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Abstract

In this paper, we show that multiple interior steady states are pos-
sible in the Ramsey model with elastic labor supply. In particular, we
establish the following three results: (i) for any discount factor and
production function, there is a utility function such that a continuum
of interior steady states exist; (ii) the number of interior steady states
can also be any finite number; and (iii) for any discount factor and
production function, there is a utility function such that there is no
interior steady state. Some numerical examples are provided.
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1 Introduction

One-sector neoclassical optimal growth models have been used extensively to
address two major issues in macroeconomics: long-run growth and short-run
fluctuations. A special case of this class of models with inelastic labor supply
is known as the Ramsey model, and one of its important properties is that all
optimal paths converge to a unique steady state. This convergence property
has various cross-country implications, on which there is a large empirical
literature (e.g., Barro and Sala-i-Martin, 2004). Stochastic versions of the
Ramsey model with elastic labor supply are known as RBC (real business cy-
cle) models (e.g., King et al., 1988; Christiano and Eichenbaum, 1992), which
are in turn considered to be prototype DSGE (dynamic stochastic general
equilibrium) models. These models are often solved by linear approximation
around a steady state, which is typically assumed to be unique.

In this paper, we study the possibility of multiple steady states in the
Ramsey model with elastic labor supply. Despite the importance of this
model, to our knowledge, there has been no systematic analysis of this prob-
lem in the literature though there are various parametric models whose steady
states are solved explicitly.1

The literature on multiple steady states in one-sector neoclassical growth
models dates back to Diamond (1965), who considered an overlapping gen-
erations model; see Galor and Ryder (1989) for subsequent results. More
closely related to this paper is the analysis of multiple steady states in the
context of optimal growth, dating back to Kurz (1968). He showed that
multiple steady states are possible if utility is a function of consumption and
capital.

In this paper, we show that multiple interior steady states are possible
if utility is a function of consumption and leisure, and if leisure is not a
normal good. In particular, we establish the following three results: (i) for
any discount rate and production function (satisfying standard conditions),
there is a utility function such that a continuum of interior steady states
exist; (ii) the number of interior steady states can also be any finite number;

1In the case of inelastic labor supply, the aforementioned convergence property (which
implies the existence of a unique steady state) was established by Cass (1965) and Koop-
mans (1965) for the continuous time case, and by Brock and Mirman (1972, Section 2) for
the discrete time case. Le Van et al. (2007) showed a convergence property for the case
of elastic labor supply with heterogenous agents. Various convergence results on general
optimal growth models are also available; see Yano (1999, 2012) and the references therein.
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and (iii) for any discount factor and production function, there is a utility
function such that there is no interior steady state.

In a wider context, the connection between multiplicity of steady states
and non-normality of goods is already well recognized; see, e.g., De Hek
(1998) and Bond et al. (2012, 2014). In particular, De Hek’s work is closest
to ours in the literature; he showed through numerical examples that multiple
steady states and non-monotone dynamics are possible in a closely related
model. His model differs from ours in that current output is assumed to be
a function of the levels of capital and labor chosen in the previous period.2

However, the difference is insignificant as far as steady states are concerned;
thus our results apply to his model with minor modifications. Although it
may seem reasonable to rule out multiple steady states by assuming that
leisure is a normal good (e.g., Bosi et al., 2005), there is some empirical
evidence that suggests backward bending labor supply (e.g., Keane, 2011),
which implies that leisure is not entirely a normal good.

The rest of the paper is organized as follows. In the next section, we
present the model. In Section 3, we show some preliminary results. In
Section 4, we establish our main results. In Section 5, we offer some numerical
examples. All proofs appear in the Appendix unless otherwise indicated.

2 The Model

Consider the following one-sector optimal growth model:

max
{ct,nt,kt+1}∞t=0

∞∑
t=0

βtu(ct, nt) (1)

s.t. ∀t ∈ Z+, ct + kt+1 = f(kt, nt), (2)

0 ≤ nt ≤ 1, (3)

ct, kt+1 ≥ 0, (4)

k0 > 0 given, (5)

where ct is consumption, nt is labor (1−nt is leisure), kt is capital, β ∈ (0, 1) is
the discount factor, u is the utility function, and f is the production function.
We state our assumptions after introducing some definitions.

