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Abstract

Given a sequence {fn}n∈N of measurable functions on a σ-finite
measure space such that the integral of each fn as well as that of
lim supn↑∞ fn exists in R, we provide a sufficient condition for the
following inequality to hold:

lim sup
n↑∞

∫
fn dµ ≤

∫
lim sup
n↑∞

fn dµ.

Our condition is considerably weaker than sufficient conditions known
in the literature such as uniform integrability (in the case of a finite
measure) and equi-integrability. As an application, we obtain a new
result on the existence of an optimal path for deterministic infinite-
horizon optimization problems in discrete time.
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1 Introduction

Let (Ω,F , µ) be a measure space. Let L(Ω) be the set of measurable func-
tions f : Ω → R. A standard version of (reverse) Fatou’s lemma states
that given a sequence {fn}n∈N in L(Ω), if there exists an integrable function
f ∈ L(Ω) such that fn ≤ f µ-a.e. for all n ∈ N, then

lim
n↑∞

∫
fn dµ ≤

∫
lim
n↑∞

fn dµ, (1.1)

where lim = lim sup. We call the above inequality the Fatou Inequality.
Some sufficient conditions for this inequality weaker than the one de-

scribed above are known. In particular, provided that the integral of each fn
as well as that of limn↑∞ fn exists, “uniform integrability” of {f+

n } (where f+
n

is the positive part of fn) is a sufficient condition for the Fatou inequality (1.1)
in the case of a finite measure (e.g., [6, 4, 7, 17]); so is “equi-integrability”
of the same sequence in the case of a σ-finite measure (see [9, 10]). These
conditions are precisely defined in Section 2.

In this paper we provide a sufficient condition for the Fatou inequality
(1.1) considerably weaker than the above conditions. Our approach is based
on the following assumption, which is maintained throughout the paper.

Assumption 1.1. (Ω,F , µ) is a σ-finite measure space.

Under this assumption there is an increasing sequence of measurable sets
of finite measure whose union equals Ω. We use this sequence to specify a
“direction” in which we successively approximate the integral of a function.

There is a natural increasing sequence of measurable sets if the measure
space is the set of nonnegative integers equipped with the counting measure.
In this setting, we provide a simple sufficient condition for the Fatou inequal-
ity (1.1) as a corollary of our general result. Applying this condition to a
fairly general class of infinite-horizon deterministic optimization problems in
discrete time, we establish a new result on the existence of an optimal path.
The condition takes a form similar to transversality conditions and other
related conditions in dynamic optimization (e.g., [11, 12, 13, 14]).

The current line of research was initially motivated by the limitations of
the existing applications of Fatou’s lemma to dynamic optimization problems
(e.g., [5, 8]). In particular, there are certain cases in which optimal paths exist
but the standard version of Fatou’s lemma fails to apply. This is illustrated
with some examples following our existence result.
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We should mention that there are other important extensions of Fatou’s
lemma to more general functions and spaces (e.g., [3, 2, 16]). However, to our
knowledge, there is no result in the literature that covers our generalization
of Fatou’s lemma, which is specific to extended real-valued functions.

In the next section we define the concepts and conditions needed to state
our main result and to compare it with some previous results based on uni-
form integrability and equi-integrability. In Section 3 we state our main
result and derive those previous results as consequences. In Section 5 we
present two simple examples that cannot be treated by the previous results
but that can easily be treated using our result. In Section 6 we show a new
result on the existence of an optimal path for infinite-horizon determinis-
tic optimization problems in discrete time. In Section 8 we prove our main
result.

2 Definitions

Given f ∈ L(Ω), let f+ and f− denote the positive and negative parts
of f , respectively; i.e., f+ = max{f, 0} and f− = max{−f, 0}. A function
f ∈ L(Ω) is called semi-integrable if f+ or f− is integrable, and upper (lower)
semi-integrable if f+ (f−) is integrable.

We say that a sequence {Ai}i∈N in F is a σ-finite exhausting sequence if

∀i ∈ N, Ai ⊂ Ai+1, µ(Ai) <∞, (2.1)

µ(Ω \ ∪i∈NAi) = 0. (2.2)

It is easy to see that µ is σ-finite if and only if there exists a σ-finite exhausting
sequence. Since we assume that µ is σ-finite, we have at least one σ-finite
exhausting sequence.

