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Critical capital stock in a continuous—time growth model with a convex—concave

production function

Abstract: The critical capital stock is a threshold that appears in a nonconcave aggregate growth model

such that any optimal capital path from a stock level below the threshold converges to a lower steady

state, whereas any optimal capital path from a stock level above the threshold converges to a higher steady

state. Unlike a concave model with wealth effect, the threshold is not necessarily an optimal steady state,

which makes its characterization difficult. In a continuous—time growth model with a convex—concave

production function, we show that: a) the critical capital stock is continuous and strictly increasing in

the discount rate; b) as the discount rate increases, it appears at the zero-stock level and disappears at a

certain level between the stock levels of the maximum average productivity and the maximum marginal

productivity; c) at this upper bound, it merges with the higher steady state; d) once the critical capital

stock disappears, the higher steady state is no longer an optimal steady state; and e) the disappearing

point can be arbitrarily close to either of the these stock levels, depending on the curvature of the utility

function.
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1 Introduction

An aggregate growth model with a convex—concave production function explains an interesting and im-

portant economic phenomenon: depending on the initial level of capital stock, the economy may advance

to the higher steady state or decline to the lower steady state. This history dependence and polarization

appears in several economic problems and the model has a wide range of applications, including in eco-

nomic development (Azariadis and Drazen 1990, Askenazy and Le Van 1999, Hung, Le Van and Michel

2009), firm dynamics (Davidson and Harris 1981, Hartl et al. 2004, Haunschmied et al. 2005, Wagener

2005, Caulkins et al. 2010, 2015), public policy (Brock and Dechert 1983, Caulkins et al. 2001, 2005,

2006, 2007a, 2007b, Feichtinger and Tragler 2002, Feichtinger et al. 2002), international trade (Long et

al. 1997, Majumdar and Mitra 1995, Le Van et al. 2010), resource and environmental economics (Clark

1971, Dasgupta and Mäler 2003, Brock and Starrett 2003), and general theoretical studies (Majumdar

and Mitra 1982, 1983, Majumdar and Nermuth 1982, Dechert and Nishimura 1983, Amir et al. 1991,

Haunschmied et al. 2003, Wagener 2003, 2006, Dockner and Nishimura 2005, Kamihigashi and Roy 2006,

2007, Kiseleva and Wagener 2010). Deissenberg et al. (2004) provides a comprehensive survey of this

topic. The convex part of the production function expresses increasing returns to scale, which prevails

because of essential infrastructure for economic development, and which requires a large amount of initial

investment to enter some industries, and the nonconvexity of nature, such as the Allee effect in biological

population dynamics.

The threshold appearing in a nonconcave model is also known as the critical capital stock.1 The

critical capital stock has important economic implications for economies escaping from poverty traps and

preventing the ruinous use of environmental assets. Thus, it should be an important research subject to

identify its location. However, little is known about this subject. One may expect that the critical capital

stock is an unstable steady state of the so-called canonical system and thus the location is identified

easily. This could be true if the model was a concave model with wealth effect (Kurz 1968, Wirl and

1This threshold is also known as the Skiba or Dechert—Nishimura—Skiba point (Haunschmied et al. 2003), because

Skiba (1978) suggested its existence and Dechert and Nishimura (1983) proved that it exists in a certain range of discount

rates. Clark’s (1971) work on renewable resource management is potentially the earliest analysis of this critical threshold.

While Dechert and Nishimura (1983) used a discrete-time model, Askenazy and Le Van (1999) proved its existence in a

continuous-time model. See also Long et al. (1997) and Dockner and Nishimura (2005).
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Feichtinger 2005), in which the unstable steady state is an optimal steady state. However, optimality

is hardly expected in a nonconcave model given that the production function is convex at the steady

state. There is a sufficient condition under which the unstable steady state is not an optimal steady state

(Dechert and Nishimura 1982, Askenazy and Le Van 1999). In this case, the critical capital stock may be

somewhere other than at the unstable steady state.

Unfortunately, even the existence of the critical capital stock is not completely decided. As we prove,

it exists if and only if the interior and saddle-point stable steady state is an optimal steady state. The

optimality is not trivial because Arrow’s sufficiency theorem for optimality is not applicable given the

nonconcavity of the production function. It is known that it exists if the discount rate is less than or

equal to the maximum average productivity.2 However, with a larger discount rate, the optimality of the

steady state and thus the existence of the critical capital stock are ambiguous. There are only examples

in discrete—time models where it is not an optimal steady state (Majumder and Mitra 1982) and where it

can be an optimal steady state (Dechert and Nishimura 1983).

As such, in a nonconcave model, the optimality of the steady states of the canonical system is a sensitive

problem. This has not been well addressed in many studies, including the classic work by Skiba (1978).

As a recent important result, Wagener (2003) showed that the heteroclinic bifurcation of the canonical

system implies the existence of a critical capital stock and developed a local criterion of the bifurcation.

The subtle point is how to ensure that a steady state of the canonical system is optimal.

In this paper, we investigate these problems. Our main results are as follows. The critical capital

stock is continuous and strictly increasing in the discount rate. It starts from the zero-stock level when

the discount rate is as low as the marginal productivity at the zero-stock level, and disappears at a certain

stock level between the stock levels of the maximum average productivity and the maximum marginal

productivity. The upper bound of the discount rate then lies somewhere between these productivities,

and it can be arbitrarily close to either, depending on the curvature of the utility function.

Akao, Kamihigashi, and Nishimura (2012) obtained the continuity and monotonicity results using a

discrete—time model known as the Dechert—Nishimura model. However, the proofs are rather different

2See Dechert and Nisimura (1983, Lemma 2) in a discrete time model, and Askenazy and Le Van (1999, Proposition 7)

in a continuous—time model.
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given, e.g., the difference between the Bellman equation in a discrete—time model and the Hamilton—

Jacobi—Bellman equation in a continuous—time model. Considering that most economic applications of

nonconcave growth models use a continuous—time model, replication in such a model could have its own

value. Also, we can strengthen one of their main results: the critical capital stock is strictly increasing in

the discount rate.

The rest of the paper is structured as follows. Section 2 details the model and the assumptions. Section

3 provides some preliminary results on the optimal paths. Section 4 discusses the results concerning the

critical capital stock. Section 5 concludes.

2 Model and Assumptions

Consider a continuous—time optimal growth model:

V ∗(x) ≡max
c(t)

Z ∞
0

u (c(t)) e−ρtdt (2.1)

subject to ẋ(t) = f (x(t))− c(t), c(t) ≥ 0, x(t) ≥ 0, x(0) = x ≥ 0 given,

where x is the initial capital stock, x(t) is the capital path, c(t) is the consumption path, and ρ > 0 is the

discount rate. If a path (x(t), c(t)) satisfies the state equation and the nonnegativity conditions in (2.1), it

is feasible. A feasible path (x∗(t), c∗(t)) from x ≥ 0 is then optimal if there is no feasible path (x(t), c(t))

from x that satisfies Z ∞
0

[u (c(t))− u (c∗(t))] e−ρtdt > 0.

Throughout this paper, we assume that for each initial stock level x ≥ 0, there is an optimal path

(x∗(t), c∗(t)) in which c∗(t) is a piecewise-continuous function. Furthermore, we make the following as-

sumptions:

Assumption 1: The utility function u : R+ 7→ R ∪ {−∞} is a strictly increasing, strictly concave and

twice-continuously differentiable function with limc&0 u
0(c) =∞.
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Assumption 2: The production function f : R+ 7→ R+ is a twice-continuously differentiable function

with the following properties: (a) f(0) = 0, (b) there is an inflection point xI such that f
00(x) ≷ 0 for

x ≶ xI , (c) limx&0 f
0(x) > 0, (d) limx&0 f

00(x) exists, and (e) limx%∞ f 0(x) ≤ 0.

By Assumption 2 (b), the production function is strictly convex on [0, xI ] and strictly concave on [xI ,∞),

and is then the convex—concave production function.

