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Abstract

In this paper we introduce a technique for perfect sampling from the stationary
distribution of possibly non-monotone regenerative processes, such as those that
describe industry dynamics (where regeneration corresponds to the process of exit
of firms and entry of new ones). The algorithm we propose is a version of coupling
from the past that is straightforward to implement, and that exploits the regenera-
tive property of the process in order to achieve rapid coupling.
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sampling

1 Introduction

As is well-known, coupling from the past (CFTP) algorithms can generate perfect sam-
ples from otherwise intractable stationary distributions [14]. This makes them an at-
tractive alternative to ordinary forward simulation, where errors are typically difficult
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to assess. Parallelization is almost trivial in most cases, making it possible to rapidly
generate large numbers of independent and identically distributed draws. Because
the resulting sample is IID and exact, it can be used to obtain unbiased estimates and
confidence intervals for moments and distributions of interest.

The CFTP technique is often used for models with large but discrete state spaces, where
standard methods for computing stationary distributions are infeasible. Applications
range from statistical mechanics to page ranking and the design of peer-to-peer file
sharing systems [14, 9, 8, 10]. More recently, researchers have developed techniques
for implementing CFTP methods in continuous state settings. Murdoch and Green
[12] showed that CFTP can in principle be used in continuous state settings when the
underlying Markov process satisfies Doeblin’s condition. This condition requires the
existence of a nonnegative lower bound function that (a) integrates to a positive value,
(b) depends only on the next state, and (c) is pointwise dominated by the transition
density function (which depends on both the current state and the next). Theoretical
work along the same lines can be found in [5, 1].

Although these results are fundamental, they can be difficult to apply. Murdoch and
Green [12, p. 48] admit that their basic method, which is in principle applicable to our
model, may have “a limited range of application for two reasons.” First, the function
associated with Doeblin’s condition “may be too small for practical use” to generate
exact draws in a reasonable length of time. Second, their method requires the user
to draw from scalar multiples of the lower bound transition density and a residual
kernel. It can be nontrivial or even impossible to explicitly calculate and draw from
these distributions. If approximations are required, this to some degree defeats the
purpose of exact sampling.

For these reasons, CFTP methods tend to be popular only in specific settings, perhaps
the most notable of which is where the underlying Markov process is stochastically
monotone. For such processes, efficient and straightforward CFTP methods are avail-
able. Corcoran and Tweedie [3] developed general results on CFTP particularly suit-
able for monotone Markov processes. An application in the economic literature can be
found in [13], where monotonicity makes the algorithm straightforward to implement
and analyze.

In this paper we study regenerative processes that are typically non-monotone, and
take the form

Φt+1 = g(Φt, Ut+1)1{Φt ≥ x}+ Zt+11{Φt < x}. (1)

Here Φt is the state variable taking values in a closed interval, x is a point in the interior
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of that interval, g is a given function, 1{·} is an indicator function and {Ut} and {Zt}
are IID processes. The function g is assumed to be monotone increasing in its first
argument, and such that the state is driven below x with positive probability in finite
steps. When Φt < x the process regenerates, being drawn from the distribution of Zt+1.
If this distribution is stochastically dominated by that of g(x, Ut+1), then the process is
stochastically monotone in the usual sense [3]. As we discuss below, this is not the case
in many models of interest. The purpose of this paper is to develop a CFTP algorithm
that is designed to produce exact draws from the stationary distribution even in the
non-monotone case.

Regenerative models of the form (1) are often used in economics to study industry
dynamics—typical examples include [7, 11, 2]. Regeneration plays an essential role
in the theory of industrial organization, where Schumpeter’s notion of “creative de-
struction” [16] summarizes the idea that new and more productive firms replace older
ones, rejuvenating overall economic activity. In this context, the model in (1) has the
following interpretation: A large number of firms produce in a given industry. While
incumbent, their productivity evolves according to Φt+1 = g(Φt, Ut+1), but when their
productivity drops below a threshold level x they exit, and are replaced by a new firm
with productivity drawn according to the distribution of Zt. The value x is obtained by
the solution to a dynamic programming problem, taking in to account revenue, costs
and so on (although in this paper we take it as given). The stationary distribution of the
model can be regarded as representing the time-invariant cross-sectional distribution
of productivity in the industry.

