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Abstract

This paper shows that regime-switching sunspot equilibria eas-
ily arise in a one-sector growth model with aggregate decreasing re-
turns and arbitrarily small externalities. We construct a regime-
switching sunspot equilibrium under the assumption that the util-
ity function of consumption is linear. We also construct a stochas-
tic optimal growth model whose optimal process turns out to be a
regime-switching sunspot equilibrium of the original economy under
the assumption that there is no capital externality. We illustrate our
results with numerical examples.
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1 Introduction

In macroeconomics, sunspot equilibria are often associated with local inde-
terminacy, or the existence of a locally stable steady state. In the context of
growth models, the phenomenon of local indeterminacy has been well known
since Benhabib and Farmer (1994) and Farmer and Guo (1994). While earlier
results required unduly large degrees of increasing returns and externalities,1

local indeterminacy has been established for various settings under less ob-
jectionable assumptions, such as decreasing returns to labor (e.g., Pelloni and
Waldmann, 1998), moderate externalities (Dufourt et al., 2015), aggregate
constant returns to scale (e.g., Benhabib et al., 2000; Mino, 2001), and ar-
bitrarily small increasing returns and externalities (e.g., Kamihigashi, 2002;
Pintus, 2006).

This paper seeks to point out the possibility of an additional mechanism
that gives rise to sunspot equilibria in an economy with aggregate decreasing
returns to scale and arbitrarily small externalities. The combination on which
we focus, aggregate decreasing returns to scale in tandem with arbitrarily
small externalities, sets a stage almost indistinguishable from the standard
neoclassical setting, posing a challenge to proponents of sunspot equilibria.

Instead of small fluctuations around a locally indeterminate steady state,
we consider large fluctuations caused by a regime-switching sunspot process.
Assuming that the sunspot process is a two-state Markov chain, we construct
regime-switching sunspot equilibria in which labor supply is positive in one
state and zero in the other.

Although this type of regime-switching sunspot equilibrium is rather ex-
treme and may not match many of the empirical regularities discussed in the
local indeterminacy literature, there are merits to studying such equilibria in
addition to local sunspot equilibria driven by local indeterminacy. First, local
sunspot equilibria can explain only small fluctuations around a steady state,
whereas economic events of great magnitude—such as the Great Depression
of the early 20th century, Japan’s “lost decades” since the early 1990s, and
the Global Financial Crisis of 2007–2008—are characterized by large down-
falls. Our model can at least generate large and sudden downfalls from a
steady state. Second, our analysis suggests that regime-switching sunspot
equilibria of the type considered in this paper are widespread in models with

1See Benhabib and Farmer (1999) for a survey of earlier results. See Grandmont (1989,
1991) for a discussion of the relations between the local stability properties of a steady
state and the possibility of sunspot equilibria.
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externalities, and can even coexist with local sunspot equilibria. Our ap-
proach thus complements, rather than substitutes, the more common local
indeterminacy approach. It would be possible, in fact, to construct a model
in which two types of sunspot shocks are present and both small and large
fluctuations are endogenously generated. While the construction of such a
model would be beyond the scope of this paper, our analysis can form a basis
for further development in this direction.

We present two main results in this paper. First, assuming that the util-
ity function of consumption is linear, we establish the existence of a regime-
switching sunspot equilibrium by recursively solving the Euler condition for
capital and the first-order condition for labor supply, and then verifying the
associated transversality condition. These conditions are easy to verify espe-
cially when the utility of consumption is linear, as none of the three afore-
mentioned conditions depend on consumption in such a scenario. Second,
assuming an absence of capital externalities, we establish the existence of a
regime-switching sunspot equilibrium by constructing a stochastic optimal
growth model whose optimal process turns out to be a sunspot equilibrium
of the original economy. This latter result is somewhat similar to the ob-
servational equivalence result shown by Kamihigashi (1996). In contrast to
Kamihigashi (1996), however, we only use the three aforementioned condi-
tions to verify that an optimal process for the stochastic optimal growth
model can be interpreted as a sunspot equilibrium. Both results are illus-
trated with numerical examples.

