

DP2016-36

A Multiple-Try Extension of the Particle
Marginal Metropolis-Hastings (PMMH)
Algorithm with an Independent

Proposal

Takashi KAMIHIGASHI
Hiroyuki WATANABE

December 7, 2016

A Multiple-Try Extension of the Particle
Marginal Metropolis-Hastings (PMMH)
Algorithm with an Independent Proposal∗

Takashi Kamihigashi† Hiroyuki Watanabe‡

December 6, 2016

Abstract
In this paper we propose a multiple-try extension of the PMMH

algorithm with an independent proposal. In our algorithm, I ∈ N
parameter particles are sampled from the independent proposal. For
each of them, a particle filter with K ∈ N state particles is run. We
show that the algorithm has the following properties: (i) the distribu-
tion of the Markov chain generated by the algorithm converges to the
posterior of interest in total variation; (ii) as I increases to∞, the ac-
ceptance probability at each iteration converges to 1 with probability
1; and (iii) as I increases to ∞, the autocorrelation of any order for
any parameter with bounded support converges to 0. These results
indicate that the algorithm generates almost i.i.d. samples from the
posterior for sufficiently large I. Our numerical experiments suggest
that one can visibly improve mixing by increasing I from 1 to a small
number. This does not significantly increase computation time if a
computer with at least the same number of threads is used.

Keywords: multiple-try method; particle marginal Metropolis-Hastings;
Markov chain Monte Carlo; mixing; state space models

∗Financial support from the Japan Society for the Promotion of Science (JSPS KAK-
ENHI Grant Number 15H05729) is gratefully acknowledged.
†Research Institute for Economics and Business Administration (RIEB), Kobe Univer-

sity, Rokkodai, Nada, Kobe 657-8501 JAPAN. Email: tkamihig@rieb.kobe-u.ac.jp.
‡Research Institute for Economics and Business Administration (RIEB), Kobe Univer-

sity, Rokkodai, Nada, Kobe 657-8501 JAPAN. Email: hwatanabe@rieb.kobe-u.ac.jp.

1 Introduction

Over the past few decades, Markov chain Monte Carlo (MCMC) algorithms
have become an indispensable tool for Bayesian inference. A standard MCMC
algorithm such as Metropolis-Hastings (MH) generates a Markov chain that
converges in distribution to the posterior of interest as the number of iter-
ations increases to ∞ (e.g., Tierney, 1994; Roberts and Rosenthal, 2004).
In this case the posterior can be approximated by the empirical distribution
provided that the number of iterations is large enough. In theory this holds
quite generally, but in practice the Markov chain generated by an MCMC
algorithm often suffers from poor mixing and fails to converge within a rea-
sonable time frame. The problem is particularly severe for state space models,
in which a large number of state (or hidden) variables are often treated as
unknown parameters.

As far as state space models are concerned, the problem can be mitigated
by using the particle marginal Metropolis-Hastings (PMMH) algorithm (An-
drieu et al., 2009, 2010), which embeds a particle filter, or a sequential Monte
Carlo method (e.g., Doucet et al., 2000), within an MH algorithm. PMMH
belongs to the class of MCMC algorithms known as particle MCMC algo-
rithms (Andrieu et al., 2010), which build on earlier work by Beaumont
(2003) and Andrieu and Roberts (2009).

In the PMMH algorithm, given a sample of the static parameter vec-
tor from a proposal, the marginal likelihood of observed data is sequentially
approximated by Monte Carlo integration using (what we call) “state par-
ticles.” The state of the chain is updated with a probability based on the
ratio of marginal likelihood estimates. While PMMH has been applied and
extended in a wide variety of contexts (e.g., Yuan et al., 2012; Kokkala and
Särkkä, 2015; Golightly et al., 2015; Fearnhead and Meligkotsidou, 2015), it
leaves room for improvement in terms of static parameters, which are only
updated using a standard MH algorithm.

Earlier efforts to improve the mixing of parameters for static models in-
clude the multiple-try Metropolis (MTM) method (Liu et al., 2000). In this
method, multiple “parameter particles” are drawn from a proposal. One
of them is resampled according to importance weights, and is accepted to
update the state of the chain with a probability computed using additional
reference samples. This method is closely related to PMCMC algorithms—
in particular, the particle MH (PMH) algorithm—as discussed by Martino
et al. (2016). Pandolfi et al. (2010) provide a generalization of MTM, and

1

Bédard et al. (2012) present a scaling analysis of MTM methods. Martino
and Louzada (2016) discuss mixing properties of various MTM algorithms.

While MTM and its extensions have been applied to state space mod-
els (e.g., So, 2006; Wang, 2009), studies in the literature that discuss both
PMMH and MTM are surprisingly limited. Exceptions include Andrieu et
al. (2009, p. 57), who differentiate PMMH from MTM, and Storvik (2011),
who considers acceptance probabilities for a class of MCMC algorithms in-
cluding PMMH and MTM. Related studies that do not explicitly mention
PMMH include Martino et al. (2016), who examine the relations between
PMH and MTM schemes, and Tran et al. (2016), who discuss extensions of
their adaptive sampler to MTM and a class of MCMC algorithms including
PMCMC.

In this paper we propose a new algorithm for state space models that com-
bines PMMH and MTM under the assumption that the proposal for static
parameters is independent. We call this algorithm MTiPMMH (multiple-try
independent PMMH) for the reasons specified below. In the MTiPMMH
algorithm, a prespecified number of parameter particles are sampled from
the independent proposal. For each of them, a particle filter is run with a
prespecified number of state particles. Then one of the parameter particles is
resampled according to their marginal likelihood estimates. The state of the
chain is updated with a probability based on the ratio between the averages
of marginal likelihood estimates.

We show that the MTiPMMH algorithm has the following three asymp-
totic properties: (i) the distribution of the Markov chain generated by the
algorithm converges to the posterior of interest in total variation; (ii) as the
number of parameter particles increases to ∞, the acceptance probability at
each iteration converges to 1 with probability 1; and (iii) as the number of
parameter particles increases to ∞, the autocorrelation of any order for any
parameter with bounded support converges to 0. These results are valid for
any number of state particles, indicating that MTiPMMH generates almost
i.i.d. samples from the posterior with a sufficiently large number of parameter
particles.

To show these results, we start with a general static model and consider
the MH algorithm with an independent proposal, which we call iMH (inde-
pendent MH). We extend iMH by introducing parameter particles. Martino
et al. (2016) argue that this extended algorithm (which they call I-MTM2) is
a variant of the MTM method with an independent proposal. Based on their
argument, we regard the extended algorithm as a multiple-try (MT) exten-

2

sion of iMH; thus we call it MTiMH (multiple-try independent MH). While
Martino et al. (2016) only use MTiMH to compare MTM and PMH schemes
without establishing its theoretical properties, we show that MTiMH has the
three asymptotic properties listed above.

With these results for MTiMH in hand, we turn to a state space model
and consider the PMMH algorithm with an independent proposal, which we
call iPMMH (independent PMMH). Following Andrieu et al. (2010) in spirit,
we reformulate iPMMH as an iMH algorithm. This allows us to reformulate
MTiPMMH as an MTiMH algorithm and to show that the three asymptotic
results established for MTiMH hold also for MTiPMMH.

There are at least three advantages to using an independent proposal
rather than a more general Markovian proposal. First, a combination of
an independent proposal and high acceptance probabilities gurantees good
mixing. Note that high acceptance probabilities alone do not imply good
mixing. A case in point is Gibbs sampling, which always has an acceptance
probability of 1, but often suffers from poor mixing. Second, an indepen-
dent proposal is easy to construct. For example, one can approximate the
empirical distribution of samples from a pilot run by a normal distribution,
and use it as an independent proposal. We use this approach in some of
our numerical experiments. Third, an independent proposal makes it easy to
utilize parallel computation. We present a parallelized version of MTiPMMH
for which computational cost does not significantly increase as the number
of parameter particles increases, provided that a computer with at least the
same number of threads is used.