The assumption that g is increasing in its first argument is based on the idea that if firm
A has higher productivity than firm B today, then firm A is expected to have higher
productivity than firm B tomorrow provided that both firms survive. On the other
hand, if firm B does not survive and the productivity of firm A is close to the threshold
level x, then a new entrant replacing firm B is likely to be more productive than firm
A. This characteristic of entry and exit makes the entire process non-monotone.

Other applications for the regenerative model (1) can be found in operations research
and statistical planning. For example, consider the problem of optimal replacement of
a part or machine, the performance of which degrades stochastically over time. Typ-
ically, the solution to the planning problem involves replacement when some mea-
sure of performance falls below a certain threshold [15]. A similar idea is rebooting or
restarting operating systems [4]. The performance of these systems can also degrade
over time as a result of memory leaks, software conflicts and so on. An essential fea-
ture of these models is again non-monotonicity: the very purpose of replacement and
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rebooting is to break monotonicity and rejuvenate performance.

While we do not assume that the entire process (1) is monotone, we do assume that g is
increasing in its first argument, as discussed above, and we heavily exploit this prop-
erty in our algorithm. We show that the algorithm terminates successfully in finite
time with probability one by using both the monotonicity of productivity for incum-
bents and the regenerative property introduced by new entrants. Our algorithm is
distinct from Murdoch and Green’s method discussed above [12], in that it does not
use Doeblin’s condition, and does not require explicit knowledge of the transition den-
sity.1 As long as one can simulate the overall Markov process, one can sample exactly
from the stationary distribution using the algorithm.2

2 Preliminaries

In this section we briefly review a benchmark model of firm dynamics in a competitive
industry where entry and exit is endogenously determined [7]. In the model there is a
large number of firms that produce a homogeneous good. The firms face idiosyncratic
productivity shocks that follow a Markov process on S := [0, 1]. The conditional cu-
mulative distribution function for the shock process is denoted by F(φ′ | φ). Following
[7], we impose the following restrictions:

Assumption 2.1. F is decreasing in its second argument and, for any ε > 0 and any
φ ∈ S, there exists an integer n such that Fn(ε | φ) > 0.3

We let P denote the corresponding stochastic kernel. That is, P(φ, A) :=
∫

A F(dφ′ | φ)
for φ ∈ S and A ∈ B, where B represents the Borel sets on [0, 1]. Incumbent firms
exit the industry whenever their current productivity falls below a reservation value
xt. Letting Mt be the mass of entrants at time t and ν be the Borel probability measure
from which the productivity of entrants is drawn, the sequence of firm distributions
{µt} on S satisfies µt+1(A) =

∫
P(φ, A)1{φ ≥ xt}µt(dφ) + Mt+1ν(A) for all A ∈ B.

At the stationary equilibrium, both x and M are constant, and a stationary distribution

1The assumptions used to show the probability one termination of the algorithm in fact imply Doe-
blin’s condition for some n-step transition, but our proof of this property does not use the latter.

2As usual, exactness is modulo the errors associated with floating point arithmetic, which cannot be
avoided.

3Fn(· | φ) is the conditional distribution for productivity after n periods, given current productivity
φ.
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µ is a Borel probability4 measure µ satisfying

µ(A) =
∫

P(φ, A)1{φ ≥ x}µ(dφ) + Mν(A) (A ∈ B). (2)

It follows from (2) and µ(S) = P(φ, S) = ν(S) = 1 that M = M(x, µ) := µ{φ ∈ S :
φ < x}. As a result, we can also write (2) as

µ(A) =
∫

Q(φ, A)µ(dφ) (3)

where
Q(φ, A) := P(φ, A)1{φ ≥ x}+ ν(A)1{φ < x}. (4)

Equation (3) states that µ is a stationary distribution for the stochastic kernel Q in the
usual sense of time invariance. The kernel Q has only one stationary distribution [7].
For the purposes of this paper we will treat x as given. For typical parameter values
the stationary distribution has no analytical solution.