In addition to the results on local indeterminacy previously mentioned,
this paper is also related to results on global indeterminacy (e.g., Drugeon
and Venditti, 2001; Coury and Wen, 2009) and regime-switching sunspot
equilibria (e.g., Drugeon and Wigniolle, 1996; Dos Santos Ferreira and Lloyd-
Braga, 2008).2 While our findings show the existence of regime-switching
sunspot equilibria based on global indeterminacy, they differ from the ex-
isting literature in that our model deviates only slightly from the standard
neoclassical setting under our assumptions of aggregate decreasing returns
and small externalities.3 Our model can also be viewed as a variant of the
Farmer-Guo (1994) model with aggregate decreasing returns and small ex-
ternalities.

2See Clain-Chamosset-Yvrard and Kamihigashi (2015) for an example of a regime-
switching sunspot equilibrium in a two-country model with asset bubbles.

3Kamihigashi (2015) shows that multiple steady states are possible even without ex-
ternalities.
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The remainder of this paper is organized as follows. In the next section we
present the model along with basic definitions and assumptions. In Section 3
we show a standard result that offers a sufficient set of conditions for a feasible
process to be an equilibrium. In Section 4 we present our main results along
with numerical examples. In Section 5 we conclude the paper by discussing
possible extensions. Longer proofs are relegated to the appendices.

2 The Model

We consider an economy with many agents, each of whom solves the following
maximization problem:

max
tct,nt,kt�1u8t�0

E
8̧

t�0

βtrupctq � wpntqs (2.1)

s.t. @t P Z�, ct � kt�1 � fpkt, nt, Kt, Ntq � p1� δqkt, (2.2)

ct, kt�1 ¥ 0, nt P r0, 1s, (2.3)

where ct is consumption, nt is labor supply, kt is the capital stock at the
beginning of period t, Nt is aggregate labor supply, and Kt is the aggregate
capital stock. The utility function u of consumption, the disutility function
w of labor supply, and the production function f are specified below. The
discount factor β and the depreciation rate δ satisfy

β, δ P p0, 1q. (2.4)

In the above maximization problem, the initial capital stock k0 ¡ 0 and the
stochastic processes tKtu

8
t�0 and tNtu

8
t�0 are taken as given. In equilibrium,

however, we have

@t P Z�, Kt � kt, Nt � nt. (2.5)

To formally define an equilibrium of this economy, we first define a pre-
equilibrium as a five-dimensional stochastic process tct, nt, kt, Nt, Ktu

8
t�0 such

that tct, nt, kt�1u
8
t�0 solves the maximization problem (2.1)–(2.3) given k0 ¡ 0

and tNt, Ktu
8
t�0. We define an equilibrium as a three-dimensional stochas-

tic process tct, nt, ktu
8
t�0 such that the five-dimensional stochastic process

tct, nt, kt, nt, ktu
8
t�0 is a pre-equilibrium. We also define a feasible process as
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a three-dimensional stochastic process tct, nt, ktu
8
t�0 satisfying (2.2), (2.3),

and (2.5).
We specify the functions u, w, and f as follows:

upcq �
c1�σ � 1

1� σ
, (2.6)

wpnq � η
nγ�1

γ � 1
, (2.7)

fpk, n,K,Nq � θkαnρKαNρ. (2.8)

We impose the following restrictions on the parameters:

σ P r0, 1s, (2.9)

θ, α, ρ, η ¡ 0, (2.10)

α, ρ, γ ¥ 0, (2.11)

α � α � ρ� ρ ¤ 1. (2.12)

If σ � 1, then it is understood that upcq � ln c. Since σ P r0, 1s by (2.9),
u is bounded below unless σ � 1. The inequality in (2.12) means that
the production function exhibits decreasing returns to scale at the aggregate
level.4 In what follows, we use the nonparametric forms u, w, and f and the
parametric forms given by (2.6)–(2.8) above interchangeably.

Let pk be the unique strictly positive capital stock k ¡ 0 such that θkα�α �
δk. The capital stock pk is the maximum sustainable capital stock. It has the
property that for any feasible process tct, nt, ktu

8
t�0 we have

@kt P Z�, kt ¤ maxtk0,pku. (2.13)

All equilibria are therefore bounded.

