



DP2014-04

# The Nikodym Convergence Theorem for Countably Additive Set Functions on an Arbitrary Family of Sets

## Takashi KAMIHIGASHI John STACHURSKI

February 16, 2014



Research Institute for Economics and Business Administration **Kobe University** 2-1 Rokkodai, Nada, Kobe 657-8501 JAPAN

# The Nikodym Convergence Theorem for Countably Additive Set Functions on an Arbitrary Family of Sets

Takashi Kamihigashi<sup>\*</sup> John Stachurski<sup>†</sup>

February 16, 2014

#### Abstract

Let  $\mathscr{S}$  be a semiring of subsets of a set  $\mathbb{X}$ , and let  $\sigma(\mathscr{S})$  be the  $\sigma$ -algebra generated by  $\mathscr{S}$ . Let  $\{\mu_n\}$  be a sequence of measures on  $\sigma(\mathscr{S})$  such that for each countable collection  $\{S_i\}$  of pairwise disjoint sets in  $\mathscr{S}$ ,  $\lim_n \sum_i \mu_n(S_i)$  exists in  $\mathbb{R}_+$ . Then there exists a measure  $\overline{\mu}$  on  $\sigma(\mathscr{S})$  such that  $\overline{\mu}(S) = \lim_n \mu_n(S)$  for all  $S \in \mathscr{S}$ . To show this result, we first extend the Nikodym convergence theorem to a sequence of countably additive set functions on an arbitrary family of subsets of  $\mathbb{X}$ . Then we assume that the family is a semiring and apply the Carathéodory extension theorem.

2010 Mathematics Subject Classification. Primary 28Axx. Key words and phrases. Nikodym convergence theorem, countable additivity, semiring.

\*RIEB, Kobe University, Rokkodai, Nada, Kobe 657-8501 Japan

Email: tkamihig@rieb.kobe-u.ac.jp

<sup>&</sup>lt;sup>†</sup>Research School of Economics, Australian National University, Canberra, Australia

#### 1 Introduction

The Nikodym convergence theorem states that if a sequence of measures on a common  $\sigma$ -algebra converges on every measurable set, then the setwise limit of the sequence is again a measure. This is among the most fundamental results in measure theory, and it has been extensively generalized (e.g., [8, 6]). Nevertheless, setwise convergence is often regarded as too strong a convergence criterion (e.g., [7, p. 123]). For example, weak convergence of a sequence of probability measures on the Borel  $\sigma$ -algebra of a metric space only implies convergence on "*P*-continuity" sets, where *P* is the weak limit of the sequence (e.g., [2]). In addition, the Nikodym convergence theorem is known to fail for algebras in general (e.g., [6]).

In this paper we present some elementary results that extend the Nikodym convergence theorem to less demanding convergence criteria. In particular, we consider a sequence of countably additive set functions on an arbitrary family of subsets of a set that converges setwise on this family. Under an additional condition that in effect implies "uniform countable additivity" of the sequence (e.g., [5, p. 160], [4, p. 87]), we show that its limit is a countably additive set function.

Although this is more of an observation for anyone who is familiar with the modern proofs of the Nikodym theorem (e.g., [3, 4, 7, 9]), it has a useful implication: Under the hypotheses of the above result, if the given family is a semiring, then the limit of the sequence is a measure on the semiring, which can then be extended to a measure on the  $\sigma$ -algebra generated by the semiring as a consequence of the Carathéodory extension theorem. Put differently, given a sequence of measures on the  $\sigma$ -algebra that is setwise convergent on the semiring and satisfies the additional condition mentioned above, there exists a measure to which the sequence converges setwise on the semiring but not necessarily on the  $\sigma$ -algebra.

#### 2 Preliminaries

Throughout this paper, we fix X to be an arbitrary set. Let  $\mathscr{A}$  be a family of subsets of X. Let  $M(\mathscr{A})$  be the set of set functions  $\mu : \mathscr{A} \to \mathbb{R}_+$ . Let  $\mu \in$  $M(\mathscr{A})$ . We say that  $\mu$  is *countably additive* if for each countable collection  $\{A_i\}_{i\in I}, I \subset \mathbb{N}$ , of pairwise disjoint sets in  $\mathscr{A}$  such that  $\bigcup_{i\in I} A_i \in \mathscr{A}$ , we have

(2.1) 
$$\mu\left(\bigcup_{i\in I}A_i\right) = \sum_{i\in I}A_i$$

Let  $ca(\mathscr{A})$  be the set of countably additive functions in  $M(\mathscr{A})$ . Let  $\sigma(\mathscr{A})$  be the  $\sigma$ -algebra generated by  $\mathscr{A}$ .