The rest of the paper is organized as follows. In Section 2 we introduce
basic notation for state space models and related algorithms, and briefly
discuss the PMMH algorithm. In Section 3 we turn to static models and
present the MTiMH algorithm. We establish our core results in this static
framework. In Section 4 we present the iPMMH and MTiPMMH algorithms.
We reformulate iPMMH as an iMH algorithm, and apply the results shown
for MTiMH to MTiPMMH. In Section 5 we conduct numerical experiments
by utilizing the simple stochastic volatility model employed by Fearnhead and
Meligkotsidou (2015). In Section 6 we conclude the paper with discussion of
our results.

3

2 Preliminaries

Given any (possibly multidimensional) random variables a and b, we let
p(a, b) denote the joint density of (a, b), p(a) the marginal density of a, and
p(a|b) the conditional density of a given b. These densities can be prior or pos-
terior densities. A proposal density is denoted by q instead of p. Throughout
this paper all functions are assumed to Borel-measurable.

2.1 State Space Models

Let nθ, nx, ny ∈ N. Let Θ and X be Borel subsets of Rnθ and Rnx , respec-
tively. Consider a state space model consisting of a state (or hidden) process
{xt}∞t=1 ⊂ X , an observation process {yt}∞t=1 ⊂ Rny , and a vector θ ∈ Θ of
unknown static parameters, which are taken as random variables. The condi-
tional distribution of xt+1 given x1:t, y1:t, and θ is given by p(xt+1|xt, θ), where
x1:t = (x1, x2, . . . , xt), etc. The conditional distribution of yt given x1:t, y1:t−1,
and θ is given by p(yt|xt, θ). The parameter vector θ is distributed according
to prior p(θ). The initial value x1 is distributed as p(x1|θ), which can be part
of the model or a prior.

Given observed data y1:T with T ∈ N, Bayesian inference is typically
performed based on the posterior density p(θ, x1:T |y1:T), which satisfies

p(θ, x1:T |y1:T) = p(θ, x1:T , y1:T)/p(y1:T) ∝ p(θ, x1:T , y1:T) (1)

= p(θ)p(x1|θ)

[
T−1∏
t=1

p(xt+1|xt, θ)

]
T∏
t=1

p(yt|xt, θ). (2)

2.2 The PMMH Algorithm

We start with some notation to present various algorithms in a concise man-
ner. For m,n ∈ N with m ≤ n, we let

[m : n] = {m, . . . , n}, (3)

“m : n” = “m,m+ 1, . . . , n,” (4)

“n : m” = “n, n− 1, . . . ,m.” (5)

For a, b ∈ R+, we let

a ∧ b = min{a, b}. (6)

4

In what follows, the division operator / precedes the minimum operator ∧
(e.g., see line 18 of Algorithm 1). Given w1, . . . , wN ≥ 0 with w1+ · · ·+wN >
0, let D(w1:N) denote the discrete distribution on [1 : N] with the probability
of each n ∈ [1 : N] given by

wn∑N
m=1w

m
. (7)

Algorithm 1 shows pseudocode for the PMMH (particle marginal MH)
algorithm. In line 2, θ∗ is initially set arbitrarily, and is subsequently drawn
from conditional proposal q(θ|θj−1). In line 4, xk1 is drawn from q(x1|y1, θ∗);
in line 9, xkt+1 is drawn from q(xt+1|yt+1, x

akt
t , θ

∗). In line 11, k∗T is drawn from
D(w1:K

T). In line 19, “w.p.” means “with probability.”
Andrieu et al. (2010, Theorem 4) show that Algorithm 1 generates a

sequence {(θj, ξj)}∞j=1 such that the distribution of (θj, ξj) converges to the
posterior p(θ, x1:T |y1:T) in total variation as j ↑ ∞. This result relies on the
fact that given θ, the product in line 14 is an unbiased estimator of p(y1:T |θ):∫

u(θ, x1:K1:T , y1:T)p(x1:K1:T |θ, y1:T)dx1:K1:T = p(y1:T |θ), (8)

where

u(θ∗, x1:K1:T , y1:T) =
T∏
t=1

(
K−1

K∑
k=1

wkt

)
, (9)

x1:K1:T = {xkt }
k∈[1:K]
t∈[1:T] . (10)

See Pit et al. (2012, Theorem 1) and Del Moral (2004, Proposition 7.4.1) for
proofs of (8).

3 A Multiple-Try Extension of iMH

In this section we consider general static models and study an extension of
the MH algorithm with an independent proposal. The results shown here are
applied to state space models in Section 4.

The basis of our analysis is the MH algorithm with an independent pro-
posal q(θ), which we call iMH. Algorithm 2 shows this algorithm as a function
of (q, g), where q and g are functions satisfying the following assumption,
which is maintained throughout this section.

5

Algorithm 1: PMMH (Particle Marginal Metropolis-Hastings)

1 for j = 1 : J

2 θ∗

{
∈ Θ arbitrary if j = 1

∼ q(θ|θj−1) if j ≥ 2

3 for k = 1 : K
4 xk1 ∼ q(x1|y1, θ∗)
5 wk1 = p(y1|xk1, θ∗)p(xk1|θ∗)/q(xk1|y1, θ∗)
6 for t = 1 : T − 1
7 for k = 1 : K
8 akt ∼ D(w1:K

t)

9 xkt+1 ∼ q(xt+1|yt+1, x
akt
t , θ

∗)

10 wkt+1 = p(yt+1|xkt+1, θ
∗)p(xt+1|x

akt
t , θ

∗)/q(xt+1|yt+1, x
akt
t , θ

∗)

11 k∗T ∼ D(w1:K
T), x∗T = x

k∗T
T

12 for t = (T − 1) : 1

13 k∗t = a
k∗t+1

t , x∗t = x
k∗t
t

14 h∗ = p(θ∗)
∏T

t=1

(
K−1

∑K
k=1w

k
t

)
15 if j = 1 then
16 (θ1, ξ1, h1) = (θ∗, x∗1:T , h

∗)

17 else
18 r = 1 ∧ [h∗/q(θ∗|θj−1)]/[hj−1/q(θj−1|θ∗)]

19 (θj, ξj, hi) =

{
(θ∗, x∗1:T , h

∗) w.p. r

(θj−1, ξj−1, hj−1) w.p. 1− r

output: θ1:J , ξ1:J

6

Algorithm 2: iMH(q, g) (Independent Metropolis-Hastings)

1 for j = 1 : J
2 θ∗ ∼ q(θ), w∗ = g(θ∗)/q(θ∗)
3 if j = 1 then
4 (θ1, w1) = (θ∗, w∗)

5 else
6 r = 1 ∧ w∗/wj−1

7 (θj, wj) =

{
(θ∗, w∗) w.p. r

(θj−1, wj−1) w.p. 1− r

output: θ1:J

Assumption 3.1. The Lebesgue measure of Θ ⊂ Rnθ is strictly positive,
q : Θ→ R++ is a probability density function on Θ, and g : Θ→ R++ is an
integrable Borel function.

In what follows, when we refer to an algorithm like Algorithm 2, we
explicitly mention arguments like q and g only if necessary. The following
result is well known, but we state it for reference purposes.

Proposition 3.1. The Markov chain {θj}∞j=1 generated by Algorithm 2 (with
J = ∞) has a unique stationary distribution, which has a density represen-
tation π(θ) satisfying

π(θ) ∝ g(θ). (11)

Furthermore, the distribution of θj converges to π(θ) in total variation as
j ↑ ∞.

Proof. This result follows from Theorem 1 and Corollary 2 in Tierney (1994)
under Assumption 3.1.

Let us now consider an extension of iMH (Alg. 2). Algorithm 3 (Mar-
tino et al., 2016) extends iMH with I “parameter particles,” and one of the
parameter particles is resampled according to the weights wi in line 3. The
average of these weights is used to compute the acceptance probability.