3 Sufficient Optimality Conditions

It follows from (2.8) that

@k, n ¡ 0, f1pk, n, k, 0q � f2pk, n, k, 0q � 0, (3.1)

4In the decentralized version of the model, profits are given to consumers, who are the
owners of the firms.

4



where fip�, �, �, �q is the derivative of f with respect to the ith argument. To
simplify notation, we define the following for i � 1, 2:

fipk, nq � fipk, n, k, nq. (3.2)

For k, n ¥ 0 we also define

gpk, nq � fpk, n, k, nq � ζk, (3.3)

where ζ � 1� δ.
The first-order condition for labor supply nt in period t is given by

u1pctqf2pkt, ntq � w1pntq

$'&'%
� 0 if nt P p0, 1q,

¥ 0 if nt � 1,

¤ 0 if nt � 0.

(3.4)

Note from (3.1) that nt � 0 is always a solution to (3.4). This observation
forms the basis for our construction of sunspot equilibria. On the other hand,
as long as kt, Kt, Nt ¡ 0, it is always optimal to choose a strictly positive
labor supply since f2pk, 0, K,Nq � 8 for any k,K,N ¡ 0.

The stochastic Euler condition for the capital stock kt�1 at the beginning
of period t� 1 can be written as

� u1pctq � βEtu
1pct�1qrf1pkt�1, nt�1q � ζs (3.5)$'&'%

� 0 if kt�1 P p0, gpkt, ntqq,

¥ if kt�1 � gpkt, ntq,

¤ if kt�1 � 0.

(3.6)

We also need to consider corner solutions since one of the results shown
in the next section assumes that the utility function of consumption is lin-
ear. Yet as long as labor supply in period t � 1 is strictly positive with
strictly positive probability, there is a solution to (3.5) with kt�1 ¡ 0, be-
cause limkÓ0 f1pk, nq � 8 for any n ¡ 0.

The transversality condition is

lim
TÑ8

βTEu1pcT qkT�1 � 0. (3.7)

Kamihigashi (2003, 2005) provides more details on transversality conditions
for stochastic problems.
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We see from the following result that the above first-order conditions
in conjunction with the transversality condition are sufficient for a feasible
process to be an equilibrium. The proof is a stochastic version of the standard
sufficiency argument; see Brock (1982) for a similar stochastic argument.

Lemma 3.1. A feasible process tct, nt, ktu
8
t�0 is an equilibrium if it satisfies

(3.4) and (3.5) for all t P Z� and (3.7).

Proof. See Appendix A.

4 Sunspot Equilibria

4.1 Common Structure

We consider a special type of sunspot equilibrium by taking a regime-switching
sunspot process tstu as given. In particular, we assume that there are two
sunspot states, 0 and 1, and that tstu is a two-state Markov chain with
transition matrix �

p00 p01
p10 p11

�
, (4.1)

where pij is the probability that st�1 � j given st � i for i, j P t0, 1u. To
simplify the analysis, we assume that pij ¡ 0 for all i, j P t0, 1u. Since (4.1)
is a transition matrix, we have

p00 � p01 � p10 � p11 � 1. (4.2)

In what follows, all stochastic processes (sequences) are assumed to be adapted
to the σ-field generated by the Markov chain tstu

8
t�0. This simply means

that any variable indexed by t is a function of the history of sunspot states
s0, s1, . . . , st up to period t. Since tstu is a sunspot process, it has no direct
influence on the fundamentals of the economy. An equilibrium tct, nt, ktu is a
sunspot equilibrium if it depends on the sunspot process tstu in a nontrivial
way.

To see the possibility of a sunspot equilibrium, suppose that we have the
following in the maximization problem (2.1)–(2.3):

Nt

#
¡ 0 if st � 1,

� 0 if st � 0.
(4.3)
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Then, provided that kt � Kt ¡ 0 for all t P Z�, we must have

nt

#
¡ 0 if st � 1,

� 0 if st � 0.
(4.4)

For the rest of the paper, we assume that kt � Kt ¡ 0 for all t P Z�, focusing
on regime-switching sunspot equilibria satisfying (4.3) and (4.4).