Define the two discount rates ρ0 and ρI by

ρ0 ≡ lim
x&0

f 0(x) and ρI ≡ max{f 0(x)|x ≥ 0}( = f 0(xI)). (2.2)

If ρ ∈ (ρ0, ρI), there are two positive stock levels that satisfy f 0(x) = ρ. We denote these with xs and x
s,

where xs < x
s, and refer to them as the lower and the upper stationary capitals, respectively. We denote

the stationary capitals also by xs(ρ) and x
s(ρ) when we highlight the fact that they are functions of ρ.

We apply this same convention to the other variables.

The Hamiltonian H : R3+ 7→ R ∪ {−∞} and the maximized Hamiltonian H∗ : R2++ 7→ R associated

with the problem (2.1) are defined by

H(c, x, q) ≡ u(c) + q(f(x)− c), (2.3)

and H∗(x, q) ≡ max {H(c, x, q)|c ≥ 0} , (2.4)

respectively.

We refer to the following system of differential equations as the canonical system:

ẋ(t) = ∂H∗(x(t), q(t))/∂q = f(x(t))− u0−1(q(t)), (2.5a)

q̇(t) = ρq(t)− ∂H∗(x(t), q(t))/∂x = −[f 0(x(t))− ρ]q(t), (2.5b)

where u0−1 is the inverse function of u0, i.e., c = u0−1(q)⇐⇒ u0(c) = q.
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Let

σ(c) ≡ −cu
00(c)
u0(c)

. (2.6)

The system of differential equations:

ẋ(t) = f(x(t))− c(t), (2.7a)

ċ(t) =
c(t)

σ(c(t))
[f 0(x(t))− ρ], (2.7b)

is equivalent to the canonical system (2.5). This is the x− c system and the solution of the system is the

x− c path.

Let

cs ≡ f(xs) and cs ≡ f(xs). (2.8)

The interior steady states of the canonical system and the x − c system are (xs, u
0(cs)), (xs, u0(cs)) and

(xs, cs), (x
s, cs), respectively. Corresponding to the lower and upper stationary capitals, these are the

lower and the upper steady states of these systems.

The Jacobian of the x− c system is given by

J =

⎡⎢⎢⎣ f 0(x) −1

cf 00(x)/σ(c) [d (c/σ(c)) /dc] [f 0(x(t))− ρ]

⎤⎥⎥⎦ . (2.9)

When ρ ∈ (ρ0, ρI), the eigenvalues associated with the steady states are:

1

2

³
ρ±

p
ρ2 − 4cf 00(x)/σ(c)

´
, (2.10)

where (x, c) = (xs, cs), (x
s, cs). Thus (xs, cs) is unstable, while (x

s, cs) is saddle-point stable.
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3 Optimal paths

In this section we show some results concerning the canonical system and optimal paths, based on which

we characterize the critical capital stock. Throughout the paper, we denote by (x∗(t), c∗(t)) an optimal

path for the problem (2.1).

Proposition 3.1 (Interiority) An optimal path (x∗(t), c∗(t)) starting from a positive capital stock satisfies

(x∗(t), c∗(t)) ∈ R2++ for all t.

Proof. See the Appendix.3

Proposition 3.2 (Monotonicity and convergence) If x∗(t) is not constant, then x∗(t) monotonically con-

verges to either 0 or xs.4

Proof. The proof of the monotonicity is in Askenazy and Le Van (1999, Proposition 4). By Proposition

3.1, the optimal path (x∗(t), c∗(t)) is a solution of the x − c system (2.7). Then the monotonicity and

Assumption 2 (e) imply that x∗(t) converges to any of the steady states, 0, xs, or xs. But, as seen from

(2.10), (xs, cs) is an unstable steady state. Thus, x
∗(t) cannot converge to xs.

The gain function (Kamihigashi and Roy, 2006, 2007) is a useful tool to characterize an optimal path,

as shown below. It is defined by

γ(x) ≡ f(x)− ρx. (3.1)

When ρ ∈ (ρ0, ρI), the lower stationary capital xs is the local minimizer and the upper stationary capital

xs is the local maximizer of γ(x). See Figure 1.

<Figure 1>

3Although the result is well known, we could not locate the formal proof. Hence, we provide our proof in the Appendix.

4The monotonicity property of an optimal capital path is not trivial given the nonconcavity of the production function.

To the best of our knowledge, Long, Nishimura, and Shimomura (1997, Lemma 5) provided the first formal proof.
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We introduce additional notations. Figure 1 depicts their geometry. Let ρ̂ be the discount rate that

coincides with the maximum average productivity:

ρ̂ ≡ max{f(x)/x|x ≥ 0}. (3.2)

We denote by x̂ the capital stock of the maximum average productivity:

x̂ ≡ argmax{f(x)/x|x ≥ 0}. (3.3)

We also define two capital stock levels, x̆ and x. x̆ is implicitly defined by

γ(x̆) = 0, x̆ > 0. (3.4)

x̆ exists when ρ ∈ (ρ0, ρ̂]. It holds that γ(x) < 0 for all x ∈ (0, x̆), while γ(x) > 0 for all x ∈ (x̆, xs), and

x̆ = x̂ = xs at ρ = ρ̂. As easily verified, x̆(ρ) is continuous and strictly increasing. Also, limρ&ρ0 x̆(ρ) = 0

and limρ%ρ̂ x̆(ρ) = x
s(ρ̂) hold. x is implicitly defined by

γ(x) = γ(xs), x ∈ (0, xs). (3.5)

x exists when ρ ∈ (ρ̂, ρI). x has the property that γ(x) > γ(xs) for all x ∈ (0, x), while γ(x) ≤ γ(xs)

for all x ≥ x. As easily verified, x(ρ) is continuous, strictly increasing, and satisfies limρ&ρ̂ x(ρ) = 0 and

limρ%ρI x(ρ) = limρ%ρI x
s = xI .

Lemma 3.1 Let (x0(t), c0(t)) be a nonconstant feasible path such that γ(x0(t)) ≤ γ(x0(0)) for all t > 0.

Then, the constant path (x(t), c(t)) = (x0(0), f(x0(0))) dominates the paths for all t ≥ 0.
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Proof.

Z ∞
0

u(c0(t))e−ρtdt < ρ−1u
µZ ∞

0

c0(t)e−ρtdt
¶

= ρ−1u
µZ ∞

0

ργ(x0(t))e−ρtdt+ ρx0(0)
¶

≤ ρ−1u
µZ ∞

0

ργ(x0(0))e−ρtdt+ ρx0(0)
¶

=
u [f(x0(0))]

ρ
=

Z ∞
0

u [f(x0(0))] e−ρtdt, (3.6)

where the first line follows from Jensen’s inequality, the second line from the integration by parts, and the

third line from γ(x0(t)) ≤ γ(x0(0)).

Then we have the following proposition.

Proposition 3.3 (The stability of the optimal steady states) (i) When ρ ∈ (0, ρ0], xs is an optimal steady

state and every optimal capital path from x > 0 converges to xs. (ii) When ρ ∈ (ρ0, ρ̂], xs is an optimal

steady state and an optimal capital path from x ≥ x̆ converges to xs. (iii) When ρ ∈ (ρ̂, ρI), an optimal

capital path from x ≤ x converges to 0. (iv) When ρ > ρ0, there is a capital stock level, from which an

optimal capital path converges to 0.

Proof. Statements (i)—(iii) follow from Proposition 3.2 and Lemma 3.1. We prove (iv) by contradiction.

Suppose that any optimal capital path from a positive initial capital stock converges to xs. Then, for each

initial capital stock x0 ∈ (0, xs), there is time τ(x0) > 0 such that x∗(τ) = xs. By (2.7b), c∗(0) > c∗(τ(x0))

holds. As the problem is autonomous, c∗(τ(x0)) is independent of x0. For x0 sufficiently near zero, we

have

ẋ∗(0) = f(x0)− c∗(0) < f(x0)− c∗(τ(x0)) < 0

and thus the optimal capital path cannot approach to xs, which is a contradiction.

