one policy to another. If one insists on applying the implicit function
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theorem, then one needs to introduce a policy parameter that affects income
distribution in a differentiable way, and find a set of equations that charac-
terize aggregate labor supply and the wage rate. Even then, one typically
needs to assume the existence of a unique equilibrium and the assumptions
of the implicit function theorem.

It turns out that, using our results, one can answer the above and other
questions in a “robust” way without introducing these extra assumptions.

3 Large Aggregative Games

Consider a large aggregative game as defined by Acemoglu and Jensen (2010,
Sections II, III). There are a continuum of players indexed by i ∈ I ≡ [0, 1].
Player i’s action and action space are denoted by xi and Xi ⊂ R, respectively.
The assumptions made in this section are maintained throughout the paper.

Assumption 3.1. For each i ∈ I, Xi is nonempty and compact. There
exists a compact convex set K ⊂ R such that Xi ⊂ K for all i ∈ I.

Let X =
∏

i∈I Xi. Let X be the set of action profiles x ∈ X such that
the mapping i ∈ I 7→ xi is measurable.3 Let H be a function from K to a
subset Ω of R. We define G : X → Ω, called the aggregator, by

G(x) = H

(∫
i∈I

xidi

)
. (3.1)

Assumption 3.2. The set Ω ⊂ R is compact and convex, and H : K → Ω
is continuous.4

Given x ∈ X and i ∈ I, player i’s payoff takes the form πi(xi, G(x), ti),
where ti is player i’s parameter. Let Ti be the underlying space for ti; i.e.,
ti ∈ Ti. Let T ⊂

∏
i∈I Ti. We regard T as a set of well-behaved parameter

profiles; for example, T can be a set of measurable functions from I to R.
We only consider parameter profiles t in T .

3Unless otherwise specified, measurability means Lebesgue measurability.
4Given the assumptions on H and K, the properties of Ω here can be assumed without

loss of generality.
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Assumption 3.3. For each i ∈ I, player i’s payoff function πi maps each
(k,Q, τ) ∈ K × Ω × Ti into R.5 For each t ∈ T , πi(·, ·, ti) is continuous on
K × Ω, and for each (k,Q) ∈ K × Ω, πi(k,Q, ti) is measurable in i ∈ I.

The game here is aggregative since each player’s payoff is affected by other
players’ actions only through the aggregate G(x). Accordingly, each player
i’s best response correspondence depends only on Q = G(x) and ti:

Ri(Q, ti) = arg max
xi∈Xi

πi(xi, Q, ti). (3.2)

The following assumption ensures that given any Q ∈ Ω, one can find a
measurable action profile x ∈X such that xi ∈ Ri(Q, ti) for all i ∈ I.

Assumption 3.4. For each open subset U of K, the set {i ∈ I : Xi∩U 6= ∅}
is measurable.

Throughout the paper, we restrict attention to pure-strategy Nash equi-
libria, which we simply call equilibria. To be more precise, given t ∈ T , an
equilibrium of the game is an action profile x ∈X such that xi ∈ Ri(G(x), ti)
for all i ∈ I. We define an equilibrium aggregate as Q ∈ Ω such that Q = G(x)
for some equilibrium x ∈X . The following is a useful observation.

Remark 3.1. Given t ∈ T , Q ∈ Ω is an equilibrium aggregate if and only if
Q ∈ G(Q, t), where

G(Q, t) = {G(x) : x ∈X ,∀i ∈ I, xi ∈ Ri(Q, ti)} . (3.3)

For t ∈ T , define Q(t) and Q(t) as the smallest and largest equilibrium
aggregates, respectively, provided that they exist.

Theorem 3.1. For any t ∈ T , the set of equilibrium aggregates is nonempty
and compact. Therefore, both Q(t) and Q(t) exist.

Proof. See Appendix A.1.

