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ABSTRACT. In recent years, a range of measures of “partial” or “degree of” sto-
chastic dominance have been introduced. These measures attempt to determine
the extent to which one distribution is dominated by another. In order to system-
atically assess these proposed measures and their relationship to partial stochastic
dominance, we adopt an axiomatic approach. We propose axioms for measuring
degree of stochastic dominance and study the relationship between them. Among
other findings, we show that one and only one measure satisfies all the axioms.
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1. INTRODUCTION

Stochastic dominance is a standard method for comparing distributions in eco-
nomics, finance, statistics and related fields. For example, it is a fundamental con-
cept in the theory of choice under uncertainty (see, e.g., Machina (1982)). It plays
an important role in the theory of finance, being closely related to existence of ar-
bitrage opportunities and portfolio choice (e.g., Jarrow (1986), Hadar and Russell
(1971)). In social welfare studies, policies or decision rules that shift outcomes up

1This paper has benefited from comments from Andy McLennan and Rabee Tourky, as well
as financial support from the Japan Society for the Promotion of Science and Australian Research
Council Discovery Grant DP120100321.
Email addresses: tkamihig@rieb.kobe-u.ac.jp, john.stachurski@anu.edu.au
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in terms of stochastic dominance can be regarded as universally preferred under
weak assumptions on individual choices. Stochastic dominance also serves as a
standard ordering for considering parametric monotonicity in settings where dis-
tributions are compared.2

In recent years, researchers interested in comparing distributions have introduced
a range of different notions of partial first order stochastic dominance. One well-
known example is so-called “restricted stochastic dominance,” which compares
the order of cumulative distribution functions (cdfs) only up to some specified
point in the domain (Atkinson (1987); Davidson and Duclos (2000, 2013)). Another
is “almost stochastic dominance,” which was developed in the finance literature
(Leshno and Levy (2002); Levy (2009)). This idea has been applied widely and ex-
tended in various directions to cover additional use cases or simplify calculation
(see, e.g., Lizyayev and Ruszczyński (2012), Denuit et al. (2013) and Tzeng et al.
(2013)). A third kind of measure was proposed in Fields et al. (2002), who analyze
degree of stochastic dominance in the context of income mobility analysis by com-
paring orders of cdfs at quantile markers. Still more measures are considered in
Stoyanov et al. (2012).

The proliferation of distinct measures suggests the need for a systematic study of
”degree of” or ”partial” stochastic dominance. In this paper we provide an ax-
iomatic treatment. Measures of degree of stochastic dominance are regarded as
functions that evaluate the extent to which one probability distribution is domi-
nated by another in the sense of stochastic dominance. We consider axioms that
have some claim to be natural properties for such measures, and discuss their log-
ical consistency. We then compare the various measures of degree of stochastic
dominance found in the literature with our axioms. Among other findings, we
show that exactly one measure satisfies all the axioms.

2Here and below, stochastic dominance always refers to first order stochastic dominance. The
basic properties of stochastic dominance were initially provided by Lehmann (1955), and intro-
duced to economics by Quirk and Saposnik (1962). As stated by Border (1992), “the concept has
been independently discovered too many times for an exhaustive listing.” Recent applications re-
lated to parametric monotonicity include Acemoglu and Jensen (2012) and Balbus et al. (2012). For
textbook treatments see Stokey and Lucas (1989), Lindvall (2002), or Föllmer and Schied (2011).
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Section 2 discusses preliminaries, formalizes the notion of a measure of degree of
stochastic dominance and gives examples. Section 3 proposes axioms and stud-
ies their logical relationships and implications. Section 4 considers measures pro-
posed in the literature in light of the axioms. Section 5 concludes.

2. SET UP

We begin with some preliminary definitions and notation, as well as a discussion
of existing measures of degree of stochastic dominance.

2.1. Preliminaries. To discuss stochastic dominance, the space S over which dis-
tributions are defined must at least have some notion of order. A number of the
measures of degree of stochastic dominance we consider require that S is an in-
terval of R, paired with its usual order ≤. Other measures are defined on more
general spaces. To avoid an excessively taxonomical discussion and make avail-
able a number of equivalent views of stochastic dominance, we always assume
that S is a complete, separable metric space (i.e., a Polish space) that contains at
least two elements, and that S is ordered by a closed partial order �.3 This setting
includes most applications of interest.