2In our notation, this means that the right-hand side of (2) is f(kt, nt−1). See Cai et
al. (2014) for a stochastic version of this specification.
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A feasible plan (from k0) is a set of paths {ct, nt, kt}∞t=0 satisfying (2)–(4)
(with k0 = k0). An interior plan is a feasible plan such that none of the
inequality constraints in (3) and (4) is binding for any t ∈ Z+. An optimal
plan is a feasible plan that solves the maximization problem (1)–(5). An
interior optimal plan is an optimal plan that is also an interior plan.

Throughout the paper, we maintain the following assumptions.

Assumption 1. (f1) f : R2
+ → R+ is C1 on R2

++, concave, strictly concave
in the first argument, and linearly homogeneous. (f2) For all (k, n) ∈ R2

++,
we have

f1(k, n) > 0, f2(k, n) > 0. (6)

(f3) There exists k > 0 such that

f(k, 1) = k. (7)

(f4) We have k0 ∈ (0, k]. (f5) We have

lim
k↓0

f1(k, 1) > 1/β > lim
k↑∞

f1(k, 1). (8)

Since f(k, 1) is strictly concave in k by (f1), condition (f4) implies that
for any feasible plan {ct, nt, kt} from k0 ≤ k, we have

∀t ∈ Z+, ct, kt ≤ k. (9)

We restrict the domain of u accordingly:

Assumption 2. (u1) There exists c > k such that u : [0, c] × [0, 1] →
R ∪ {−∞} is C1 on (0, c)× (0, 1) and strictly concave. (u2) For all (c, n) ∈
(0, c)× (0, 1), we have

u1(c, n) > 0, u2(c, n) < 0. (10)

It is easy to see that any interior optimal plan satisfies the following
conditions for all t ∈ Z+:

−u1(f(kt, nt)− kt+1, nt) + βu1(f(kt+1, nt+1)− kt+2, nt+1)f1(kt+1, nt+1) = 0,
(11)

u1(f(kt, nt)− kt+1, nt)f2(kt, nt) + u2(f(kt, nt)− kt+1, nt) = 0.
(12)
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Equation (11) is the Euler equation for kt+1, and equation (12) is the first-
order condition for nt. The transversality condition is

lim
t↑∞

βtu1(f(kt, nt)− kt+1, nt)kt+1 = 0. (13)

Since u and f are concave, (11)–(13) are sufficient for optimality.3

We define an interior steady state as a pair (k, n) ∈ (0, k) × (0, 1) such
that

βf1(k, n) = 1, (14)

u1(f(k, n)− k, n)f2(k, n) + u2(f(k, n)− k, n) = 0, (15)

f(k, n)− k > 0. (16)

For any interior steady state (k, n), a feasible plan {ct, nt, kt} with kt = k and
nt = n for all t ∈ Z+ is an interior optimal plan since it satisfies (11)–(13)
with ct = f(k, n)− k > 0.

3 Preliminary Results

In this section, we define some constants, and provide simple characteriza-
tions of interior steady states.

Lemma 1. There exits a unique constant γ > 0 such that for any (k, n) ∈
R2

++, we have
βf1(k, n) = 1 ⇐⇒ k = γn. (17)

Lemma 1 implies that any interior steady state (k, n) satisfies k = γn; i.e.,
the capital-labor ratio is constant across all possible interior steady states.
This allows us to focus on levels of labor in characterizing interior steady
states. We say that n ∈ (0, 1) is a steady state level of labor if the pair (k, n)
with k = γn is an interior steady state.

We define the following constants:

µ = f2(γ, 1) > 0, (18)

λ = f(γ, 1)− γ, (19)

ρ =
1

β
− 1 > 0. (20)

3See Kamihigashi (2005) for discussion on the transversality condition.
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The inequality in (18) is immediate from (6). By linear homogeneity, for all
n > 0, we have

µ = f2(γn, n), (21)

λn = f(γn, n)− γn. (22)

Thus µ and λ are the marginal product of labor and the consumption-labor
ratio, respectively, in any interior steady state. Differentiating (22) with
respect to n and using (17) and (22), we obtain4

λ = µ+ ργ > 0. (23)

The following result shows that the steady state levels of labor are char-
acterized by a single equation.

Lemma 2. Let n ∈ (0, 1). Then n is a steady state level of labor if and only
if

g(n) ≡ u1(λn, n)µ+ u2(λn, n) = 0. (24)

The proofs of the following two corollaries are straightforward and thus
omitted.