Our primary concern here is not the existence of an equilibrium but that of
Q(t) and Q(t). Although the existence of an equilibrium for our model follows

5If πi is initially defined only on Xi ×Ω× Ti, then this means that πi can be extended
to K × Ω× Ti in such a way as to satisfy Assumption 3.3.
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from Theorem 3.4.1 in Balder (1995) under more general assumptions,6 the
compactness of the set of equilibrium aggregates does not directly follow
from his result or other existence results in the literature, as mentioned in
the introduction.

Theorem 3.1 differs from Theorem 1 in Acemoglu and Jensen (2010) in
that we assume a continuum of player types rather than a finite number of
player types.7 But our proof follows the basic strategy of their proof.

4 Overall Monotone Shocks

By a parameter change, we mean a change in t ∈ T from one parameter
profile to another. We fix t, t ∈ T in Sections 4 and 5.

Definition 4.1 (Acemoglu and Jensen, 2010). The parameter change from
t to t is a positive shock if (a) T is equipped with a partial order ≺, (b) H(·)
is an increasing function,8 (c) t ≺ t, and (d) for each Q ∈ Ω and i ∈ I, the
following properties hold:

(i) For each xi ∈ Ri(Q, ti) there exists xi ∈ Ri(Q, ti) such that xi ≤ xi.

(ii) For each yi ∈ Ri(Q, ti) there exists y
i
∈ Ri(Q, ti) such that y

i
≤ yi.

For comparison purposes, Acemoglu and Jensen’s (2010) key assumptions
are included in the above definition. We introduce additional definitions.

Definition 4.2. The parameter change from t to t is a negative shock if the
parameter change from t to t is a positive shock. A parameter change is a
monotone shock if it is a positive shock or a negative shock.

Acemoglu and Jensen (2010, Theorem 2) show that if the parameter
change from t to t is a positive shock, then the following inequalities hold:

Q(t) ≤ Q(t), Q(t) ≤ Q(t). (4.1)

6In particular, the continuity requirement in Assumption 3.3 can be relaxed as follows:
for each t ∈ T , πi(·, ·, ti) is upper semicontinuous on K × Ω, and πi(k, ·, ti) is continuous
on Ω for each k ∈ K. Furthermore, the aggregator G can be a multidimensional function
in a specific way; see Balder (1995, Assumption 3.4.2).

7Acemoglu and Jensen (2015) allow for a continuum of player types, which can be a
continuum of random variables, by using the Pettis integral in (3.1).

8In this paper, “increasing” means “nondecreasing,” and “decreasing” means “nonin-
creasing.”
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The following definitions allow us to show that the above inequalities hold
for a substantially larger class of parameter changes.

Definition 4.3. The parameter change from t to t is an overall positive shock
if for each Q ∈ Ω the following properties hold:

(i) For each q ∈ G(Q, t) there exists q ∈ G(Q, t) such that q ≤ q.

(ii) For each r ∈ G(Q, t) there exists r ∈ G(Q, t) such that r ≤ r.

Definition 4.4. The parameter change from t to t is an overall negative
shock if the parameter change from t to t is an overall positive shock. A
parameter change is an overall monotone shock if it is an overall positive
shock or an overall negative shock.

It is easy to see that a positive shock is an overall positive shock. We are
ready to state our general result on robust comparative statics:

Theorem 4.1. Suppose that the parameter change from t to t is an overall
positive shock. Then both inequalities in (4.1) hold. The reserve inequalities
hold if the parameter change is an overall negative shock.

Proof. See Appendix A.2.

The proof of this result is similar to that of Theorem 2 in Acemoglu and
Jensen (2010). The latter result is immediate from Theorem 4.1 under our
assumptions since a positive shock is an overall positive shock. The dynamic
version of their result established by Acemoglu and Jensen (2015, Theorem
5) can also be extended to overall monotone shocks in a similar way.

5 Sufficient Conditions

In this section we provide sufficient conditions for overall monotone shocks by
assuming that players differ only in their parameters ti. To be more specific,
we assume the following for the rest of the paper.