As usual, h : S → R is called increasing if x � y implies h(x) ≤ h(y). A set B ⊂
S is called an increasing set if its indicator function 1B is an increasing function
(equivalently, x ∈ B and x � y implies y ∈ B). Let B denote the Borel sets of
S and let O be the open sets. We write BI for the increasing Borel sets, OI for
the increasing open sets andH for the increasing Borel measurable functions from
S to [0, 1]. Let P be the probability measures on (S,B). We say that µ ∈ P is
stochastically dominated by ν ∈ P and write µ �sd ν if

∫
h dµ ≤

∫
h dν for all h ∈ H.

Under our assumptions on (S,�sd), the relation �sd is a partial order on the set P
of probability measures (Kamae and Krengel, 1978, theorem 2).

Stochastic dominance can be characterized in several ways. The statement µ �sd ν

is equivalent to µ(I) ≤ ν(I) for all I ∈ BI . See theorem 1 of Kamae et al. (1977).
We can also characterize the order by couplings. In particular, given (µ, ν) ∈ P ×
P , a pair of S-valued random variables (X, Y) defined on some probability space
(Ω,F ,P) is called a coupling of (µ, ν) if µ(B) = P{X ∈ B} and ν(B) = P{Y ∈ B}

3A closed partial order on S is a binary relation� on S× S that is reflexive, transitive and antisym-
metric, and such that its graph {(x, y) ∈ S× S : x � y} is closed in the product topology.
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for all B ∈ B. The set of all couplings of (µ, ν) is denoted below by Γ(µ, ν). With
this notation we have the following well known theorem:

(1) µ �sd ν ⇐⇒ ∃ (X, Y) ∈ Γ(µ, ν) s.t. P{X � Y} = 1.

See Kamae et al. (1977) or chapter 4 in Lindvall (2002). Finally, if S is an interval
in R then cdf F is stochastically dominated by cdf G if G(x) ≤ F(x) for all x ∈ R.
See, for example, section 6.D of Mas-Colell et al. (1995).

2.2. Measures of Degree of Stochastic Dominance. In this section we discuss var-
ious measures of degree of stochastic dominance that have been introduced in the
literature. Here and below, a measure of degree of stochastic dominance is any function

(2) δ : P ×P → [0, 1] such that δ(µ, ν) = 1 whenever µ �sd ν.

The idea is that δ(µ, ν) measures the extent to which µ is dominated by ν, attaining
its maximum value when domination is complete. At this stage the definition
is intentionally weak, so that the main notions of degree of stochastic dominance
from the existing literature can be cast in our framework after minor modifications.

One simple measure of degree of stochastic dominance is the quantile ratio mea-
sure proposed in Fields et al. (2002). Let S = [a, b] and let � be the usual order ≤
on R. Letting F and G be cdfs on [a, b], define

(3) q(F, G) :=
m
n

where m :=
n

∑
i=1
1{G(xi) ≤ F(xi)}.

Here {xi} is a grid of n specified values in [a, b], typically corresponding to some
quantile points. Thus q(F, G) measures the fraction of times that G(xi) ≤ F(xi) is
observed over specified test points. Clearly q satisfies q(F, G) = 1 when G ≤ F
pointwise (i.e., F �sd G), which corresponds to (2).

Another version of partial stochastic dominance is so-called restricted stochastic
dominance (see, e.g. Atkinson (1987) or Davidson and Duclos (2013)). Let F and G
be one dimensional cdfs on an interval [a, b]. Given c ∈ [a, b], distribution F is said
to be dominated by G in the restricted sense if G(x) ≤ F(x) for all x ≤ c. We can
turn this into a measure by considering the largest such c, defined by

(4) c∗(F, G) := sup{c ∈ [a, b] : G(x) ≤ F(x), ∀ x ≤ c}.