We repeatedly use the following three lemmas to identify an optimal path. We also use them to show

the uniqueness of an optimal path converging to the origin.5

5Note that the uniqueness of an optimal path converging to xs is trivial, despite the nonconcavity of the model, because
the convergent point is a saddle point.
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Lemma 3.2 The maximized Hamiltonian is strictly convex in the costate and attains the minimum on

the nullcline of ẋ = 0:

∂2H∗(x, q)
∂q2

< 0, (3.7)

min
q≥0

H∗(x, q) = H∗(x, u0(f(x))). (3.8)

Proof. A simple calculation yields the results.

Lemma 3.3 6 Let (x(t), q(t)) be the solution of the canonical system with (x(0), q(0)) = (x0, q0). If

lim
t→∞H

∗(x(t), q(t))e−ρt = 0, (3.9)

then Z ∞
0

u[C(q(t))]e−ρtdt = ρ−1H∗(x0, q0). (3.10)

Proof. The proof can be found in Davidson and Harris (1981, Appendix).

Lemma 3.4 An x− c path that converges to (xs, cs) or (0, 0) satisfies the terminal condition (3.9).7

Proof. It is obvious for an x− c path that converges to (xs, cs). Let (x(t), c(t)) be an x− c path that

converges to (0, 0). Denote the associated costate by q(t) = u0(c(t)). By the canonical system (2.5), we

have

q(t) = q(0) exp

µZ t

0

ρ− f 0 (x(s)) ds
¶
. (3.11)

Then, given ẋ(t) = f [x(t)]− c(t)→ 0 as t→∞,

lim
t→∞H

∗[x(t), q(t)]e−ρt = lim
t→∞

½
u (c(t)) e−ρt + q(0)ẋ(t) exp

µ
−
Z t

0

f 0 (x(s)) ds
¶¾

= lim
t→∞u (c(t)) e

−ρt (3.12)

6This welfare consequence (3.10) is originally due to Weitzman (1976).
7 If the path is an optimal path, the result is immediate from Michel (1982, Theorem). However, it may not be an optimal

path.
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holds. Thus the statement is true if

lim
t→∞u (c(t)) e

−ρt = 0. (3.13)

(3.13) obviously holds if u is bounded from below. Then, assume that u is not bounded from below.

Choose a sufficiently small x(0) such that u (c(t)) < 0 for all t ≥ 0. Then, with arbitrarily chosen ĉ > 0,

we have:

0 > u (c(t)) e−ρt

≥ {u0 (c(t)) (c(t)− ĉ) + u(ĉ)}e−ρt

= [q(t)(c(t)− ĉ) + u(ĉ)] e−ρt

=

∙
q(0) exp

µZ t

0

ρ− f 0 (x(s) ds
¶
(c(t)− ĉ) + u(ĉ)

¸
e−ρt

= q(0) exp

µ
−
Z t

0

f 0 (x(s) ds
¶
(c(t)− ĉ) + u(ĉ)e−ρt → 0 as t→∞.

Proposition 3.4 (Uniqueness of an optimal path converging to the origin) An optimal path converging

to the origin is unique.

Proof. We prove by contradiction. Assume that there are different optimal paths (x1(t), q1(t)) and

(x2(t), q2(t)) from x = x1(0) = x2(0) in the canonical system (2.5). Let q1(0) < q2(0). Given that

both optimal capital paths are strictly decreasing, q1(0) < q2(0) < u
0(f(x)) holds. Then by Lemma 3.2,

H∗(x, q1(0)) > H∗(x, q2(0)), and by Lemmas 3.3 and 3.4, the path (x1(t), q1(t)) dominates (x2(t), q2(t)),

which contradicts the assumption that both paths are optimal.

We then introduce the terms of the ascending and descending paths. We call an x−c path (xA(t), cA(t))

such that ẋA(t) > 0 for all t ≥ 0 and limt→∞ xA(t) = xs an ascending path. Similarly, we call an x − c

path (xD(t), cD(t)) such that ẋD(t) < 0 for all t ≥ 0 and limt→∞ xD(t) = 0 a descending path. Note that

an ascending or a descending path is not necessarily an optimal path, although a nonconstant optimal

path from x ∈ (0, xs) is necessarily either an ascending or a descending path. Associated with these paths,
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define DA and DD by:

DA ≡ {(x, c) ∈ R2++|f(x)− c > 0},

DD ≡ {(x, c) ∈ R2++|f(x)− c < 0}.

Also define two functions ξA : DA × (ρ0, ρI) 7→ R and ξD : DD × (ρ0, ρI) 7→ R by

ξj(x, c; ρ) ≡ c[f 0(x)− ρ]

σ(c) [f(x)− c] , j = A,D.

ξj gives the slope of the vector field of the x − c system in the domain Dj (j = A,D). The following

results are immediate:

∂ξA(x, c; ρ)

∂ρ
< 0 and

∂ξD(x, c; ρ)

∂ρ
> 0. (3.14)

In what follows, we compare two paths that differ in the discount rates, ρi (i = 1, 2). We refer to an

optimal path when the discount rate is ρ as a ρ-optimal path. We apply this convention to the other paths

and functions such as an ascending path and the value function.

Lemma 3.5 Let ρ1 and ρ2 satisfy ρ0 < ρ1 < ρ2. (i) Let (x
A
1 (t), c

A
1 (t)) and (x

A
2 (t), c

A
2 (t)) be ρ1- and

ρ2-ascending paths from the same initial capital stock. Then cA1 (0) < c
A
2 (0). (ii) Let (x

D∗
1 (t), cD∗1 (t)) and

(xD∗2 (t), cD∗2 (t)) be ρ1- and ρ2-optimal and descending paths from the same initial capital stock. Then

cD∗1 (0) < cD∗2 (0).

Proof. We prove by contradiction. (i) Assume that cA1 (0) ≥ cA2 (0) holds. Then, the ρ1-ascending path

should cross the ρ2-ascending path at least once at the intersection point (x
#, c#) such that

ξA(x#, c#; ρ1) ≤ ξA(x#, c#; ρ2), (3.15)
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because the ascending paths lie in DA, xs(ρ1) > x
s(ρ2) and

lim
t→∞ c

A
1 (t) = f(x

s(ρ1)) > f(x
s(ρ2)) = lim

t→∞ c
A
2 (t).

But (3.15) contradicts (3.14). (ii) Assume cD∗1 (0) ≥ cD∗2 (0). Let C∗1 (x) and C∗2 (x) be the associated

optimal policy, i.e., C∗i (x
D∗
i (t)) = cD∗i (t) (i = 1, 2) for all t ≥ 0. By (3.14), C∗1 (x) > C∗2 (x) holds for all

x ∈ (0, xD1 (0)). Take any y ∈ (0, xD∗1 (0)) and consider a ρ2-x− c path from (y, C∗1 (y)). Denote by CD2 (x)

the associated ρ2-policy function. By (3.14),

C∗1 (x) > C
D
2 (x) > C

∗
2 (x) > f(x)

holds for all x ∈ (0, y). Also

0 = lim
x→0

C∗1 (x) ≥ lim
x→0

CD2 (x) ≥ lim
x→0

C∗2 (x) = 0

holds. Therefore, the ρ2-x − c path from (y, C∗1 (y)) converges to the origin. Then, by Lemmas 3.2 - 3.4,

the ρ2-x− c path dominates (xD∗2 (t), cD∗2 (t)), which is a contradiction.

Figure 2 illustrates the ρ1- and ρ2-ascending and -descending paths indicated by this lemma.

<Figure 2>

Lemma 3.6 Let x0 > 0 and ρ1, ρ2 satisfy ρ0 < ρ1 < ρ2. (i) If the ρ2-ascending path from x0 exists, then

the ρ1-ascending path from x0 exists. (ii) If the ρ1-descending path from x0 exists, then the ρ2-descending

path from x0 exists.