Corollary 1. There exists an interior steady state if (25) or (26) below holds:

lim
n↓0

g(n) < 0 < lim
n↑1

g(n), (25)

lim
n↓0

g(n) > 0 > lim
n↑1

g(n). (26)

Corollary 2. Suppose that there exist C1 functions v : (0, c) → R ∪ {∞}
and w : (0, 1)→ R ∪ {−∞} such that

u(c, n) = v(c) + w(n). (27)

Then there can be at most one interior steady state.

To obtain another useful characterization of interior steady states, con-
sider the following maximization problem:

max
c≥0,n∈[0,1]

u(c, n) s.t. c− µn = y, (28)

4λ = f1(γn, n)γ + f2(γn, n)− γ = γ/β + µ− γ = ργ + µ.
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where y ∈ (0, k). Since u is strictly concave, this problem has a unique
solution, which we denote by (c∗(y), n∗(y)). Provided that n ∈ (0, 1), we
have n = n∗(y) if and only if

u1(y + µn, n)µ+ u2(y + µn, n) = 0. (29)

Exploring the similarity between (24) and (29), we obtain the following:

Lemma 3. Let n ∈ (0, 1). Then n is a steady state level of labor if and only
if

n = n∗(ργn). (30)

Since µ is the marginal product of labor in any interior steady state, µ
can be interpreted as a steady state wage rate. Hence the constraint in (28)
can be viewed as a budget constraint under this wage rate given non-labor
income y. We say that consumption is a normal (inferior) good if c∗(y) is
strictly increasing (decreasing) in y whenever n∗(y) ∈ (0, 1). We say that
leisure is a normal (inferior) good if n∗(y) is strictly decreasing (increasing)
in y whenever n∗(y) ∈ (0, 1).

4 Main Results

The properties of consumption and leisure defined above are closely related
to the possibility of multiple interior steady states, as we now see:

Proposition 1. If leisure is a normal good, then there can be at most one
interior steady state.

If consumption is an inferior good, then leisure must be a normal good.
Thus the following result is immediate from Proposition 1.

Corollary 3. If consumption is an inferior good, then there can be at most
one interior steady state.

Proposition 1 implies that there can be multiple interior steady states
only if leisure is not a normal good. The following result shows that there
can even be a continuum of interior steady states.

Proposition 2. For any discount factor β ∈ (0, 1) and production func-
tion f satisfying Assumption 1, there exists a utility function u satisfying
Assumption 2 such that any n ∈ (0, 1) is a steady state level of labor.
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The number of interior steady states can also be any finite number:

Proposition 3. Let m ∈ N and 0 < η1 < η2 < · · · < ηm < 1. Then for any
discount factor β ∈ (0, 1) and production function f satisfying Assumption 1,
there exists a utility function u satisfying Assumption 2 such that n ∈ (0, 1)
is a steady state level of labor if and only if n ∈ {η1, . . . , ηm}.

Finally, it is even possible that no interior steady state exists:

Proposition 4. For any discount factor β ∈ (0, 1) and production func-
tion f satisfying Assumptions 1, there exists a utility function u satisfying
Assumptions 2 such that there exists no interior steady state.

5 Numerical Examples

In this section, we provide some numerical examples to illustrate our results.
We assume that u is bounded below, so that we can rely on dynamic program-
ming without technical concerns. The Bellman equation for the maximization
problem (1)–(5) can be written as

v(k) = max
c,n,x
{u(c, n) + βv(x) : c+ x = f(k, n), n ∈ [0, 1], c, x ≥ 0}, (31)

where k ∈ [0, k] and v : [0, k] → R is the value function. We fix f and β as
follows:

f(k, n) = kαn1−α, α = 0.4, β = 0.95. (32)

Under this specification, we have

γ = (αβ)1/(1−α) ≈ 0.245, µ = (1− α)γα ≈ 0.172, λ ≈ 0.185, k = 1. (33)

In what follows, the value function and the associated policy functions
are computed for three different utility functions.5 Although we can use g(n)
in (24) to compute interior steady states, we wish to confirm our results by
using a method that does not use g(n). In addition, dynamic programming
helps us understand other aspects of the model.

5All of these functions are computed by modified policy iteration (e.g., Puterman, 2005)
with 10,000 equally spaced grid points.
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The first utility function that we consider is

u(c, n) = c0.4 − 0.2n1.2. (34)

Figure 1(a) depicts this utility function as a function of consumption and
leisure (1 − n). By Corollary 2, there can be at most one interior steady
state under (34). This is confirmed by Figure 1(c), which shows that there
is a unique interior steady state.