A sequence {fn}n∈N of integrable functions in L(Ω) is called equi-integrable
(e.g., [10, p. 16]) if the following conditions hold:

(a) For any ε > 0 there exists δ > 0 such that any A ∈ F with µ(A) < δ
satisfies

sup
n∈N

∫
A

|fn| dµ ≤ ε. (2.3)

(b) For any ε > 0 there exists E ∈ F with µ(E) <∞ such that

sup
n∈N

∫
Ω\E
|fn| dµ ≤ ε. (2.4)
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Suppose that µ(Ω) < ∞. A sequence {fn}n∈N of integrable functions in
L(Ω) is called uniformly integrable (e.g., [7, p. 144]) if

lim
c↑∞

[
sup
n∈N

∫
{|fn|≥c}

|fn| dµ
]

= 0. (2.5)

It is known that a sequence {fn}n∈N of integrable functions in L(Ω) is uni-
formly integrable if and only if supn∈N

∫
|fn| dµ <∞ and condition (a) above

holds (e.g., [7, p. 144]). In the case of a finite measure, condition (b) trivially
holds, and thus uniform integrability implies equi-integrability. Conversely,
provided that supn∈N

∫
|fn| dµ < ∞, equi-integrability implies uniform inte-

grability on each measurable set of finite measure; see [10, Proposition 2.8]
for related results.

3 A Generalization of Fatou’s Lemma

We are ready to state the main result of this paper.

Theorem 3.1. Let {fn}n∈N be a sequence of semi-integrable functions in
L(Ω) such that limn↑∞ fn is semi-integrable. Let {Bi}i∈N ⊂ F be a σ-finite
exhausting sequence. Suppose that

lim
i↑∞

lim
n↑∞

∫
Ω\Ai

fn dµ ≤ 0 (3.1)

for any σ-finite exhausting sequence {Ai}i∈N ⊂ F such that

(i) ∀i ∈ N, Ai ⊂ Bi, (ii) lim
i↑∞

µ(Bi \ Ai) = 0. (3.2)

Then the Fatou inequality (1.1) holds.

Proof. See Section 8.

It is shown in the proof (Lemma 8.4) that (2.1) and (3.2) imply (2.2); i.e.,
(2.1) and (3.2) imply that {Ai}i∈N is a σ-finite exhausting sequence. Thus
in Theorem 3.1, the requirement that {Ai} be a σ-finite exhausting sequence
can be replaced with (2.1). However, to verify (3.1) to apply Theorem 3.1,
it is useful to have (2.2) instead of deriving it; for example, see the proofs of
Corollaries 4.1 and 4.2.

If Ω = Z+ and µ is the counting measure, we obtain a simple sufficient
condition for the Fatou inequality:
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Corollary 3.1. Suppose that Ω = Z+ and that µ is the counting measure.
Let {fn}n∈N be a sequence of semi-integrable functions in L(Ω) such that
limn↑∞ fn is semi-integrable. Suppose further that

lim
i↑∞

lim
n↑∞

∞∑
t=i

fn(t) ≤ 0, (3.3)

where the sum is understood as the Lebesgue integral with respect to the count-
ing measure µ. Then

lim
n↑∞

∞∑
t=0

fn(t) ≤
∞∑
t=0

lim
n↑∞

fn(t). (3.4)

Proof. Assume (3.3). For i ∈ N, let Bi = {0, . . . , i − 1}. Then {Bi}i∈N is a
σ-finite exhausting sequence. Let {Ai}i∈N ⊂ F satisfy (3.2). Then Ai = Bi

for sufficiently large i. For such i we have∑
Ω\Ai

fn(t) =
∞∑
t=i

fn(t). (3.5)

Hence (3.1) follows from (3.3). Now (3.4) holds by Theorem 3.1.

4 Known Extensions of Fatou’s Lemma

The version of Fatou’s lemma stated at the beginning of this paper can be
shown as a consequence of Theorem 3.1.

Corollary 4.1. Let {fn}n∈N be a sequence in L(Ω) such that for some upper
semi-integrable function f ∈ L(Ω) we have fn ≤ f µ-a.e. for all n ∈ N. Then
the Fatou inequality (1.1) holds.

