

DP2016-23

41 Counterexamples to Property (B) of
the Discrete Time Bomber Problem

Takashi KAMIHIGASHI

June 16, 2016

41 Counterexamples to Property (B) of the
Discrete Time Bomber Problem∗

Takashi Kamihigashi†

June 16, 2016

Abstract

The discrete time “bomber problem” has been one of the longest
standing open problems in operations research. In particular, the va-
lidity of one of the natural monotonicity conjectures—known as prop-
erty (B)—has been an unresolved issue since 1968. In this paper we
report 41 counterexamples to property (B) of this problem. We have
found them by computing the exact solutions for nearly one million
pairs of parameter values utilizing the GNU Multiple Precision (GMP)
Arithmetic Library. All our counterexamples can readily be verified
using a simple Mathematica program included in this paper.

Keywords: The discrete time bomber problem; error-free methods;
GNU Multiple Precision (GMP) Arithmetic Library; stochastic dy-
namic programming

2010 Mathematics Subject Classification: 62L05, 93E20

∗I would like to thank Çağrı Sağlam for bringing the bomber problem to my attention,
and Professor Richard Weber (whom I have never met) for the inspiring expositions of
this problem in Weber (2013) and his home page.
†Research Institute for Economics and Business Administration, Kobe University,

Rokkodai, Nada, Kobe 657-8501 Japan. Email: tkamihig@rieb.kobe-u.ac.jp.

1 Introduction

At Professor Richard Weber’s home page,1 the discrete time bomber problem
appears at the top of his list of unsolved problems in operations research. In
this problem, a bomber with n ∈ N anti-aircraft missiles must survive t ∈ N
hours before reaching its destination. In each hour, it encounters an enemy
plane with probability r. The bomber survives for sure if it encounters no
enemy plane. In the event of encountering an enemy plane, it survives with
probability 1 − qk if it fires k missiles at the enemy plane. The objective is
to maximize the probability of reaching the destination.

This problem can easily be solved numerically by dynamic programming,
or backward induction. For this purpose, let N ∈ N and T ∈ N be the largest
numbers of missiles n and hours t to be considered. Define

p(n, 0) = 1, ∀n ∈ {0, . . . , N}. (1)

Let p(n, t) be the optimal survival probability when the bomber has n missiles
with t hours to go. Then for all n = 0, . . . , N and t = 1, . . . T , p(n, t) satisfies

p(n, t) = (1− r)p(n, t− 1) + rv(n, k), (2)

where

v(n, t) = max
k∈{0,...,n}

(1− qk)p(n− k, t− 1). (3)

Let k(n, t) be the smallest solution k of the above maximization problem:

k(n, t) = min argmax
k∈{0,...,n}

(1− qk)p(n− k, t− 1). (4)

The following three monotonicity properties have been extensively studied
in the literature:

(A) k(n, t) is nonincreasing in t.

(B) k(n, t) is nondecreasing in n.

(C) n− k(n, t) is nondecreasing in n.

1http://www.statslab.cam.ac.uk/˜rrw1/

1

The above problem was originally formulated in continuous time by Klinger
and Brown (1968), who proved property (C) for the original continuous time
model. They proved (A) assuming (B), and left (B) as an unsolved problem:

It seems intuitively obvious that k(n, t) ≥ k(n−1, t); that is, with
a larger supply one is always willing to make at least as generous
an allocation. The extensive tables we computed have confirmed
this conjecture. However, determined efforts by a number of peo-
ple at RAND have failed to yield a rigorous proof that this is
indeed the case. (Klinger and Brown, 1968, p. 182, Ψ instead of
k in the original)

Subsequently, Samuel (1970) proved (A) without assuming (B), but “found
no proof of (B).” Simons and Yao (1990) formulated the problem in discrete
time, proving (A) and (C) for the discrete time case (Simons and Yao, 1990,
Lemma 1, Corollary 1). They noted that a proof of (B) was “elusive,” but
their numerical work supported the validity of (B):

Already, we have numerically ‘verified’ Conjecture B for tens of
thousands of randomly generated pairs (q, r). Mostly, these were
checked for t ≤ 12 and n ≤ 20, but some larger values of t and n
were checked when q is not too small. The truth of Conjecture B
was always supported, except for a very few instances when un-
avoidable difficulties with round-off errors were clearly indicated,
because of an extreme value of q or r.