Under (4.3) the first-order condition (3.4) for nt can be written as

st � 1 ñ u1pctqf2pkt, ntq � w1pntq

#
� 0 if nt P p0, 1q,

¥ 0 if nt � 1,
(4.5)

st � 0 ñ nt � 0. (4.6)

In (4.5) we have no need to consider the case nt � 0 since f2pk, 0, k,Nq � 8
for any k,N ¡ 0 by (2.8), (2.10), and (2.12), as mentioned above. If, on the
other hand, st � 0, then Nt � 0 by (4.3), and nt � 0 since f2pk, n, k, 0q � 0
for any k ¡ 0 and n ¥ 0.

4.2 Linear Utility of Consumption

One way to show the existence of a sunspot equilibrium is to use Lemma
3.1 to explicitly construct a sunspot equilibrium tct, nt, ktu satisfying (4.4).
To do so, we need to verify the Euler condition (3.5) and the transversality
condition (3.7) in addition to (4.5) and (4.6). While this is not easy to
do in general, we can explicitly construct a sunspot equilibrium using these
conditions if we assume that the utility function of consumption is linear,
and hence that none of the conditions depend on consumption (except for
feasibility). We consider this special case in the following result.

Proposition 4.1. If σ � 0, then a sunspot equilibrium satisfying (4.4) exists.

Proof. See Appendix B.

The sunspot equilibrium constructed in the proof of Proposition 4.1 is
generated by the following system of equations:

nt � mpkt, stq, (4.7)

kt�1 � mintqppst1q, gpkt, ntqu, (4.8)

ct � gpkt, ntq � kt�1, (4.9)
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where mp�, �q and qp�q are given by (B.5) and (B.14), respectively, in Appendix
B, and pst1 � p01 or p11 depending on st � 0 or 1. Given kt ¡ 0 and st P t0, 1u,
nt is determined by (4.7), kt�1 is determined by (4.8), and ct is determined
by (4.9). With a new sunspot variable st�1 drawn according to (4.1), nt�1 is
determined by (4.7) again, and so one.

Figure 1 depicts the functions in (4.7)–(4.9) with the following parameter
values:

β � 0.9, η � 1, γ � 0.1, p01 � 0.2, p11 � 0.8, (4.10)

δ � 0.05, θ � 3, ρ � 0.55, ρ � 0.03, (4.11)

σ � 0, α � 0.35, α � 0.02. (4.12)

Figure 2 shows sample paths for sunspot states, capital, labor, and consump-
tion generated by (4.7)–(4.9). The sample path for labor supply nt closely
follows the pattern of sunspot states st, as expected from (4.4). The sample
paths for capital and consumption inherit the same pattern to a large extent.

We also find a feature specific to consumption, which rises to its highest
level when the sunspot state changes from 1 to 0 after remaining in the state
of 1 for a few periods. This is expected from the consumption function in
Figure 1. Note that this function is increasing in kt but unlike the labor and
capital functions, decreasing in st in the sense that consumption is higher
when st � 0 than when st � 1.

4.3 Stochastic Optimal Growth

One can conjecture that the foregoing feature of the consumption function
may not necessarily arise from the presence of externalities, but rather as a
consequence of optimal behavior. In this subsection we consider a stochas-
tic optimal growth model without externalities and with regime-switching
productivity coefficients. We show that the dynamics of this model are very
similar to those of the previous model. The purpose of this subsection is to
suggest the presence of a close connection between the two types of models
to facilitate the analysis of regime-switching sunspot equilibria in the next
subsection.
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Figure 1: Regime-switching sunspot equilibria under (4.7)–(4.9) with param-
eter values given by (4.10)–(4.12)
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Figure 2: Sample paths for sunspot states, capital, labor, and consumption
generated by (4.7)–(4.9) with parameter values given by (4.10)–(4.12).
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Consider the following stochastic optimal growth model:

max
tct,nt,kt�1u8t�0

E
8̧

t�0

βtrupctq � wpntqs (4.13)

s.t. @t P Z�, ct � kt�1 � stpktq
α�αpntq

ρ�ρ � p1� δqkt, (4.14)

ct, kt�1 ¥ 0, nt P r0, 1s, (4.15)

where tstu is the same two-state Markov process following (4.1). In this sub-
section, we define st not as a sunspot shock, but as a stochastic productivity
coefficient that directly affects production. When st � 1, the aggregate pro-
duction function in the maximization problem above is unchanged from that
in the previous subsection, but the externalities are internalized here. Since
output is zero whenever st � 0, the problem inherits the pattern of (4.3).