After normalizing we get

(5) r(F, G) :=
c∗(F, G)− a

b− a
.
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Evidently r is a measure of degree of stochastic dominance in the sense of (2).4

Another popular measurement for partial stochastic dominance is so-called almost
stochastic dominance (Levy (1992); Leshno and Levy (2002)). Once again the con-
text is S = [a, b] with the usual order ≤. For cdfs F and G on [a, b], the measure can
be expressed as

(6) α(F, G) :=

∫
(F(x)− G(x))+ dx∫
|F(x)− G(x)| dx

where v+ := max{v, 0} for any v ∈ R. Intuitively, if F is almost dominated by G,
then G ≤ F on most of its domain, and (F(x)− G(x))+ = |F(x)− G(x)| for most
x. Hence α(F, G) is close to 1. In order to ensure that the measure is defined for all
pairs F, G, we need to consider the case F = G. Since F = G implies F �sd G, we
adopt the convention that α(F, G) = 1 for such pairs.5

More measures of degree of stochastic dominance were studied in the (Stoyanov
et al., 2012, p. 21). Among other possibilities, they suggest measures that consider
the difference

∫
hdµ−

∫
hdν as h varies over some class of real-valued increasing

functions on S. One natural way to implement this idea is to define

(7) ρ(µ, ν) := 1− sup
h∈H

{∫
hdµ−

∫
hdν

}
.

It is easy to see that ρ is a measure of degree of stochastic dominance in the sense
defined above.6 As clarified below, when S = R a simple expression for (7) exists
in terms of cdfs.

4One could also consider taking r(F, G) to be λ{x ∈ S : G(x) ≤ F(x)}, where λ is the uniform
distribution or some other probability measure. A similar idea appears in Stoyanov et al. (2012).
This is simpler to express than (5) and closely related to q in (3) but more difficult to compute in
applications.

5Our definition of α in (6) differs from the standard definition in that α(F, G) = 1− s where s is
the standard definition. This is because our convention is that values close to one should indicate
almost stochastic dominance.

6Stoyanov et al. (2012) also suggest replacing H with L in (7), where L is the set of all h ∈ H
satisfying |h(x)− h(y)| ≤ d(x, y) for all x, y ∈ S. Here d is the metric on S. The measure γ satisfies
(2) because the supremum on the right hand side is zero when µ �sd ν. Such a measure has the
advantage that it respects weak convergence on P . On the other hand it is difficult to calculate in
applications and fails to satisfy all the axioms below. We do not discuss it further.
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3. AXIOMS

In this section we consider properties that have some claim to be regarded as ax-
iomatic for a well behaved measure of degree of stochastic dominance.

Axiom 3.1. If (µ, ν) ∈ P ×P and δ(µ, ν) = 1, then µ �sd ν.

Axiom 3.1 is a relatively weak and naturally desirable property. Our definition of
a measure of degree of stochastic dominance already provides the converse impli-
cation (see (2)), so if δ satisfies axiom 3.1 then it takes the value 1 if and only if the
two distributions in question are stochastically ordered.

Axiom 3.2. Let λ ∈ [0, 1] and let (µ, ν) be any pair in P ×P satisfying

(8) µ = λµ′ + (1− λ)µ′′ and ν = λν′ + (1− λ)ν′′

for some µ′, µ′′, ν′, ν′′ ∈ P . If, in addition, µ′ �sd ν′, then δ(µ, ν) ≥ λ.

Axiom 3.2 is motivated by a desire for continuity, in the sense that δ(µ, ν) should
be close to 1 when µ is “nearly” dominated by ν. To see the connection, consider a
pair µ′ �sd ν′, so that δ(µ′, ν′) = 1. Suppose we now mix in two other lotteries µ′′

and ν′′, by taking λ < 1 in (8). This produces new lotteries µ and ν. If µ′ and ν′ are
the main components of µ and ν in the sense that λ is close to 1, then µ is “almost
dominated” by ν. Axiom 3.2 assures us that in this setting δ(µ, ν) will be close to
one.

Axiom 3.3. For each (µ, ν) ∈ P ×P and ε > 0, there exists a (X, Y) ∈ Γ(µ, ν) with

(9) P{X � Y} ≥ δ(µ, ν)− ε.

Axiom 3.3 is motivated by the desire that δ(µ, ν) should not be close to 1 unless
(µ, ν) is “almost ordered.“ To see this, recall from (1) that if µ is dominated by ν

then we can find a coupling (X, Y) such that P{X � Y} = 1. To retain consistency
with this idea, δ(µ, ν) should not be large unless we can find a coupling (X, Y)
such that P{X � Y} is also large.

