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Abstract

Let S be a semiring of subsets of a set X, and let σ(S ) be the
σ-algebra generated by S . Let {µn} be a sequence of measures on
σ(S ) such that for each countable collection {Si} of pairwise disjoint
sets in S , limn

∑
i µn(Si) exists in R+. Then there exists a measure

µ on σ(S ) such that µ(S) = limn µn(S) for all S ∈ S . To show
this result, we first extend the Nikodym convergence theorem to a
sequence of countably additive set functions on an arbitrary family of
subsets of X. Then we assume that the family is a semiring and apply
the Carathéodory extension theorem.
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1 Introduction

The Nikodym convergence theorem states that if a sequence of measures on
a common σ-algebra converges on every measurable set, then the setwise
limit of the sequence is again a measure. This is among the most fundamen-
tal results in measure theory, and it has been extensively generalized (e.g.,
[8, 6]). Nevertheless, setwise convergence is often regarded as too strong a
convergence criterion (e.g., [7, p. 123]). For example, weak convergence of
a sequence of probability measures on the Borel σ-algebra of a metric space
only implies convergence on “P -continuity” sets, where P is the weak limit
of the sequence (e.g., [2]). In addition, the Nikodym convergence theorem is
known to fail for algebras in general (e.g., [6]).

In this paper we present some elementary results that extend the Nikodym
convergence theorem to less demanding convergence criteria. In particular,
we consider a sequence of countably additive set functions on an arbitrary
family of subsets of a set that converges setwise on this family. Under an
additional condition that in effect implies “uniform countable additivity” of
the sequence (e.g., [5, p. 160], [4, p. 87]), we show that its limit is a countably
additive set function.

Although this is more of an observation for anyone who is familiar with
the modern proofs of the Nikodym theorem (e.g., [3, 4, 7, 9]), it has a useful
implication: Under the hypotheses of the above result, if the given family
is a semiring, then the limit of the sequence is a measure on the semiring,
which can then be extended to a measure on the σ-algebra generated by
the semiring as a consequence of the Carathéodory extension theorem. Put
differently, given a sequence of measures on the σ-algebra that is setwise
convergent on the semiring and satisfies the additional condition mentioned
above, there exists a measure to which the sequence converges setwise on the
semiring but not necessarily on the σ-algebra.

2 Preliminaries

Throughout this paper, we fix X to be an arbitrary set. Let A be a family
of subsets of X. Let M(A ) be the set of set functions µ : A → R+. Let µ ∈
M(A ). We say that µ is countably additive if for each countable collection
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{Ai}i∈I , I ⊂ N, of pairwise disjoint sets in A such that ∪i∈IAi ∈ A , we have

µ

(⋃
i∈I

Ai

)
=
∑
i∈I

Ai.(2.1)

Let ca(A ) be the set of countably additive functions in M(A ). Let σ(A )
be the σ-algebra generated by A .

A family S of subsets of X is called a semiring if (i) ∅ ∈ S , (ii) for any
S1, S2 ∈ S , we have S1 ∩ S2 ∈ S , and (iii) for any S1, S2 ∈ S , there exist
pairwise disjoint sets C1, . . . , Cn ∈ S , n ∈ N, such that S1 \ S2 = ∪ni=1Ci.
Note that a σ-algebra is a semiring.

If S is a semiring on X, then a set function in ca(S ) is called a measure on
S . A measure µ on a semiring S is called σ-finite if there exists a sequence
{Si}i∈N in S such that X = ∪i∈NSi and µ(Si) <∞ for each i ∈ N. Given a
measure µ on a semiring S , a measure ν on σ(S ) such that ν(S) = µ(S)
for all S ∈ S is called an extension of µ to σ(S ).

Theorem 2.1 (Carathéodory). Any measure µ on a semiring S of subsets
of X has an extension to σ(S ). The extension is unique if µ is σ-finite.

Proof. See, e.g., [1, p. 382].

We say that a sequence {µn}n∈N in M(A ) is setwise convergent if for each
A ∈ A , limn→∞ µn(A) exists in R+. For any setwise convergent sequence
{µn}n∈N ∈M(A ), we define µ∗ ∈M(A ) by

µ∗(A) = lim
n↑∞

µn(A), ∀A ∈ A .(2.2)

Theorem 2.2 (Nikodym). Let X be a σ-algebra on X. Let {µn}n∈N be
a setwise convergent sequence in ca(X ). Then µ∗ ∈ ca(X ); i.e., µ∗ is a
measure on X .

Proof. See, e.g., [3], [4, p. 90], [7, p. 31], or [9, p. 125].