Assumption 5.1. There exists a Borel-measurable convex set T ⊂ Rn

(equipped with the usual partial order) with n ∈ N such that Ti ⊂ T for
all i ∈ I. There exists a convex-valued correspondence X : T → 2T such
that Xi = X (ti) for all i ∈ I and ti ∈ Ti. Moreover, there exists a function
π : K × Ω× T → R such that

∀i ∈ I,∀(k,Q, τ) ∈ K × Ω× T , πi(k,Q, τ) = π(k,Q, τ). (5.1)
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This assumption implies that player i’s best response correspondence
Ri(Q, τ) does not directly depend on i; we denote this correspondence by
R(Q, τ). For (Q, τ) ∈ Ω× T , we define

R(Q, τ) = minR(Q, τ), R(Q, τ) = maxR(Q, τ). (5.2)

Both R(Q, τ) and R(Q, τ) are well-defined since R(Q, τ) is a compact set for
each (Q, τ) ∈ (Ω, T ) (see Camacho et al., 2016, Lemma A.1). We assume
the following for the rest of the paper.

Assumption 5.2. T is a set of measurable functions from I to T , and
H : K → Ω is an increasing function.

For any t ∈ T , let Ft : Rn → I denote the distribution function of t:

Ft(z) =

∫
i∈I

1{ti ≤ z}di, (5.3)

where 1{·} is the indicator function; i.e., 1{ti ≤ z} = 1 if ti ≤ z, and = 0
otherwise. Note that Ft(z) is the proportion of players i ∈ I with ti ≤ z.

For the rest of this section, we take t, t ∈ T as given.

5.1 First-Order Stochastic Dominance

Given two distributions F and F , F is said to (first-order) stochastically
dominate F if ∫

φ(z) dF (z) ≤
∫
φ(z) dF (z) (5.4)

for any increasing bounded Borel function φ : Rn → R, where Rn is equipped
with the usual partial order ≤. As is well known (e.g., Müller and Stoyan,
2002, Section 1), in case n = 1, F stochastically dominates F if and only if

∀z ∈ R, F (z) ≥ F (z). (5.5)

The following result provides a sufficient condition for an overall mono-
tone shock based on stochastic dominance.

Theorem 5.1. Suppose that Ft stochastically dominates Ft, and that both
R(Q, τ) and R(Q, τ) are increasing (resp. decreasing) Borel functions of τ ∈
T for each Q ∈ Ω. Then the parameter change from t to t is an overall
positive (resp. negative) shock.
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Figure 1: The parameter change from t to t is not a monotone shock (left
panel), but Ft stochastically dominates Ft (right panel).

Proof. We only consider the increasing case; the decreasing case is symmetric.
Let q ∈ G(Q, t). Then there exists x ∈ X such that q = H(

∫
i∈I xidi) and

xi ∈ R(Q, ti) for all i ∈ I. Since xi ≤ R(Q, ti) for all i ∈ I by (5.2), and since
H is an increasing function by Assumption 5.2, we have

q ≤ H

(∫
i∈I

R(Q, ti)di

)
= H

(∫
R(Q, z)dFt(z)

)
(5.6)

≤ H

(∫
R(Q, z)dFt(z)

)
= H

(∫
i∈I

R(Q, ti)di

)
∈ G(Q, t), (5.7)

where the inequality in (5.7) holds since Ft stochastically dominates Ft and
R(Q, ·) is an increasing function. It follows that condition (i) of Definition 4.3
holds. By a similar argument, condition (ii) also holds. Hence the parameter
change from t to t is an overall positive shock.

If the parameter change from t to t is a positive shock, then it is easy to
see from (5.3) and (5.5) that Ft stochastically dominates Ft. However, there
are many other ways in which Ft stochastically dominates Ft. Figure 1 shows
a simple example. In this example, the parameter change from t to t is not
a monotone shock, but Ft stochastically dominates Ft by (5.5). Thus the
parameter change here is an overall positive shock by Theorem 5.1 if both
R(Q, τ) and R(Q, τ) are increasing in τ .

