
 

 
DP2016-15 

 
A Simple No-Bubble Theorem for 
Deterministic Sequential Economies 

 
 

Takashi KAMIHIGASHI 
 

March 26, 2016 



A Simple No-Bubble Theorem for
Deterministic Sequential Economies∗

Takashi Kamihigashi†

March 26, 2016

Abstract

We show a simple no-bubble theorem that applies to a wide range
of deterministic sequential economies with infinitely lived agents. In
particular, we show that asset bubbles never arise if there is at least
one agent who can reduce his asset holdings permanently from some
period onward. This is a substantial generalization of Kocherlakota’s
(1992, Journal of Economic Theory 57, 245–256) result on asset bub-
bles and short sales constraints. Our no-bubble theorem requires vir-
tually no assumption except for the strict monotonicity of preferences.
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1 Introduction

Since the global financial crisis of 2007-2008, there has been a surge of inter-
est in rational asset pricing bubbles, or simply “asset bubbles.” Numerous
economic mechanisms that give rise to asset bubbles are still being proposed,
and the implications of asset bubbles on various economic issues are actively
discussed in the current literature; we refer the reader to Miao (2014) for a
short survey on recent developments.

In constructing models of asset bubbles, it is important to understand
conditions under which asset bubbles exist or not. While conditions for
existence are mostly restricted to specific models, some general conditions
for nonexistence are known. In fact, there are various versions of the no-
bubble theorem that essentially states that asset bubbles never arise if the
present value of the aggregate endowment process is finite.

Wilson’s (1981, Theorem 2) result on the existence of a competitive equi-
librium in a deterministic economy with infinitely many agents can be viewed
as an early version of this no-bubble theorem. Santos and Woodford (1997,
Theorems 3.1, 3.3) established a weak and a strong version of the no-bubble
theorem for an incomplete market economy with infinitely many agents each
of whom may be finitely or infinitely lived. While the weak version shows the
existence of state prices for which no bubble arises on any asset in positive
net supply, the strong version shows that no bubble arises on any such asset
for any state prices under an additional assumption of uniformly impatient
preferences. Huang and Werner (2000, Theorem 6.1) established a version of
the no-bubble theorem applicable to an asset in zero net supply for a deter-
ministic economy with finitely many agents whose preferences are represented
by explicit utility functions. Recently, Werner (2014, Remark 1, Theorem 1)
extended Santos and Woodford’s (1997) weak version to a complete market
economy with debt constraints (instead of borrowing constraints) as well as
their strong version to an incomplete market economy with debt constraints
under the additional assumption of uniformly impatient preferences.

While these results are based on equilibrium prices and allocations, there
are closely related results based mostly on the optimal behavior of a single
agent. For example, in a deterministic economy with finitely many agents,
Kocherlakota (1992, Proposition 3) showed that in an equilibrium with a
positive asset bubble, the short sales constraints of all agents must be asymp-
totically binding; equivalently, asset bubbles can be ruled out if there is at
least one agent whose asset holdings can be lowered permanently from some
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period onward. A similar idea was used earlier by Obstfeld and Rogoff (1986)
to rule out deflationary equilibria in a money-in-the-utility-function model.1

The results mentioned in the preceding paragraph rely on the necessity
of a transversality condition,2 and a general no-bubble result based on the
necessity of a transversality condition was shown in Kamihigashi (2001, p.
1007) for deterministic representative-agent models. Basically this result
only requires the differentiability and strict monotonicity of instantaneous
utility functions; thus it can be used to rule out asset bubbles in various
representative-agent models.

In this paper we establish a simple no-bubble theorem that can be used
to rule out asset bubbles in a considerably broader range of deterministic
models. More specifically, we consider the problem of a single agent facing
sequential budget constraints and having strictly monotone preferences. We
show that asset bubbles never arise if the agent can reduce his asset holdings
permanently from some period onward. This result uses the same idea as
those based on transversality conditions mentioned above; the contribution
of this paper is to show that the result holds true under extremely general
conditions.

To demonstrate the applicability of our no-bubble theorem to general
equilibrium models, we consider a general equilibrium model with multiple
agents and multiple assets. Using our no-bubble theorem, we show substan-
tial generalizations of Proposition 3 in Kocherlakotoa (1992).

The rest of the paper is organized as follows. In Section 2 we present a
single agent’s problem along with necessary assumptions, and formally define
asset bubbles. In Section 3 we offer several examples satisfying our assump-
tions. In Section 4 we state our no-bubble theorem and show some immediate
consequences. In Section 5 we present a general equilibrium model. In Sec-
tion 6 we show several results on asset bubbles in general equilibrium. In
Section 7 we offer some concluding comments. Some of the proofs are in-
cluded in the appendices.