Proof. (i) Let xAi be the infimum of the capital stocks from which a ρi-ascending path (x
A
i (t), c

A
i (t))

starts. Given a ρi-ascending path exists if and only if x
A
i (0) ∈ (xAi , xs(ρi)), the statement is equivalent to

xA1 ≤ xA2 . Suppose that it is false, i.e., xA1 > xA2 . Then there is a ρ2-ascending path (x
A
2 (t), c

A
2 (t)) such

that xA2 (τ) = xA1 and c
A
2 (τ) < f(xA1 ) for some τ ∈ R. On the other hand, a ρ1-ascending path satisfies
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cA1 (t) → f(xA1 ) as x
A
1 (t) → xA1 . Then, with a sufficiently small positive number ε, we have ρ1- and ρ2-

ascending paths from x0 = x
A
1 +ε such that c

A
1 (0) > c

A
2 (0). But this inequality contradicts Lemma 3.5. (ii)

Similarly, let x̄Di be the supremum of the capital stocks from which a ρi-descending path (x
D
i (t), c

D
i (t))

starts. For i = 1, 2, by Proposition 3.3 (iv), ρi-optimal and descending path (x
D∗
i (t), cD∗i (t)) exists.

Although there may be other ρi-descending paths, the optimal path is furthest away from the nullcline

c = f(x) by Lemmas 3.2 - 3.4. Thus x̄Di is the supremum of the capital stock when the optimal and

descending path is extended towards the past. We denote this descending path by (xDi (t), c
D
i (t)). Note

that there is time τi (i = 1, 2) such that, for t ≥ τi, (x
D
i (t), c

D
i (t)) = (x

D∗
i (t − τi), c

D∗
i (t − τi)). Now we

assume x̄D1 > x̄D2 to derive a contradiction. A ρi-descending path exists if and only if x
D
i (0) ∈ (0, x̄Di )

and cDi (t) → f(x̄Di ) as x
D
i (t) → x̄Di . Thus x̄

D
1 > x̄D2 implies that when the initial stock is x̄D2 + ε for a

sufficient small positive number ε, there exist ρi-descending paths (x
D
i (t), c

D
i (t)), i = 1, 2, from x̄D2 + ε

such that cD1 (0) > c
D
2 (0). By a similar argument in the proof of Lemma 3.5 (ii), the two descending paths

never cross. Therefore, we have cD1 (τ1) > c
D
2 (τ2), and thus c

D∗
1 (0) > cD∗2 (0). But this contradicts Lemma

3.5.

Then we have the following lemma.

Lemma 3.7 If xs(ρ0) is not an optimal steady state, then for all ρ > ρ0, xs(ρ) is not an optimal steady

state.

Proof. If xs(ρ0) is not an optimal steady state, the ρ0-optimal path from xs(ρ0) is a ρ0-descending

path by Proposition 3.2. For ρ > ρ0, by Lemma 3.6, the ρ-descending path
¡
xD(t; ρ), cD(t; ρ)

¢
from

xD(0; ρ) = xs(ρ0) exists. Given xs(ρ) < xs(ρ0), there is time τ > 0 such that xD(τ ; ρ) = xs(ρ). As the

path is descending, cD(τ ; ρ) > f(xs(ρ)) holds. Then, by Lemmas 3.2 - 3.4,

H∗(xs(ρ), u0
£
cD(τ ; ρ)

¤
)/ρ > H∗(xs(ρ), u0 [f(xs(ρ))] /ρ = u([f(xs(ρ))] /ρ. (3.16)

This shows that the ρ-descending path dominates the path staying at xs(ρ). That is, xs(ρ) is not an

optimal steady state.

This lemma implies the following corollary.
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Corollary 3.1 There exists a discount rate ρ̃ ∈ [ρ̂, ρI ] such that if ρ < ρ̃, then xs(ρ) is an optimal steady

state and if ρ > ρ̃, then xs(ρ) is not an optimal steady state.

Proof. Lemma 3.7 implies the existence of ρ̃. By Proposition 3.3, xs(ρ) is an optimal steady state if

ρ ≤ ρ̂. Therefore, ρ̂ ≤ ρ̃. Also, ρ̃ ≤ ρI , given x
s(ρ) does not exist for ρ > ρI .

We show the last preliminary result. Take a compact state space [0, x̄], where x̄ satisfies 0 < f 0(x̄) < ρ0.

Then, on this state space, define two value functions associated with the ascending and descending paths.

Note that if ρ ≥ ρ0, an optimal capital path from x ∈ [0, x̄] stay in the state space by Proposition 3.2.

The ascending value function V A : [0, x̄] 7→ R ∪ {−∞} is defined as:

V A(x) ≡max
Z ∞
0

u(c(t))e−ρtdt (3.17)

subject to ẋ(t) = f(x(t))− c(t), c(t) ∈ [0, f(x(t))], x ∈ (0, x̄] given.

Note that given f(x) ≤ f(x̄), c(t) and thus ẋ(t) are uniformly bounded. Then, by d’Albis, Gourdel, and

Le Van’s (2008, Theorem 1), an optimal path to (3.17) exists, and V A is well defined.

We then define the descending value function V D : [0, x̄] 7→ R ∪ {−∞}. Let

c̄ ≡ sup
ρ∈[ρ0,ρI ],x∈(0,x̄],t∈[0,∞)

c∗(t;x, ρ) <∞, (3.18)

where c∗(t;x, ρ) is the ρ-optimal consumption path from x. The finiteness of c̄ is verified as follows. For

all ρ > 0, any optimal capital path from x ∈ (0, x̄] stays in (0, x̄]. Thus

sup
x∈(0,x̄],t∈[0,∞)

c∗(t;x, ρ) = sup
x∈(0,x̄]

c∗(0;x; ρ),

for all ρ > 0. Take ρ0 such that ρ0 > ρI . c
∗(t;x, ρ0) is an optimal and descending path, and by Lemma 3.5,

c∗(0;x; ρ) ≤ c∗(0;x; ρ0) holds for all ρ ≥ ρ0 and for all x ∈ (0, x̄]. (Note that if the ρ-optimal path from x
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is ascending, then c∗(0;x; ρ) < f(x) < c∗(0;x; ρ0).) Therefore,

c̄ = sup
ρ∈[ρ0,ρI ],x∈(0,x̄]

c∗(0;x; ρ) ≤ sup
x∈(0.x̄]

c∗(0;x; ρ0) = sup
t∈[0,∞)

c∗(t; x̄, ρ0).

Given c∗(t; x̄, ρ0) is a solution of the x− c system, it is continuous in t. Also it converges to 0. From these,

supt∈[0,∞) c∗(t; x̄, ρ0) <∞ and thus c̄ <∞ hold.

Using c̄, we define the descending value function V D by:

V D(x) ≡max
Z ∞
0

u(c(t))e−ρtdt (3.19)

subject to ẋ(t) = f(x(t))− c(t), c(t) ∈ [f(x(t)), c̄], x ∈ (0, x̄] given.

As ẋ(t) are uniformly bounded, by d’Albis, Gourdel, and Le Van’s (2008, Theorem 1), an optimal path to

(3.19) exists and V D is well defined. Note that by the monotonicity of an optimal capital path, it holds

that for x ∈ [0, x̄],

V ∗(x) = max{V A(x), V D(x)}.

In what follows, we show that these value functions are continuous in the discount rate. Let us express

them as the functions of ρ: e.g., V ∗(x, ρ).

Lemma 3.8 For each x ∈ (0, x̄], the three value functions, V ∗(x, ρ), V A(x, ρ), V D(x, ρ), are continuous

in ρ ∈ [ρ0, ρI ].