Proof. Since fn ≤ f µ-a.e. for all n ∈ N and f is upper semi-integrable, fn is
upper semi-integrable for each n ∈ N, and so is limn↑∞ fn. For any σ-finite
exhausting sequence {Ai}i∈N we have

lim
i↑∞

lim
n↑∞

∫
Ω\Ai

fn dµ ≤ lim
i↑∞

∫
Ω\Ai

f dµ ≤ lim
i↑∞

∫
Ω\Ai

f+ dµ = 0, (4.1)

where the equality holds by (2.2) since f is upper semi-integrable. Now the
Fatou inequality (1.1) holds by Theorem 3.1.
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The following version of Fatou’s lemma is shown in [6, p. 4] and [4, p.
10], and can be derived as a consequence of Theorem 3.1.

Corollary 4.2. Suppose that µ(Ω) < ∞. Let {fn}n∈N be a sequence of
functions in L(Ω) such that {f+

n }n∈N is uniformly integrable. Suppose further
that limn↑∞ fn is semi-integrable. Then the Fatou inequality (1.1) holds.

Proof. Recall that uniform integrability of {f+
n } requires integrability of each

f+
n and condition (a) in Section 2 with f+

n replacing fn. Let {Ai}i∈N be any
σ-finite exhausting sequence. We have

lim
i↑∞

lim
n∈N

∫
Ω\Ai

fn dµ ≤ lim
i↑∞

sup
n∈N

∫
Ω\Ai

f+
n dµ = 0, (4.2)

where the equality holds by condition (a) since {f+
n } is uniformly integrable

and limi↑∞ µ(Ω \ Ai) = 0 by (2.2) and the finiteness of µ. Now the Fatou
inequality (1.1) holds by Theorem 3.1.

The next result is a slight variation on the results shown by [9, Lemma
3.3] and [10, Corollary 3.3]. These latter results (unlike Corollary 4.3 below)
do not require upper semi-integrability of limn↑∞ fn since they use the upper
integral, which always exists, instead of the Lebesgue integral.

Corollary 4.3. Let {fn}n∈N be a sequence of integrable functions in L(Ω)
such that {f+

n }n∈N is equi-integrable. Suppose that limn↑∞ fn is semi-integrable.
Then the Fatou inequality (1.1) holds.

Proof. By equi-integrability of {f+
n } and condition (b) in Section 2, there

exists a sequence {Ei}i∈N in F such that µ(Ei) <∞ for all i ∈ N and

lim
i↑∞

sup
n∈N

∫
Ω\Ei

f+
n dµ = 0. (4.3)

Since µ is σ-finite, there exists a σ-finite exhausting sequence {Ci}i∈N. For
i ∈ N, let Bi = (∪ij=1Ej) ∪ Ci. Then {Bi}i∈N is also a σ-finite exhausting
sequence. Let {Ai}i∈N be a sequence in F satisfying (3.2).

Fix i ∈ N for the moment. For each n ∈ N we have∫
Ω\Ai

fn dµ ≤
∫

Ω\Ai

f+
n dµ =

∫
Ω\Bi

f+
n dµ+

∫
Bi\Ai

f+
n dµ. (4.4)
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Applying supn∈N to the leftmost and rightmost sides, we obtain

sup
n∈N

∫
Ω\Ai

fn ≤ sup
n∈N

∫
Ω\Bi

f+
n dµ+ sup

n∈N

∫
Bi\Ai

f+
n dµ. (4.5)

The first supremum on the right-hand side converges to zero as i ↑ ∞ by
(4.3) since Ei ⊂ Bi for all i ∈ N. The second supremum also converges to
zero as i ↑ ∞ by (3.2)(ii) and condition (a) in Section 2. It follows that (3.1)
holds for any sequence {Ai}i∈N in F satisfying (3.2); thus by Theorem 3.1,
the Fatou inequality (1.1) holds.

5 Examples

In each of the examples below, Ω is taken to be an interval in R. Accordingly,
F is taken to be the σ-algebra of Lebesgue measurable subsets of Ω, and µ
the Lebesgue measure restricted to F .

Our first example shows that Theorem 3.1 is a strict generalization of
Corollaries 4.2 and 4.3 even in the case of a finite measure.

Example 5.1. Let Ω = [−1, 1] \ {0}. For n ∈ N, define fn : Ω→ R by

fn(ω) =


0 if ω ∈ [−1,−1/n),

−n if ω ∈ [−1/n, 0),

n if ω ∈ (0, 1/n],

0 if ω ∈ (1/n, 1].