1See Kamihigashi (2008a, 2008b) for results on asset bubbles in related models.
2Various results on necessity of transversality conditions were established in Kamihi-

gashi (2001, 2002, 2003, 2005).
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2 Single-Agent/Single-Asset Framework

2.1 Feasibility and Optimality

Time is discrete and denoted by t ∈ Z+. In this section we assume that there
are one consumption good and one asset that pays a dividend of dt units of
the consumption good in each period t ∈ Z+. Let pt be the price of the asset
in period t ∈ Z+. Consider an infinitely lived agent who faces the following
constraints:

ct + ptst = yt + (pt + dt)st−1, ct ≥ 0, ∀t ∈ Z+, (2.1)

s ∈ S(s−1, y, p, d), (2.2)

where ct is consumption in period t, yt ∈ R is (net) income in period t,
st is asset holdings at the end of period t with s−1 historically given, and
S(s−1, y, p, d) is a set of sequences in R with s = {st}∞t=0, y = {yt}∞t=0, p =
{pt}∞t=0, and d = {dt}∞t=0, We present several examples of (2.2) in Subsection
3.1.

Although we consider a single agent’s problem and assume that there is
only one asset here, our results developed within this framework apply to a
general equilibrium model with many agents and many assets, as shown in
Section 6.

Let C be the set of sequences {ct}∞t=0 in R+. For any c ∈ C, we let
{ct}∞t=0 denote the sequence representation of c, and vice versa. In other
words, we use c and {ct}∞t=0 interchangeably; likewise, we use s and {st}∞t=0

interchangeably, and so on. We define the inequalities < and ≤ on the set of
sequences in R (which includes C) as follows:

c ≤ c′ ⇔ ∀t ∈ Zt, ct ≤ c′t, (2.3)

c < c′ ⇔ c ≤ c′ and ∃t ∈ Z+, ct < c′t. (2.4)

The agent’s preferences are represented by a binary relation ≺ on C. More
concretely, for any c, c′ ∈ C, the agent strictly prefers c′ to c if and only if
c ≺ c′. The assumptions stated in this section are maintained until the end
of Section 4 unless otherwise noted.

Assumption 2.1. dt ≥ 0 and pt ≥ 0 for all t ∈ Z+.

Assumption 2.2. pt > 0 for all t ∈ Z+.
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Although the second assumption is used for most of our results, there is
an important case in which it cannot be used. In particular, if the asset is
intrinsically useless—i.e., dt = 0 for all t ∈ Z+—then it is more than natural
to consider the possibility that pt = 0 for all t ∈ Z+. One of our results deals
with this particular case without assuming Assumption 2.2; see Proposition
4.2.

We say that a pair of sequences c = {ct}∞t=0 and s = {st}∞t=0 in R is a plan;
a plan (c, s) is feasible if it satisfies (2.1) and (2.2); and a feasible plan (c∗, s∗)
is optimal if there exists no feasible plan (c, s) such that c∗ ≺ c. Whenever
we take an optimal plan (c∗, s∗) as given, we assume the following.

Assumption 2.3. For any c ∈ C with c∗ < c, we have c∗ ≺ c.

This assumption is satisfied if ≺ is strictly monotone in the sense that for
any c, c′ ∈ C with c < c′, we have c ≺ c′. Although this latter requirement
may seem reasonable, there is an important case in which it is not satisfied.
Such a case and other examples of preferences satisfying Assumption 2.3 are
discussed in Subsection 3.2.

2.2 Asset Bubbles

In this subsection we define the fundamental value of the asset and the bubble
component of the asset price in period t ∈ Z+ using the period t prices of the
consumption goods in periods t, t+ 1, . . .. To be more concrete, let qt0 be the
period 0 price of the consumption good in period t ∈ Z+. It is well known
(e.g., Huang and Werner, 2000, (8)) that the absence of arbitrage implies
that there exists a price sequence {qt0} such that

∀t ∈ Z+, qt0pt = qt+1
0 (pt+1 + dt+1), (2.5)

∀t ∈ N, qt0 > 0, (2.6)

q0 = 1. (2.7)

In the current setting with a single asset, under Assumption 2.2, conditions
(2.5) and (2.7) uniquely determine the price sequence {qt0}.

For t ∈ N and i ∈ Z+, we define

qit = qt+i0 /qt0, (2.8)
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which is the period t price of consumption in period t+ i. Note that

∀i, j, t ∈ Z+, qitq
j
t+i =

qt+i0

qt0

qt+i+j0

qt+i0

= qi+jt . (2.9)

Let t ∈ Z+. By (2.5) and (2.8) we have pt = q1t (pt+1 + dt+1). By repeated
application of this equality and (2.9), we have

pt = q1t dt+1 + q1t pt+1 (2.10)

= q1t dt+1 + q1t q
1
t+1(pt+2 + dt+2) (2.11)

= q1t dt+1 + q2t dt+2 + q2t pt+2 (2.12)

... (2.13)

=
n∑
i=1

qitdt+i + qnt pt+n, ∀n ∈ N. (2.14)

Since the above finite sum is increasing in n ∈ N,3 it follows that

pt =
∞∑
i=1

qitdt+i + lim
n↑∞

qnt pt+n. (2.15)

As is common in the literature, we define the fundamental value of the
asset in period t as the present discounted value of the dividend stream from
period t+ 1 onward:

ft =
∞∑
i=1

qitdt+i. (2.16)