Martino et al. (2016) argue that Algorithm 3 is a variant of the MTM
method with an independent proposal. Based on their argument, we regard

7

Algorithm 3: MTiMH(q, g) (Multiple-Try iMH)

1 for j = 1 : J
2 for i = 1 : I
3 θi ∼ q(θ), wi = g(θi)/q(θi)

4 i∗ ∼ D(w1:I), θ∗ = θi
∗

5 w∗ = I−1
∑I

i=1w
i

6 run lines 3–7 of iMH(q, g) (Alg. 2)

output: θ1:J

Algorithm 3 as a multiple-try extension of iMH (Alg. 2), and call it MTiMH
(multiple-try iMH). It turns out that MTiMH (Alg. 3) is a special case of
iMH (Alg. 2) with an extended parameter space. This observation is useful
in showing theoretical properties of MTiMH; a similar approach is used by
Andrieu et al. (2010) to establish various properties of PMMH (Alg. 1) by
expressing it as an MH algorithm with an extended space.

To reformulate MTiMH (Alg 3) as an iMH (Alg. 2) algorithm, let w0 = 0.
Consider w1:I given in line 3; for i ∈ [1 : I], define

Ui =

(∑i−1
s=0w

s∑I
s=0w

s
,

∑i
s=0w

s∑I
s=0w

s

]
. (12)

In line 4 of MTiMH (Alg. 3), replace “i∗ ∼ D(w1:I)” by

u ∼ U(0, 1), i∗ =
I∑
i=1

1{u ∈ Ui}i, (13)

where U(0, 1) denotes the uniform distribution on (0, 1), and 1{·} is the
indicator function. Note that (13) implies that i∗ ∼ D(w1:I); thus the distri-
butional properties of MTiMH (Alg. 3) remain unchanged. We also define

θ̃ = (θ1:I , u), (14)

Θ̃ = ΘI × (0, 1), (15)

q̃(θ̃) =
I∏
i=1

q(θi), (16)

g̃(θ̃) = q̃(θ̃)w∗, (17)

8

where w∗ is given in line 5 of MTiMH (Alg. 3). Consider iMH(q̃, g̃), which is
Algorithm 2 with q̃ and g̃ replacing q and g. Noticing that g̃(θ̃)/q̃(θ̃) = w∗, it
is easy to see that MTiMH(q, g) is equivalent to iMH(q̃, g̃) with i∗ determined
by (13).

It follows from Proposition 3.1 that the stationary density π̃(θ̃) of the
Markov chain {θ̃j}∞j=1 generated by iMH(q̃, g̃) satisfies

π̃(θ̃) ∝ g̃(θ̃), (18)

and that the distribution of θ̃j converges to π̃(θ̃) in total variation. The
following result is shown by verifying that the marginal distribution of θ∗ (in
line 4 of Alg. 3) with respect to π̃(θ̃) is the distribution π(θ) in (11).

Theorem 3.1. Algorithm 3 with J = ∞ generates a sequence {θj}∞j=1 such
that the distribution of θj converges to π(θ) in total variation as j ↑ ∞.

Proof. See Appendix A.

Our next result shows that as the number I of parameter particles in-
creases to ∞, the acceptance probability for each j ∈ [2 : J] converges to 1
a.s. (almost surely). The result uses Algorithm 4, which is a distributionally
equivalent version of Algorithm 3 in which the random seed is reset in a
specific way and the dependence of all variables on I and j is made explicit.

Theorem 3.2. Consider Algorithm 4. For each j ∈ [2 : J], we have rI,j → 1
a.s. as I ↑ ∞, where rI,j is computed in line 13 of Algorithm 4.

Proof. See Appendix B.

Recall from Subsection 2.1 that θ ∈ Rnθ . Let θ(n) denote the nth compo-
nent of θ for n ∈ [1 : nθ]; i.e., θ = (θ(1), . . . , θ(nθ)). Let Cor(θ

I,j−s(n), θI,j(n
′))

denote the correlation between θ
I,j−s(n) and θI,j(n

′) for I ∈ N, j ∈ [1 : J], s ∈
[2 : j − 1], and n, n′ ∈ [1 : nθ]. The following result shows that this correla-
tion converges to 0 as I ↑ ∞ provided that both θ

I,j−s(n) and θI,j(n
′) have

bounded support.

Theorem 3.3. Consider Algorithm 4. Suppose either that Θ is a bounded
set (in which case we set n1 = nθ), or that there exist sets Θ1 ⊂ Rn1 and
Θ2 ⊂ Rn2 with n1, n2 ∈ N and Θ = Θ1 × Θ2 such that Θ1 is a bounded set.
Then for any j ∈ [2 : J], s ∈ [1 : j − 1], and n, n′ ∈ [1 : n1], we have

lim
I↑∞

Cor(θI,j−s(n), θI,j(n
′)) = 0. (19)

9

Algorithm 4: MTiMH(I) (MTiMH for Varying I)

1 reset the random seed to any constant independent of I
2 for j = 1 : J
3 uj ∼ U(0, 1)

4 for j = 1 : J
5 reset the random seed to uj
6 for i = 1 : I
7 θiI,j ∼ q(θ), wiI,j = g(θiI,j)/q(θ

i
I,j)

8 i∗ ∼ D(w1:I
I,j), θ

∗
I,j = θi

∗
I,j

9 w∗I,j = I−1
∑I

i=1w
i
I,j

10 if j = 1 then
11 (θI,1, wI,1) = (θ∗I,1, w

∗
I,1)

12 else
13 rI,j = 1 ∧ w∗I,j/wI,j−1

14 (θI,j, wI,j) =

{
(θ∗I,j, w

∗
I,j) w.p. rI,j

(θI,j−1, wI,j−1) w.p. 1− rI,j

output: θI,1:J

10

Algorithm 5: iPMMH(q) (Independent PMMH)

1 for j = 1 : J
2 θ∗ ∼ q(θ)
3 run lines 3–14 of PMMH (Alg. 1)
4 w∗ = h∗/q(θ∗)
5 if j = 1 then
6 (θ1, ξ1, w1) = (θ∗, x∗1:T , w

∗)

7 else
8 r = 1 ∧ w∗/wj−1

9 (θj, ξj, wj) =

{
(θ∗, x∗1:T , w

∗) w.p. r

(θj−1, ξj−1, wj−1) w.p. 1− r

output: θ1:J , ξ1:J

Proof. See Appendix C.

This result shows that as far as bounded parameter components are con-
cerned, autocorrelation of any finite order converges to 0 as I ↑ ∞. As
for unbounded components (in Θ2), one can, for example, apply a mono-
tone transformation to make them bounded and apply Theorem 3.3 to the
transformed components.

4 A Multiple-Try Extension of iPMMH

The results shown in Section 3 apply to an MT extension of any scheme
that can be reformulated as an iMH algorithm (Alg. 2). In this section we
return to the framework of state space models discussed in Subsection 2.1
and extend a special case of the PMMH algorithm (Alg. 1). In particular we
consider the PMMH algorithm with an independent proposal, which is given
in Algorithm 5 as a function of the proposal q. The idea here is to express
this algorithm as an iMH algorithm, and to apply Theorems 3.1–3.3 to its
MT extension.

Throughout this section we assume the following in addition to the setup
specified in Subsection 2.1.

Assumption 4.1. For all θ ∈ Θ, we have p(θ), q(θ) ∈ (0,∞). For all θ ∈ Θ
and x1 ∈ X , we have p(x1|θ), q(x1|θ) ∈ (0,∞). For all θ ∈ Θ, t ∈ [1 : T − 1],

11

Algorithm 6: MTiPMMH(q) (Multiple-Try iPMMH)

1 for j = 1 : J
2 for i = 1 : I
3 θi ∼ q(θ)
4 run lines 3–14 of PMMH (Alg. 1) with θ∗ = θi

5 wi = h∗/q(θi), xi1:T = x∗1:T

6 i∗ ∼ D(w1:I), θ∗ = θi
∗
, x∗1:T = xi

∗
1:T

7 w∗ = I−1
∑I

i=1w
i

8 run lines 5–9 of iPMMH (Alg. 5)

output: θ1:J , ξ1:J

and xt, xt+1 ∈ X , we have p(xt+1|xt, θ) ∈ (0,∞). For all θ ∈ Θ, t ∈ [1 : T],
and xt ∈ X , we have p(yt|xt, θ) ∈ (0,∞). Finally p(y1:T) ∈ (0,∞).