There are well known sufficient conditions for both R(Q, τ) and R(Q, τ)
to be increasing or decreasing; see Milgrom and Shannon (1994, Theorem 4),
Topkis (1998, Theorem 2.8.3), Vives (1999, P. 35), Amir (2005, Theorems 1,
2), and Roy and Sabarwal (2010, Theorem 2).9 Any of those conditions can

9These results originate from games with strategic complementarities, which were pop-
ularized by Vives (1990) and Milgrom and Roberts (1990). Other related studies include
Roy and Sabarwal (2008), Van Zandt and Vives (2007), and Balbus et al. (2015).
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be combined with Theorem 5.1. Here we state a simple result based on Amir
(2005, Lemma 1, Theorems 1, 2).

Corollary 5.1. Assume the following: (i) Ft stochastically dominates Ft; (ii)
T ⊂ R; (iii) the upper and lower boundaries of X (τ) are increasing (resp.
decreasing) functions of τ ∈ T ; and (iv) for each Q ∈ Ω, π(k,Q, τ) is twice
continuously differentiable in (k, τ) ∈ K × T and ∂2π(k,Q, τ)/∂k∂τ ≥ 0
(resp. ≤ 0) for all (k, τ) ∈ K ×T . Then the parameter change from t to t is
an overall positive (resp. negative) shock.

5.2 Mean-Preserving Spreads

Following Acemoglu and Jensen (2015), we say that Ft is a mean-preserving
spread of Ft if (5.4) holds for any Borel convex function φ : T → R.10

Rothschild and Stiglitz (1970, p. 231) and Machina and Pratt (1997, Theorem
3) show that in case n = 1, Ft is a mean-preserving spread of Ft if∫

Ft(z)dz =

∫
Ft(z)dz, (5.8)

and if there exists z̃ ∈ R such that

Ft(z)− Ft(z)

{
≤ 0 if z ≤ z̃,

≥ 0 if z > z̃.
(5.9)

The following result provides a sufficient condition for an overall mono-
tone shock based on mean-preserving spreads.

Theorem 5.2. Suppose that Ft is a mean-preserving spread of Ft, and that
both R(Q, τ) and R(Q, τ) are Borel convex (resp. concave) functions of τ ∈ T
for each Q ∈ Ω. Then the parameter change from t to t is an overall positive
(resp. negative) shock.

Proof. The proof is essentially the same as that of Theorem 5.1 except that
the inequality in (5.7) holds since Ft is a mean-preserving spread of Ft and
R(Q, τ) is convex in τ .

10Our approach differs from that of Acemoglu and Jensen (2015) in that while they
consider positive shocks induced by applying a mean-preserving spread to the stationary
distribution of each player’s idiosyncratic shock, we consider non-monotone shocks induced
by applying a mean-preserving spread to the entire distribution of parameters.
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Figure 2: The parameter change from t to t is not a monotone shock (left
panel), but Ft is a mean-preserving spread of Ft (right panel).

Figure 2 shows a simple example of a mean-preserving spread. As can be
seen in the left panel, the parameter change from t to t is not a monotone
shock. However, it is a mean-preserving spread by (5.8) and (5.9), as can be
seen in the right panel. Thus the parameter change here is an overall positive
shock by Theorem 5.2 if both R(Q, τ) and R(Q, τ) are convex in τ ∈ T .

Sufficient conditions for R(Q, τ) or R(Q, τ) to be convex or concave are
established by Jensen (2016). The following result is based on Jensen (2016,
Lemmas 1, 2, Theorem 2, Corollary 2).

Corollary 5.2. Assume the following: (i) Ft is a mean-preserving spread of
Ft; (ii) the upper and lower boundaries of X (τ) are convex (resp. concave)
continuous functions of τ ∈ T ; (iii) for each (Q, τ) ∈ Ω × T , π(k,Q, τ) is
strictly quasi-concave and continuously differentiable in k ∈ K; (iv) R(Q, τ) <
maxX (τ) (resp. R(Q, τ) > minX (τ)); and (v) for each Q ∈ Ω, ∂π(k,Q, τ)/∂k
is quasi-convex (resp. quasi-concave) in (k, τ) ∈ K ×T . Then the parameter
change from t to t is an overall positive (resp. negative) shock.