3.1. Other Candidates. Another possible axiom for a measure of degree of sto-
chastic dominance is δ(µ, ν) = 1 and δ(ν, µ) = 1 implies µ = ν. This is motivated
by the fact that �sd is antisymmetric. However, such an implication holds as soon
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as axiom 3.1 holds. Hence we omit it. Similarly, one might consider a transitivity
requirement such as: if {µn}, {µ′n} and {µ′′n} are sequences in P , then

δ(µn, µ′n)→ 1 and δ(µ′n, µ′′n)→ 1 =⇒ δ(µn, µ′′n)→ 1.

However it can be shown that transitivity is an implication of axioms 3.2 and 3.3,
and hence we omit it from the list. Finally, it might be argued that

(10) δ(µ, ν) + δ(ν, µ) = 1 whenever µ 6= ν

is a desirable property for a measure of degree of stochastic dominance. However,
(10) is logically inconsistent with both axiom 3.2 and axiom 3.3. For example, if
µ = ν then both µ �sd ν and ν �sd µ are true. If we now perturb these measures
very slightly to produce µ′ and ν′, continuity implies that both δ(µ′, ν′) and δ(ν′, µ′)

will be close to one, so (10) fails.7

3.2. Implications. We now consider the logical relationships and implications of
axioms 3.1–3.3. First, no pair of axioms is logically inconsistent. Theorem 4.1 below
shows that all can hold at the same time. The main logical connection between the
axioms is that axiom 3.3 implies axiom 3.1:

Proposition 3.1. If δ is a measure of degree of stochastic dominance that satisfies ax-
iom 3.3, then it satisfies axioms 3.1 as well.

Axioms 3.2 and 3.3 are logically independent. Neither one implies the other, as is
clear from the direction of the bounds they put on δ. Axiom 3.2 does not imply
axiom 3.1, as can be seen from examples in section 4.1.

Next we show that the axioms we have listed are strong enough to give unique-
ness. The following theorem records this fact, with δ and δ′ being any two mea-
sures of degree of stochastic dominance.

Theorem 3.1. If δ and δ′ satisfy axioms 3.1–3.3, then δ = δ′.

In view of proposition 3.1, we can alternatively state theorem 3.1 by saying that if
δ and δ′ satisfy axioms 3.2 and 3.3, then δ = δ′.

7More formally, suppose first that axiom 3.2 holds. If we take µ′ = ν′ = λ in (8), where λ is some
fixed element of P , then axiom 3.2 implies that δ(µ, ν) ≥ λ and δ(ν, µ) ≥ λ. For λ > 1/2 this is
inconsistent with (10). Furthermore, if S contains elements that are not ordered in either direction,
then the left-hand side of (10) can be made equal to zero.
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4. MEASURES VS AXIOMS

We now reconsider the measures of stochastic dominance listed in the introduction
in light of the axioms.

4.1. Examples and Comparisons. A first observation is that all measures of degree
of stochastic dominance considered in section 2.2 satisfy axiom 3.1 except for the
measure q defined in (3). The proofs are straightforward and hence omitted.

Regarding axiom 3.2, note first that q fails axiom 3.2 whenever the grid {xi} has
at least three points. To see this let F′, F′′ and G′′ be any cdfs on [a, b] such that
F′′ < G′′ on (a, b). Let λ ∈ (0, 1) and let

F = λF′ + (1− λ)F′′, G = λF′ + (1− λ)G′′.

Since F′ �sd F′, axiom 3.2 implies that q(F, G) ≥ λ. On the other hand, G(xi) >

F(xi) on any interior point xi. Hence m in (3) is at most 2, and q(F, G) ≤ 2/n. Since
λ can be arbitrarily close to 1 this contradicts axiom 3.2.

For this same pair F, G, the fact that G > F on (a, b) implies that c∗(F, G) = 0 for
c∗ defined in (4), and hence r(F, G) = 0 for the restricted stochastic dominance
measure defined in (5). Likewise, for the same pair, α(F, G) = 0, where α is the
almost stochastic dominance measure. Hence r and α also fail to satisfy axiom 3.2.

On the other hand, the stochastic dominance measure ρ defined in (7) satisfies
axiom 3.2. We establish this fact below, in theorem 4.1.