The bubble component of the asset price in period t is the part of pt that is
not accounted for by the fundamental value:

bt = pt − ft. (2.17)

It follows from (2.15)–(2.17) that

bt = lim
n↑∞

qnt pt+n. (2.18)

3In this paper, ”increasing” means ”nondecreasing,” and ”decreasing” means ”nonin-
creasing.”
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Using (2.9) we see that

qt0 lim
n↑∞

qnt pt+n = lim
n↑∞

qt+n0 pt+n = lim
i↑∞

qi0pi. (2.19)

Hence by (2.18) and (2.6) we have

lim
i↑∞

qi0pi = 0 ⇔ ∀t ∈ Z+, bt = 0. (2.20)

3 Examples

In this section we present several examples of (2.2) as well as some examples
of preferences that satisfy Assumption 2.3. Some of these examples are used
in Section 4.

3.1 Constraints on Asset Holdings

The simplest example of (2.2) would be the following:

∀t ∈ Z+, st ≥ 0. (3.1)

This constraint is often used in representative-agent models; see, e.g., Lucas
(1978) and Kamihigashi (1998).

Kocherlakota (1992) uses a more general version of (3.1):

∀t ∈ Z+, st ≥ σ, (3.2)

where σ ∈ R. If σ < 0, then the above constraint is called a short sales
constraint.

The following constraint is even more general:

∀t ∈ Z+, st ≥ σt, (3.3)

where σt ∈ R for all t ∈ Z+. Note that (3.2) is a special case of (3.3) with
σt = σ for all t ∈ Z+.

Santos and Woodford (1997, p. 24) consider a (state-dependent) borrow-
ing constraint that reduces in our single-asset setting to

∀t ∈ Z+, ptst ≥ −ξt, (3.4)
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where ξt ∈ R for all t ∈ Z+. This constraint is a special case of (3.3) with
σt = −ξt/pt.

The (state-dependent) debt constraint considered by Werner (2014) and
LeRoy and Werner (2014, p. 313) reduces in our current setting to

∀t ∈ Z+, (pt+1 + dt+1)st ≥ −ξt+1. (3.5)

This constraint is another special case of (3.3) with

σt = −ξt+1/(pt+1 + dt+1). (3.6)

In addition to (3.2), Kocherlakota (1992) considers the following wealth
constraint:

∀t ∈ Z+, ptst +
∞∑
i=1

qityt+i ≥ 0, (3.7)

which is another example of (2.2). The left-hand side above is the period
t value of the agent’s current asset holdings and future income. Note that
(3.7) is yet another special case of (3.3) with

∀t ∈ Z+, σt = −
∞∑
i=1

qityt+i/pt. (3.8)

See Wright (1987) and Huang and Werner (2000) for related discussion.

3.2 Preferences

Example 3.1. A typical objective function in an agent’s maximization prob-
lem takes the form

∞∑
t=0

βtu(ct), (3.9)

where β ∈ (0, 1) and u : R+ → [−∞,∞) is a strictly increasing function.
Suppose further that u is bounded, and define the binary relation ≺ by

c ≺ c′ ⇔
∞∑
t=0

βtu(ct) <
∞∑
t=0

βtu(c′t). (3.10)
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Then ≺ clearly satisfies Assumption 2.3.
If u is unbounded below, i.e., if u(0) = −∞, then the above definition of

≺ may not satisfy Assumption 2.3. In particular, given c∗, c ∈ C with c∗ < c,
we do not have c∗ ≺ c if c∗t = ct = 0 for some t ∈ Z+ and if u is bounded
above. Indeed, in this case,

∞∑
t=0

βtu(c∗t ) =
∞∑
t=0

βtu(ct) = −∞. (3.11)

Hence the inequality in (3.10) does not hold.

Example 3.2. The above problem with unbounded utility can be avoided
by using an alternative optimality criterion. To be specific, let ut : R+ →
[−∞,∞) be a strictly increasing function for t ∈ Z+ as above. In this case,
the infinite sum

∑∞
t=0 ut(ct) may not be well defined. Even if it is always well

defined, it may not be strictly increasing, as discussed above. To deal with
these problems, consider the binary relation ≺ defined by

c ≺ c′ ⇔ lim
n↑∞

n∑
t=0

[ut(ct)− ut(c′t)] < 0, (3.12)

where we follow the convention that (−∞) − (−∞) = 0; see Dana and Le
Van (2006) for related optimality criteria. It is easy to see that the binary
relation ≺ defined above satisfies Assumption 2.3.