(5.1)

It is easy to see that there is no upper semi-integrable function that domi-
nates {fn}n∈N; thus Corollary 4.1 does not apply. Furthermore, {f+

n } is not
uniformly integrable; indeed, for any c ≥ 0 we have

sup
n∈N

∫
{f+n ≥c}

f+
n dµ = sup

n∈N:n≥c
n/n = 1. (5.2)

Hence Corollary 4.2, which requires uniform integrability of {f+
n }, does not

apply either. Neither does Corollary 4.3 since equi-integrability implies uni-
form integrability on a finite measure space provided that supn∈N

∫
|fn| dµ <

∞, which is the case here.
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By contrast, Theorem 3.1 easily applies. To see this, note that for each
n ∈ N, fn is integrable, and so is limn↑∞ fn. For i ∈ N, let

Bi = [−1,−1/i) ∪ (1/i, 1]. (5.3)

Then {Bi}i∈N is a σ-finite exhausting sequence. Let {Ai}i∈N be any sequence
in F satisfying (3.2)(i). For each fixed i ∈ N, for any n ≥ i, we have fn = 0
on Bi, and

∫
Ω\Ai

fn dµ =
∫

Ω\Bi
fn dµ = 0. Thus the left-hand side of (3.1) is

zero. Hence the Fatou inequality (1.1) holds by Theorem 3.1.
In fact

∫
fn dµ = 0 for all n ∈ N, and limn↑∞ fn = 0. Thus both sides of

the Fatou inequality (1.1) equal zero.

In the next example, µ is not finite, and the sequence {fn}n∈N is uniformly
bounded from below.

Example 5.2. Let Ω = R+. For n ∈ N, define fn : Ω→ R by

fn(ω) =


0 if ω ∈ [0, n),

n if ω ∈ [n, n+ 1),

−1 if ω ∈ [n+ 1, 2n+ 1),

0 if ω ≥ 2n+ 1.

(5.4)

It is easy to see that there is no upper semi-integrable function that dominates
{fn}n∈N; thus Corollary 4.1 does not apply.

For any δ ∈ (0, 1) we have∫
[n,n+δ)

f+
n dµ = nδ ↑ ∞ as n ↑ ∞. (5.5)

Thus {f+
n } does not satisfy condition (a) in Section 2. To consider condition

(b), let E ∈ F with µ(E) <∞. Then

µ(E) =
∑
n∈Z+

µ(E ∩ [n, n+ 1)) <∞, (5.6)

which implies that limn↑∞ µ(E ∩ [n, n+ 1)) = 0. It follows that∫
Ω\E

f+
n dµ = n(1− µ(E ∩ [n, n+ 1)))→∞ as n ↑ ∞. (5.7)

7



Hence {f+
n } does not satisfy condition (b) either. Therefore {f+

n } is far from
being equi-integrable; as a consequence, Corollary 4.3 does not apply.

To see that Theorem 3.1 applies, note that for each n ∈ N, fn is integrable
for each n, and so is limn↑∞ fn. For i ∈ N, let Bi = [0, i). Then {Bi}i∈N is
a σ-finite exhausting sequence. Take any sequence {Ai}i∈N in F satisfying
(3.2)(i). Then for each fixed i ∈ N we have

∫
Ω\Ai

fn dµ = 0 for all n ≥ i.

Thus the left-hand side of (3.1) equals zero. Hence the Fatou inequality (1.1)
holds by Theorem 3.1.

In fact, as in the previous example, we have
∫
fn dµ = 0 for all n ∈ N,

and limn↑∞ fn = 0; thus both sides of the Fatou inequality (1.1) equal zero.

6 An Application to Infinite-Horizon Opti-

mization in Discrete Time

In this section we consider a fairly general class of infinite-horizon maximiza-
tion problems, establishing a new result on the existence of an optimal path
using Corollary 3.1. We start with some notation.