Let us now reformulate iPMMH(q) as an iMH (Alg. 2) algorithm. First
we rearrange state particles xkt and relabeling them as zkt as in Figure 1. To
be more precise, for k, k∗ ∈ [1 : K], define

µ(k, k∗) =


k∗ if k = 1,

k − 1 if 2 ≤ k ≤ k∗,

k if k > k∗.

(20)

For t ∈ [1 : T] and k ∈ [1 : K], define

zkt = x
µ(k,k∗t)
t . (21)

Note that z1t = x
k∗t
t , that zkt = xk−1t if k ∈ [2 : k∗t], and that zkt = xkt if k > k∗t ;

see Figure 1 again. We define

θ̃ = (θ, z1:K1:T), (22)

Θ̃ = Θ× (XK)T , (23)

q̃(θ̃) = q(θ)p̃(z1:K1:T |θ, y1:T), (24)

g̃(θ̃) = p(θ)u(θ, z1:K1:T , y1:T)p̃(z1:K1:T |θ, y1:T), (25)

where p̃(z1:K1:T |θ, y1:T) is the conditional density of z1:K1:T given θ and y1:T , and
u(·, ·, ·) is defined by (9).

12

x1
1

x1
2

x1
3

x2
1

x2
2

x2
3

x3
1

x3
2

x3
3

x4
1

x4
2

x4
3

x5
1

x5
2

x5
3

(a) State particles xkt with k∗1:5 = {2, 2, 3, 1, 3}

x1
2

x1
1

x1
3

x2
2

x2
1

x2
3

x3
3

x3
1

x3
2

x4
1

x4
2

x4
3

x5
3

x5
1

x5
2

(b) State particles xkt rearranged with x∗1:t at the bottom

z1
1

z1
2

z1
3

z2
1

z2
2

z2
3

z3
1

z3
2

z3
3

z4
1

z4
2

z4
3

z5
1

z5
2

z5
3

(c) State particles relabeled as zkt = x
µ(k,k∗t)
t

Figure 1: Transformation from x1:K1:T to z1:K1:T through (21)

13

Consider iMH(q̃, g̃), which is Algorithm 2 with q = q̃ and g = g̃. It is
easy to see that q̃(θ̃) ∈ (0,∞) for all θ̃ ∈ Θ̃ by Assumption 4.1. Note that
given θ ∈ Θ we have ∫

u(θ, z1:K1:T , y1:T)p̃(z1:K1:T |θ, y1:T)dz1:K1:T (26)

= E[u(θ, z1:K1:T , y1:T)|θ, y1:T] (27)

= E[u(θ, x1:K1:T , y1:T)|θ, y1:T] (28)

=

∫
u(θ, x1:K1:T , y1:T)p(x1:K1:T |θ, y1:T)dx1:K1:T (29)

= p(y1:T |θ), (30)

where E[a|b] is the expectation of a given b, (28) holds since u(θ, z1:K1:T , y1:T) =
u(θ, x1:K1:T , y1:T); and (30) uses (8). Note from (25)–(30) that∫

g̃(θ̃)dθ̃ =

∫
p(θ)p(y1:T |θ)dθ = p(y1:T) <∞, (31)

where the last inequality holds by Assumption 4.1. It follows that iMH(q̃, g̃)
satisfies Assumption 3.1.

Note from (24) and (25) that

g̃(θ∗, z1:K1:T)

q̃(θ∗, z1:K1:T)
=
p(θ∗)u(θ∗, z1:K1:T , y1:T)

q(θ∗)
=

h∗

q(θ∗)
= w∗, (32)

where h∗ is given by line 14 of PMMH (Alg. 1), and w∗ is given by line
4 of iPMMH(q) (Alg. 5). It follows that the sequences of θ and z11:T (as
components of θ̃) generated by iMH(q̃, g̃) are identical to those of θ and x∗1:T
generated by iPMMH(q) (Alg. 5).

Note from Proposition 3.1 that iMH(q̃, g̃) generates a sequence {θ̃j}∞j=1

such that the distribution of θ̃j converges in total variation to a unique sta-
tionary distribution π̃(θ̃), which satisfies π̃(θ̃) ∝ g̃(θ̃). Theorem 4 in Andrieu
et al. (2010) implies that the marginal distribution of (θ, z11:T) = (θ, x∗1:T) with
respect to π̃(θ̃) is the desired posterior p(θ, x1:T |y1:T). By Theorem 3.1, the
stationary distribution and convergence properties of iMH(q̃, g̃) are inherited
by MTiMH(q̃, g̃) (recall Alg. 3).

Now consider Algorithm 6, which is a multiple-try extension of iPMMH(q).
We call it MTiPMMH (multiple-try PMMH). In this algorithm, I parameter
particles are sampled, and for each of them, K state particles are sampled for

14

Algorithm 7: MTiPMMH(I) (MTiPMMH for Varying I)

1 reset the random seed to any constant independent of I
2 for j = 1 : J
3 uj ∼ U(0, 1)

4 for j = 1 : J
5 reset the random seed to uj
6 for i = 1 : I
7 θi ∼ q(θ)
8 run lines 3–14 of PMMH (Alg. 1) with θ∗ = θi

9 wiI,j = h∗/q(θi), xi1:T = x∗1:T

10 i∗ ∼ D(w1:I
I,j), θ

∗
I,j = θi

∗
, ξ∗I,j = xi

∗
1:T

11 w∗I,j = I−1
∑I

i=1w
i
I,j

12 if j = 1 then
13 (θI,1, ξI,1, wI,1) = (θ∗, ξ∗I,j, w

∗
I,j)

14 else
15 rI,j = 1 ∧ w∗I,j/wI,j−1

16 (θI,j, ξI,j, wI,j) =

{
(θ∗I,j, ξ

∗
I,j, w

∗
I,j) w.p. rI,j

(θI,j−1, ξI,j−1, wI,j−1) w.p. 1− rI,j

output: θI,1:J , ξI,1:J

each t ∈ [1 : T]. In line 6, one parameter particle is resampled according to
the weights wi given in line 5. Note that the structure of MTiPMMH is es-
sentially the same as that of MTiMH (Alg. 3). Indeed, since iPMMH(q) can
be expressed as iMH(q̃, g̃) as discussed above, it follows that MTiPMMH(q)
can be expressed as MTiMH(q̃, g̃). Thus we obtain the following results by
applying Theorems 3.1–3.3 to MTiMH(q̃, g̃).

Theorem 4.1. Algorithm 6 (with J =∞) generates a sequence {(θj, ξj)}∞j=1

such that the distribution of (θj, ξj) converges to p(θ, x1,T |y1:T) in total vari-
ation.

Theorem 4.2. Consider Algorithm 7. For each j ∈ [2 : J], we have rI,j → 1
a.s. as I ↑ ∞, where rI,j is computed in line 15 of Algorithm 7.

15

Theorem 4.3. Consider Algorithm 7. Suppose either that Θ is a bounded
set (in which case we set n1 = nθ), or that there exist sets Θ1 ⊂ Rn1 and
Θ2 ⊂ Rn2 with n1, n2 ∈ N and Θ = Θ1 × Θ2 such that Θ1 is a bounded set.
Then for any j ∈ [2 : J], s ∈ [1 : j − 1], and n, n′ ∈ [1 : n1], we have

lim
I↑∞

Cor(θI,j−s(n), θI,j(n
′)) = 0. (33)

Theorem 4.1 can be shown more directly by following Andrieu et al.’s
(2010, Theorem 4) proof or Wilkinson’s (2012, pp. 305–307) argument. It
is easy to see that Algorithm 7 is distributionally equivalent to Algorithm
6; recall Algorithm 4. With additional notation, Theorem 4.3 can easily be
extended to Θ×X T by replacing Θ with Θ×X T . Overall Theorems 4.1–4.3
indicate that as the number I of parameter particles increases to∞, one can
obtain almost i.i.d. samples from the posterior p(θ, x1:T |y1:T). This is true
regardless of the proposal and the number K of state particles.