Regarding axiom 3.3, the measures q, r and α all fail the axiom, while ρ satisfies it.
To see this, consider the following pair of distributions on S = [0, 1]. Given some
small positive number ε, let µ put mass ε on 0 and 1− ε on 1, and let ν put all mass
on 1− ε. Let F be the cdf of µ and let X be a draw from µ. Let G and Y be the
cdf of and a draw from ν respectively. Since Y is certainly 1− ε we have X ≤ Y
if and only if X = 0, and hence P{X ≤ Y} = ε for all couplings. On the other
hand, F(x) > G(x) iff 0 ≤ x < 1− ε, and hence r(F, G) = 1− ε. If ε < 1/2 then
1− ε > ε, and hence r fails axiom 3.3.

For this pair (µ, ν), the measures q and α also give values larger than ε when ε is
small. The arguments are not difficult and the details are omitted. By contrast, we
can see that suph∈H

{∫
hdµ−

∫
hdν
}
≥ 1− ε by choosing h = 1(1−ε,1]. It follows

from the definition of ρ in (7) that ρ(µ, ν) ≤ ε.



9

4.2. Properties of ρ. The following result has been alluded to above and we state
it here for the record:

Theorem 4.1. The measure ρ defined in (7) is the unique measure of degree of stochastic
dominance that satisfies axioms 3.1–3.3.

In view of this result we invest in uncovering some additional properties of ρ. Our
first observation is the following equivalences:

Proposition 4.1. For any (µ, ν) ∈ P ×P , the value ρ(µ, ν) can also be expressed as

ρ(µ, ν) = 1− sup
I∈BI

{µ(I)− ν(I)} = 1− sup
I∈OI

{µ(I)− ν(I)}.

These equalities can help simplify calculations. For example, consider the case of
S = R, where many applications of stochastic dominance take place. Observe
that, by taking complements, supI∈OI

{µ(I)− ν(I)} is equal to the supremum of
ν(D)− µ(D) over all closed decreasing sets D. In the one-dimensional case, this
class of sets is the intervals (−∞, x] over x ∈ R. It follows that for one dimensional
distributions with cdfs F and G, the measure ρ has the simple representation

(11) ρ(F, G) = 1− sup
x
{G(x)− F(x)}.

If F and G are absolutely continuous with densities f and g respectively, then the
maximizer in (11) exists and the first order condition is f (x) = g(x).

Finally, one desirable property for a measure of degree of stochastic dominance is
that if a pair µ, ν almost satisfies µ �sd ν in the sense of being close to a pair that
is ordered, then δ(µ, ν) should be close to one. It turns out that the axioms enforce
this. In the statement of the result we let ‖µ− ν‖ := supB∈B |µ(B)− ν(B)|.

Proposition 4.2. For any two pairs of distributions (µ, ν) and (µ′, ν′) we have

|ρ(µ, ν)− ρ(µ′, ν′)| ≤ ‖µ− µ′‖+ ‖ν− ν′‖.

5. CONCLUSION

In this paper we propose an axiomatic treatment for the problem of measuring de-
gree of (or extent of) first order stochastic dominance. We put forward three axioms
and discuss their rationale and relationship to one another. Among other things,
we show that there exists exactly one measure of degree of stochastic dominance
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that satisfies all axioms, and characterize its properties. Further discussion of ax-
ioms and the development of similar ideas in the context of higher order stochastic
dominance are avenues for future research.

6. PROOFS

This section collects all remaining proofs. We begin with a useful lemma.

Lemma 6.1. For any (µ, ν) ∈ P ×P we have

(12)
∫

hdµ−
∫

hdν ≤ 1−P{X � Y}, ∀ (X, Y) ∈ Γ(µ, ν), ∀ h ∈ H.

Proof. Fix h ∈ H and any coupling (X, Y) of (µ, ν). Observe that∫
hdµ−

∫
hdν = E h(X)−E h(Y)

= E [h(X)− h(Y)]1{X � Y}+E [h(X)− h(Y)]1{X � Y}.