For t ∈ Z+, let Xt be a metric space. For t ∈ Z+, let Γt : Xt → Xt+1

be a compact-valued upper hemicontinuous correspondence in the sense that
for each x ∈ Xt, Γt(x) is a nonempty compact subset of Xt+1, and for any
convergent sequence {xn}n∈N in Xt with limit x∗ ∈ Xt and any sequence
{yn}n∈N with yn ∈ Γt(xn) for all n ∈ N, there exists a convergent subsequence
{yni
}i∈N of {yn}n∈N with limit y∗ ∈ Γt(x

∗); see [18, p. 56] and [1, p. 564]
concerning this definition of upper hemicontinuity. For t ∈ Z+, let

Dt = {(x, y) ∈ Xt ×Xt+1 : y ∈ Γt(x)}. (6.1)

For t ∈ Z+, let rt : Dt → R ∪ {−∞} be an upper semicontinuous function.
Consider the following maximization problem:

max
{xt}∞t=1

∞∑
t=0

rt(xt, xt+1) (6.2)

s.t. xt+1 ∈ Γt(xt), ∀t ∈ Z+, (6.3)

x0 ∈ X0 given. (6.4)

We say that a sequence {xt}∞t=1 is a feasible path (from x0) if it satisfies (6.3).
We say that a feasible path {x∗t}∞t=1 is optimal (from x0) if for any feasible
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path {xt}∞t=1, we have

∞∑
t=0

rt(xt, xt+1) ≤
∞∑
t=0

rt(x
∗
t , x
∗
t+1), (6.5)

where x∗0 = x0. For the above inequality to make sense, we assume the
following.

Assumption 6.1. For each feasible path {xt}∞t=1, we have

∞∑
t=0

max{rt(xt, xt+1), 0} <∞. (6.6)

In other words, the mapping rt(xt, xt+1) : t 7→ R ∪ {−∞} is upper semi-
integrable.

We are ready to show our existence result.

Proposition 6.1. Let Assumption 6.1 hold. Suppose that for any sequence
{{xnt }∞t=1}n∈N of feasible paths, we have

lim
i↑∞

lim
n↑∞

∞∑
t=i

rt(x
n
t , x

n
t+1) ≤ 0. (6.7)

Then there exists an optimal path.

Proof. Let

ν = sup
∞∑
t=0

rt(xt, xt+1), (6.8)

where the supremum is taken over all feasible paths {xt}∞t=1. By the definition
of ν, there exists a sequence {{xnt }∞t=1}n∈N of feasible paths such that

lim
n↑∞

∞∑
t=0

rt(x
n
t , x

n
t+1) = ν. (6.9)

Since Γ0(x0) is compact, there exists a convergent subsequence {xnj

1 }j∈N of
{xn1}n∈N with limit x∗1 ∈ Γ0(x0). By the definition of upper hemicontinuity,
there exists a convergent subsequence of {xnj

2 }j∈N with limit x∗2 ∈ Γ1(x∗1).
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Continuing this way and using the diagonal argument, we see that there
exists a subsequence of {{xnt }∞t=1}n∈N, again denoted by {{xnt }∞t=1}n∈N, such
that for each t ∈ N, xnt converges to some x∗t as n ↑ ∞, and for each t ∈ Z+,
x∗t+1 ∈ Γt(x

∗
t ). Hence {x∗t}∞t=1 is a feasible path, which implies that

∞∑
t=0

rt(x
∗
t , x
∗
t+1) ≤ ν. (6.10)

To apply Corollary 3.1, let fn(t) = rt(x
n
t , x

n
t+1) for t ∈ Z+. By Assumption

6.1, for each n ∈ N, fn(t) is an upper semi-integrable function of t ∈ Z+.
For t ∈ Z+, let f ∗(t) = rt(x

∗
t , x
∗
t+1). Since {x∗t}∞t=1 is feasible as shown above,

f ∗(t) is also an upper semi-integrable function of t ∈ Z+ by Assumption 6.1.
For each t ∈ Z+, by upper semicontinuity of rt we have

lim
n↑∞

fn(t) = lim
n↑∞

rt(x
n
t , x

n
t+1) ≤ rt(x

∗
t , x
∗
t+1) = f ∗(t). (6.11)

Since the rightmost side is an upper semi-integrable function of t ∈ Z+, so is
the leftmost side. Note that (3.3) directly follows from (6.7). Thus we can
apply Corollary 3.1 to obtain (3.4), which is written here as

lim
n↑∞

∞∑
t=0

rt(x
n
t , x

n
t+1) ≤

∞∑
t=0

lim
n↑∞

rt(x
n
t , x

n
t+1). (6.12)

We are ready to show that {x∗t}∞t=1 is an optimal path. Recall from (6.9)
that

ν = lim
n↑∞

∞∑
t=0

rt(x
n
t , x

n
t+1) (6.13)

≤
∞∑
t=0

lim
n↑∞

rt(x
n
t , x

n
t+1) (6.14)

≤
∞∑
t=0

rt(x
∗
t , x
∗
t+1), (6.15)

where (6.14) uses (6.12), and (6.15) uses (6.11). It follows from (6.13)–(6.15)
and (6.10) that {x∗t}∞t=1 is an optimal path.