The second utility function that we consider is

u(c, n) =

[
−(c− σ)2

2
+ ν

(
c− σµ

ν

)
n− τ 2

2
n2 − ζ

]1/2
, (35)

where

τ =
µ+ λ

2
≈ 0.179, ν =

τ 2 + λµ

λ+ µ
≈ 0.178, σ =

1.2kν

µ
≈ 1.244, (36)

and ζ is chosen so that u(0, 1) = 0. This function satisfies Assumption 2, as
can be seen from Figure 2(a). The utility function constructed in the proof
of Proposition 2 is the expression inside the square brackets in (35). As in
the proof, the parameter values are chosen so that any n ∈ (0, 1) solves (24);
i.e., any n ∈ (0, 1) is a steady state level of labor. This is confirmed by Figure
2(c),(e).6

The last utility function that we consider is

u(c, n) =

[
−(c− σ)2

2
+ ν

(
c− σµ

ν

)∗
n− τ 2

2
n2 − ζ

]1/2
− ε(n− 1), (37)

where ε = 0.01. This is a perturbed version of (35); all parameter values are
as above. Since (24) holds for all n ∈ (0, 1) under (35), there is no n ∈ (0, 1)
satisfying (24) under (37); i.e., there is no interior steady state. This is
confirmed by Figure 3(c).

6Numerical results based on (35) and the proof of Proposition 3 are not reported here
since they are visually almost indistinguishable from those in Figure 2.
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(a)

(b) (c)

(d) (e)

Figure 1: Functions computed under (34): (a) utility function u(c, 1− l); (b)
value function v(k); and optimal policies for (c) capital (kt+1), (d) consump-
tion (ct), and (e) labor (nt) as functions of current capital kt
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(a)

(b) (c)

(d) (e)

Figure 2: Functions computed under (35): (a) utility function u(c, 1− l); (b)
value function v(k); and optimal policies for (c) capital (kt+1), (d) consump-
tion (ct), and (e) labor (nt) as functions of current captial kt
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(a)

(b) (c)

(d) (e)

Figure 3: Functions computed under (37): (a) utility function u(c, 1− l); (b)
value function v(k); and optimal policies for (c) capital (kt+1), (d) consump-
tion (ct), and (e) labor (nt) as functions of current captial kt
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A Appendix: Proofs

A.1 Proof of Lemma 1

By Assumption 1(f5), there exists γ > 0 such that βf1(γ, 1) = 1. By linear
homogeneity, we have

∀n > 0, βf1(γn, n) = 1. (38)

We have shown the “⇐” implication in (17).
To verify the reverse implication, let (k′, n′)� 0 be such that βf1(k

′, n′) =
1. Let γ′ = k′/n′. To show that γ′ = γ, define m(γ̃) = f1(γ̃n

′, n′) for γ̃ > 0.
Then m(γ′) = f1(k

′, n′) = 1/β = m(γ), where the last equality holds by (38).
Since f is strictly concave in the first argument, m(·) is strictly decreasing.
Hence γ′ = γ.

A.2 Proof of Lemma 2

Let n ∈ (0, 1) satisfy (24). Let k = γn > 0. Then (14) holds by Lemma 1.
By (22), we have

f(k, n)− k = λn > 0. (39)

Thus (16) holds. Since f(k, 1) > f(k, n) > k by (39), we have k < k. We
obtain (15) from (39) and (21). Hence n is a steady state level of labor.

Conversely, let (k, n) ∈ (0, k) × (0, 1) satisfy (14)–(16). Then k = γn by
Lemma 1. Thus (39) holds. Substituting (39) and (21) into (15), we obtain
(24).

A.3 Proof of Lemma 3

Let n ∈ (0, 1). Suppose that n = n∗(ργn). It follows from (29) that

u1(ργn+ µn, n)µ+ u2(ργn+ µn, n) = 0. (40)

Since ργ + µ = λ by (23), we obtain (24). Conversely, assume (24). Substi-
tuting (23) into (24), we obtain (40), which implies that n = n∗(ργn).