Before we conclude this section, let us briefly discuss how MTiPMMH
(Alg. 6) can be parallelized. Note that lines 3–5 can easily be processed in
parallel for all i ∈ [1 : I], but such a parallel scheme is rather inefficient
since for each j ∈ [1 : J], before line 6 can be executed, lines 3–5 must be
completed for all i ∈ [1 : I]. A more efficient but memory-intensive parallel
scheme is offered in Algorithm 8. In this algorithm, lines 2–5 can be processed
in parallel for all i ∈ [1 : I], and the resampling and updating steps in lines
7–9 are executed using the data generated in lines 1–5. Depending on the
computing environment, one can parallelize lines 1–5 even more efficiently
since in effect it suffices to draw I × J i.i.d. samples from q(θ) and run lines
4–5 for each sample.

5 Numerical Experiments

5.1 A Simple Stochastic Volatility Model

To illustrate our theoretical results, we consider the simple stochastic volatil-
ity model used by Fearnhead and Meligkotsidou (2015):

xt = γxt−1 + σxηt, ηt ∼ N(0, 1), (34)

yt = σy exp(xt)εt, εt ∼ N(0, 1), (35)

where N(µ, σ2) denotes the normal distribution with mean µ and variance
σ2. The initial value x1 is drawn from N(0, 1).

16

Algorithm 8: MTiPMMH for Parallelism

1 for i = 1 : I
2 for j = 1 : J
3 θij ∼ q(θ)

4 run lines 3–14 of PMMH (Algorithm 1) with θ∗ = θij
5 wij = h∗/q(θij), x

i,j
1:T = x∗1:T

6 for j = 1 : J

7 i∗ ∼ D(w1:I
j), θ∗ = θi

∗
j , x

∗
1:T = xi

∗,j
1:T

8 w∗ = I−1
∑I

i=1w
i
j

9 run lines 5–9 of iPMMH (Alg. 5)

output: θ1:J , ξ1:J

Though it is more common in the literature to divide xt by 2 in (35) (e.g.,
Shephard and Pitt, 2007), we simply use Fearnhead and Meligkotsidou’s
(2015) setting, where all parameter values including priors are fully specified
(thus we do not need to choose them arbitrarily). Following Fearnhead and
Meligkotsidou (2015, Section 4.1.2), we fix T = 1000, and assume that the
priors for γ, σ2

x, and σ2
y are independent and given by

γ ∼ N(0.9, 0.1)|(−1,1), 1/σ2
x ∼ Γ(1, 1/100), 1/σ2

y ∼ Γ(1, 1), (36)

where the distribution for γ is truncated to (−1, 1), and Γ(a, b) denotes the
gamma distribution with shape parameter a and scale parameter b.

Given simulated data y1:T (to be specified below), we consider two differ-
ent proposals on θ = (γ, σ2

x, σ
2
y). The first proposal is simply the prior p(θ)

given by (36). We construct the second proposal q̂(θ) using samples from a
pilot run of a standard MCMC algorithm; see Appendix D for details.

For each of the two proposals, we consider two values, 4400 and 110000,
for J , where J is the number of iterations. If J = 4400, then we discard
the first 400 iterations as burn-in. If J = 110000, we discard the first 10000
iterations as burn-in. Note however that our theoretical results require no
burn-in. In total we consider the four pairs of q(θ) and J given by

q(θ) ∈ {p(θ), q̂(θ)}, J ∈ {4400, 110000}. (37)

In each case, we increase I from 1 to I one by one, where I = 500 if J = 4400

17

and I = 10 if J = 110000. We fix K = 500 throughout, where K is the
number of state particles; recall PMMH (Alg. 1).

Since it is costly to literally implement Algorithm 8 for many different
values of I, we modify it to reuse as much data as possible. The modified
version is shown in Algorithm 9. In lines 1–2 of this algorithm, basic data

θ1:I1:J , w
1:I
1:J , and x1:I,1:J1:T for the largest possible value of I are generated and

stored. Using the stored data, the steps for resampling i∗ and updating θj
summarized in line 4 are executed for each I = 1, . . . , I. This way we gen-
erate basic data only once, saving a significant amount of time. In addition,
this algorithm is consistent with Theorems 4.2 and 4.3; in fact these results
directly apply to Algorithm 9 with I =∞.

We define

µ = lnσ2
y, βx = 1/σ2

x. (38)

Following Fearnhead and Meligkotsidou (2015), we present our simulation
results in terms of µ, βx, and γ.

In implementing Algorithm 9 (or any of our MTiPMMH algorithms), it
is useful to introduce an additional parameter, say M , to line 14 of PMMH
(Alg. 1) as follows:

h∗ = p(θ∗)
T∏
t=1

(
MK−1

K∑
k=1

wkt

)
. (39)

Theoretically the new parameter M cancels out in line 8 of iPMMH(q) (Alg.
5) as long as M > 0. In practice, however, it often enables us to avoid “0/0”
by choosing an appropriate value for M . Note that the right-hand side of
(39) involves the product of T expressions. Since T = 1000 here, if M = 1,
the product can easily evaluate to 0 numerically even if it is strictly positive
theoretically. This problem can mostly be avoided if I = 1, in which case
most computations can be done in terms of logarithms. This is not the case
here since the sum of I terms in line 8 of Algorithm 8 must be evaluated.
Accordingly, we replace line 14 of PMMH (Alg. 1) with (39). We set M = 5,
which seems to work well in the current setting (including (40) below).

5.2 Simulation Results

We simulated data x1:T and y1:T with the following parameter values:

γ = 0.99, σ2
x = (1− γ2), σ2

y = 1. (40)

18

The above values were borrowed from Fearnhead and Meligkotsidou (2015,
Section 4.1.2). The simulated data are common to all the results presented
below.

Figures 2–5 illustrate how the performance of Algorithm 8 depends on
I by implementing Algorithm 9 for the four different cases given by (37).
Since Algorithm 9 heavily uses lines from other algorithms, we use Algorithm
7 instead to explain these figures. In each of Figures 2–5, the top panel
plots the average of acceptance probabilities rI,j in line 15 of Algorithm 7
over j ∈ [1 : J]. The second panel plots the realized overall acceptance
rate in each run, i.e., the number of acceptance (or updating) events in
line 16 of Algorithm 7 divided by J . The remaining three panels plot the
autocorrelation times for µ, βx, and γ, respectively.

The data for Figure 2 were generated by setting q(θ) = p(θ) and J = 4400
and by varying I from 1 to 500 one by one. The top panel shows that
the average acceptance probability tends to increase as I increases. This
observation is consistent with Theorem 4.2, which implies that the average
acceptance probability converges a.s. to 1 as I increases to ∞. The second
panel shows that the realized overall acceptance rate in each run is essentially
identical to the corresponding average acceptance probability. The remaining
three panels show that the autocorrelation times for µ, βx, and γ quickly
decline as I increases from 1, and have a tendency to decrease as I further
increases. This observation is consistent with Theorem 4.3, which shows that
the autocorrelation of any order for each parameter with bounded support
converges to 0 as I increases to∞. Although µ and βx do not have bounded
support, their autocorrelation times also tend to decrease as I increases.

The data for Figure 3 were generated by setting q(θ) = q̂(θ) and J =
4400 and by varying I from 1 to 500. Since, as mentioned above, q̂(θ) was
constructed using samples from a pilot run of a standard MCMC sampler,
q̂(θ) is expected to be substantially closer to the posterior p(θ|y1:T) than the
prior p(θ) is. One can see this effect in the top panel in Figure 3, which shows
that the average acceptance probability quickly rises as I increases from 1,
and is considerably higher for any I than the corresponding value in Figure
2. As in Figure 2, the bottom three panels show that the autocorrelation
times for µ, βx, and γ quickly decline as I increases from 1.