Continuing with this example, suppose that (2.2) is given by (3.1). Sup-
pose further that each ut is differentiable on R++, and that there exists an
optimal plan (c∗, s∗) such that

∀t ∈ Z+, c∗t > 0, s∗t = 1. (3.13)

Then the standard Euler equation holds:

u′t(c
∗
t )pt = u′t+1(c

∗
t+1)(pt+1 + dt+1), ∀t ∈ Z+. (3.14)

In view of (2.5), the price sequence {qt0} is given by

qt0 =
u′t(c

∗
t )

u′0(c
∗
0)
, ∀t ∈ Z+. (3.15)

The fundamental value ft takes the familiar form:

ft =
∞∑
i=1

u′t+i(c
∗
t+i)

u′t(c
∗
t )

dt+i, ∀t ∈ Z+. (3.16)
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Example 3.3. Let v : C → R be a strictly increasing function. Define the
binary relation ≺ by

c ≺ c′ ⇔ v(c0, c1, c2, . . .) < v(c′0, c
′
1, c
′
2, . . .). (3.17)

Note that (3.17) satisfies Assumption 2.3 without any additional condition
on v. For example, v can be a recursive utility function.

4 Implications of Feasibility and Optimality

4.1 No-Bubble Theorem

To state our no-bubble theorem, we need to introduce some notation. Given
any sequence {s∗t}∞t=0 in R, τ ∈ Z+, and ε > 0, let Sτ,ε(s∗) be the set of
sequences {st}∞t=0 in R such that

st

{
= s∗t if t < τ ,

≥ s∗t − ε if t ≥ τ .
(4.1)

In other words, a sequence {st} in Sτ,ε(s∗) coincides with {s∗t} up to period
τ − 1 and is only required to satisfy the lower bound s∗t − ε from period τ
onward. We are ready to state the main result of this paper.

Theorem 4.1. Let (c∗, s∗) be an optimal plan. Suppose that there exist
τ ∈ Z+ and ε > 0 such that

Sτ,ε(s∗) ⊂ S(s−1, y, p, d). (4.2)

Then bt = 0 for all t ∈ Z+.

Proof. See Appendix A.

It seems remarkable that asset bubbles can be ruled out by a simple condi-
tion such as (4.2) alone. In particular, no explicit utility function is assumed,
and the only requirement on the binary relation ≺ is Assumption 2.3, which
merely requires strict monotonicity at the given optimal consumption plan
c∗.

The idea of the proof of Theorem 4.1 is simple. In the proof, assuming
that the left equality in (2.20) is violated, we construct an alternative plan
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as follows. Let δ > 0, and let sτ = s∗τ − δ and cτ = c∗τ + pτδ, where τ is given
by the statement of the theorem. For t 6= τ , let st be determined by the
budget constraint (2.1) with ct = c∗t . This alternative plan gives the same
consumption sequence except in period τ , where consumption is increased
by pτδ > 0. Hence this plan is strictly preferred to the original plan (c∗, s∗).
We derive a contradiction by showing that the alternative plan is feasible for
sufficiently small δ > 0.

Similar constructions are used as “Ponzi schemes” by Huang and Werner
(2000, Theorems 5.1, 6.1), but they are not directly linked to the nonexistence
of asset bubbles.

4.2 Consequences of Theorem 4.1

In this subsection we provide fairly simple consequences of Theorem 4.1 in
the current single-agent framework. Throughout this subsection we take an
optimal plan (c∗, s∗) as given. We start with a simple result assuming that
the feasibility constraint on asset holdings (2.2) is given by a sequence of
constraints of the form (3.3). As discussed in Subsection 3.1, this simple
form covers various constraints on borrowing, debt, and wealth,

Corollary 4.1. Suppose that (2.2) is given by (3.3) with σt ∈ R for all
t ∈ Z+. Suppose further that

lim
t↑∞

(s∗t − σt) > 0. (4.3)

Then the conclusion of Theorem 4.1 holds.

Proof. Assume (4.3). Let ε ∈ (0, limt↑∞(s∗t − σt)). Then there exists τ ∈ Z+

such that s∗t − σt ≥ ε, or s∗t − ε ≥ σt, for all t ≥ τ . This implies (4.2). Hence
the conclusion of Theorem 4.1 holds.

If there is a constant lower bound on asset holdings st, the above result
reduces to the following.

Corollary 4.2. Suppose that (2.2) is given by (3.2) for some σ ∈ R. Suppose
further that limt↑∞ s

∗
t > σ. Then the conclusion of Theorem 4.1 holds.

In Section 6 we present some consequences of the above two results in the
context of general equilibrium and discuss them in relation to Proposition 3
in Kocherlakota (1992).

Next we present two results that apply to representative-agent models.
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Corollary 4.3. Suppose that (2.2) is given by (3.1). Suppose that

∀t ∈ Z+, s∗t = 1. (4.4)

Then the conclusion of Theorem 4.1 holds.

Proof. Note that (4.4) and (3.1) imply (4.2) with τ = 0 and ε = 1. Thus the
conclusion of Theorem 4.1 holds.

The following proposition is immediate from the above result and (3.16).