Since h ∈ H we know that h is increasing. As a result, we have h(X) ≤ h(Y) on
{X � Y}. Using this inequality and nonnegativity of h we obtain∫

hdµ−
∫

hdν ≤ E [h(X)− h(Y)]1{X � Y} ≤ E h(X)1{X � Y}.

Since h ≤ 1 the last term is dominated by P{X � Y}. Hence (12) holds. �

Proof of proposition 3.1. Suppose that δ satisfies axiom 3.3 and that δ(µ, ν) = 1.
From these hypotheses we have existence of a sequence of couplings (Xn, Yn) ∈
Γ(µ, ν) withP{Xn � Yn} → 1. The claim µ �sd ν now follows from lemma 6.1. �

Proof of theorem 3.1. Let δ and δ′ be two maps from P ×P → [0, 1] that both satisfy
axioms 3.2 and 3.3. Fix (µ, ν) ∈ P × P . Without loss of generality we assume that
δ(µ, ν) ≤ δ′(µ, ν). We claim that the reverse inequality holds. Note that if δ′(µ, ν) =

0 then the result is trivial, and hence we take δ′(µ, ν) > 0 in what follows.

Let ε > 0 be given. By axiom 3.3, there exists a coupling (X, Y) of (µ, ν) such that

(13) P{X � Y} ≥ δ′(µ, ν)− ε.

Define λ := P{X � Y} and the measures

µ′(B) =
P{X ∈ B, X � Y}

λ
, ν′(B) =

P{Y ∈ B, X � Y}
λ

,

µ′′(B) =
P{X ∈ B, X � Y}

1− λ
, ν′′(B) =

P{Y ∈ B, X � Y}
1− λ

.



11

It is straightforward to check that these are indeed probability measures. For exam-
ple, the definition of λ gives µ′(S) = P{X ∈ S, X � Y}/λ = P{X � Y}/λ = 1.
It is also true that µ′ �sd ν′. To see this, let I ∈ BI and observe that, since I is
increasing,

µ′(I) =
P{X ∈ I, X � Y}

λ
≤ P{Y ∈ I, X � Y}

λ
= ν′(I).

Finally, expression (8) holds true. Indeed for µ we have µ(B) = P{X ∈ B}, which
can be decomposed as

P{X ∈ B, X � Y}+P{X ∈ B, X � Y} = λµ′(B) + (1− λ)µ′′(B).

Since δ satisfies axiom 3.2, it now follows that δ(µ, ν) ≥ λ. Using the definition
of λ and (13) we have δ(µ, ν) ≥ δ′(µ, ν) − ε. As ε was arbitrary we now have
δ(µ, ν) ≥ δ′(µ, ν), completing the proof of equality. �

During the next proof we require some additional notation. For our partial order
� on S, let G be the graph. That is G := {(x, y) ∈ S × S : x � y}. Let B ⊗ B
be the product σ-algebra on S× S. Let πi be the i-th coordinate projection, so that
π1(x, y) = x and π2(x, y) = y for any (x, y) ∈ S× S. As usual, given Q ⊂ S× S,
we let π1(Q) be all x ∈ S such that (x, y) ∈ Q for some y ∈ S, and similarly for π2.
Let C be the closed sets in S and let CD be the decreasing sets in C.

Proof of theorem 4.1. It is convenient if we first establish that ρ satisfies axiom 3.3
and then return to axiom 3.2. Fix µ, ν ∈ P . We start by establishing the following
inequalities:

(14) 1− sup
(X,Y)∈Γ(µ,ν)

P{X � Y} ≤ sup
I∈OI

{µ(I)− ν(I)} ≤ sup
I∈BI

{µ(I)− ν(I)}.

The second inequality is obvious and stated only for convenience. The first in-
equality is subtle, and also tighter than necessary for the current result, but useful
in the sequel. It relies on Strassen’s theorem (Strassen (1965)). In the present con-
text, Strassen’s theorem tells us that, for any ε ≥ 0 and any closed set K ⊂ S× S,
there exists a probability measure λ on (S× S,B ⊗B) with marginals µ and ν such
that λ(K) ≥ 1− ε if and only if

ν(F) ≤ µ(π1(K ∩ (S× F))) + ε, ∀ F ∈ C.