Figure 3 depicts the optimal policy functions for the stochastic optimal
growth model (4.13)–(4.15) under (4.10)–(4.12). We obtain these functions
from (4.7)–(4.9) by setting

α � 0.37, ρ � 0.58, α � ρ � 0 (4.16)

in (4.7)–(4.9).
Note that the consumption function in Figure 3 is decreasing in st like

the consumption function in Figure 1; in fact, consumption with st � 1 is
even lower than in Figure 1. We can explain this by referring to the capital
function in Figure 3, which shows that more capital is accumulated in the
stochastic optimal growth model (4.13)–(4.15) than in the original economy
with externalities under (4.10)–(4.12). The functions in Figure 3 serve as
an example of a stochastic optimal growth model in which consumption is
decreasing in productivity, while capital and labor are increasing in produc-
tivity. This contrasts sharply with the Brock-Mirman (1972) model with i.i.d.
productivity shocks, where consumption is always increasing in productivity;
see Kamihigashi (2008, Theorem 2.1).

Figure 4 shows sample paths generated by these optimal policy functions
with productivity states identical to the sunspot states in Figure 2. The
capital and consumption paths are also similar to those in Figure 2, but the
capital path and peaks in consumption are both overall higher.

4.4 No Capital Externality

Our analysis in the previous two subsections suggests that the sunspot equi-
libria of the original economy are closely connected to the optimal process
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Figure 3: Optimal policy functions for (4.13)–(4.15)
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of a stochastic optimal growth model. While this connection between the
models is not trivial to show in general, we can establish it fairly easily in
the absence of capital externalities. The proof of the following result utilizes
the connection.

Proposition 4.2. If α � 0, then a sunspot equilibrium satisfying (4.4) exists.

Proof. See Appendix C

The condition α � 0 in the above proposition means that there is no
capital externality. In the proof of Proposition 4.2, we consider the following
stochastic optimal growth model:

max
tct,nt,kt�1u8t�0

E
8̧

t�0

βt
�
upctq �

ρ� ρ

ρ
wpntq

�
(4.17)

s.t. @t ¥ 0, ct � kt�1 � stθpktq
αpntq

ρ�ρ � ζkt, (4.18)

ct, kt�1 ¥ 0, nt P r0, 1s, (4.19)

where tstu
8
t�0 is the same two-state Markov chain following (4.1). In the

proof, we show that the Euler condition for kt�1, the first order condition
for nt, and the transversality condition are necessary for optimality, and are
equivalent to the sufficient optimality conditions for the original economy
(2.1)–(2.3) with α � 0. We can thus establish the existence of a sunspot
equilibrium by showing the existence of an optimal process for the above
stochastic optimal growth model.

The Bellman equation for (4.17)–(4.19) can be written as

vpktq � max
ct,nt,kt�1

"
upctq �

ρ� ρ

ρ
wpntq � βEtvpkt�1q

*
(4.20)

s.t. ct � kt�1 � stθpktq
αpntq

ρ�ρ � ζkt, (4.21)

ct, kt�1 ¥ 0, nt P r0, 1s. (4.22)

From the proof of Proposition 4.2, we can interpret the optimal policy func-
tions for the above Bellman equation as constituting a regime-switching
sunspot equilibrium. To illustrate these functions, we use the same parame-
ter values used in (4.10) and (4.11), but replace the values of σ, α, and α as
follows:

σ � 0.99, α � 0.37, α � 0. (4.23)
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With the above parameter values, the utility function u is almost logarithmic,
and the aggregate production function fpk, n, k, nq remains unchanged from
that in (4.11).