Proposition 4.1. In the setup of Example 3.2 (including (3.14)–(3.16)), we
have

∀t ∈ Z+, pt =
∞∑
i=1

u′t+i(c
∗
t+i)

u′t(c
∗
t )

dt+i. (4.5)

A similar result is shown in Kamihigashi (2001, Section 4.2.1) for a
continuous-time model with a nonlinear constraint. It is known that a
stochastic version of Proposition 4.1 requires additional assumptions; see
Kamihigashi (1998) and Montrucchio and Privileggi (2001).4

Finally we consider the case of fiat money, or an asset with no dividend
payment. Since the fundamental value of fiat money is zero, its price must
also be zero if there is no asset bubble. Hence the case of fiat money is not
directly covered by Theorem 4.1, which requires Assumption 2.2,

Proposition 4.2. Drop Assumption 2.2 and (2.5)–(2.7) (but maintain As-
sumptions 2.1 and 2.3). Suppose that there exist τ ∈ Z+ and ε > 0 satisfying
(4.2). Suppose further that

∀t ≥ τ + 1, dt = 0. (4.6)

Then

∀t ≥ τ, pt = 0. (4.7)

Proof. See Appendix B.

4See Kamihigashi (2011) for sample-path properties of stochastic asset bubbles.
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5 General Equilibrium with Multiple Agents

and Multiple Assets

5.1 Feasibility, Optimality, and Equilibrium

Consider an exchange economy with countably many infinitely lived agents
indexed by a ∈ A, where A = {1, 2, . . . , a} with a ∈ N ∪ {∞}. There are
countably many assets indexed by k ∈ K, where K = {1, 2, . . . , k} with
k ∈ N ∪ {∞}. Agent a ∈ A faces the following constraints:

cat +
∑
k∈K

pk,ts
a
k,t = yat +

∑
k∈K

(pk,t + dk,t)s
a
k,t−1, c

a
t ≥ 0, ∀t ∈ Z+, (5.1)

sa ∈ Sa(sa−1, ya, p, d), (5.2)

where cat and yat are agent a’s consumption and endowment in period t; for
each k ∈ K, sak,t is agent a’s holdings of asset k at the end of period t, pk,t
is the price of asset k in period t, and dk,t is the dividend payment of asset
k in period t. In (5.2), sa−1 = (sak,−1)k∈K is agent a’s initial portfolio of all
assets k ∈ K, which are historically given, and Sa(sa−1, ya, p, d) is a set of

sequences in Rk with sa = {(sak,t)k∈K}∞t=0, y
a = {yat }∞t=0, p = {(pk,t)k∈K}∞t=0,

and d = {(dk,t)k∈K}∞t=0.
The supply of each asset k ∈ K is given by sk ≥ 0 and is constant over

time. We assume the following for the rest of the paper.

Assumption 5.1. For any k ∈ K and t ∈ Z+, we have dk,t ≥ 0. Further-
more, for each k ∈ K we have ∑

a∈A

sak,−1 = sk. (5.3)

Agent a’s preferences are represented by a binary relation ≺a on C. We
say that a pair of sequences ca = {cat }∞t=0 and sa = {(sak,t)k∈K}∞t=0 in R and

Rk, respectively, is a plan; a plan (ca, sa) is feasible for agent a if it satisfies
(5.1) and (5.2); and a feasible plan (ĉa, ŝa) is optimal for agent a if there
exists no feasible plan (ca, sa) for agent a such that ĉa ≺ ca.

An equilibrium of this economy is a set of sequences (p, {ca, sa}a∈A) such
that (i) (ca, sa) is optimal for each agent a ∈ A, (ii) for each k ∈ K and
t ∈ Z+, we have pk,t ≥ 0, and (iii) the asset and good markets clear in all
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periods: ∑
a∈A

sak,t = sk, ∀k ∈ K, ∀t ∈ Z+, (5.4)∑
a∈A

cat =
∑
a∈A

yat +
∑
k∈K

skdk,t, ∀t ∈ Z+. (5.5)

Whenever we take an equilibrium (p, {ca, sa}a∈A) as given, we assume the
following.

Assumption 5.2. For any a ∈ A and c̃a ∈ C with ca < c̃a, we have ca ≺ c̃a.

5.2 Asset Bubbles

As in Subsection 2.2 we define the fundamental value of an asset and the
bubble component of the asset price in period t using the period t prices of
the consumption goods in periods t + 1, t + 2, . . .. As in Subsection 2.2 we
let qto be the period 0 price of the consumption good in period t for t ∈ Z+.

It is well-known (Santos and Woodoford, 1997, (2.1); Werner (2014, (7))
that under borrowing or debt constraints (see (5.13) and (5.16)), the absence
of arbitrage implies that there exists a price sequence {qt0} satisfying (2.6)
and (2.7) such that for all k ∈ K,

∀t ∈ Z+, qt0pk,t = qt+1
0 (pk,t+1 + dk,t+1). (5.6)

Although this need not be true for all assets simultaneously under short sales
constraints, for each asset k ∈ K there exists a price sequence {qt0} satisfying
(5.6) (as in Subsection 2.2). To simplify the exposition, for the rest of the
paper, we take as given an asset h ∈ K satisfying the following.

Assumption 5.3. There exists an asset h ∈ K such that ph,t > 0 for all
t ∈ Z+.