As a simple consequence of Proposition 6.1, we obtain a result that can
be viewed as an abstract version of the existence result shown in [8, Propo-
sition 4.1]; see [15, Theorem 1] for a similar result that requires stronger
assumptions.
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Corollary 6.1. Suppose that there exists an integrable function f : Z+ → R+

such that for any feasible path {xt}∞t=1, we have

∀t ∈ Zt, rt(xt, xt+1) ≤ f(t). (6.16)

Then there exists an optimal path.

Proof. Note that (6.16) implies Assumption 6.1. Thus to apply Proposition
6.1, it suffices to verify (6.7) for an arbitrary sequence {{xnt }∞t=1}n∈N of feasible
paths. Let {{xnt }∞t=1}n∈N be a sequence of feasible paths. Then by (6.16) we
have

lim
i↑∞

lim
n↑∞

∞∑
t=i

rt(x
n
t , x

n
t+1) ≤ lim

i↑∞
lim
n↑∞

∞∑
t=i

f(t) = lim
i↑∞

∞∑
t=i

f(t) = 0, (6.17)

where the last equality holds by integrability of f . It follows that (6.7) holds;
hence an optimal path exists by Proposition 6.1.

Corollary 6.1 can be shown directly by using Fatou’s lemma to conclude
(6.12) from (6.16) in the proof of Proposition 6.1. As illustrated in the next
section, Proposition 6.1 covers some important cases to which Corollary 6.1
fails to apply.

7 Examples of Optimization Problems

To illustrate the significance of our existence result, we consider two special
cases of the following example.

Example 7.1. Let u : R+ → R ∪ {−∞} be a strictly increasing, upper
semicontinuous function. Let δ : R+ → R++ be a strictly decreasing function.
Consider the following maximization problem:

max
{xt}∞t=1

∞∑
t=0

δ(t)u(ct) (7.1)

s.t. ct + xt+1 = xt, ct, xt+1 ≥ 0, ∀t ∈ Z+, (7.2)

x0 ∈ R+ given. (7.3)
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In economics, u and δ are known as a utility function and a discount function,
respectively. The above maximization problem is a special case of (6.2)–(6.4)
such that for all t ∈ Z+, Xt = R+ and

rt(x, y) = δ(t)u(x− y), (7.4)

Γt(x) = {y ∈ R+ : 0 ≤ y ≤ x}. (7.5)

It is easy to see from (7.2) that

∀t ∈ Z+, ct, xt ≤ x0. (7.6)

For simplicity, we assume that there exists θ > 0 such that

(i) ∀c ≥ 0, u(c) ≤ θc, (ii) u(x0) > 0. (7.7)

(Condition (ii) above does not depend on θ.) It is easy to see that condition
(i) above implies Assumption 6.1; see (7.13)–(7.16) for details.

Example 7.2. Consider Example 7.1. Most discrete-time economic models
assume an exponential discount function of the form

∀t ∈ Z+, δ(t) = βt (7.8)

for some β ∈ (0, 1). In this case, Corollary 6.1 easily applies. To see this, let
f(t) = βtu(x0) for t ∈ Z+. Then f : Z+ → R+ is integrable, and (6.16) holds
by (7.6). Hence an optimal path exists by Corollary 6.1.

Example 7.3. Consider Example 7.1 again. Although exponential discount-
ing (7.8) is technically convenient (implying time consistency), experimental
evidence suggests that “hyperbolic discounting” is more plausible; see, e.g.,
[19, p. 1]. A simple hyperbolic discount function can be specified as follows:

∀t ∈ Z+, δ(t) =
1

1 + αt
(7.9)

for some α > 0.
In this example, Corollary 6.1 does not apply since there exists no inte-

grable function f : Z+ → R+ satisfying (6.16) for all feasible paths. To see
this, define the feasible path {x̃nt }∞t=1 for each n ∈ N by

x̃nt =

{
x0 if t ≤ n,

0 if t ≥ n+ 1.
(7.10)
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Then

rt(x̃
n
t , x̃

n
t+1) =

{
u(x0)/(1 + αt) if t = n,

u(0)/(1 + αt) otherwise.
(7.11)

Hence any f satisfying (6.16) must satisfy

f(t) ≥ u(x0)/(1 + αt), ∀t ∈ Z+. (7.12)

Since the right-hand side is not upper semi-integrable in t ∈ Z+ by (7.7)(ii),
there exists no integrable function f satisfying (6.16) for all feasible paths.
Hence Corollary 6.1 does not apply.