In Figures 2 and 3, due to a memory constraint, we had to choose a rather
small value for J in order to allow I to increase up to 500. In Figures 4 and
5, we chose a larger value for J by restricting the largest value for I to 10.
These figures exhibit patterns similar to those observed in Figures 2 and 3

19

Figure 2: q(θ) = p(θ), J = 4400

20

Figure 3: q(θ) = q̂(θ), J = 4400

21

Figure 4: q(θ) = p(θ), J = 110000

22

Figure 5: q(θ) = q̂(θ), J = 110000

23

Algorithm 9: MTiPMMH for Different Values of I

1 for i = 1 : I
2 run lines 2–5 of Algorithm 8

3 for I = 1 : I
4 run lines 6–9 of Algorithm 8
5 (θI,1:J , ξI,1:J) = (θ1:J , ξ1:J)

output: θ1:I,1:J , ξ1:I,1:J

even if J = 110000 and I is varied from 1 to only 10. The figures suggest
that one can significantly improve mixing if one increases I from 1 to 10,
regardless the proposal used. This is useful since the time required to run
Algorithm 8 on a multithreaded computer does not increase significantly as
I is increased from 1 up to the number of threads available. Thus the time
required to run Algorithm 8 with I = 10 is not substantially longer than the
time required to run the algorithm with I = 1, which is simply iPMMH.

Figure 6 shows the ACF (autocorrelation function) plots, trace plots, and
histograms for I = 1 and I = 500 using the same data as used for Figure
2. Figure 6(a) indicates that iPMMH suffers from high autocorrelation and
poor mixing. This is mostly because the prior p(θ) here is not an efficient
proposal. Even with this poor proposal, if I is chosen to be sufficiently
large, MTiPMMH exhibits low autocorrelation and good mixing, as shown
in Figure 6(b). The histograms are rather rough here since J is only 4400.

On a standard PC, it may be easier to use a large value for J and a
small value for I. It may also be possible to significantly improve mixing
by constructing a proposal using samples from a pilot run. This is indeed
the case here, as shown in Figure 7(a), which uses the same data as used
for Figure 5. With q(θ) = q̂(θ) and J = 110000, iPMMH exhibits fairly low
autocorrelation and good mixing. Figure 7(b) shows that one can visibly
improve the performance by using MTiPMMH with I = 10. As discussed
above, this does not significantly increase computation time if Algorithm 8
is implemented on a PC with at least 10 threads.

24

(a) I = 1

(b) I = 500

Figure 6: q(θ) = p(θ), J = 4400: ACF plots, trace plots, and histograms
(dotted lines indicate true values)

25

(a) I = 1

(b) I = 10

Figure 7: q(θ) = q̂(θ), J = 110000: ACF plots, trace plots, and histograms
(dotted lines indicate true values)

26

6 Discussion

In this paper we have proposed a multiple-try extension of the PMMH al-
gorithm with an independent proposal, which we call MTiPMMH. In this
algorithm, I ∈ N parameter particles are sampled from the independent pro-
posal. For each of them, a particle filter with K ∈ N state particles is run.
Then one of the parameter particles is resampled according to their marginal
likelihood estimates. The state of the chain is updated with a probability
based on the ratio between the averages of marginal likelihood estimates.
We have shown that MTiPMMH has the following three asymptotic prop-
erties: (i) the distribution of the Markov chain generated by the algorithm
converges to the posterior of interest in total variation; (ii) as I increases to
∞, the acceptance probability at each iteration converges to 1 a.s.; and (iii)
as I increases to∞, the autocorrelation of any order for any parameter with
bounded support converges to 0. These results indicate that MTiPMMH
generates almost i.i.d. samples from the posterior for sufficiently large I.

It is well known that as the number of iterations increases to ∞, the
Markov chain generated by a standard MCMC algorithm converges in dis-
tribution to the posterior of interest. Our results offer another dimension in
which one can approach the correct posterior. As they are valid for any pro-
posal (satisfying regularity conditions) and any number K of state particles,
we believe that our asymptotic results become increasingly relevant as paral-
lel computing with supercomputers, GPUs, and clouds becomes increasingly
accessible.

To show our theoretical results, we reformulated iPMMH as an iMH algo-
rithm. The same procedure can in fact be used to reformulate PMMH as an
MH algorithm. Thus one can apply the standard MTM method to this MH
algorithm to obtain a multiple-try extension of PMMH without assuming an
independent proposal. However, the practical value of this extension is not
necessarily clear if one wishes to obtain almost i.i.d. samples asymptotically.
Note that if one is to obtain i.i.d. samples, then the acceptance probability
must always be equal to 1. This implies that the proposal must be effectively
independent; for otherwise it would inevitably cause autocorrelation.

Although our theoretical results require I to be sufficiently large, our
numerical experiments suggest that one can visibly improve mixing by in-
creasing I from 1 to a small number like 10. This does not significantly
increase computation time if a computer with at least the same number of
threads is used. One can further improve the overall performance of the

27

algorithm by constructing a proposal using samples from a pilot run of a
standard MCMC algorithm. Our algorithm, which assumes an independent
proposal, makes it easy to utilize such a proposal.

Appendix A Proof of Theorem 3.1

Consider iMH(q̃, g̃) (Alg. 2). We start by verifying Assumption 3.1 for q̃ and
g̃. Note from (16) that q̃ : Θ̃→ R++ is a probability density. We have∫

g̃(θ̃)dθ̃ =

∫ ∫
q̃(θ1:I , u)w∗du dθ1:I (41)

=

∫ ∫ [
q̃(θ1:I , u)w∗

I∑
i=1

1{u ∈ Ui}

]
du dθ1:I (42)

=
I∑
i=1

∫ ∫
q̃(θ1:I , u)w∗1{u ∈ Ui}du dθ1:I (43)

=
I∑
i=1

∫ [I∏
s=1

q(θs)

]
w∗

wi

Iw∗
dθ1:I (44)

= I−1
I∑
i=1

∫ [I∏
s=1

q(θs)

]
g(θi)

q(θi)
dθ1:I (45)

= I−1
I∑
i=1

∫  I∏
s∈[1:I],s 6=i

q(θs)

 g(θi)dθ1:I (46)

= I−1
I∑
i=1

∫
g(θi)dθi <∞, (47)

where
∑I

i=1 1{u ∈ Ui} = 1 in (42), (44) uses (16) and (12) and (17), (45)
uses line 3 of Algorithm 3, and the last inequality holds by Assumption 3.1.
It follows that iMH(q̃, g̃) satisfies Assumption 3.1. Thus by Proposition 3.1,
it generates a sequence {θ̃j}∞j=0 such that the distribution of θ̃j converges to

the stationary density π̃(θ̃) satisfying (18) as j ↑ ∞.
Let p(θ∗) be the marginal density of θ∗ with respect to π̃(θ̃). We claim

that

p(θ∗) ∝ g(θ∗). (48)

28

To show this, let B ⊂ Θ be a Borel set. Recall from line 4 of MTiMH(q, g)
(Alg. 3) that θ∗ = θi

∗
. Let P{θ∗ ∈ B} be the probability of θ∗ ∈ B with

respect to π̃(θ̃). Note from (18) that

P{θ∗ ∈ B} ∝
∫ ∫

g̃(θ1:I , u)1{θi∗ ∈ B}du dθ1:I (49)

=

∫ ∫
g̃(θ1:I , u)

I∑
i=1

[1{i∗ = i}1{θi ∈ B}]du dθ1:I (50)

=
I∑
i=1

∫ ∫
g̃(θ1:I , u)1{u ∈ Ui}1{θi ∈ B}du dθ1:I (51)

=
I∑
i=1

∫ [I∏
s=1

q(θs)

]
w∗

wi

Iw∗
1{θi ∈ B}dθ1:I (52)

= I−1
I∑
i=1

∫ [I∏
s=1

q(θs)

]
g(θi)

q(θi)
1{θi ∈ B}dθ1:I (53)

= I−1
I∑
i=1

∫
g(θi)1{θi ∈ B}dθi (54)

=

∫
g(θ∗)1{θ∗ ∈ B}dθ∗, (55)

where (52) uses (12) and (17), and (53) uses line 3 of Algorithm 3. Since
(49)–(55) hold for any Borel set B ⊂ Θ, (48) follows.