A family  $\mathscr{S}$  of subsets of  $\mathbb{X}$  is called a *semiring* if (i)  $\emptyset \in \mathscr{S}$ , (ii) for any  $S_1, S_2 \in \mathscr{S}$ , we have  $S_1 \cap S_2 \in \mathscr{S}$ , and (iii) for any  $S_1, S_2 \in \mathscr{S}$ , there exist pairwise disjoint sets  $C_1, \ldots, C_n \in \mathscr{S}$ ,  $n \in \mathbb{N}$ , such that  $S_1 \setminus S_2 = \bigcup_{i=1}^n C_i$ . Note that a  $\sigma$ -algebra is a semiring.

If  $\mathscr{S}$  is a semiring on  $\mathbb{X}$ , then a set function in  $ca(\mathscr{S})$  is called a *measure* on  $\mathscr{S}$ . A measure  $\mu$  on a semiring  $\mathscr{S}$  is called  $\sigma$ -finite if there exists a sequence  $\{S_i\}_{i\in\mathbb{N}}$  in  $\mathscr{S}$  such that  $\mathbb{X} = \bigcup_{i\in\mathbb{N}}S_i$  and  $\mu(S_i) < \infty$  for each  $i \in \mathbb{N}$ . Given a measure  $\mu$  on a semiring  $\mathscr{S}$ , a measure  $\nu$  on  $\sigma(\mathscr{S})$  such that  $\nu(S) = \mu(S)$  for all  $S \in \mathscr{S}$  is called an *extension* of  $\mu$  to  $\sigma(\mathscr{S})$ .

**Theorem 2.1** (Carathéodory). Any measure  $\mu$  on a semiring  $\mathscr{S}$  of subsets of  $\mathbb{X}$  has an extension to  $\sigma(\mathscr{S})$ . The extension is unique if  $\mu$  is  $\sigma$ -finite.

*Proof.* See, e.g., [1, p. 382].

We say that a sequence  $\{\mu_n\}_{n\in\mathbb{N}}$  in  $M(\mathscr{A})$  is *setwise convergent* if for each  $A \in \mathscr{A}$ ,  $\lim_{n\to\infty} \mu_n(A)$  exists in  $\mathbb{R}_+$ . For any setwise convergent sequence  $\{\mu_n\}_{n\in\mathbb{N}} \in M(\mathscr{A})$ , we define  $\mu^* \in M(\mathscr{A})$  by

(2.2) 
$$\mu^*(A) = \lim_{n \uparrow \infty} \mu_n(A), \quad \forall A \in \mathscr{A}.$$

**Theorem 2.2** (Nikodym). Let  $\mathscr{X}$  be a  $\sigma$ -algebra on  $\mathbb{X}$ . Let  $\{\mu_n\}_{n\in\mathbb{N}}$  be a setwise convergent sequence in  $ca(\mathscr{X})$ . Then  $\mu^* \in ca(\mathscr{X})$ ; i.e.,  $\mu^*$  is a measure on  $\mathscr{X}$ .

*Proof.* See, e.g., [3], [4, p. 90], [7, p. 31], or [9, p. 125].

This result is often called the Vitali-Hahn-Saks theorem (e.g., [7], [1]), which can also mean a related but different result.