This assumption uniquely determines the price sequence {qt0} satisfying
(5.6) and (2.7) (i.e., q00 = 1). As in Subsection 2.2, we define qit for all t ∈ N
and i ∈ Z+ using (2.8). We use these sequences to define the fundamental
value of asset h and the bubble component of ph,t as in Subsection 2.2:

fh,t =
∞∑
i=1

qitdh,t+i, (5.7)

bh,t = ph,t − fh,t. (5.8)
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Following the arguments for (2.10)–(2.20), we have

lim
i↑∞

qi0ph,i = 0 ⇔ ∀t ∈ Z+, bh,t = 0. (5.9)

5.3 Examples of Constraints on Asset Holdings

In this subsection we fix an agent a ∈ A and present some examples of (5.2).
As in Subsection 3.1, the simplest example would be the following:

∀t ∈ Z+,∀k ∈ K, sak,t ≥ 0. (5.10)

To discuss more general constraints, for t ∈ Z+ and k′ ∈ K, we define

saK\k,t = (sak′,t)k′∈K\{k}. (5.11)

Consider the following constraint:

∀t ∈ Z+,∀k ∈ K, sak,t ≥ σak,t(s
a
K\k,t), (5.12)

where σak,t : Rk−1 → R ∪ {−∞} for all k ∈ K and t ∈ Z+. Note that (5.10)

is a special case of (5.12) with σak,t(s
a
K\k,t) = 0 for all k ∈ K, sK\k,t ∈ Rk−1,

and t ∈ Z+.
The (state-dependent) borrowing constraint considered by Santos and

Woodford (1997, p. 24) can be written in the current setting as

∀t ∈ Z+,
∑
k∈K

pk,ts
a
k,t ≥ −ξat , (5.13)

where ξat ∈ R for all t ∈ Z+. This constraint is a special case of (5.12) with

σak,t(s
a
K\k,t) =

−
ξat +

∑
k′∈K\{h} pk′,ts

a
k′,t

pk,t
if pk,t > 0,

−∞ otherwise.

(5.14)

In fact, with σak,t defined as above, (5.13) is equivalent to

∀t ∈ Z+, sah,t ≥ σah,t(s
a
K\h,t), (5.15)

since ph,t > 0 for all t ∈ Z+ by Assumption 5.3. In other words, it suffices to
impose (5.15) only for one asset h ∈ K; the other constraints given by (5.12)
are redundant.
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The (state-dependent) debt constraint considered by Werner (2014) and
LeRoy and Werner (2014, p. 313) can be written in the current setting as

∀t ∈ Z+,
∑
k∈K

(pk,t+1 + dk,t+1)s
a
t ≥ −ξat+1. (5.16)

Given Assumption 5.3, this constraint is another special case of (5.15) with

σah,t(sK\h,t) = −
ξat+1 +

∑
k∈K\{h}(pk,t+1 + dk,t+1)s

a
k,t

ph,t+1 + dh,t+1

. (5.17)

A multi-asset version of the wealth constraint considered by Kocherlakota
(1992) can be written as

∀t ∈ Z+,
∑
k∈K

pk,ts
a
k,t +

∞∑
i=1

qityt+i ≥ 0. (5.18)

This is yet another special case of (5.15) with

σah,t(s
a
K\h,t) = −

∑∞
i=1 q

i
tyt+i +

∑
k∈K\{h} pk,ts

a
k,t

ph,t
. (5.19)

We should mention that (5.16) and (5.18) are also special cases of (5.12)
with σak,t defined similarly to (5.14).

6 General Equilibrium Results

In this section we take an equilibrium (p, {ca, sa}a∈A) as given, and consider
conditions to rule out asset bubbles in the general equilibrium setting intro-
duced in the previous section.

We start by extending Theorem 4.1 to the current general equilibrium
setting. For this purpose, we need additional notation. Given any sequence
sa = {(sak,t)k∈K}∞t=0 in Rk, τ ∈ Z+, and ε > 0, let Sh,τ,ε(sa) be the set of

sequences {(sk,t)k∈K}∞t=0 in Rk such that

sk,t = sak,t, ∀t ∈ Z+ if k 6= h, (6.1)

sh,t

{
= sah,t if t < τ ,

≥ sah,t − ε if t ≥ τ .
(6.2)

Note that (6.2) takes the same form as (4.1).
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Theorem 6.1. Suppose that there exists an agent a ∈ A such that for some
τ ∈ Z+ and ε > 0, we have

Sh,τ,ε(sa) ⊂ Sa(sa−1, ya, p, d). (6.3)

Then bh,t = 0 for all t ∈ Z+.

Proof. Let pt = ph,t, dt = dh,t, and bt = bh,t for all t ∈ Z+. Then (2.5)–
(2.7) hold, and Assumptions 2.1–2.3 follow from Assumptions 5.1–5.3. Since
(ca, sa) is optimal for agent a and (6.3) implies (4.2) with (c∗, s∗) = (ca, sa),
it follows that the conclusion of Theorem 4.1 holds.

The following result is essentially a restatement of Corollary 4.1 in the
current general equilibrium setting with multiple assets.