Weber (2013, p. 199) also noted that no counterexample to (B) had been
found “despite a truly enormous amount of computational experimentation.”
He summarized the status of (B) as follows:

Open problem for the bomber Despite 40 years of research, it is
still not known if (B) is true for the bomber problem. So far as I
know, the best we can say about (B) is that k(n+1, t) ≥ k(n, t) if
either n ≤ 3 or t ≤ 3, and also that k(n, t) = 1⇒ k(n− 1, t) = 1
for all t. (Weber, 2013, p. 192, italics in the original)

In this paper we close this open problem by reporting 41 counterexam-
ples to (B). In the next section, we briefly discuss “unavoidable difficulties
with round-off errors” associated with floating point numbers. In Section

2

3 we introduce an error-free algorithm consisting only of integer addition,
subtraction, multiplication, and comparison. Implementing this algorithm
in C with the GNU Multiple Precision (GMP) Arithmetic Library to solve
the problem for all q, r ∈ {0.001, 0.002, . . . , 0.999}, we have found 41 coun-
terexamples to property (B). We have also obtained the identical results by
solving the problem with rational numbers for the same set of (q, r) values
using the GMP library. All our counterexamples can readily be verified us-
ing a simple Mathematica program provided in this paper. In Section 4 we
discuss the robustness of our examples.

In closing the introduction, we should mention that various problems
related to the bomber problem are still actively studied (e.g., Bartroff et al.,
2010; Bartroff and Samuel-Cahn, 2011; Elguedria et al., 2013; Krieger and
Samuel-Cahn, 2013). We refer the reader to Weber (2013) for an excellent
survey of the literature surrounding the bomber problem.

2 Difficulties

Algorithm 1 shows pseudocode for the dynamic programming procedure spec-
ified by (1)–(4). Throughout the paper we fix N and T as follows:

N = T = 100. (5)

We have implemented Algorithm 1 in C with 64 bit “long double” precision
for all

q, r ∈ {0.01, 0.02, . . . , 0.99}. (6)

In the solutions obtained, there are many numerical violations of properties
(A), (B), and (C) even though (A) and (C) are known to be true. More specif-
ically, there are 25,802 quadruples (q, r, n, t) violating (A), 29,584 quadruples
violating (B), and 2,381 quadruples violating (C). These numbers are unsta-
ble, depending on the system and software used to implement the algorithm.

Figure 1 shows an example of a numerical solution that violates both (A)
and (B). One can see in panel (b) that there are many violations of both
properties. Precisely, both are violated at (n, t) = (85, 83), (90, 88), (92, 89),
(94, 92), (96, 93), (99, 94), (98, 95), (99, 97).

In fact, even a very elementary property of k(n, t) is violated in Figure 1.
To see this, note from (1) and (3) that

k(n, 1) = n, ∀n ∈ {0, . . . , N}. (7)

3

Algorithm 1: Pseudocode for the bomber problem

1 for n = 0, . . . , N
2 p(n, 0) = 1

3 for t = 1, . . . , T
4 for n = 0, . . . , N
5 v∗ = 0, k∗ = 0
6 for k = 1, . . . , n
7 v = (1− qk)p(n− k, t− 1)
8 if v > v∗ then
9 v∗ = v, k∗ = k

10 p(n, t) = (1− r)p(n, t− 1) + rv∗

11 k(n, t) = k∗

output: k

This simply means that if the bomber encounters an enemy plane in the last
hour, it should fire all the avaiable missiles. This obvious property is clearly
violated in panel (a). In this example, we have maxn,t∈{1,...,100} k(n, t) = 9
even though (7) requires that k(100, 1) = 100. This is because 1 − 0.01k is
rounded to 1 for all k ≥ 9 in C with long double precision, which implies
that the strict inequality in line 8 of Algorithm 1 is never satisfied for any
k > 9.