#### **3** Results

Given a family  $\mathscr{A}$  of subsets of  $\mathbb{X}$ , we say that a sequence  $\{\mu_n\}_{n\in\mathbb{N}}$  in  $M(\mathscr{B})$  with  $\mathscr{A} \subset \mathscr{B}$  satisfies Condition  $\Lambda(\mathscr{A})$  if the following holds:

 $\Lambda(\mathscr{A})$  For any countable collection  $\{A_i\}_{i \in I}, I \subset \mathbb{N}$ , of pairwise disjoint sets in  $\mathscr{A}$ , the following limit exists in  $\mathbb{R}_+$ :

(3.1) 
$$\lim_{n \uparrow \infty} \sum_{i \in I} \mu_n(A_i) \in \mathbb{R}_+.$$

Under the hypotheses of the Nikodym convergence theorem, we have  $\cup_i A_i \in \mathscr{X}$  for any countable collection  $\{A_i\}$  of pairwise disjoint sets in  $\mathscr{X}$ , and  $\sum_i \mu_n(A_i) = \mu_n(\cup_i A_i) \to \mu^*(\cup_i A_i)$  as  $n \uparrow \infty$ . Thus  $\{\mu_n\}$  satisfies Condition  $\Lambda(\mathscr{X})$ . In fact, as long as  $\mathscr{X}$  is a  $\sigma$ -algebra, setwise convergence on  $\mathscr{X}$  is equivalent to Condition  $\Lambda(\mathscr{X})$ . Setwise convergence in this case implies that  $\{\mu_n\}$  is "uniformly countably additive," which is often stated as one of the conclusions of the Nikodym convergence theorem (e.g., [4, 9]).

For an arbitrary family  $\mathscr{A}$  of subsets of X, Condition  $\Lambda(\mathscr{A})$  implies setwise convergence on  $\mathscr{A}$ , but the converse is false because an arbitrary countable collection  $\{A_i\}$  of pairwise disjoint sets in  $\mathscr{A}$  may not satisfy  $\bigcup_i A_i \in \mathscr{A}$ . Condition  $\Lambda(\mathscr{A})$  virtually forces setwise convergence on any such union as if it belonged to  $\mathscr{A}$ . In fact the condition is precisely what is required for the modern proofs of the Nikodym convergence theorem to go through without substantial modification (e.g., [3], [4, p. 90], [7, p. 31], [9, p. 125]). This is the idea of the following result.

**Theorem 3.1.** Let  $\mathscr{A}$  be a family of subsets of  $\mathbb{X}$ . Let  $\{\mu_n\}_{n\in\mathbb{N}}$  be a sequence in  $ca(\mathscr{A})$  satisfying Condition  $\Lambda(\mathscr{A})$ . Then  $\mu^* \in ca(\mathscr{A})$ .

*Proof.* See Section 4.

**Corollary 3.1.** Let  $\mathscr{S}$  be a semiring of subsets of  $\mathbb{X}$ . Let  $\{\mu_n\}_{n\in\mathbb{N}}$  be a sequence in  $ca(\mathscr{S})$  satisfying Condition  $\Lambda(\mathscr{S})$ . Then the following conclusions hold:

- (a)  $\mu^* \in ca(\mathscr{S})$ ; *i.e.*,  $\mu^*$  is a measure on  $\mathscr{S}$ .
- (b) There exists an extension of  $\mu^*$  to  $\sigma(\mathscr{S})$ .

(c) The extension is unique if there exists a sequence  $\{S_i\}_{i\in\mathbb{N}}$  in  $\mathscr{S}$  such that  $\mathbb{X} = \bigcup_{i\in\mathbb{N}}S_i$ .

*Proof.* Conclusion (a) follows from Theorem 3.1. Conclusion (b) is immediate from (a) and the Carathéodory extension theorem. To see conclusion (c), note from the definition of  $ca(\mathscr{S})$  that  $\mu(S) < \infty$  for all  $S \in \mathscr{S}$ . This together with the condition of conclusion (c) implies that  $\mu^*$  is  $\sigma$ -finite. Thus the conclusion holds by the Carathéodory extension theorem.

The following result is an immediate consequence of Corollary 3.1.

**Theorem 3.2.** Let  $\mathscr{S}$  be a semiring of subsets of  $\mathbb{X}$ . Let  $\{\mu_n\}_{n\in\mathbb{N}}$  be a sequence of measures on  $\sigma(\mathscr{S})$  satisfying Condition  $\Lambda(\mathscr{S})$ . Then there exists a measure  $\overline{\mu}$  on  $\sigma(\mathscr{S})$  such that  $\overline{\mu}(S) = \lim_{n\uparrow\infty} \mu_n(S)$  for all  $S \in \mathscr{S}$ . Furthermore,  $\overline{\mu}$  is unique if there exists a sequence  $\{S_i\}_{i\in\mathbb{N}}$  in  $\mathscr{S}$  such that  $\mathbb{X} = \bigcup_{i\in\mathbb{N}}S_i$ .