Proposition 6.1. Suppose that there exists an agent a ∈ A such that (5.2)

is given by (5.15) for some σah,t : Rk−1 → R for all t ∈ Z+. Suppose further
that

lim
t↑∞

(sah,t − σah,t(saK\h,t)) > 0. (6.4)

Then the conclusion of Theorem 6.1 holds.

Proof. This follows from Corollary 4.1 with σt = σah,t(s
a
K\h,t) for all t ∈

Z+.

As discussed in Subsection 5.3, various constraints on borrowing, debt,
and wealth can be written in the form of (5.15). Hence Proposition 6.1
applies to economies with such constraints.

In what follows, we present some results that can be regarded as gener-
alizations of Proposition 3 in Kocherlakota (1992). We discuss the relation
between his and our results after showing our results. For the rest of this
section, we maintain the following assumption.

Assumption 6.1. For each agent a ∈ A, there exists a sequence {(ηak,t)k∈K}∞t=0

in Rk such that given any sequence s = {(sk,t)k∈K}∞t=0 in Rk, we have

sk,t ≥ ηak,t,∀k ∈ K, ∀t ∈ Z+ ⇔ s ∈ Sa(sa−1, ya, p, d). (6.5)

This assumption means that the feasibility constraint on asset holdings
for each agent, (5.2), consists of sequences of constraints of the form (3.3)
for all assets. The following result is immediate from Proposition 6.1.
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Corollary 6.1. If there exists an agent a ∈ A such that

lim
t↑∞

(sah,t − ηah,t) > 0, (6.6)

then the conclusion of Theorem 6.1 hold.

To state the next result, we define the following for each a ∈ A:

ηah = lim
t↑∞

ηah,t. (6.7)

Corollary 6.2. If there exists an agent a ∈ A such that

lim
t↑∞

sah,t > ηak, (6.8)

then the conclusion of Theorem 6.1 holds.

Proof. Let a ∈ A satisfy (6.8). This strict inequality implies that

lim
t↑∞

sah,t > −∞, ηah,t <∞. (6.9)

Hence

lim
t↑∞

(sah,t − ηah,t) ≥ lim
t↑∞

sah,t − ηah,t > 0, (6.10)

where the second inequality holds by (6.8). Thus the conclusion of Theorem
6.1 holds by Corollary 6.1.

If there exists a constant lower bounded on the asset h for each agent
a ∈ A, the above result reduces to the following.

Corollary 6.3. Suppose that

∀a ∈ A, ∃ηah ∈ R,∀t ∈ Z+, ηah,t = ηah. (6.11)

Suppose further that there exists an agent a ∈ A such that

lim
t↑∞

sah,t > ηah. (6.12)

Then the conclusion of Theorem 6.1 holds.
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Kocherlakota (1992, Proposition 3) in effect shows a special case of Corol-
lary 6.3 under the following additional assumptions: (i) there is only one asset
(i.,e k = 1); (ii) the binary relation ≺a of each agent a ∈ A is represented by
(3.10), where u depends on a ∈ A and is denoted as ua : R+ → [−∞,∞) but
β is common to all agents; (iii) for each a ∈ A, ua is continuously differen-
tiable on R++, strictly increasing, concave, and bounded above or below by
zero; and (iv) the optimal plan (ca, sa) of each agent a ∈ A satisfies

∀t ∈ Z+, cat > 0, (6.13)∣∣∣∣∣
∞∑
t=0

βtua(c
a
t )

∣∣∣∣∣ <∞. (6.14)

Corollary 6.3 shows that none of Kocherlakota’s additional assumptions
is needed under Assumption 5.2, which is implied by his assumptions. Hence
Corollary 6.3 is a substantial generalization of Proposition 3 in Kocherlakota
(1992). He uses the extra assumptions mostly to derive a transversality
condition, which is crucial to his approach. By contrast, our results are
based on our simple no-bubble theorem, Theorem 4.1, which can be proved
by an elementary perturbation argument that fully exploits the structure of
sequential budget constraints.

7 Concluding Comments

In this paper we showed a simple no-bubble theorem that applies to a wide
range of deterministic economies with infinitely lived agents facing sequen-
tial budget constraints. In particular, we showed that asset bubbles can be
ruled out if there is at least one agent who can reduce his asset holdings
permanently from some period onward. This is a substantial generalization
of Kocherlakota’s (1992) result on asset bubbles and short sales constraints;
our no-bubble theorem requires virtually no assumption except for the strict
monotonicity of preferences.