Figure 5 shows the optimal policy functions for the Bellman equation
(4.20)–(4.22) under the above parameter values. These functions are com-
puted by numerically solving the Bellman equation using modified policy
iteration (e.g., Puterman, 2005) with 5,000 equally spaced grid points.

Figure 6 shows sample paths for sunspot states, labor, capital, and con-
sumption generated by the functions in Figure 5. Compared to those in
Figure 2, the sample paths in Figure 6 appear less extreme due to the con-
cavity of the utility function u. Capital accumulates while the sunspot state
is 1, and decumulates while it is 0. Consumption follows almost exactly the
same pattern as capital, while labor supply moves in the opposite directions
when st � 1, as expected from the labor and consumption functions in Figure
5.

5 Concluding Comments

In this paper we have shown that regime-switching sunspot equilibria eas-
ily arise in a one-sector growth model with aggregate decreasing returns
and arbitrarily small externalities. We have explicitly constructed a regime-
switching sunspot equilibrium under the assumption that the utility func-
tion of consumption is linear. We have also constructed a stochastic opti-
mal growth model whose optimal process turns out to be a regime-switching
sunspot equilibrium of the original economy under the assumption that there
is no capital externality.

Although our results assume aggregate decreasing returns to scale, the
existence of regime-switching sunspot equilibria can easily be shown for mod-
els with increasing returns and large externalities, at least when the utility
function is linear, as in Subsection 4.2. On the other hand, the proof of
Proposition 4.2 relies on the assumption of decreasing returns; it could be
non-trivial to extend the proof to the case of increasing returns.

To conclude this paper, we discuss possible ways to extend our analy-
sis. First, we can use a similar approach to construct more realistic sunspot
equilibria than the rather extreme equilibria considered in this paper, where
labor supply and output are both zero when the sunspot state is zero. Con-
sider, for example, a one-sector growth model with externalities in which the
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Figure 5: Optimal policy functions for (4.20)–(4.22) and regime-switching
sunspot equilibria for (2.1)–(2.3) under (4.10), (4.11), and (4.23)
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first-order condition for labor supply has multiple solutions. Such a model
can easily be produced if we are allowed to assume externalities of a gen-
eral form. With such a model, we can construct a sunspot equilibrium that
switches between the multiple solutions of the first-order condition for labor
supply according to the sunspot state.

Second, although we have focused on sunspot equilibria, we can also
construct deterministic equilibria that exhibit chaotic dynamics. We can
take, for example, a deterministic sequence of states st each assigned a value
of either 0 or 1, and solve the deterministic version of the maximization
problem (4.17)–(4.19). The resulting optimal path then follows the pattern of
the sequence tstu. We can think of this as an example of symbolic dynamics;
see Kamihigashi (1999) for economic applications of symbolic dynamics.

Finally, in Proposition 4.2 we have only considered the case without cap-
ital externality. While it seems difficult to extend the same approach to
models with capital externalities (as long as the capital depreciation rate is
less than one), there is a way to deal with such models. In particular, if we
allow for nonlinear discounting along the lines of Kamihigashi (2002), we can
construct a stochastic optimal growth model whose optimal process turns
out to be a sunspot equilibrium of the original economy.

Appendix A Proof of Lemma 3.1

Let tc�t , n
�
t , k

�
t u

8
t�0 be a feasible process satisfying (3.4)–(3.7) (with c�t , n

�
t , k

�
t

replacing ct, nt, kt). To simplify notation, for t P Z� and i � 1, 2 we define

fptq � fpk�t , n
�
t , k

�
t , n

�
t q, (A.1)

fiptq � fipk
�
t , n

�
t , k

�
t , n

�
t q. (A.2)

We are to show that for any feasible process tct, nt, ktu
8
t�0, we have

E
8̧

t�0

βtrupctq � wpntqs � E
8̧

t�0

βtrupc�t q � wpn�t qs ¤ 0. (A.3)
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To this end, let tct, nt, ktu
8
t�0 be a feasible process. Fix T P N� for the

moment. Let

∆T � E
Ţ

t�0

βtrupctq � wpntqs � E
Ţ

t�0

βtrupc�t q � wpn�t qs (A.4)