6 Applications

Recall the model of Section 2. Let ti = ei + si for i ∈ I. The first-order
condition for the maximization problem (2.1)-(2.2) is written as

u′(wxi + ti)w

{
≤ 1 if xi = 0,

= 1 if xi > 0.
(6.1)

Let x(w, ti) denote the solution for xi as a function of w and ti. Let Q =∫
i∈I x(w, ti)di. Then (2.4) implies that w = D−1(Q). Let τ > 0 and T =

11



[0, τ ]. The model here is a special case of the game in Section 5 with

π(k,Q, τ) = u(D−1(Q)k + τ)− k, X (τ) = K = Ω = [0, k], (6.2)

where k is a constant satisfying k > max(w,τ)∈[0,w]×T x(w, τ).
First suppose that si = 0 and ti = ei for all i ∈ I. Let ti = ei and

ti = ei be as in Figure 1. Then the parameter change from t to t is not a
monotone shock. However, it is straightforward to verify the conditions of
Corollary 5.1 to conclude that the parameter change is an overall negative
shock. Hence the smallest and largest equilibrium values of aggregate labor
supply decrease in response to this parameter change, which implies that the
smallest and largest equilibrium values of the wage rate increase.

Now suppose that ei = e and ti = si for all i ∈ I for some e > 0. Let
ti = e + si and ti = e + si be as in Figure 2. Then Ft is a mean-preserving
spread of Ft. Thus the parameter change from t to t widens income inequality,
and is not a monotone shock. However, it is straightforward to verify the
conditions of Corollary 5.2 to conclude that the parameter change is an overall
positive shock. Hence the smallest and largest equilibrium values of aggregate
labor supply increase in response to this parameter change, which implies
that the smallest and largest equilibrium values of the wage rate decrease.

The above comparative statics results can also be confirmed by solving
(6.1) for xi = x(w, ti):

x(w, ti) =

{
max {[u′−1(1/w)− ti]/w, 0} if w > 0,

0 if w = 0.
(6.3)

This function is decreasing, piecewise linear, and convex in ti; see Figure 3.
Thus the above results directly follow from Theorems 5.1 and 5.2 under (6.3).

Appendix A Proofs

A.1 Proof of Theorem 3.1

Fix t ∈ T . The existence of an equilibrium follows from Balder (1995, The-
orem 3.4.1); thus the set of equilibrium aggregates is nonempty. Recalling
Remark 3.1, it remains to verify that the set of fixed points of G(·, t) is com-
pact. The following result is shown in Camacho et al. (2016, Lemma A.3).

Lemma A.1. The correspondence Q 7→ G(Q, t) has a compact graph.
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w = 0.9.

By this result and Lemma 17.51 in Aliprantis and Border (2006), the set
of fixed points of G(·, t) is compact, as desired.

A.2 Proof of Theorem 4.1

The following result is shown in Camacho et al. (2016, Lemma A.2).

Lemma A.2. The correspondence Q 7→ G(Q, t) has nonempty convex values.

Let t ∈ T and Q ∈ Ω. Let G(Q, t) = minG(Q, t) and G(Q, t) =
maxG(Q, t). Both exist by Lemma A.1, and G(Q, t) = [G(Q, t),G(Q, t)]
by Lemma A.2. This together with Lemma A.1 implies that G(·, t) is “con-
tinuous but for upward jumps” in the sense of Milgrom and Roberts (1994,
p. 447). Suppose that the parameter change from t to t is an overall positive
shock. Then Definition 4.3 implies that G(Q, t) ≤ G(Q, t) and G(Q, t) ≤
G(Q, t). Thus both inequalities in (4.1) follow from Milgrom and Roberts
(1994, Corollary 2). If the parameter change is an overall negative shock,
then the reverse inequalities hold similarly.
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