A.4 Proof of Proposition 1

Suppose that leisure is a normal good. Then n∗(·) is strictly decreasing.
Hence there can be at most one solution n to (30). Thus by Lemma 3, there
can be at most one interior steady state.
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A.5 Proof of Proposition 2

Define φ : R2 → R by

φ(c, n) = −1

2
(c− σ)2 + ν

(
c− σµ

ν

)
n− τ 2

2
n2, (41)

where σ, τ > 0 are parameters and ν is defined by

ν =
τ 2 + λµ

λ+ µ
. (42)

For all c, n ∈ R, we have

φ1(c, n) = (σ − c) + νn, φ2(c, n) = ν
(
c− σµ

ν

)
− τ 2n. (43)

Direct computation shows that for all n ∈ R, we have7

φ1(λn, n)µ+ φ2(λn, n) = 0. (44)

It thus follows by Lemma 2 that if u = φ on [0, c] × [0, 1] for some c > k,
then any n ∈ (0, 1) is a steady state level of labor. Hence it suffices to show
that φ satisfies Assumption 2 on [0, c] × [0, 1] for some σ, τ > 0 and c > k.
To this end, we need two lemmas:

Lemma 4. Let
ĉ =

σµ

ν
. (45)

Then
∀(c, n) ∈ [0, ĉ)× [0, 1], φ1(c, n) > 0, φ2(c, n) < 0. (46)

Proof. Let (c, n) ∈ [0, ĉ) × [0, 1]. Since ĉ < σ, we have φ1(c, n) > 0 by (43).
Note that

φ2(c, n) < ν
(
ĉ− σµ

ν

)
− τ 2n = −τ 2n < 0. (47)

This completes the proof.

Lemma 5. The function φ is strictly concave if and only if

µ < τ < λ. (48)

7φ1(λn, n)µ+ φ2(λn, n) = [(σ− λn) + νn]µ+ ν(λn− σµ/ν)− τ2n = [ν(µ+ λ)− (λµ+
τ2)]n+ σµ− σµ = 0.
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Proof. Note from (43) that the Hessian matrix of φ at any (c, n) is[
φ11 φ12

φ21 φ22

]
=

[
−1 ν
ν −τ 2

]
. (49)

Thus φ is strictly concave if and only if ν2 < τ 2. Since ν, τ > 0, it follows
that φ is strictly concave if and only if ν < τ . Recalling (42), we see that
ν < τ ⇔ τ 2 +λµ < (λ+µ)τ ⇔ τ 2− (λ+µ)τ +λµ < 0⇔ (τ −λ)(τ −µ) < 0.
The last inequality is equivalent to (48) since µ < λ by (23).

To complete the proof of Proposition 2, fix τ ∈ (µ, λ) and c > k. Let σ > 0
be such that ĉ > c, where ĉ and ν are given by (45) and (42), respectively.
Suppose that u(c, n) = φ(c, n) for all (c, n) ∈ [0, c] × [0, 1]. Then Lemmas 4
and 5 imply Assumption 2. Thus by (44) and Lemma 2, any n ∈ (0, 1) is a
steady state level of labor.

A.6 Proof of Proposition 3

Let m ∈ N and 0 < η1 < η2 < · · · < ηm < 1. It suffices to show that
there exists a utility function u satisfying Assumption 2 such that n ∈ (0, 1)
satisfies (24) if and only if n ∈ {η1, . . . , ηm}. To this end, let J = {1, . . . ,m},
and define h : R+ → R by

h(n) =

∫ n

0

∏
j∈J

(x− ηj)dx. (50)

Since h′(n) =
∏

j∈J(n−ηj), we have h′(n) = 0 if and only if n ∈ {η1, . . . , ηm}.
Let c and φ be as in the proof of Proposition 2. Let ε ∈ R. Define

u(c, n) = φ(c, n) + εh(n) for (c, n) ∈ [0, c] × [0, 1]. Then for any n ∈ (0, 1),
we have g(n) = εh′(n) by (44) and (24); thus (24) holds if and only if n ∈
{η1, . . . , ηm}. It remains to show that u satisfies Assumption 2 for some
ε ∈ R.

Recalling (46) and (49), we see that if ε = 0, then u1(c, n) > 0, u2(c, n) >
0, and the Hessian matrix of u at (c, n) is negative definite for all (c, n) ∈
[0, c]× [0, 1]. Since these properties are preserved for ε sufficiently close to 0,
it follows that u satisfies Assumption 2 for such ε, as desired.
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A.7 Proof of Proposition 4

Let c and φ be as in the proof of Proposition 2. Let ε > 0. Suppose that
u(c, n) = φ(c, n) − εn for all (c, n) ∈ [0, c] × [0, 1]. It is easy to see that u
satisfies Assumption 2. By (44) and (24), we have g(n) = −ε for all n ∈ (0, 1).
Hence there is no interior steady state by Lemma 2.
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