However, Proposition 6.1 still applies. To see this, let {{xnt }∞t=1}n∈N be a
sequence of feasible paths. For any n, i ∈ N we have

∞∑
t=i

rt(x
n
t , x

n
t+1) =

∞∑
t=i

u(xnt − xnt+1)

1 + αt
(7.13)

≤
∞∑
t=i

θ(xnt − xnt+1)

1 + αi
(7.14)

=
θ
∑∞

t=i(x
n
t − xnt+1)

1 + αi
(7.15)

≤ θxni
1 + αi

≤ θx0

1 + αi
, (7.16)

where (7.14) uses (7.7)(i), and the second inequality in (7.16) uses (7.6). It
follows that

lim
i↑∞

lim
n↑∞

∞∑
t=i

rt(x
n
t , x

n
t+1) ≤ lim

i↑∞

θx0

1 + αi
= 0. (7.17)

Thus (6.7) holds; hence an optimal path exists by Proposition 6.1.

In the above example, the hyperbolic discount function (7.9) is used to
show that Corollary 6.1 does not apply. The only property of the discount
function required to apply Proposition 6.1 is the equality in (7.17). We
summarize this observation in the following example.

Example 7.4. Consider Example 7.1 again. Suppose that

lim
t↑∞

δ(t) = 0. (7.18)

Then the argument of Example 7.3 shows that an optimal path exists by
Proposition 6.1.
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8 Proof of Theorem 3.1

8.1 Preliminaries

Throughout the proof, we fix {fn}n∈N and {Bi}i∈N to be given by Theorem
3.1. Define f ∗ = limn↑∞ fn. For n ∈ N, define f̂n = supm≥n fm. We have

f ∗ = lim
n↑∞

f̂n. (8.1)

The following observation helps simplify the proof.

Lemma 8.1. If f ∗ is not upper semi-integrable, then the Fatou inequality
(1.1) holds.

Proof. Suppose that f ∗ is not upper semi-integrable. Then
∫

(f ∗)+ dµ =∞,
and f ∗ must be lower semi-integrable (i.e.,

∫
(f ∗)− dµ <∞) since f ∗ is semi-

integrable by hypothesis. It follows that
∫
f ∗ dµ =

∫
(f ∗)+ dµ−

∫
(f ∗)− dµ =

∞. Thus the Fatou inequality (1.1) trivially holds.

Since the above result covers the case in which f ∗ is not upper semi-
integrable, we assume the following for the rest of the proof.

Assumption 8.1. f ∗ is upper semi-integrable.

8.2 Lemmas

We establish three lemmas before completing the proof of Theorem 3.1.

Lemma 8.2. Suppose that there exists a σ-finite exhausting sequence {Ai}i∈N
satisfying (3.1) and the following:

∀i ∈ N, lim
n↑∞

∫
Ai

fn dµ ≤
∫
Ai

f ∗ dµ. (8.2)

Then the Fatou inequality (1.1) holds.

Proof. Since each fn is semi-integrable, we have

∀i, n ∈ N,
∫
fn dµ =

∫
Ai

fn dµ+

∫
Ω\Ai

fn dµ. (8.3)
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By (3.1) there exists a subsequence {Aik}k∈N of {Ai}i∈N such that

∀k ∈ N, lim
n↑∞

∫
Ω\Aik

fn dµ <∞, (8.4)

lim
k↑∞

lim
n↑∞

∫
Ω\Aik

fn dµ ≤ 0. (8.5)

Note that {Aik}k∈N is a σ-finite exhausting sequence.
Fix k ∈ N for the moment. Replacing i with ik in (8.3) and applying

limn↑∞ to both sides of the resulting equation, we obtain

lim
n↑∞

∫
fn dµ = lim

n↑∞

[∫
Aik

fn dµ+

∫
Ω\Aik

fn dµ

]
(8.6)

≤ lim
n↑∞

∫
Aik

fn dµ+ lim
n↑∞

∫
Ω\Aik

fn dµ (8.7)