3 Error-Free Methods

Numerical errors are unavoidable as long as floating point numbers are used.
However, there are several ways to implement Algorithm 1 without introduc-
ing numerical errors. For example, it is possible to compute k(n, t) by using
only integers, provided that both q and r are rational numbers. To be more
specific, suppose that there are integers Q,R,B ∈ N such that

q =
Q

B
, r =

R

B
. (8)

As in the original problem, define

P (n, 0) = 1, ∀k ∈ {0, . . . , N}. (9)

4

(a) n, t ∈ {0, 1, . . . , 100} (b) n, t ∈ {80, . . . , 100}

Figure 1: k(n, t) for (q, r) = (0.01, 0.88) computed with long double precision

For n ∈ Z+ and t ∈ N, define P (n, t) recursively as follows:

P (n, t) = BN(B −R)P (n, t− 1) + BN−nRV (n, k), (10)

where

V (n, t) = max
k∈{0,...,n}

(Bn −Bn−kQk)P (n− k, t− 1). (11)

Equation (10) can be obtained by multiplying both sides of (2) by B(N+1)t.
Thus P (n, t) and p(n, t) satisfy P (n, t) = B(N+1)tp(n, t). Note that

(Bn −Bn−kQk)P (n− k, t− 1) (12)

= BnB(N+1)(t−1)(1− qk)p(n− k, t− 1). (13)

Hence the solution of (11) is identical to that of (3).
A useful feature of this equivalent formulation is that as long as P (n, t−1)

is an integer for each n = 0, . . . , N , so is P (n, t).
Algorithm 2 shows pseudocode for the procedure given by (9)–(11). All

variables remain integers throughout the algorithm; the problem is that they
can be extremely large. Fortunately, arbitrarily large integers can be handled
using the GMP library. Figure 2 shows the exact optimal policy computed

5

Algorithm 2: An error-free algorithm for the bomber problem

1 for n = 0, . . . , N
2 P (n, 0) = 1

3 for t = 1, . . . , T
4 for n = 0, . . . , N
5 V ∗ = 0, k∗ = 0
6 for k = 1, . . . , n
7 V = (Bn −Bn−kQk)P (n− k, t− 1)
8 if V > V ∗ then
9 V ∗ = V, k∗ = k

10 P (n, t) = BN(B −R)P (n, t− 1) + BN−nRV ∗

11 k(n, t) = k∗

output: k

by implementing Algorithm 2 in C with this library. This policy corresponds
to that in Figure 1. In sharp contrast to Figure 1, panel (b) in Figure 2
shows that both (A) and (B) are clearly satisfied; panel (a) shows that (7) is
also satisfied.

To investigate the validity of (B), we have implemented Algorithm 2 in
the same way for all (q, r) given by (6) (B = 100 and Q,R ∈ {1, . . . , 99}). In
stark contrast to the results obtained with long double precision mentioned
in the previous section, we found no violation of any of properties (A), (B),
and (C) for any (q, r) given by (6) and n, t ∈ {1, . . . , 100}.2

To further investigate the validity of (B), we have tested (A), (B), and
(C) for all

q, r ∈ {0.001, 0.002, . . . , 0.999} (14)

(B = 1000 and Q,R ∈ {1, . . . , 999}). In the solutions obtained, there is
no violation of (A) or (C), which is consistent with the theoretical results
mentioned in the introduction. However, there are 41 violations of (B). All
of them are reported in Table 1, which shows all the quadruples (Q,R, n, t)
for which k(n, t) < k(n− 1, t). These k values are also reported in the table.

2Our actual C code does not return the entire policy; it temporarily stores sufficient
data in memory to check (A), (B), and (C) as soon as k(n, t) is determined for each (n, t).

6

(a) t, k ∈ {0, 1, . . . , 100} (b) t, k ∈ {80, . . . , 100}

Figure 2: k(n, t) for (q, r) = (0.01, 0.88) computed error-free with Algorithm
2

Figure 3 shows combinations of parameter values for which (B) is violated.
Note from this figure and Table 3 that all the (q, r) pairs lie in the region
[0.4, 1]×[0.8, 1], and that the values of t are restricted to 4, 5, and 6. Since the
smallest values of n, t, and k(n, t) in Table 1 are 31, 6, and 12, respectively,
our counterexamples are consistent with Weber’s (2013) results quoted in the
introduction.

Observe that for each (Q,R) in Table 1, there is exactly one violation of
(B). Hence a violation of (B) is an exception even for the (Q,R) pairs in the
table, for each of which there are 1002−1 pairs of (n, t) values satisfying (B).
It is worth noting that there are only 41 violations of (B) out of 9992× 1002

quadruples of (Q,R, n, t) values. It took approximately 33 hours to test all
the quadruples against (A), (B), and (C) using Algorithm 2 on a dedicated
Linux workstation with dual Intel Xeon E5-2699v3 2.30 Hz CPUs (72 threads
in total).