Proof. We modify the original problem (2.1) by adding the constraint c(t) ≤ c̄, where c̄ is defined

by (3.18). Obviously, this modification does not affect an optimal path. We then standardize the utility

function as ū(c) ≡ u(c)− u(c̄). By doing so, the values of these value functions become nonpositive. Fix

x > 0. We first consider the optimal value function V̄ ∗, where the “bar” means that it is standardized. If
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ρ1 < ρ2,

V̄ ∗(x, ρ2) =
Z ∞
0

ū(c∗(t, ρ2))e−ρ2tdt ≥
Z ∞
0

ū(c∗(t, ρ1))e−ρ2tdt

≥
Z ∞
0

ū(c∗(t, ρ1))e−ρ1tdt = V̄ ∗(x, ρ1)

≥
Z ∞
0

ū(c∗(t, ρ2))e−ρ1tdt, (3.20)

where the inequalities in the first and third lines follow from the optimality of the ρi-consumption paths

c∗(t, ρi) for i = 2, 1, respectively, and the inequality in the second line follows from the nonpositivity of

ū(c), which results in V̄ ∗(x, ρ2) ≥ V̄ ∗(x, ρ1). Select an arbitrarily ρ0 ∈ (0, ρI). For ρ ∈ (ρ0, ρI ], using the

inequalities in (3.20), we have

lim
ρ&ρ0

|V̄ ∗(x, ρ)− V̄ ∗(x, ρ0)| = lim
ρ&ρ0

∙Z ∞
0

ū(c∗(t, ρ))e−ρtdt−
Z ∞
0

ū(c∗(t, ρ0))e−ρ
0tdt

¸
≤ lim

ρ&ρ0

∙Z ∞
0

ū(c∗(t, ρ))e−ρtdt−
Z ∞
0

ū(c∗(t, ρ))e−ρ
0tdt

¸
(3.21)

= lim
ρ&ρ0

Z ∞
0

ū(c∗(t, ρ))(e−ρt − e−ρ0t)dt = 0. (3.22)

Similarly, for ρ ∈ (0, ρ0),

lim
ρ%ρ0

|V̄ ∗(x, ρ)− V̄ ∗(x, ρ0)| = lim
ρ%ρ

∙Z ∞
0

ū(c∗(t, ρ0))e−ρ
0tdt−

Z ∞
0

ū(c∗(t, ρ))e−ρtdt
¸

≤ lim
ρ%ρ

∙Z ∞
0

ū(c∗(t, ρ0))e−ρ
0tdt−

Z ∞
0

ū(c∗(t, ρ0))e−ρtdt
¸

(3.23)

= lim
ρ%ρ

Z ∞
0

ū(c∗(t, ρ0))(e−ρ
0t − e−ρt)dt = 0. (3.24)

These results verify that V̄ ∗(x, ρ) is continuous in ρ0. As we have derived this result by using only the

negativity of ū and the optimality of the consumption paths, the same argument is applicable to the

ascending and descending value functions, which concludes these value functions are also continuous in

ρ ∈ [ρ0, ρI ].
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4 Critical capital stock

In this section, we investigate the properties of the critical capital stock, which we first define.

Definition 4.1 The critical capital stock xC is a positive capital stock such that every optimal capital path

from x < xC converges to 0 and every optimal capital path from x > xC converges to the upper stationary

capital xs.

4.1 The existence and monotonicity

Theorem 4.1 (Existence 1) Assume ρ > ρ0. (i) The critical capital stock x
C(ρ) exists if and only if the

upper stationary capital xs(ρ) is an optimal steady state. (ii) xC is unique and lies in (0, xs(ρ)].

Proof. (i) If part: By the monotonicity of the optimal capital paths (Proposition 3.2), there are

intervals Y and Z on the state space [0,∞) such that every optimal capital path from y ∈ Y converges

to 0, and every optimal capital path from z ∈ Z converges to xs. Given xs(ρ) is an optimal steady state,

xs(ρ) ∈ Z, and thus Z is nonempty. By Proposition 3.3 (iv), ρ > ρ0 implies supY > 0. Given an optimal

capital path is monotonic, we have supY ≤ inf Z. But supY < inf Z implies that any x ∈ (supY, inf Z) is

an optimal steady state and must satisfy f 0(x) = ρ, which contradicts Assumption 2 (b). Therefore there

exists a critical capital stock xC(ρ) = supY = inf Z. Only if part: If xs(ρ) is not an optimal steady state,

every nonconstant optimal path is a descending path and converges to 0 by Proposition 3.2. Thus xC(ρ)

does not exist. (ii) If xC exists, xs(ρ) is an optimal steady state. Then, as shown in the above proof for

the sufficiency,

0 < supY = xC = inf Z ≤ xs(ρ)

holds. That is, xC(ρ) is unique and lies in (0, xs(ρ)].

The following theorem shows that, except for a special case that the lower stationary capital is optimal

steady state, there are two optimal paths from the critical capital stock.

Theorem 4.2 (Relation with the lower stationary capital) (i) If xs is an optimal steady state, then x
C =

xs. (ii) If xs is not an optimal steady state, then there are two optimal paths from xC : One converges to
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xs and the other converges to 0.

Proof. (i) We prove by contradiction. Assume xC < xs. Then there is the ascending and optimal

path (xA∗(t), cA∗(t)) from xA∗(0) = xs. The initial consumption c
A∗(0) should satisfy f(xs) > cA∗(0).

The total utility V ∗(xs) satisfies

V ∗(xs) = H∗(xs, u0(cA∗(0))/ρ > H∗(xs, u0(f(cs))/ρ = u((f(cs))/ρ,

where the first equality follows from Lemma 3.3 and the inequality follows from Lemma 3.2. But as xs is an

optimal steady state, V ∗(xs) = u((f(cs))/ρ must hold, which is a contradiction. By a parallel argument,

we can exclude the case of xC > xs. (ii) Given x
C is not an optimal steady state, there is an optimal

path from xC that is not constant. Assume that it is an ascending path and denote it by (xA∗(t), cA∗(t))

with xA∗(0) = xC . As cA∗(0) < f(xC), we can extend the path for t ∈ [−ε, 0) where ε is a small positive

number. By the definition of xC , there is an optimal and descending path from xA∗(−ε). We denote it

(xD∗(t), cD∗(t)) with xD∗(0) = xA∗(−ε). Given V ∗(xD∗(0)) = V D(xD∗(0)) > V A(xD∗(0)), by Lemmas

3.3 and 3.4,

H∗(xD∗(0), u0(cD∗(0))) > H∗(xA∗(−ε), u0(cA∗(−ε)))

holds. As ε→ 0, xD∗(0) = xA∗(−ε)→ xC and we have

H∗(xC , u0(cD∗(0))) ≥ H∗(xC , u0(cA∗(0))).

Given an optimal path from xC is ascending, we have

H∗(xC , u0(cD∗(0))) = H∗(xC , u0(cA∗(0))).

Thus, by Lemmas 3.3 and 3.4, the descending path is also an optimal path from xC . Obviously, we obtain

the same result if we assume that there is an optimal and descending path from xC .

We show the monotonicity result.
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Theorem 4.3 (Monotonicity with respect to the discount rate) Let ρ1 and ρ2 satisfy ρ0 < ρ1 < ρ2 < ρ̃,

where ρ̃ is the upper discount rate defined in Corollary 3.1. Then

xC(ρ1) < x
C(ρ2)

Proof. We consider two cases: (i) xs(ρ1) is an optimal steady state. (ii) Otherwise. (i) Note first

xC(ρ1) = xs(ρ1) by Theorem 4.2. Then suppose xC(ρ1) ≥ xC(ρ2) to derive a contradiction. Then

xC(ρ2) 6= xs(ρ2), which implies that there is ρ2-ascending path from xC(ρ2). By Lemma 3.6, then there

is the ρ1-ascending path from xC(ρ2). However, as xC(ρ1) = xs(ρ1), there is no ρ1-ascending path

from x ≤ xC(ρ1), which is a contradiction. (ii) In this case, by Theorem 4.2, we have the ρ1-optimal

ascending and descending paths
¡
xA∗1 (t), cA∗1 (t)

¢
,
¡
xD∗1 (t), cD∗1 (t)

¢
from xA∗1 (0) = xD∗1 (0) = xC(ρ1). Then

by Lemma 3.6, there is the ρ2-descending path
¡
xD2 (t), c

D
2 (t)

¢
from xD2 (0) = x

C(ρ1). If the ρ2-ascending

path
¡
xA2 (t), c

A
2 (t)

¢
from xC(ρ1) does not exist, then x

C(ρ1) < xC(ρ2). Thus, we proceed the proof

assuming that it exists. By Lemma 3.5,

cA∗1 (0) < c
A
2 (0) < f(x

C(ρ1)) < c
D∗
1 (0) < cD2 (0).