This result is often called the Vitali-Hahn-Saks theorem (e.g., [7], [1]),
which can also mean a related but different result.
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3 Results

Given a family A of subsets of X, we say that a sequence {µn}n∈N in M(B)
with A ⊂ B satisfies Condition Λ(A ) if the following holds:

Λ(A ) For any countable collection {Ai}i∈I , I ⊂ N, of pairwise disjoint sets
in A , the following limit exists in R+:

lim
n↑∞

∑
i∈I

µn(Ai) ∈ R+.(3.1)

Under the hypotheses of the Nikodym convergence theorem, we have
∪iAi ∈ X for any countable collection {Ai} of pairwise disjoint sets in
X , and

∑
i µn(Ai) = µn(∪iAi) → µ∗(∪iAi) as n ↑ ∞. Thus {µn} satisfies

Condition Λ(X ). In fact, as long as X is a σ-algebra, setwise convergence
on X is equivalent to Condition Λ(X ). Setwise convergence in this case
implies that {µn} is “uniformly countably additive,” which is often stated as
one of the conclusions of the Nikodym convergence theorem (e.g., [4, 9]).

For an arbitrary family A of subsets of X, Condition Λ(A ) implies setwise
convergence on A , but the converse is false because an arbitrary countable
collection {Ai} of pairwise disjoint sets in A may not satisfy ∪iAi ∈ A .
Condition Λ(A ) virtually forces setwise convergence on any such union as if
it belonged to A . In fact the condition is precisely what is required for the
modern proofs of the Nikodym convergence theorem to go through without
substantial modification (e.g., [3], [4, p. 90], [7, p. 31], [9, p. 125]). This is
the idea of the following result.

Theorem 3.1. Let A be a family of subsets of X. Let {µn}n∈N be a sequence
in ca(A ) satisfying Condition Λ(A ). Then µ∗ ∈ ca(A ).

Proof. See Section 4.

Corollary 3.1. Let S be a semiring of subsets of X. Let {µn}n∈N be a se-
quence in ca(S ) satisfying Condition Λ(S ). Then the following conclusions
hold:

(a) µ∗ ∈ ca(S ); i.e., µ∗ is a measure on S .

(b) There exists an extension of µ∗ to σ(S ).
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(c) The extension is unique if there exists a sequence {Si}i∈N in S such
that X = ∪i∈NSi.

Proof. Conclusion (a) follows from Theorem 3.1. Conclusion (b) is immediate
from (a) and the Carathéodory extension theorem. To see conclusion (c),
note from the definition of ca(S ) that µ(S) < ∞ for all S ∈ S . This
together with the condition of conclusion (c) implies that µ∗ is σ-finite. Thus
the conclusion holds by the Carathéodory extension theorem.

The following result is an immediate consequence of Corollary 3.1.

Theorem 3.2. Let S be a semiring of subsets of X. Let {µn}n∈N be a
sequence of measures on σ(S ) satisfying Condition Λ(S ). Then there ex-
ists a measure µ on σ(S ) such that µ(S) = limn↑∞ µn(S) for all S ∈ S .
Furthermore, µ is unique if there exists a sequence {Si}i∈N in S such that
X = ∪i∈NSi.

Note that if S = σ(S ) in the above result, then we recover the Nikodym
convergence theorem.

4 Proof of Theorem 3.1

The following proof closely parallels that of [9, Theorem 7.48]. We use the
following classical result [9, Theorem 7.2].

Theorem 4.1 (Hahn). For n, i ∈ N, let an,i ∈ R+. Assume the following:

(a) For each n ∈ N, we have
∑

i∈N an,i <∞.

(b) For any I ⊂ N, limn↑∞
∑

i∈I an,i exists in R+.

For each i ∈ N, let ai = limn↑∞ an,i, which exists in R+ by condition (b)
above. Then for any I ⊂ N we have

lim
n↑∞

∑
i∈I

an,i =
∑
i∈I

ai <∞.(4.1)

To prove Theorem 3.1, let {Ai}i∈I , I ⊂ N, be a countable collection of
pairwise disjoint sets in A with A ≡ ∪i∈IAi ∈ A . To show that µ∗ ∈ ca(A ),
we need to verify that

µ∗(A) =
∑
i∈I

µ(Ai).(4.2)
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If I is a finite set, then (4.2) is immediate. Suppose that I is infinite; without
loss of generality, suppose that I = N.

Since µn ∈ ca(A ) for all n ∈ N, we have

(4.3) ∀n ∈ N, ∞ > µn(A) =
∑
i∈N

µn(Ai).

For n, i ∈ N, let an,i = µn(Ai). Then condition (a) of Theorem 4.1 is im-
mediate from (4.3). Condition (b) is also immediate from Condition Λ(A ).
Thus by (2.2), Condition Λ(A ), and Theorem 4.1 we have

µ∗(A) = lim
n↑∞

µn(A) = lim
n↑∞

∑
i∈N

µn(Ai) =
∑
i∈N

µ∗(Ai).(4.4)

Hence (4.2) holds. It follows that µ∗ ∈ ca(A ).
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