Since the GMP library allows one to handle arbitrarily large rational
numbers without numerical errors in addition to integers, we have also im-
plemented Algorithm 1 in C with this library for all (q, r) given by (14). The
results were identical to those obtained from Algorithm 2. It took approxi-
mately 15 hours to test all the quadruples (Q,R, n, t) against (A), (B), and
(C). Hence, at least in our case, it is considerably more efficient to let the

7

Figure 3: Configurations of parameter values for which property (B) is vio-
lated

GMP library directly handle rational numbers than to transform the problem
so that all variables remain integers.

We have computed the optimal policies for all (Q,R) in Table (1) using
the above two methods, which generated identical results. As an example,
Table 2 shows the optimal policy k(n, t) for Example #19, which has the
smallest value of n in Table 1. One can see that (B) is indeed violated at
(n, t) = (31, 6).

So far we have discussed only our error-free C implementations of Al-
gorithms 1 and 2. However, there are other ways to implement Algorithm
1 without numerical errors. An example is given by Algorithm 3, which
shows a simple Mathematica program that generates the optimal policy in
Table 2; the program is essentially identical to Algorithm 1. This Mathe-
matica program is sufficiently efficient for verifying a relatively small number
of examples. Using a modified version of this program, we have verified the
optimal policies corresponding to all (Q,R) reported in Table 1. We have
further confirmed all the optimal policies using Python as well. Thus for
each (Q,R) in Table 1, we have cross-checked the optimal policy using the
four different methods.

8

Q R n t k(n, t) k(n− 1, t)
1 829 830 88 6 16 17
2 833 690 77 5 18 19
3 835 835 88 6 16 17
4 836 836 88 6 16 17
5 839 696 81 5 19 20
6 847 845 88 6 16 17
7 850 849 83 6 15 16
8 851 848 88 6 16 17
9 851 850 83 6 15 16

10 852 849 88 6 16 17
11 853 850 88 6 16 17
12 856 854 83 6 15 16
13 857 855 83 6 15 16
14 858 854 88 6 16 17
15 858 856 83 6 15 16
16 859 857 83 6 15 16
17 873 494 72 5 21 22
18 913 751 86 5 21 22
19 939 568 31 6 12 13
20 945 750 53 4 18 19
21 950 774 64 4 21 22
22 951 778 64 4 21 22
23 951 779 61 4 20 21
24 952 782 64 4 21 22
25 953 786 61 4 20 21
26 954 789 64 4 21 22
27 954 790 61 4 20 21
28 955 793 64 4 21 22
29 955 794 61 4 20 21
30 956 798 61 4 20 21
31 957 802 61 4 20 21
32 958 806 61 4 20 21
33 959 810 61 4 20 21
34 960 565 63 5 25 26
35 961 572 63 5 25 26
36 968 592 100 5 36 37
37 977 443 90 6 41 42
38 987 800 71 5 28 29
39 995 990 65 5 15 16
40 996 992 65 5 15 16
41 999 998 84 5 19 20

Table 1: 41 counterexamples to property (B) with B = 1000

9

n \ t 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 2 2 2 2
4 4 4 4 4 3 3 3 3 3 3
5 5 5 5 4 4 4 3 3 3 3
6 6 6 6 5 4 4 4 4 4 4
7 7 7 6 5 5 5 4 4 4 4
8 8 8 7 6 5 5 5 5 4 4
9 9 9 7 6 6 6 5 5 5 5