Then, by Lemma 3.2, we have

H∗(xC(ρ1), u0(cA2 (0))) < H
∗(xC(ρ1), u0(cA∗1 (0)))

= H∗(xC(ρ1), u0(cD∗1 (0))) < H∗(xC(ρ1), u0(cD2 (0))),

where the equality follows from the fact that at xC , both
¡
xA∗1 (t), c

A∗
1 (t)

¢
and

¡
xD∗1 (t), cD∗1 (t)

¢
are optimal

and the value of the maximized Hamiltonian is proportional to the total utility by Lemmas 3.3 and

3.4. However, by the same Lemmas, H∗(xC(ρ1), u0(cA2 (0))) < H∗(xC(ρ1), u0(cD2 (0))) implies that the

descending path
¡
xD2 (t), c

D
2 (t)

¢
dominates the ascending path

¡
xA2 (t), c

A
2 (t)

¢
. From this, xC(ρ1) < x

C(ρ2)

follows.
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Applying this monotonicity theorem, we can complete the existence result of the optimality of the

upper steady state, and this, in turn, together with Theorem 4.1, extends the existence result of the

critical capital stock.

Proposition 4.1 (The existence of an optimal upper steady state) There is the boundary value of the

discount rate ρ̃ ∈ [ρ̂, ρI ] such that xs(ρ) is an optimal steady state if and only if ρ ≤ ρ̃.

Proof. If we prove that xs(ρ̃) is an optimal steady state, then the statement follows from Corollary 3.1.

We prove it by contradiction. Suppose that xs(ρ̃) is not an optimal steady state. Then, by Proposition

3.2, an optimal capital path from xs(ρ̃) converges to 0. Thus,

V A(xs(ρ̃), ρ̃) < V D(xs(ρ̃), ρ̃) = V ∗(xs(ρ̃), ρ̃). (4.1)

On the other hand, as shown below, for all ρ ∈ (ρ0, ρ̃), xC(ρ) < xs(ρ̃) < xs(ρ) holds. Then, an optimal

path from xs(ρ̃) is ascending when ρ ∈ (ρ0, ρ̃), and we have:

V D(xs(ρ̃), ρ) < V A(xs(ρ̃), ρ) = V ∗(xs(ρ̃), ρ). (4.2)

These value functions are continuous in ρ by Lemma 3.8. By taking a limit ρ% ρ̃, we have V D(xs(ρ̃), ρ) ≤

V A(xs(ρ̃), ρ), which contradicts (4.1). To complete the proof, we show that xC(ρ) < xs(ρ̃) for all ρ ∈

(ρ0, ρ̃). Suppose otherwise, i.e., x
C(ρ0) ≥ xs(ρ̃) for some ρ0 ∈ (ρ0, ρ̃). Then, by Corollary 3.1 and as xs(ρ)

is continuous and strictly decreasing, there is ρ00 ∈ (ρ0, ρ̃) such that xs(ρ00) is an optimal steady state and

satisfies xs(ρ00) = xC(ρ0) < xC(ρ00), where the inequality follows from Theorem 4.3. But this contradicts

Theorem 4.1 (ii).

Theorem 4.4 (Existence 2) xC exists if and only if ρ ∈ (ρ0, ρ̃], where ρ̃ is defined in Proposition 4.1.

Proof. It follows from Proposition 3.3 (i), Theorem 4.1 and Proposition 4.1.
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4.2 Continuity and location

In this subsection, we first show the continuity of the critical capital stock in the discount rate and then

some results on the location of the critical capital stock.

Theorem 4.5 (Continuity) xC(ρ) is continuous on (ρ0, ρ̃], where ρ̃ is defined in Proposition 4.1.

Proof. We prove by contradiction. Suppose that there is ρ0 ∈ (ρ0, ρ̃] at which xC(ρ) is discontinuous.

By Theorem 4.3, this is the case that (a) limρ%ρ0 x
C(ρ) < xC(ρ0) and/or (b) limρ&ρ0 x

C(ρ) > xC(ρ0).

Suppose that (a) occurs. Let z ∈ (limρ%ρ0 x
C(ρ), xC(ρ0)). Given z < xC(ρ0),

V A(z, ρ0) < V D(z, ρ0) = V ∗(z, ρ0). (4.3)

Similarly, as z > xC(ρ) for ρ < ρ0, V A(z, ρ) > V D(z, ρ) holds. Given these functions are continuous in ρ

by Lemma 3.8, we have V A(z, ρ0) ≥ V D(z, ρ0) at the limit ρ% ρ0. However, this contradicts (4.3). Thus,

case (a) is ruled out. By a parallel argument, case (b) is also ruled out.

x̆ and x below are defined in (3.4) and (3.5), respectively. See also Figure 1.

Theorem 4.6 (Location of the critical capital stock) Assume ρ ∈ (ρ0, ρ̃]. (i) If ρ ∈ (ρ0, ρ̂], then xC(ρ) ≤

x̆(ρ). (ii) If ρ ∈ (ρ̂, ρ̃), then xC(ρ) ≥ x(ρ). (iii) limρ&ρ0 x
C(ρ) = 0. (iv) xC(ρ̃) = xs(ρ̃).

Proof. If ρ ∈ (ρ0, ρ̂], x̆ exists. Given ρ̃ ≤ ρI , if ρ ∈ (ρ̂, ρ̃), x exists. Therefore, (i) and (ii) follow

from Proposition 3.3 (ii) and (iii) and Theorem 4.1. (iii) Given xC(ρ) ≤ x̆(ρ) (Theorem 4.2 (i)) and

limρ&ρ0 x̆(ρ) = 0, limρ&ρ0 x
C(ρ) = 0 holds. (iv) By Theorem 4.1 (ii), xC(ρ̃) ≤ xs(ρ̃). Suppose xC(ρ̃) <

xs(ρ̃) to derive a contradiction. Take y ∈ (xC(ρ̃), xs(ρ̃)). Then, for ρ < ρ̃, we have V D(y, ρ) < V A(y, ρ) =

V ∗(y, ρ). By the continuity of these functions in ρ, we have at the limit of ρ% ρ̃,

V D(y, ρ̃) ≤ V A(y, ρ̃) (4.4)
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On the other hand, for ρ > ρ̃, as xs(ρ) is not an optimal steady state, every optimal capital path converges

to 0. Thus, for ρ > ρ̃, V A(y, ρ) < V D(y, ρ) = V ∗(y, ρ) holds. Take the limit of ρ& ρ̃, and we have

V A(y, ρ̃) ≤ V D(y, ρ̃). (4.5)

From (4.4) and (4.5), we have V A(y, ρ̃) = V D(y, ρ̃). This is the case that any y ∈ (x̃C , xs(ρ̃)) is a critical

capital stock, which contradicts the uniqueness of the critical capital stock (Theorem 4.1 (ii)).

The critical capital stock as a function of the discount rate is strictly increasing and continuous. It

increases from 0 to xs(ρ̃) as the discount rate increases. Therefore, at some discount rate in (ρ0, ρ̃],

the critical capital stock coincides with the lower stationary capital: xC = xs. However, this does not

necessarily imply that xs is an optimal steady state, as shown in the following proposition.
8

Proposition 4.2 xs is not an optimal steady state if

ρ2 < 4f 00(xs)cs/σ (cs) . (4.6)

Proof. We prove by contradiction. Suppose (4.6) holds, but xs is an optimal steady state. By

Theorem 4.2 (i), xC = xs. Then, for any x ∈ (xs, xs), an optimal path (x∗(t), c∗(t)) from x is ascending.