¤ E
Ţ

t�0

βttu1pc�t qpct � c�t q � w1pn�t qpnt � n�t qqu, (A.5)

where u1pc�t q is the right derivative of u at 0 if c�t � 0, and similarly for
w1pn�t q. We have

∆T ¤ E
Ţ

t�0

βttu1pc�t qrfpkt, nt, k
�
t , n

�
t q � fptq

� ζpkt � k�t q � pkt�1 � k�t�1qs � w1pn�t qpnt � n�t qqu (A.6)

¤ E
Ţ

t�0

βtru1pc�t qpf1ptq � ζqpkt � k�t q

� tu1pc�t qf2ptq � w1pn�t qupnt � n�t q � u1pc�t qpkt�1 � k�t�1qs. (A.7)

Recalling the first-order condition (3.4) for nt, we see that for all t P Z�,

tu1pc�t qf2ptq � w1pn�t qupnt � n�t q ¤ 0. (A.8)

Substituting into (A.7) we obtain

∆T ¤ E
Ţ

t�0

βtru1pc�t qpf1ptq � ζqpkt � k�t q � u1pc�t qpkt�1 � k�t�1qs (A.9)

� E
T�1̧

t�0

βtr�u1pc�t q � βu1pc�t�1qpf1pt� 1q � ζqspkt�1 � k�t�1q (A.10)

� βTEu1pc�T qpkT�1 � k�T�1q (A.11)

� E
T�1̧

t�0

βtr�u1pc�t q � βEtu
1pc�t�1qpf1pt� 1q � ζqspkt�1 � k�t�1q (A.12)

� βTEu1pc�T qpkT�1 � k�T�1q, (A.13)

where the last equality holds by the law of iterated expectations. Recalling
the Euler condition (3.5) for kt�1, we see that for all t P Z�,

r�u1pc�t q � βEtu
1pc�t�1qpf1pt� 1q � ζqspkt�1 � k�t�1q ¤ 0. (A.14)
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Substituting into (A.13) we obtain

∆T ¤ �βTEu1pc�T qpkT�1 � k�T�1q (A.15)

¤ βTEu1pc�T qk
�
T�1 Ñ 0, (A.16)

where the second inequality holds since kT�1 ¥ 0, and the convergence holds
by the transversality condition (3.7). This completes the proof of Lemma
3.1.

Appendix B Proof of Proposition 4.1

Suppose that σ � 0. Then conditions (4.5) and (4.6) can be written as

st � 1 ñ ρθpktq
α�αpntq

ρ�ρ�1 � ηpntq
γ

#
� 0 if nt P p0, 1q,

¥ 0 if nt � 1,
(B.1)

st � 0 ñ nt � 0. (B.2)

The Euler condition for kt�1, (3.5), can be written as

βEtrαθpkt�1q
α�α�1pnt�1q

ρ�ρ � ζs

$'&'%
� 1 if kt�1 P p0, gpkt, ntqq,

¥ 1 if kt�1 � gpkt, ntq,

¤ 1 if kt�1 � 0.

(B.3)

The transversality condition (3.7) reduces to

lim
TÑ8

βTEkT�1 � 0. (B.4)

Note that (B.1) and (B.2) can be combined into

nt � mpkt, stq � st min

#�
ρθ

η
pktq

α�α

� 1
γ�1�ρ�ρ

, 1

+
. (B.5)

Substituting into the left-hand side of (B.3) we obtain

Etrαθpkt�1q
α�α�1pnt�1q

ρ�ρ � ζs (B.6)

� Etrαθpkt�1q
α�α�1mpkt�1, st�1q

ρ�ρ � ζs (B.7)

�

#
p01hpkt�1q � ζ if st � 0,

p11hpkt�1q � ζ if st � 1,
(B.8)
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where

hpkq � αθkα�α�1mpk, 1qρ�ρ (B.9)