10 10 9 8 7 6 6 6 5 5 5
11 11 10 8 7 7 6 6 6 5 5
12 12 10 9 8 7 7 6 6 6 5
13 13 11 9 8 8 7 7 6 6 6
14 14 11 10 9 8 7 7 7 6 6
15 15 12 10 9 8 8 7 7 7 6
16 16 12 11 10 9 8 8 7 7 7
17 17 13 11 10 9 8 8 8 7 7
18 18 13 12 11 10 9 8 8 7 7
19 19 14 12 11 10 9 9 8 8 7
20 20 14 13 11 10 9 9 8 8 8
21 21 15 13 12 10 10 9 9 8 8
22 22 15 14 12 11 10 9 9 8 8
23 23 16 14 12 11 10 10 9 9 8
24 24 16 15 13 11 11 10 9 9 8
25 25 17 15 13 12 11 10 10 9 9
26 26 17 15 13 12 11 11 10 9 9
27 27 18 16 14 12 12 11 10 10 9
28 28 18 16 14 13 12 11 10 10 9
29 29 19 16 14 13 12 11 11 10 10
30 30 19 17 15 13 13 11 11 10 10
31 31 20 17 15 14 12 12 11 10 10
32 32 20 17 15 14 13 12 11 11 10
33 33 21 18 16 14 13 12 12 11 10
34 34 21 18 16 15 13 13 12 11 11
35 35 22 19 16 15 14 13 12 11 11
36 36 22 19 17 15 14 13 12 11 11
37 37 23 20 17 16 14 13 12 12 11
38 38 23 20 17 16 15 13 13 12 11
39 39 24 20 18 16 15 14 13 12 11
40 40 24 21 18 16 15 14 13 12 12
41 41 25 21 18 17 15 14 13 13 12
42 42 25 21 19 17 15 14 13 13 12
43 43 26 22 19 17 16 15 14 13 12
44 44 26 22 19 17 16 15 14 13 12
45 45 27 22 20 18 16 15 14 13 13
46 46 27 23 20 18 16 15 14 13 13
47 47 28 23 20 18 17 15 14 14 13
48 48 28 23 21 18 17 16 15 14 13
49 49 29 24 21 19 17 16 15 14 13
50 50 29 24 21 19 17 16 15 14 13

n \ t 1 2 3 4 5 6 7 8 9 10
51 51 30 25 22 19 18 16 15 14 14
52 52 30 25 22 19 18 17 16 15 14
53 53 31 26 22 20 18 17 16 15 14
54 54 31 26 23 20 18 17 16 15 14
55 55 32 26 23 20 19 17 16 15 14
56 56 32 27 23 21 19 17 16 15 15
57 57 33 27 23 21 19 18 16 16 15
58 58 33 27 24 21 19 18 17 16 15
59 59 34 28 24 21 20 18 17 16 15
60 60 34 28 24 21 20 18 17 16 15
61 61 35 28 25 22 20 18 17 16 15
62 62 35 29 25 22 20 19 17 16 15
63 63 36 29 25 22 20 19 18 17 16
64 64 36 29 25 23 21 19 18 17 16
65 65 37 30 26 23 21 19 18 17 16
66 66 37 30 26 23 21 19 18 17 16
67 67 38 30 26 23 21 20 18 17 16
68 68 38 31 27 24 21 20 19 17 16
69 69 39 31 27 24 22 20 19 18 17
70 70 39 31 27 24 22 20 19 18 17
71 71 40 32 27 24 22 20 19 18 17
72 72 40 32 28 25 22 21 19 18 17
73 73 41 32 28 25 23 21 19 18 17
74 74 41 33 28 25 23 21 20 18 17
75 75 42 33 29 25 23 21 20 19 18
76 76 42 33 29 26 23 21 20 19 18
77 77 43 34 29 26 24 22 20 19 18
78 78 43 34 29 26 24 22 20 19 18
79 79 44 34 30 26 24 22 21 19 18
80 80 44 35 30 27 24 22 21 19 18
81 81 45 35 30 27 24 22 21 20 19
82 82 45 36 30 27 25 23 21 20 19
83 83 46 36 31 27 25 23 21 20 19
84 84 46 37 31 28 25 23 21 20 19
85 85 47 37 31 28 25 23 22 20 19
86 86 47 37 31 28 25 23 22 20 19
87 87 48 38 32 28 26 24 22 21 19
88 88 48 38 32 28 26 24 22 21 20
89 89 49 38 32 29 26 24 22 21 20
90 90 49 39 33 29 26 24 22 21 20
91 91 50 39 33 29 26 24 23 21 20
92 92 50 39 33 29 27 25 23 21 20
93 93 51 40 34 30 27 25 23 21 20
94 94 51 40 34 30 27 25 23 22 20
95 95 52 40 34 30 27 25 23 22 21
96 96 52 41 34 30 27 25 23 22 21
97 97 53 41 35 31 28 25 24 22 21
98 98 53 41 35 31 28 26 24 22 21
99 99 54 42 35 31 28 26 24 22 21