For any F ⊂ S, let Fd be the smallest decreasing set containing F. In other words,
Fd is all x ∈ S such that x � y for some y ∈ F. Note that if F is closed then,
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since � is a closed partial order, so is the set Fd (i.e., F ∈ C =⇒ Fd ∈ CD). Let
ε := supD∈CD

{ν(D)− µ(D)}. Evidently

ε ≥ sup
F∈C
{ν(Fd)− µ(Fd)} ≥ sup

F∈C
{ν(F)− µ(Fd)}.

Noting that Fd can be expressed as π1(G∩ (S× F)), it follows that, for any F ∈ C,

ν(F) ≤ µ(π1(G∩ (S× F))) + ε.

Since� is a closed partial order, the setG is closed, and Strassen’s theorem applies.
From this theorem we obtain a probability measure λ on the product space S× S
such that (a) λ(G) ≥ 1− ε and (b) λ has marginals µ and ν.

Because complements of increasing sets are decreasing and vice versa, we have

(15) sup
I∈OI

{µ(I)− ν(I)} = sup
D∈CD

{ν(D)− µ(D)} = ε ≥ 1− λ(G).

Now consider the probability space (Ω,F ,P) = (S× S,B ⊗ B, λ), and let X = π1

and Y = π2. We then have

λ(G) = λ{(x, y) ∈ S× S : x � y} = P{X � Y}.

Combining this equality with (15), we have shown the existence of a (X, Y) ∈
Γ(µ, ν) with supI∈OI

{µ(I)− ν(I)} ≥ 1−P{X � Y}. Inequality (14) now follows.

Returning to axiom 3.3, from (14) we easily obtain

(16) sup
h∈H

{∫
hdµ−

∫
hdν

}
≥ 1− sup

(X,Y)∈Γ(µ,ν)
P{X � Y},

or, equivalently, ρ(µ, ν) ≤ sup(X,Y)∈Γ(µ,ν)P{X � Y}. Hence axiom 3.3 holds.

The proof that ρ satisfies axiom 3.2 runs as follows. Fix µ, ν ∈ P and let the de-
compositions in (8) be given, with λ ∈ [0, 1] and µ′ �sd ν′. Pick any h ∈ H. We
have∫

h dµ−
∫

h dν = λ
∫

h dµ′ + (1− λ)
∫

h dµ′′ − λ
∫

h dν′ − (1− λ)
∫

h dν′′.

Using 0 ≤ h ≤ 1 we have (1− λ)
∫

h dµ′′ − (1− λ)
∫

h dν′′ ≤ 1− λ, and hence∫
h dµ−

∫
h dν ≤ λ[µ′ − ν′] + 1− λ.

Since µ′ �sd ν′ and h ∈ Hwe obtain
∫

h dµ−
∫

h dν ≤ 1−λ. Taking the supremum
and rearranging gives ρ(µ, ν) = 1− suph∈H{

∫
h dµ−

∫
h dν} ≥ λ. In other words,

axiom 3.2 holds. �
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Proof of proposition 4.1. After taking suprema, lemma 6.1 tells us that

sup
h∈H

{∫
hdµ−

∫
hdν

}
≤ 1− sup

(X,Y)∈Γ(µ,ν)
P{X � Y}.

Combining this with (14), we see that all the terms in (14) are in fact equal, and take
the common value suph∈H

{∫
hdµ−

∫
hdν
}

. This confirms the claim in proposi-
tion 4.1. �

Proof of proposition 4.2. Let µ, ν, µ′ and ν′ be as in the statement of the proposition.
From proposition 4.1 we have

∣∣ρ(µ′, ν′)− ρ(µ, ν)
∣∣ = ∣∣∣∣∣1− sup

I∈BI

{µ′(I)− ν′(I)} − 1 + sup
I∈BI

{µ(I)− ν(I)}
∣∣∣∣∣

=

∣∣∣∣∣sup
I∈BI

{µ′(I)− ν′(I)} − sup
I∈BI

{µ(I)− ν(I)}
∣∣∣∣∣

≤ sup
I∈BI

∣∣µ′(I)− ν′(I)− {µ(I)− ν(I)}
∣∣

≤ sup
B∈B

∣∣µ′(B)− µ(B)
∣∣+ sup

B∈B

∣∣ν′(B)− ν(B)
∣∣ .

This is equivalent to the statement of proposition 4.2. �
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