Note that if  $\mathscr{S} = \sigma(\mathscr{S})$  in the above result, then we recover the Nikodym convergence theorem.

#### 4 Proof of Theorem 3.1

The following proof closely parallels that of [9, Theorem 7.48]. We use the following classical result [9, Theorem 7.2].

**Theorem 4.1** (Hahn). For  $n, i \in \mathbb{N}$ , let  $a_{n,i} \in \mathbb{R}_+$ . Assume the following:

- (a) For each  $n \in \mathbb{N}$ , we have  $\sum_{i \in \mathbb{N}} a_{n,i} < \infty$ .
- (b) For any  $I \subset \mathbb{N}$ ,  $\lim_{n \uparrow \infty} \sum_{i \in I} a_{n,i}$  exists in  $\mathbb{R}_+$ .

For each  $i \in \mathbb{N}$ , let  $a_i = \lim_{n \uparrow \infty} a_{n,i}$ , which exists in  $\mathbb{R}_+$  by condition (b) above. Then for any  $I \subset \mathbb{N}$  we have

(4.1) 
$$\lim_{n \uparrow \infty} \sum_{i \in I} a_{n,i} = \sum_{i \in I} a_i < \infty.$$

To prove Theorem 3.1, let  $\{A_i\}_{i \in I}, I \subset \mathbb{N}$ , be a countable collection of pairwise disjoint sets in  $\mathscr{A}$  with  $A \equiv \bigcup_{i \in I} A_i \in \mathscr{A}$ . To show that  $\mu^* \in ca(\mathscr{A})$ , we need to verify that

(4.2) 
$$\mu^*(A) = \sum_{i \in I} \mu(A_i).$$

If I is a finite set, then (4.2) is immediate. Suppose that I is infinite; without loss of generality, suppose that  $I = \mathbb{N}$ .

Since  $\mu_n \in ca(\mathscr{A})$  for all  $n \in \mathbb{N}$ , we have

(4.3) 
$$\forall n \in \mathbb{N}, \quad \infty > \mu_n(A) = \sum_{i \in \mathbb{N}} \mu_n(A_i).$$

For  $n, i \in \mathbb{N}$ , let  $a_{n,i} = \mu_n(A_i)$ . Then condition (a) of Theorem 4.1 is immediate from (4.3). Condition (b) is also immediate from Condition  $\Lambda(\mathscr{A})$ . Thus by (2.2), Condition  $\Lambda(\mathscr{A})$ , and Theorem 4.1 we have

(4.4) 
$$\mu^*(A) = \lim_{n \uparrow \infty} \mu_n(A) = \lim_{n \uparrow \infty} \sum_{i \in \mathbb{N}} \mu_n(A_i) = \sum_{i \in \mathbb{N}} \mu^*(A_i).$$

Hence (4.2) holds. It follows that  $\mu^* \in ca(\mathscr{A})$ .

### References

- Aliprantis, C.D., Border, K.M., 2006, Infinite Dimensional Analysis: A Hitchhiker's Guide, 3rd Edition. Spring, Berlin.
- [2] Billingsley, P., 1999, Convergence of Probability Measures, Second Edition. Wiley-Interscience, New York.
- [3] Brooks, J.K., 1969, On the Vitali-Hahn-Saks and Nikodým theorems, Proceedings of the National Academy of Sciences of the United States of America 64, 468–471.
- [4] Diestel, J., 1984, Sequences and Series in Banach Spaces. Springer-Verlag, New York. p. 91
- [5] Dunford, N., Schwartz, J.T., 1957, Linear Operators, Part I: General Theory, Interscience, New York. p. 160.
- [6] de Lucia, P., Pap, E., 2002, Convergence theorems for set functions, in Handbook of Measure Theory, ed. by Pap, E., Elsevier Science, Amsterdam, pp. 125–178.
- [7] Doob, J.L., 1994, Measure Theory. Springer, New York.

- [8] Mazarío, F.G., 2001, Convergence theorems for topological group valued measures on effect algebras, Bulletin of the Australian Mathematical Society 64, 213–231.
- [9] Swartz, C., 2009, Multiplier Convergent Series. World Scientific, New Jersey.