� min

#
αθ

�
ρθ

η

� ρ�ρ
γ�1�ρ�ρ

k
pα�α�1qpγ�1q�ρ�ρ

γ�1�ρ�ρ , αθkα�α�1

+
. (B.10)

Both expressions in the curly brackets are strictly decreasing in k by (2.10)
and (2.12) (note that pα � α � 1qpγ � 1q � ρ � ρ   α � α � 1 � ρ � ρ ¤ 1
by (2.12)). Thus hp�q is strictly decreasing, which implies that the inverse
h�1p�q exists. Indeed, for z ¡ 0 we have

h�1pzq � min

$&%
�
z

αθ

�
η

ρθ

� ρ�ρ
γ�1�ρ�ρ

� γ�1�ρ�ρ
pα�α�1qpγ�1q�ρ�ρ

,
� z
αθ

� 1
α�α�1

,.- . (B.11)

Note that

lim
kÓ0

hpkq � 8. (B.12)

Substituting (B.6)–(B.8) into (B.3) we obtain

βrpst1hpkt�1q � ζs

$'&'%
� 1 if kt�1 P p0, gpkt, ntqq,

¥ 1 if kt�1 � gpkt, ntq,

¤ 1 if kt�1 � 0,

(B.13)

where pst1 � p01 or p11 depending on st � 0 or 1. For p ¡ 0 define

qppq � h�1

�
1� βζ

βp



. (B.14)

Note from (B.12) that we can rule out the case kt�1 � 0 in (B.13). Hence we
can write (B.13) as

kt�1 � mintqppst1q, gpkt, ntqu. (B.15)

We construct a process tct, nt, ktu
8
t�0 recursively as follows: given kt ¡ 0

and st P t0, 1u, let

nt � mpkt, stq. (B.16)
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Determine kt�1 by (B.15). Let

ct � gpkt, ntq � kt�1. (B.17)

Draw st�1 according to (4.1). Determine nt�1 by (B.16), and so on. By
construction, this process is feasible and satisfies (B.1)–(B.3). It also satisfies
(B.4) by (2.13). Thus it is a sunspot equilibrium. The conclusion of the
proposition now follows.

C Proof of Proposition 4.2

Suppose that α � 0. Consider the stochastic optimal growth model (4.17)–
(4.19). The Euler condition for kt�1 is written as

� u1pctq � βEtu
1pct�1qrst�1αθpkt�1q

α�1pnt�1q
ρ�ρ � ζs$'&'%

� 0 if kt�1 P p0, gpkt, ntqq,

¥ if kt�1 � gpkt, ntq,

¤ if kt�1 � 0.

(C.1)

This is equivalent to the equilibrium Euler condition (3.5) for kt�1 for the
original economy (2.1)–(2.3) with α � 0 and (4.3). The first-order condition
for nt for the above stochastic optimal growth model is given by

u1pctqstpρ� ρqθpktq
αpntq

ρ�ρ�1 �
ρ� ρ

ρ
w1pntq

$'&'%
� 0 if nt P p0, 1q,

¥ 0 if nt � 1,

¤ 0 if nt � 0,

(C.2)

which simplifies to

u1pctqstρθpktq
αpntq

ρ�ρ�1 � w1pntq

$'&'%
� 0 if nt P p0, 1q,

¥ 0 if nt � 1,

¤ 0 if nt � 0.

(C.3)

This is equivalent to (3.4) with α � 0 and (4.3). The transversality condition
for the above problem is identical to (3.7).

Conditions (C.1) and (C.3) are necessary for optimality by standard argu-
ments. The transversality condition (3.7) is also necessary by the argument
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of Kamihigashi (2005, Section 6).5 Given that the sunspot variable st is
discrete, we can easily establish the existence of an optimal process for the
optimal stochastic growth model (4.17)–(4.19) by a standard argument (e.g.,
Ekeland and Sheinkman, 1986). Let tct, nt, ktu

8
t�0 be an optimal process for

(4.17)–(4.19). Then by the above argument, the process satisfies (3.4)–(3.7).
Thus by Lemma 3.1, the process is an equilibrium of the original economy
(2.1)–(2.3). Since it depends on st in a nontrivial way, it is a sunspot equi-
librium.
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