It is straightforward to produce an ergodic Markov process suitable for simulation such
that its stationary distribution coincides with the distribution µ in (3). In essence, we
need a method for sampling from the stochastic kernel Q. The first step is to simulate
from the conditional distribution P(φ, ·) = F(· | φ). In particular, we seek a random
variable U and a function g such that D(g(φ, U)) = F(· | φ) for all φ ∈ S. (Here D(X)

indicates the distribution of random variable X.) This can be achieved via the inverse
transform method, where U is uniform on [0, 1] and g(φ, u) = F−1(u | φ).5 Now con-
sider the process {Φt} defined by

Φt+1 = g(Φt, Ut+1)1{Φt ≥ x}+ Zt+11{Φt < x} (5)

where {(Ut, Zt)} is IID with D(Zt) = ν and D(Ut) = Uniform[0, 1]. Comparing (4)
and (5), it can be seen that {Φt} is a Markov process with stochastic kernel Q.

3 Exact Sampling

Let {(Ut, Zt)}t∈Z be an infinite sequence of IID shocks indexed on Z and with each pair
(Ut, Zt) having the product distribution Uniform[0, 1]× ν. To simplify notation we will

4We focus only on normalized measures, since other cases are just scalar multiples.
5Here F−1(· | φ) is the generalized inverse of F(·|φ). That is, F−1(u | φ) := inf{z : F(z | φ) ≥ u}.
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let gt := g(·, Ut), so that, for example, gt · · · g1 φ := gt ◦ gt−1 ◦ · · · ◦ g1(φ) is exogenous
productivity at t, given time zero productivity φ ∈ S. To further simplify notation, let

ht(φ) := g(φ, Ut)1{φ ≥ x}+ Zt1{φ < x},

so that (5) becomes Φt+1 = ht+1 Φt := ht+1(Φt).

Now fix T ≥ 1. For each φ ∈ S, there is a corresponding “tracking process” that starts
at time −T with value φ, and then updates with maps h−T+1, h−T+2, . . . , h0, obtaining
the value h0 · · · h−T+1 φ at time zero. We say that the tracking processes coalesce if, for
some T ∈ N, the set of final values

h0 · · · h−T+1(S) := {h0 · · · h−T+1 φ : φ ∈ S} (6)

is a singleton. What we will now show is that under mild conditions coalescence oc-
curs with probability one, and, moreover, that it is not necessary to keep track of the
full continuum of tracking processes in order to find the value of the singleton. In par-
ticular, we show that, conditional on a certain event described below, the set of final
values h0 · · · h−T+1(S) has only finitely many possibilities. Hence coalescence occurs
whenever these finite possibilities take the same value. All of these finite possibilities
are computable. To begin describing them, let T > 1 be given, let

ΣT := {k ∈ N : 1 ≤ k < T and g−T+k · · · g−T+2 · g−T+1 1 < x},

and let σT := min ΣT. Intuitively, σT is the number of periods that an incumbent firm
survives, given that it starts at time −T with maximal productivity 1 and faces the
shock sequence {Ut}t∈Z. Clearly σT is only defined when ΣT is nonempty. However,
the probability that ΣT is nonempty converges to one as T → ∞ by assumption 2.1.
Moreover, it is remarkable that if ΣT is nonempty, then the set h0 · · · h−T+1(S), which
contains the final values of the tracking processes started at −T, can have only finitely
many values:

Lemma 3.1. If ΣT is nonempty, then h0 · · · h−T+1(S) ⊂ ΛT, where

ΛT := {h0 · · · h−T+k+1 Z−T+k : k = 1, . . . , σT + 1}. (7)