100 100 54 42 35 31 28 26 24 23 21

Table 2: k(n, t) for Example #19 for n = 1, . . . , 100 and t = 1, . . . , 10

10

Algorithm 3: Mathematica code to generate k(n, t) in Table 2

q = 939/1000;

r = 568/1000;

pnt = Table[1, {n, 0, 100}, {t, 0, 10}];

knt = Table[0, {n, 0, 100}, {t, 1, 10}];

For[t = 1, t <= 10, t++,

For[n = 0, n <= 100, n++,

v0 = 0; k0 = 0;

For[k = 1, k <= n, k++,

v = (1 - q^k)*pnt[[1+n-k]][[1+t-1]];

If[v > v0,

v0 = v; k0 = k;

];

];

pnt[[1+n]][[1+t]] = (1 - r)*pnt[[1+n]][[1+t-1]] + r*v0;

knt[[1+n]][[t]] = k0;

];

];

Print[Grid[knt]];

4 Robustness

To consider the robustness of our counterexamples, let k(n, t) be the largest
solution k of the maximization problem in (3):

k(n, t) = max argmax
k∈{0,...,n}

(1− qk)p(n− k, t− 1). (15)

This can be computed by replacing the strict inequality in line 8 of Algorithm
1 with the weak inequality ≥. With this modification, we have computed
the optimal policies k(n, t) for all (Q,R) reported in Table 1. We have also
cross-checked these solutions using the four methods discussed above. In the
solutions, there are only two pairs (Q,R) such that k(n, t) 6= k(n, t) for some
n, t ∈ {1, . . . , 100}. These (Q,R) pairs are given by Examples #3 and #4 in
Table 1. For both cases we have k(n, t) < k(n, t) exactly for the (n, t) pairs
reported in Table 3 (t is always 2). Since (B) is never violated for t ≤ 3 in
Table 1, it follows that the violations of (B) reported in Table 1 are shared
by k(n, t).

An important implication of the above comparison is that for each (n, t)
reported in Table 1, k(n, t) and k(n − 1, t) are the unique solutions of the

11

n 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
t 2

n 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100
t 2

Table 3: All pairs of (n, t) values for which k(n, t) < k(n, t) with (Q,R) =
(835, 835), (836, 836)

corresponding maximization problems in (3) (replace n by n − 1 in (3) for
k(n−1, t)). Since (1− qk)p(n−k, t−1) is continuous in (q, r), it follows that
k(n, t) and k(n−1, t) remain the unique solutions under small perturbations
of (q, r). Thus the strict inequality k(n, t) < k(n − 1, t) is preserved under
small perturbations of (q, r). This implies that there are in fact uncountably
many counterexamples to property (B) of the bomber problem.

References

Bartroff, J., Goldstein, L, Rinott, Y., Samuel-Cahn, E., 2010, On optimal al-
location of a continuous resource using an iterative approach and total
positivity, Advances in Applied Probability 42, 795–815.

Bartroff, J., Samuel-Cahn, E., 2011, The fighter problem: optimal alloca-
tion of a discrete commodity, Advances in Applied Probability 43, 121–
130.

Elguedria, Z., Boutheina, J., Ghédira, K., 2013, MAS-BPM: multi-agent sys-
tem bomber problem model, in Advances on Practical Applications of
Agents and Multi-Agent Systems, Demazeau, Y., Ishida, T., Corchado,
J.M., Bajo, J., ed., Springer-Verlag, Berlin, pp. 61–72.

Klinger, A., Brown, T.A., 1968, Allocating unreliable units to random de-
mands, in Stochastic Optimization and Ctonrol: Procedings of an Ad-
vances Seminar Conducted by the Mathematics Research Center and the
United States Army at the University of Wisconsin, Madison, October
2–4, 1967, Karreman, H.F., ed., John Wiley & Sons, New York, pp. 173–
209.

Krieger, A.M., Samuel-Cahn, E., 2013, Generalized bomber and fighter prob-
lems: offline optimal allocation of a discrete asset, Journal of Applied
Probability 50, 403–418.

12

Samuel, E., 1970, On some problems in operations research, Journal of Ap-
plied Probability 7, 157–164.

Simons, G., Yao, Y-C., 1990, Some results on the bomber problem, Advances
in Applied Probability 22, 412–432.

Weber, R., 2013, ABCs of the bomber problem and its relatives, Annals of
Operations Research 208, 187–208.

13

	DP2016-23 Takashi KAMIHIGASHI.pdf
	Introduction
	Difficulties
	Error-Free Methods
	Robustness