To see that the marginal distribution of θj converges to π(θ) in total
variation, let π̃j(θ̃) be the distribution of θ̃j for j ∈ N. By Proposition 3.1,
π̃j converges to π̃ in total variation as j ↑ ∞. Let j ∈ N, and let B ⊂ Θ be
a Borel set. Let Pj{θ∗ ∈ B} be the probability of θ∗ ∈ B with respect to
π̃j(θ̃). We have

Pj{θ∗ ∈ B} − P{θ∗ ∈ B} (56)

=

∫
π̃j(θ̃)1{θ∗ ∈ B}dθ̃ −

∫
π̃(θ̃)1{θ∗ ∈ B}dθ̃ (57)

=

∫
(π̃j(θ̃)− π̃(θ̃))1{θ∗ ∈ B}dθ̃ (58)

≤
∫
|π̃j(θ̃)− π̃(θ̃)|dθ̃ → 0 as j ↑ ∞, (59)

29

where the convergence holds by the total variation convergence of π̃j to π̃.
Since the right-hand side of the inequality in (59) does not depend on B, we
have

lim
j↑∞

sup
B
|Pj{θ∗ ∈ B} − P{θ∗ ∈ B}| = 0, (60)

where the supremum is taken over all Borel sets B ⊂ Θ̃. It follows that the
marginal distribution of θj converges to π(θ) in total variation.

Appendix B Proof of Theorem 3.2

Note that the random seed is reset in lines 1 and 5 of Algorithm 3 in such a
way that for any I0, I1 ∈ N with I0 ≤ I1,

∀i ∈ [1 : I0], wiI1,j = wiI0,j, (61)

where {wiI0,j}
i∈[1:I0]
j∈[1:J] and {wiI1,j}

i∈[1:I1]
j∈[1:J] are given by line 7 of MTiMH(I) (Alg.

4) with I = I0 and I = I1, respectively. In words, by increasing I from I0
to I1, the values of wiI,j chosen for I = I0 remain unchanged. We need this
property to apply the strong law of large numbers below.

Fix j ∈ [1 : J]. Note that for any I ∈ N,

{θiI,j}
i∈[1:I]
j∈[1:J] is i.i.d. across i ∈ [1 : I] and j ∈ [1 : J]. (62)

Let I ∈ N. By (62), for any i ∈ [1 : I] we have

EwiI,j =

∫
g(θ)

q(θ)
q(θ)dθ =

∫
g(θ)dθ <∞, (63)

where E is the expectation operator, and the inequality holds by integrabil-
ity of g. Note from lines 11 and 14 of MTiMH(I) (Alg. 4) that wI,j−1 ≤
max{w∗I,j′}

j−1
j′=1; thus

w∗I,j

max{w∗I,j′}
j
j′=1

≤ rI,j ≤ 1. (64)

For each j′ ∈ N with j′ ≤ j, we have w∗I,j′ → EwiI,j′ a.s. as I ↑ ∞ by the
strong law of large numbers and (63). Hence letting I ↑ ∞ in (64), we have
rI,j → 1 a.s.

30

Appendix C Proof of Theorem 3.3

If Θ is a bounded set, we set Θ1 = Θ. Since Θ1 is a bounded subset of Rn1 ,
there exists θ ∈ (0,∞) such that

∀θ ∈ Θ, max
n∈[1:n1]

|θ(n)| ≤ θ. (65)

For I, j ∈ N and n ∈ [1 : n1], we define

µI(n) = Eθ∗I,j(n), (66)

µI,j(n) = EθI,j(n), (67)

νI(n) = E(θ∗I,j(n))2, (68)

νI,j(n) = E(θI,j(n))2, (69)

µ(n) =
EwiI,jθ

i
I,j(n)

EwiI,j
, (70)

ν(n) =
EwiI,j(θ

i
I,j(n))2

EwiI,j
. (71)

Note from (62) that µI and νI do not depend on j, and that µ and ν depend
neither i nor j.

C.1 Preliminary Lemmas

In this subsection we show some properties of the functions defined in (66)–
(71).

Lemma C.1. For any n ∈ [1, n1] we have

(a) lim
I↑∞

µI(n) = µ(n), (b) lim
I↑∞

νI(n) = ν(n). (72)

Proof. Fix n ∈ [1, n1]. Throughout the proof we suppress dependence on n.
Line 8 of Algorithm 4 implies that

µI = E

[∑I
i=1w

i
I,jθ

i
I,j∑I

i=1w
i
I,j

]
. (73)

31

Note from (65) that ∣∣∣∣∣
∑I

i=1w
i
I,jθ

i
I,j∑I

i=1w
i
I,j

∣∣∣∣∣ ≤ θ. (74)

From (73) we have

µI = E

[
I−1

∑I
i=1w

i
I,jθ

i
I,j

I−1
∑I

i=1w
i
I,j

]
→

EwiI,jθ
i
I,j

EwiI,j
= µ as I ↑ ∞, (75)

where the convergence holds by the strong law of large numbers, (63), the
dominated convergence theorem, and (74). We have verified (72)(a). We
obtain (72)(b) by the same argument with (θiI,j)

2 replacing θiI,j.

Lemma C.2. For any j ∈ [1 : J] we have

lim
I↑∞

E(1− rI,j) = 0. (76)

Proof. By Theorem 3.2, we have rI,j → 1 a.s. as I ↑ ∞. Hence 1− rI,j → 0
a.s. as I ↑ ∞. Since 1 − rI,j ≤ 1 for all I ∈ N, we obtain (76) by the
dominated convergence theorem.

Lemma C.3. For any n ∈ [1, n1] and j ∈ [1 : J] we have

(a) lim
I↑∞

µI,j(n) = µ(n), (b) lim
I↑∞

νI,j(n) = ν(n). (77)

Proof. Fix n ∈ [1, n1]. Throughout the proof we suppress dependence on
n. Let I ∈ N. Note from line 11 of Algorithm 4 that θI,1 = θ∗I,1. Hence
µI,1 = µI ; thus (77)(a) holds for j = 1 by Lemma C.1.

Let j ∈ [2 : J] and I ∈ N. From line 14 of Algorithm 4, we have

µI,j = E[(1− rI,j)θI,j−1 + rI,jθ
∗
I,j]. (78)

By the triangle inequality, we have

|µI,j − µ| ≤ |µI,j − µI |+ |µI − µ| (79)

= |E(1− rI,j)(θI,j−1 − θ∗I,j)|+ |µI − µ| (80)

≤ E(1− rI,j)2θ + |µI − µ|, (81)

where (80) uses (66). Hence (77)(a) holds by Lemmas C.2 and C.1.
We obtain (77)(b) by the same argument with (θI,j)

2 and (θ∗I,j)
2 replacing

θI,j and θ∗I,j.

32

Lemma C.4. For any n ∈ [1, n1] and j ∈ [1 : J] we have

lim
I↑∞

V ar(θI,j(n)) = ν(n)− µ(n)2 > 0, (82)

where V ar(θI,j(n)) is the variance of θI,j.

Proof. Fix n ∈ [1, n1]; we suppress dependence on n. Let j ∈ [1 : J] and
I ∈ N. Recalling (69) and (67), we have

V ar(θI,j) = E(θI,j)
2 − (EθI,j)

2 = νI,j − (µI,j)
2. (83)

Hence the equality in (82) holds by Lemma C.3. To see the inequality, let
ωi = wiI,j/Ew

i
I,j. Then in view of (70) and (71), it is straightforward to show

that

Eωi(θiI,j − EωiθiI,j)2 = ν − µ2. (84)

The left-hand side is strictly positive since ωi > 0 and θiI,j 6= µ a.s. by
Assumption 3.1. Thus the desired inequality follows.