The proof of lemma 3.1 is given in section 4. The intuition for the result can be obtained
by considering figure 1. In the figure, T = 10. Tracking processes are plotted for 50
different initial values of φ ∈ S. (Ideally, tracking processes would be plotted from
every φ ∈ S, but this is clearly impossible.) For this particular realization of shocks,
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Figure 1: Tracking processes with T = 10 and σT = 8

the set ΣT is nonempty because the process starting from 1 at time −10 falls below x
at t = −2 (and hence σT = 10− 2 = 8). As is clear from the figure, the fact that the
process starting from 1 at time −10 falls below x at t = −2 implies that all tracking
processes fall below x at least once between−10 and−2 (recall that the productivity of
incumbents is monotone). Moreover, if any collection of tracking processes fall below
x at some point in time t, they subsequently couple, taking the common value Zt+1 at
t + 1 and being equal from then on. As a result, by t = −1, there are at most σT + 1 = 9
distinct tracking processes. Their time zero values are included in the set ΛT defined
in lemma 3.1. In particular, ΛT is the time zero values of the processes that start below
x at dates −10,−9, . . . ,−2.

To see the importance of lemma 3.1, let {Φt}t∈Z be a stationary, doubly-indexed pro-
cess on the same probability space as {(Ut, Zt)}t∈Z that obeys Φt+1 = ht+1 Φt for all
t ∈ Z. The common marginal distribution of Φt is µ. Since Φ−T lies somewhere in
S, we know that Φ0 = h0 · · · h−T+1 Φ−T ∈ h0 · · · h−T+1 (S). Moreover, if the set ΣT is
nonempty, then lemma 3.1 yields the inclusion h0 · · · h−T+1 (S) ⊂ ΛT, and Φ0 lies in
the finite observable set ΛT. In particular, if ΛT is a singleton, then the value of Φ0 is
revealed as the value of that singleton.

Figures 2 and 3 show simulations with successful and unsuccessful coalescence re-
spectively. In each figure, the top panel shows only the tracking processes. (As with
figure 1, the full continuum of tracking processes cannot be plotted, so we show only
50.) The bottom panel shows the tracking processes and the path of {Φt}. In reality,
the path of {Φt} is not observed. However, in figure 2, there is only one final, coa-
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Figure 2: Successful coalescence from T = 50
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Figure 3: Failure of coalescence
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lesced value, and Φ0 must take this value. Hence Φ0 is observed. On the other hand,
in figure 3, Φ0 is equal to one of two final values, and we have no way of identifying
which one it is.

Now let us consider how to use our results to sample from µ by generating observa-
tions of Φ0. In order to avoid conditioning on coalescence by a certain point in time,
we wish to reveal the value of Φ0 for every random seed. This can be done by fixing
the seed, which determines the values of the shock processes, and then taking T larger
and larger until coalescence occurs. Algorithm 1 gives details. The algorithm termi-
nates with an exact draw from µ. Replication with independent shocks will generate
independent draws.

Algorithm 1: Generates an exact draw from µ

fix T to be an integer greater than 1;
draw (U0, Z0), . . . , (U−T+1, Z−T+1) independently from their distributions;
repeat

compute the set ΣT ;
if ΣT is nonempty then

compute the set ΛT ;
if ΛT is a singleton then

set Φ0 to be the value of that singleton ;
break ;

end
end
draw (U−T, Z−T) and append to list (U0, Z0), . . . , (U−T+1, Z−T+1) ;
set T = T + 1 ;

end
return Φ0 ;

At this stage we do not know that the algorithm will terminate with probability one.
This issue is central to the correctness of the algorithm because, as discussed above,
the way we avoid conditioning is by revealing the value of Φ0 for every random seed.
We now show that probability one termination in finite time holds under the following
condition, which is satisfied by many standard distributions.