≤
∫
Aik

f ∗ dµ+ lim
n↑∞

∫
Ω\Aik

fn dµ, (8.8)

where (8.7) holds by (8.4), and (8.8) uses (8.2).
Since f ∗ is upper semi-integrable and {Aik}k∈N is a σ-finite exhausting

sequence, we have limk↑∞
∫
Aik

f ∗ dµ =
∫
f ∗ dµ < ∞. Thus applying limk↑∞

to the right-hand side of (8.8) yields

lim
n↑∞

∫
fn dµ ≤

∫
f ∗ dµ+ lim

k↑∞
lim
n↑∞

∫
Ω\Aik

fn dµ ≤
∫
f ∗ dµ, (8.9)

where the last inequality uses (8.5). The Fatou inequality (1.1) follows.

Lemma 8.3. Let {Ai}i∈N be a sequence in F such that for each i ∈ N,
µ(Ai) < ∞ and f̂+

n converges to (f ∗)+ uniformly on Ai as n ↑ ∞. Then
{Ai}i∈N satisfies (8.2).

Proof. Let i ∈ N. Let δ > 0. Since f̂+
n converges to (f ∗)+ uniformly on Ai

as n ↑ ∞, for sufficiently large n ∈ N we have fn ≤ f̂n ≤ f̂+
n ≤ (f ∗)+ + δ on

Ai. Since (f ∗)+ is integrable by Assumption 8.1 and µ(Ai) <∞, (8.2) holds
by Fatou’s lemma.

Lemma 8.4. Let {Ai}i∈N be a sequence in F satisfying (2.1) and (3.2).
Then {Ai} is a σ-finite exhausting sequence.
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Proof. Since {Ai} satisfies (2.1) by hypothesis, it suffices to verify (2.2). For
any i, j ∈ N with i ≤ j, by (2.1) for {Bi}, we have

µ(Bi \ Aj) ≤ µ(Bj \ Aj)→ 0 as j ↑ ∞, (8.10)

where the convergence holds by (3.2). It follows that

∀i ∈ N, µ(Bi \ ∪j∈NAj) = lim
j↑∞

µ(Bi \ Aj) = 0. (8.11)

Therefore

µ(∪i∈NBi \ ∪j∈NAj) = lim
i↑∞

µ(Bi \ ∪j∈NAj) = 0. (8.12)

Since ∪i∈NAi ⊂ ∪i∈NBi, we have

µ(Ω \ ∪i∈NAi) = µ(Ω \ ∪i∈NBi) + µ(∪i∈NBi \ ∪i∈NAi) = 0, (8.13)

where the last equality holds by (2.2) for {Bi} and (8.12). It follows that
{Ai} satisfies (2.2).

8.3 Completing the Proof of Theorem 3.1

Note from (8.1) that (f ∗)+ = limn↑∞ f̂
+
n . Let {εi}i∈N be a sequence in R++

such that limi↑∞ εi = 0. For each i ∈ N, by Egorov’s theorem there exists

Ei ∈ F such that Ei ⊂ Bi, µ(Bi \ Ei) < εi, and f̂+
n converges to (f ∗)+

uniformly on Ei as n ↑ ∞. For i ∈ N, let

Ai = ∪ij=1Ej ⊂ Bi. (8.14)

Then for each i ∈ N, f̂+
n converges to (f ∗)+ uniformly on Ai as n ↑ ∞. Thus

(8.2) holds by Lemma 8.3.
Note that {Ai}i∈N satisfies (2.1) and (3.2) by construction. Thus by

Lemma 8.4, {Ai} is a σ-finite exhausting sequence. Hence (3.1) holds by the
hypothesis of Theorem 3.1. Since (8.2) also holds as shown in the previous
paragraph, the Fatou inequality (1.1) holds by Lemma 8.2.
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9 Conclusions

In this paper we have provided a sufficient condition for what we call the
Fatou inequality:

lim
n↑∞

∫
fn dµ ≤

∫
lim
n↑∞

fn dµ.

Our condition is considerably weaker than sufficient conditions known in the
literature such as uniform integrability (in the case of a finite measure) and
equi-integrability. We have illustrated the strength of our condition with
simple examples. As an application, we have shown a new result on the
existence of an optimal path for deterministic infinite-horizon optimization
problems in discrete time. We have illustrated the strength of this existence
result with concrete examples of optimization problems.
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