C.2 Completing the Proof of Theorem 3.3

Fix j ∈ [2 : J], s ∈ [1 : j − 1], and n, n′ ∈ [1 : n1]. For I ∈ N define

zI,j−s = θI,j−s(n)− µI,j−s(n), (85)

z′I,j−1 = θI,j−1(n
′)− µI,j−1(n′), (86)

z′I,j = θI,j(n
′)− µI,j(n′), (87)

z∗I,j = θ∗I,j(n
′)− µI,j(n′), (88)

βI,j,s = EzI,j−sz
′
I,j. (89)

For any I ∈ N we have

Cor(θI,j−s(n), θI,j(n
′)) = βI,j,s/[V ar(θI,j−s(n))V ar(θI,j(n

′))]1/2. (90)

By Lemma C.4, as I ↑ ∞, the denominator converges to

{[ν(n)− µ(n)2][ν(n′)− µ(n′)2]}1/2 > 0. (91)

Thus to conclude (19), it suffices to show that

lim
I↑∞

βI,j,s = 0. (92)

33

To this end, let I ∈ N. Note from line 14 of Algorithm 4 that

βI,j,s = E[(1− rI,j)zI,j−sz′I,j−1 + rI,jzI,j−sz
∗
I,j]. (93)

Since EzI,j−sz
∗
I,j = EzI,j−sEz

∗
I,j = 0 by independence and (85), we have

|βI,j,s| = |βI,j,s − EzI,j−sz∗I,j| = |E(1− rI,j)(zI,j−sz′I,j−1 − zI,j−sz∗I,j)| (94)

≤ E(1− rI,j)2θ
2 → 0 as I ↑ ∞, (95)

where the convergence holds by Lemma C.2. Now (92) follows.

Appendix D Construction of q̂(θ)

In this appendix we describe the pilot run and the associated proposal q̂(θ)
used in Section 5. Let φ(a|b, c) denote the normal density as a function of
a ∈ R parameterized by b ∈ R and c > 0 as follows:

φ(a|b, c) =
1√
2πc

exp

[
−(a− b)2

2c

]
. (96)

Consider an MH sampler for (34) and (35). Initially we draw γ, σ2
x, and σ2

y

from the priors given in (36), x1 from N(0, 1), and x2:T from (34). In each
iteration afterwards, given x1:T , we define

ν = σ−2x

T∑
t=2

x2t−1, δ = 10, γ̂ =

∑T
t=2 xtxt−1∑T
t=2 x

2
t−1

. (97)

Then we apply the MH update to γ, σ2
y, σ

2
x, x1, . . . , xT one by one with the

following sampling schemes:

γ ∼ φ

(
γ

∣∣∣∣ γ̂ν + 0.9δ

ν + δ
,

1

ν + δ

)∣∣∣∣
(−1,1)

, (98)

1/σ2
y ∼ Γ

(
T + 2

2
,

∑T
t=1[y

2
t exp(−2α−1xt)] + 2

2

)
, (99)

1/σ2
x ∼ Γ

(
T + 2

2
,

∑T
t=2(xt − γxt−1)2 + x21(1 + γ2) + 0.02

2

)
, (100)

x1 ∼ φ(x1|γx2, σ2
x), (101)

34

xt ∼ φ

(
xt

∣∣∣∣γ(xt+1 + xt−1)

(1 + γ2)
,

σ2
x

(1 + γ2)

)
, ∀t ∈ [2 : T − 1], (102)

xT ∼ φ(xT |γxT−1, σ2
x). (103)

These distributions are components of the corresponding full conditionals, so
that the acceptance probability for each parameter and state variable takes
a rather simple form.

We run this algorithm for 110000 iterations, discard the first 10000 it-
erations as burn-in, and construct the proposal q̂(θ) using the remaining
samples as follows. First let mx and vx be the sample mean and variance of
the 100000 samples of lnσ2

x from this pilot run; define my and vy similarly.
We also define mγ and vγ as the sample mean and variance of the 100000
samples of γ. Let

α =
m2
γ(1−mγ)

vγ
−mγ, β =

α

mγ

− α. (104)

Now we specify the proposal q̂(θ) by

γ ∼ Beta(α, β), (105)

ln(σ2
x) ∼ N(mx, vx), (106)

ln(σ2
y) ∼ N(my, vy), (107)

where Beta(α, β) is the beta distribution with shape parameters α and β.

References

Andrieu, C., Doucet, A., Holenstein, R., 2009, Particle Markov chain Monte
Carlo for efficient numerical simulation, in Monte Carlo and Quasi-Monte
Carlo Methods, L’Ecuyer, P., Owen, A.B., eds., Springer, Berlin, pp. 45–
60.

Andrieu, C., Doucent, A., Holenstein, R., 2010, Particle Markov chain Monte
Carlo methods, Journal of the Royal Statistical Society: Series B, 72,
269–342.

Andrieu, C., Roberts, G.O., 2009, The pseudo-marginal approach for efficient
Monte Carlo computations, Annals of Statistics 2, 697–725.

Beaumont, M., 2003, Estimation of population growth or decline in geneti-
cally monitored populations, Genetics 164, 1139–1160.

35

Bédard, M., Douc, R., Moulines, E., 2012, Scaling analysis of mutiple-try MCMC
methods, Stochastic Processes and their Applications 122, 758–786.

Del Moral, P., 2004, Feynman-Kac Formulae: Genealogical and Interacting
Particle Systems with Applications, Springer, New York.

Doucet, A., Godsill, S., Andrieu, C., 2000, On sequential Monte Carlo sam-
pling methods for Bayesian filtering, Statistics and Computing 10, 197–
208.

Fearnhead, P., 2011, MCMC for state-space models, in Handbook of Markov
Chain Monte Carlo, ed. by Brooks, S., Gelman, A., Jones, G.L., Meng,
X.-L., pp. 513–529.

Golightly, A., Henderson, D.A., Sherlock, C., 2015, Delayed acceptance par-
ticle MCMC for exact inference in stochastic kinetic models, Statistical
Computing 25, 1039–1055.

Kokkala, J., Särkkä, S., 2015, Combining particle MCMC with Rao-Blackwellized
Monte Carlo data association for parameter estimation in multiple target
tracking, Digital Signal Processing 47, 84–95.

Liu, J.S., Liang, F., Wong, W.H., 2000, The multiple-try method and local
optimization in Metropolis sampling, Journal of the American Statistical
Association 95, 121–134.

Martino, L., Louzada, F., 2016, Issues in the multiple-try Metropolis mix-
ing, Computational Statistics, doi:10.1007/s00180-016-0643-9.

Martino, L., Leisen, F., Corander, J., 2016, On multiple try schemes and the
particle Metropolis-Hastings algorithm, memo.

Pandolfi, S., Bartolucci, F., Friel, N., 2010, A generalization of the Multiple-
Try Metropolis algorithm for Bayesian estimation and model selection,
Journal of Machine Learning Research: W&CP 9, 581–588.

Pitt, M.K., Silva, R.d.S, Giordani, P., Kohn, R., 2012, On some properties
of Markov chain Monte Carlo simulation methds based on the particle
filter, Journal of Econometrics 171, 134–151.

Roberts, G.O., Rosenthal, J.S., 2004, General state space Markov chains and
MCMC algorithms, Probability Surveys 1, 20–71.

Shephard, N., Pitt, M.K., 1997, Likelihood analysis of non-Gaussian mea-
surement time series, Biometrika 84, 653–667.

Storvik, G., 2011, On the flexibility of Metropolis-Hastings acceptance prob-
abilities in auxiliary variable proposal generation, Scandinavian Journal
of Statistics 38, 342–358.

36

Tierney, L., 1994, Markov chains for exploring posterior distributions, An-
nals of Statistics 22, 1701–1728.

Tran, M.-N., Pitt, M.K., Kohn, R., 2016, Adaptive Metropolis-Hastings sam-
pling using reversible dependent mixture propsals, Statistical Computing
26, 361–381.

Wang, G., 2009, Signal extraction from long-term ecological data using Bayesian
and non-Bayesian state-space models, Ecological Informatics 4, 69–75.

Wilkinson, D.J., 2012, Stochastic Modelling for Systems Biology, 2nd Ed.,
CRC Press, Boca Raton.

Yuan, K., Girolami, M., Niranjan, M., 2012, Markov chain Monte Carlo Meth-
ods for state-space models with point process observations, Neural Com-
putation 24, 1462–1486.

37

	
	Introduction
	Preliminaries
	State Space Models
	The PMMH Algorithm

	A Multiple-Try Extension of iMH
	A Multiple-Try Extension of iPMMH
	Numerical Experiments
	A Simple Stochastic Volatility Model
	Simulation Results

	Discussion
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Preliminary Lemmas
	Completing the Proof of Theorem 3.3

	Construction of ()