Assumption 3.1. If G ⊂ S is a nonempty open set, then ν(G) > 0.
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Figure 4: Stationary density

Proposition 3.1. Let T∗ := min{T ∈ N : ΣT is nonempty and ΛT is a singleton }. If as-
sumption 3.1 holds, then there exists a γ ∈ (0, 1) such that P{T∗ > t} ≤ γt. In particular,
P{T∗ < ∞} = 1.

Note that proposition 3.1 not only gives probability one occurrence, but also provides
the geometric rate P{T∗ > t} = O(γt). The proof of proposition 3.1 is given in sec-
tion 4.

The web page https://github.com/jstac/hh sampling contains a simple implemen-
tation of algorithm 1. We tested the code by following [6] in taking the distribution ν

for new entrants to be uniform, and the process for incumbents to be Φt+1 = gt+1Φt =

a + ρΦt + εt+1 where {εt} is IID with distribution N(0, σ2). To bound the process we
added reflecting barriers at 0 and 1. The parameters were set to a = 0.36, ρ = 0.4 and
σ = 0.1, while x was set to 0.49, so that approximately 40% of incumbents exit within
5 years (see [7, p. 1127]). For these parameters, running the program on a standard
workstation without parallelization produces about 36,000 independent draws from µ

per second.6

Figure 4 shows the density computed from 36,000 observations combined with a stan-
dard nonparametric kernel density estimator (using a Gaussian kernel). Figure 5 shows
a 95% confidence set for the cumulative distribution function corresponding to µ, based
on the same observations and calculated using the Kolmogorov distribution of the sup
norm deviation between true and empirical cdfs. The Kolmogorov result is applicable
here because the draws are exact and IID. The true distribution function lies entirely
between the two bands with 95% probability.

6Our workstation has a 2.67GHz Intel CPU and 4 gigabytes of RAM.
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Figure 5: 95% confidence set for the stationary distribution

4 Proofs

In the following proofs T is fixed, and we write σ for σT to simplify notation.

Proof of lemma 3.1. Let ΣT be nonempty. As a first step, we show that if φ ≥ x, then
there exists a j ∈ {1, . . . , σ} such that h−T+j · · · h−T+1 φ < x. To see that this is so, fix
φ ≥ x and suppose that the statement fails. In other words, h−T+j · · · h−T+1 φ ≥ x for
j ∈ {1, . . . , σ}. We know that if y ≥ x, then hi y = gi y. It follows that h−T+σ · · · h−T+1 φ =

g−T+σ · · · g−T+1 φ. But then

x ≤ h−T+σ · · · h−T+1 φ = g−T+σ · · · g−T+1 φ ≤ g−T+σ · · · g−T+1 1 < x,

where the second inequality is due to monotonicity of gi, and then third is by the
definition of σ. Contradiction.

To complete the proof, pick any φ ∈ S. Our claim is that h0 · · · h−T+1 φ ∈ ΛT. Suppose
first that φ < x. In this case we have h0 · · · h−T+1 φ = h0 · · · h−T+2 Z−T+1, which is an
element of ΛT. Next, suppose that φ ≥ x. In light of the preceding argument, there
exists a j ∈ {0, . . . , σ} with h−T+j · · · h−T+1 φ < x, and hence

h−T+j+1 · h−T+j · · · h−T+1 φ = Z−T+j+1,

from which we obtain

h0 · · · h−T+1 φ = h0 · · · h−T+j+2 · h−T+j+1 · h−T+j · · · h−T+1 φ

= h0 · · · h−T+j+2 Z−T+j+1.
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Since j ∈ {0, . . . , σ}, the right-hand side is an element of ΛT. This completes the proof.

Proof of proposition 3.1. Let n be an integer such that Fn(x | 1) > 0, existence of which is
due to assumption 2.1. Fixing j ∈ N, let

Ej := {g−(j−1)n−1 · · · g−jn 1 < x} ∩ {Z−(j−1)n−1 < x, . . . , Z−jn < x}.