Although we also developed some results on asset bubbles in a general
equilibrium setting, all of them are based on the optimal behavior of a single
agent. Additional results can be shown by using our results in conjunction
with other arguments based on market-clearing and aggregation.
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Appendix A Proof of Theorem 4.1

Let (c∗, s∗) be an optimal plan. It suffices to verify that

lim
i↑∞

qi0pi = 0, (A.1)

which implies the desired conclusion by (2.20). Suppose by way of contra-
diction that

lim
i↑∞

qi0pi > 0. (A.2)

Then since qi0pi > 0 for all i ∈ Z+ by Assumption 2.2 and (2.6), it follows
that there exists b > 0 such that

∀i ∈ Z+, qi0pi ≥ b. (A.3)

Equivalently, we have 1/pi ≤ qi0/b for all i ∈ Z+. Multiplying through by di
and summing over i ∈ N, we obtain

∞∑
i=1

di
pi
≤

∞∑
i=1

qi0di
b

=
f0
b
<∞, (A.4)

where the equality uses (2.16).5

Let τ ∈ Z+ and ε > 0 be given by (4.2). For each δ ∈ (0, ε) we construct
an alternative plan (cδ, sδ) as follows:

cδt =

{
c∗t if t 6= τ ,

c∗τ + pτδ if t = τ ,
(A.5)

sδt =


s∗t if t ≤ τ − 1,

s∗τ − δ if t = τ ,

[yt + (pt + dt)s
δ
t−1 − c∗t ]/pt if τ ≥ τ + 1.

(A.6)

It suffices to show that (cδ, sδ) is feasible for δ > 0 sufficiently small; for then,
we have c∗ ≺ cδ by (A.5) and Assumption 2.3, contradicting the optimality
of (c∗, s∗).

5An arguments similar to (A.4) is used by Montrucchio (2004, Theorem 2).
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Note that (cδ, sδ) satisfies (2.1) by construction. Hence by (2.1) we have

∀t ≥ τ + 1, pt(s
∗
t − sδt ) = (pt + dt)(s

∗
t−1 − sδt−1). (A.7)

For t ≥ τ define

δt = s∗t − sδt . (A.8)

Note that δτ = δ by (A.6). We have ptδt = (pt + dt)δt−1 for all t > τ by
(A.7). Thus for any t > τ we have

δt =
pt + dt
pt

δt−1 =
pt + dt
pt

pt−1 + dt−1
pt−1

δt−2 = · · · (A.9)

= δ
t∏

i=τ+1

pi + di
pi

≤ δ
∞∏
i=1

pi + di
pi

, (A.10)

where the equality in (A.10) holds since δτ = δ, and the inequality in (A.10)
holds since dt ≥ 0 for all t ∈ Z+ by Assumption 2.1.6

To show that (cδ, sδ) is feasible, it suffices to verify that δt ≤ ε for all
t ≥ τ ; for then, we have s ∈ S(s−1, y, p, d) by (4.2) and (A.8). For this
purpose, note from (A.4) that

f0
b
≥

∞∑
i=1

di
pi
≥

∞∑
i=1

ln

(
1 +

di
pi

)
(A.11)

=
∞∑
i=1

ln

(
pi + di
pi

)
= ln

(
∞∏
i=1

pi + di
pi

)
. (A.12)

It follows that
∞∏
i=1

pi + di
pi

<∞. (A.13)

Using this and recalling (A.9)–(A.10), we can choose δ > 0 small enough
that δt ≤ ε for all t ≥ τ . For such δ, (cδ, sδ) is feasible, contradicting the
optimality of (c∗, s∗). We have verified (A.1), which implies the conclusion
of the theorem.

6An argument similar to (A.9)–(A.10) is used by Bosi et al. (2014).
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Appendix B Proof of Proposition 4.2

Let τ ∈ Z+ and ε > 0 be as in (4.2). Suppose by way of contraction that
pτ ′ > 0 for some τ ′ ≥ τ . Without loss of generality, we assume that τ ′ = τ =
0;7 i.e.,

p0 > 0. (B.1)

First suppose that

∀t ∈ N, pt > 0. (B.2)

Then Assumption 2.2 holds. We construct {qt0}∞t=0 by (2.5) with q00 = 1.
Then (2.5)–(2.7) hold. Since Assumptions 2.1–2.3 and (2.5)–(2.7) now hold,
Theorem 4.1 applies. But note from (4.6) and (2.16) that

∀t ∈ Z+, ft = 0. (B.3)

Hence by Theorem 4.1, we have bt = 0, i.e., pt = ft = 0, for all t ∈ Z+. This
contradicts (B.2).

We have shown that (B.2) cannot be true. In other words, there must be
t ∈ N such that pt = 0. Let T be the first T ∈ Z+ with

pT > 0, pT+1 = 0. (B.4)

Such T must exist by (B.1). We construct an alternative plan (c, s) as follows:

ct =

{
c∗t if t 6= T ,

c∗T + pT ε if t = T ,
(B.5)

st =

{
s∗t if t 6= T ,

s∗T − ε if t = T .
(B.6)

According to this plan, the agent sells the asset when its price is strictly
positive, and buys it back when it is free. It is easy to see from (4.2), (2.1),
and (B.4) that (c, s) is feasible. But then we have c∗ ≺ c by (B.5) and
Assumption 2.3, contradicting the optimality of (c∗, s∗).

We have shown that we reach a contradiction whether (B.2) holds or not;
thus we must have p0 = 0.

7It is no loss of generality to assume that τ ′ = τ = 0 since we only consider variables
in and after period τ ′.
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