From the eigenvalues (2.10), the inequality in (4.6) implies that (xs, cs) is the spiral source. Thus, there

is t0 such that x∗(t0) = xs and c∗(t0) < f(xs). However, this implies that xs is not an optimal steady state

by Lemmas 3.2 and 3.3, which is a contradiction.

Remark: Askenazy and Le Van (1999, Proposition 10) derive another condition under which xs is not

an optimal steady state:

ρ2 < f 00(xs)cs/σ(cs). (4.7)

Given

4f 00(xs)cs/σ(cs) > f 00(xs)cs/σ(cs),

8On the other hand, there is an example that the lower stationary capital can be an optimal steady state. See Akao,

Kamihigashi and Nishimura (2015).
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if (4.7) holds, then (4.6) also holds. In this sense, our sufficient condition is weaker than (4.7).

Figure 3 illustrates numerical examples with the production function:

f(x) = 10−3 ln(x+ 1) +
x2

4(x2 + 1)
,

for which xI = 0.5768, x̂ = 0.9985, ρ0 = 10−3, ρ̂ = 0.1257, and ρI = 0.1630. The utility function is a

constant intertemporal elasticity of substitution (CIES) type: u(c) =
¡
c1−σ − 1¢ /(1 − σ), σ > 0. Panel

(a) depicts the production function. Panels (b-1) and (b-2) are the case when σ is 0.7. (b-1) depicts the

phase diagram when the discount rate coincides with the maximum average productivity (ρ = ρ̂). The

two vertical lines show the nullclines of ċ = 0 that locate at the lower and upper stationary capitals. In

this case, by Theorem 4.4, the critical capital stock exists. In the panel, the critical capital stock is near

to or slightly greater than the lower stationary capital. (b-2) is the case when the discount rate coincides

with the maximum marginal productivity (ρ = ρI). The vertical line is at the inflection point xI , where

the two nullclines of ċ = 0 merge. The phase diagram shows that with, or near to, this discount rate,

the critical capital stock merges with the optimal steady state, which is suggested by Theorem 4.6 (iv).

Panels (c-1)—(c-3) are the case that the elasticity of the marginal utility is smaller: σ = 0.3. With respect

to the discount rate, (c-1) corresponds to (b-1), and (c-3) corresponds to (b-2). The difference from Panel

(b) is that when ρ = ρI , there is no longer the critical capital stock. The heteroclinic bifurcation occurs

with a lower discount rate, which is shown in Panel (c-2).

<Figure 3>

4.3 The upper bound of the discount rate

Theorem 4.4 shows that there is the upper bound of discount rate ρ̃ ∈ [ρ̂, ρI ] for the existence of the critical

capital stock. At ρ̃, the critical capital stock merges to the upper stationary capital that is an optimal

steady state. For ρ > ρ̃, there is no longer the critical capital stock or the optimal interior steady state,

although the upper stationary capital may exist. Figure 3 indicates that the level of the upper bound
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depends on the curvature of the utility function. Intuitively, the higher the elasticity of the marginal

utility, the more attractive a flat consumption path and the upper stationary capital may tend to keep

being an optimal steady state against the increase in the discount rate. We show that this intuition is

true. Specifically, we show that depending on the curvature of the utility function, the critical capital

stock, as well as the optimal steady state, can survive even at a discount rate almost as high as ρI , or

they can disappear even at a slightly greater discount rate than ρ̂. To this end, this subsection assumes

the CIES utility function:

Assumption 3:

u(c) =

⎧⎪⎪⎨⎪⎪⎩
c1−σ/ (1− σ) if σ 6= 1

ln c if σ = 1

. (4.8)

We first show that if σ is sufficiently large, for any ρ < ρI , x
s(ρ) is an optimal steady state, and

thus the critical capital stock exists. Fix ρ ∈ (ρ̂, ρI). Consider the following piecewise linear production

function f̃(x):

f̃(x) =

⎧⎪⎪⎨⎪⎪⎩
αx if 0 ≤ x < x

ρx− (ρ− α)x if x ≥ x
, (4.9)

where x is defined in (3.5) and α is given by

α = f(x)/x. (4.10)

Note that

0 < α =
f(x)

x
<
f(x̂)

x̂
= ρ̂ < ρ. (4.11)

As shown in Figure 4, f̃(x) ≥ f(x) with equality only if x ∈ {0, x, xs(ρ)}. From this inequality, if xs(ρ) is

an optimal steady state to the problem:

max
c≥0

Z ∞
0

u(c)e−rtdt subject to ẋ = f̃(x)− c, x ≥ 0, x(0) given, (4.12)

then xs(ρ) is also an optimal steady state to the problem (2.1).
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<Figure 4>

Lemma 4.1 Problem (4.12) has the following closed-form solution for the optimal consumption policy:

C̃(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
βx if 0 ≤ x ≤ x

βx if x < x ≤ x̃C

f̃(x) if x̃C ≤ x

, (4.13)

where β = (1/σ) (ρ− α) + α and x̃C is given by:

x̃C =

µ
1 +

ρ− α

σρ

¶
x. (4.14)

Proof. We verify the optimality of C̃(x) by using the Hamilton—Jacobi—Bellman equation. Denote by

T (x) the time to reach x from x ∈ (x, x̃C). T (x) satisfies:

e−ρT (x) =
ρx− (ρ+ β − α)x

ρx− (ρ+ β − α)x
. (4.15)

The value function Ṽ (x) associated with the policy function (4.13) is given by:

Ṽ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
[β−σ/(1− σ)]x1−σ if σ 6= 1

ρ−1(ln ρx+ ρ−1(α− β)) if σ = 1

for 0 < x ≤ x

R T (x)
0

u(βx)e−ρtdt+ Ṽ (x)e−ρT (x) for x < x ≤ x̃C

u(f̃(x))/ρ for x̃C ≤ x

(4.16)

With Ṽ (x) and C̃(x),

ρṼ (x) = u(C̃(x)) + Ṽ 0(x)[f̃(x)− C̃(x)]

≥ u(c) + Ṽ 0(x)[f̃(x)− c] for all c ≥ 0 (4.17)

holds for each x > 0. Let (x̃(t), c̃(t)) be a feasible path induced by the policy function (4.13). We compare
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this path with a candidate of optimal path (x(t), c(t)) from the same initial capital stock x(0) = x̃(0). By

Proposition 3.1, (x(t), c(t)) can be chosen in the class of the x− c paths. (4.17) leads to:

Z ∞
0

u(c̃(t))e−ρtdt−
Z ∞
0

u(c(t))e−ρtdt ≥ lim
t→∞ e

−ρt(Ṽ (x(t))− Ṽ (x̃(t))). (4.18)

Thus, we prove optimality if we can show that the right-hand side of (4.18) is nonnegative. This obviously

holds if the utility function is bounded from below or either x(t) or x̃(t) does not converge to 0. In other

words, we need to check the case that σ ≥ 1 and either of x(t) or x̃(t) at least converges to 0. As the

Jacobian matrix of the x− c system at the origin (0, 0) is

J =

⎡⎢⎢⎣ α −1

0 (α− ρ) /σ

⎤⎥⎥⎦ , (4.19)

the origin is saddle point by (4.11). The stable eigenvector of (4.19) is given by (1,β). Assume that

(x(t), c(t)) converges to the origin. Then, with a sufficiently small initial value x(0),

x(t) = x(0) exp

∙µ
α− ρ

σ

¶
t

¸
+ o(x(t)),

where limx→0 o(x) = 0. Then we have:

lim
t→∞ e

−ρtṼ (x(t)) =

⎧⎪⎪⎨⎪⎪⎩
limt→∞

β−σx(t)1−σe−ρt

1−σ = limt→∞
β−σx(0)1−σe−βt

1−σ = 0 for σ 6= 1

limt→∞ e−ρt
£¡
ln ρx(0)e(α−β)t

¢
/ρ+ (α− β) /ρ2

¤
= 0 for σ = 1

. (4.20)

Therefore, if an x − c path (x(t), c(t)) converges to the origin, then limt→∞ e−ρtṼ (x(t)) = 0. Given

(x̃(t), c̃(t)) is also an x− c path, if it converges to the origin, we have limt→∞ e−rtṼ (x̃(t)) = 0. Therefore

the right-hand side of (4.18) is 0, and the proof completes.

Define

σ̃ ≡ −γ(x
s)

xs − x ρ
−1, ρ ∈ (ρ̂, ρI) (4.21)
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where γ(x) is the gain function defined in (3.1).

Proposition 4.3 For any ρ ∈ (ρ̂, ρI), xs(ρ) is an optimal steady state if σ ≥ σ̃.

Proof. Fix ρ ∈ (ρ̂, ρI). Given

γ(xs) = γ(x) =

µ
f(x)

x
− ρ

¶
x = (α− ρ)x,

xs =

µ
1 +

ρ− α

σ̃ρ

¶
x (4.22)

holds. Then for all σ ≥ σ̃, x̃C ≤ xs by (4.14). Therefore, xs is an optimal steady state to the problem

(4.12), which implies that xs is also an optimal steady state to the problem (2.1) and thus ρ ≤ ρ̃.

Remark: σ̃ is strictly increasing in ρ with σ̃(ρ̂) = 0 and limρ%ρI σ̃(ρ) =∞.

Second, we show that for any ρ > ρ̂, we have ρ > ρ̃ if σ is sufficiently small. This implies that the

critical capital stock, together with the higher interior optimal steady state, may disappear, even when

the discount rate is slightly greater than ρ̂.

For the proof, we prepare the following lemma. This lemma shows that if the utility function is

linear, then for any ρ > ρ̂, the upper stationary capital xs is not an optimal steady state. Let cM

satisfy cM > f(xs). Let xM (t) be the capital path from xs induced with the most rapid approach policy:

c(t) = cM if x(t) > 0 and c(t) = 0 if x(t) = 0. Define the value function associated with the most rapid

approach path by:

VL(c
M ) ≡

Z T∗(cM )

0

cMe−ρtdt =
Z T∗(cM )

0

γ(xM (t))e−ρtdt+ xs, (4.23)

where T ∗(cM ) is the first time when xM (t) = 0.

Lemma 4.2 Let ρ > ρ̂. Consider a linear utility version of the problem (2.1) with the maximum con-

sumption cM > f(xs):

max
c(t)

Z ∞
0

c(t)e−ρtdt subject to ẋ(t) = f(x(t))− c(t), c(t) ∈ [0, cM ], x(t) ≥ 0, x(0) = xs given.
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When cM is sufficiently large, it holds that

VL(c
M ) ≡

Z T∗(cM )

0

cMe−ρtdt >
Z ∞
0

f(xs)e−ρtdt. (4.24)

Proof. Fix ρ > ρ̂. We have:

VL(c
M )−

Z ∞
0

f(xs)e−ρtdt =
Z T∗(cM )

0

γ(xM (t))e−ρtdt−
Z ∞
0

γ(xs)e−ρtdt. (4.25)

It is easily verified that T ∗(cM ) and VL(cM ) are continuous. Given ρ > ρ̂,

0 > γ(xM (t)) ≥ γ(xs) for all t ≥ 0. (4.26)

where xs is the lower stationary capital. Also,

Z T∗(cM )

0

γ(xs)e
−ρtdt→ 0 as cM →∞, (4.27)

given limcM→∞ T ∗(cM ) = 0. (4.26) and (4.27) imply:

Z T∗(cM )

0

γ(xM (t))e−ρtdt→ 0 as cM →∞. (4.28)

On the other hand, as ρ > ρ̂, γ(xs) < 0. Therefore, with sufficient large cM , (4.25) is positive. That is,

(4.24) holds.

Proposition 4.4 For any ρ > ρ̂, there is σM (ρ) < 1 such that xs(ρ) is not an optimal steady state if

σ ≤ σM (ρ).

Proof. Fix ρ > ρ̂. Choose cM so that (4.24) in Lemma 4.2 holds. Let δ > 0 such that:

2δ =

Z T∗(cM )

0

cMe−ρtdt− f(x
s)

ρ
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Also, choose a sufficiently small σM > 0 such that

¯̄̄̄
¯
Z T∗(cM )

0

cMe−ρtdt−
Z T∗(cM )

0

u(cM )e−ρtdt

¯̄̄̄
¯ =

¯̄̄̄
¯̄
ÃZ T∗(cM )

0

γ(xM (t))e−ρtdt+ xs
!
−
Z T∗(cM )

0

¡
cM
¢1−σM

1− σM
e−ρtdt

¯̄̄̄
¯̄ < δ,

and ¯̄̄̄Z ∞
0

f(xs)e−ρtdt−
Z ∞
0

u(f(xs))e−ρtdt
¯̄̄̄
=

¯̄̄̄
¯f(xs)ρ

− f(x
s)1−σ

M

ρ(1− σM )

¯̄̄̄
¯ < δ.

Then,

Z T∗(cM )

0

u(cM )e−ρtdt−
Z ∞
0

u(f(xs))e−ρtdt >

"ÃZ T∗(cM )

0

γ(xM (t))e−ρtdt+ xs
!
− δ

#
−
∙
f(xs)

ρ
+ δ

¸
= 0.

(4.29)

Therefore, xs is not an optimal steady state when the elasticity is σM . Obviously, this conclusion holds

with any elasticity σ such that σ < σM , because with the elasticity, (4.24) holds.

5 Concluding remarks

Nonconvexity is ubiquitous in the real world. We always have the opportunity to take a path converging to

a lower steady state by the reason that it is optimal as a certain criterion. However, it may be undesirable

from other viewpoints such as sustainability and intergenerational equity. A theoretical inquiry on the

critical capital stock should provide the basic knowledge needed to avoid such an undesirable path, as well

as to understand why such a path has been experienced in history.

Appendix

Proof of Proposition 3.1

If an optimal path x∗(t) satisfies x∗(t) > 0 for all t ≥ 0, then by Michel (1982, Theorem), the costate

variable q∗(t) = u0 [c∗(t)] exists for all t ≥ 0, which implies c∗(t) > 0 by limc&0 u
0(c) =∞ in Assumption

1. Thus, we only have to prove that there is no finite extinction time T ∗ = inf{t > 0|x∗(t) = 0}. Given
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it is trivial in the case of u(0) = −∞, we consider the case that u(c) is bounded from below and assume

u(0) = 0. Suppose that the finite extinction time T ∗ <∞ exists. Then, there is a tuple (c∗(t), x∗(t), T ∗)

that is a solution to a free final time problem with the constraint x(T ) ≥ 0:

max
c(t)≥0,T

Z T

0

u (c(t)) e−ρtdt

subject to ẋ(t) = f (x(t))− c(t), x(T ) = 0, x(0) = x > 0 given, T > 0 free.

By Seierstad and Sydsæter (1987, Chapter 2, p. 143, Theorem 11), at the extinction time T ∗, there exists

c∗(T ∗) > 0 such that q∗(T ∗) = u0 [c∗(T ∗)] and the Hamiltonian at t = T ∗ satisfies:

H(x∗(T ∗), q∗(T ∗)) = u(c∗(T ∗)) + u0 [c∗(T ∗)] (−c∗(T ∗)) = 0. (.1)

Given u is strictly concave and u(0) = 0,

0 < [u(c∗(T ∗))− u(0)]− u0(c∗(T ∗)) [c∗(T ∗)− 0]

= u(c∗(T ∗))− u0(c∗(T ∗))c∗(T ∗),

which contradicts (.1). Therefore, x∗(t) > 0 for all t ≥ 0.
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Figure 1.  Production function and gain function 
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Figure 2.  Ascending and descending paths when 1 2,ρ ρ ρ=  ( 1 2ρ ρ< ) 
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Figure 3.  Numerical simulations. 
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Figure 4.  Piecewise linear production function 
 
 