The events {g−(j−1)n−1 · · · g−jn 1 < x} and {Z−(j−1)n−1 < x, . . . , Z−jn < x} are inde-
pendent because the first event depends only on U−(j−1)n−1, . . . , U−jn and the second
depends only on Z−(j−1)n−1, . . . , Z−jn. As a result,

δ := P(Ej) = Fn(x | 1)ν([0, x))n.

The constant δ is strictly positive as a result of assumption 3.1. We claim that if the
event Ej occurs, then Σjn+1 is nonempty and Λjn+1 is a singleton. To simplify notation,
we treat only the case of j = 1.

So suppose that E1 occurs. Clearly Σn+1 contains n, and hence is nonempty. To see that
Λn+1 is a singleton, observe that since σ = σn+1 is the smallest element of Σn+1, we
must have σ ≤ n. As a consequence,

Λn+1 = {h0 · · · h−n+k Z−n−1+k : k = 1, . . . , σ + 1}
⊂ {h0 · · · h−n+k Z−n−1+k : k = 1, . . . , n + 1}.

We claim that on the set E1 we have

h0 · · · h−n+k Z−n+k−1 = Z0 for any k ∈ {1, . . . , n + 1}. (8)

To prove that (8) holds, observe that on E1 the values Z−1, . . . , Z−n are all less than x.
As a result, we have

h0 Z−1 = Z0

h0 h−1 Z−2 = h0 Z−1 = Z0

h0 h−1 h−2 Z−3 = h0 h−1 Z−2 = h0 Z−1 = Z0

and so on. Together, these equalities give (8). As a consequence, we conclude that Σn+1

is nonempty and Λn+1 is a singleton whenever E1 occurs, and, more generally, Σnj+1

is nonempty and Λnj+1 is a singleton whenever Ej occurs. The events E1, E2, . . . are
independent and have positive probability δ. Using the definition of T∗, we then have

P{T∗ > nj} = P{T∗ ≥ nj + 1} ≤ P∪j
i=1 Ec

i = (1− δ)j

for all k ∈ N. Setting γ := (1− δ)1/n gives the result stated in the proposition.
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Sankhyā: The Indian Journal of Statistics, pages 763–777, 2003.

[2] Thomas F Cooley and Vincenzo Quadrini. Financial markets and firm dynamics.
American Economic Review, pages 1286–1310, 2001.

[3] JN Corcoran and RL Tweedie. Perfect sampling of ergodic harris chains. The
Annals of Applied Probability, 11(2):438–451, 2001.

[4] Domenico Cotroneo, Roberto Natella, Roberto Pietrantuono, and Stefano Russo.
A survey of software aging and rejuvenation studies. ACM Journal on Emerging
Technologies in Computing Systems), volume=to appear, number=, pages=, year=2013,
publisher=.

[5] Sergey G Foss and RL Tweedie. Perfect simulation and backward coupling.
Stochastic models, 14(1-2):187–203, 1998.

[6] Hugo Hopenhayn and Richard Rogerson. Job turnover and policy evaluation: A
general equilibrium analysis. Journal of political Economy, pages 915–938, 1993.

[7] Hugo A Hopenhayn. Entry, exit, and firm dynamics in long run equilibrium.
Econometrica: Journal of the Econometric Society, pages 1127–1150, 1992.

[8] Mark Huber. A bounding chain for Swendsen-Wang. Random Structures & Algo-
rithms, 22(1):43–59, 2003.

[9] Shuji Kijima and Tomomi Matsui. Polynomial time perfect sampling algorithm
for two-rowed contingency tables. Random Structures & Algorithms, 29(2):243–256,
2006.

[10] David A Levin, Yuval Peres, and Elizabeth L Wilmer. Markov chains and mixing
times. with a chapter by james g. propp and david b. wilson. American Mathemat-
ical Society, Providence, RI, 2009.

[11] Marc J Melitz. The impact of trade on intra-industry reallocations and aggregate
industry productivity. Econometrica, 71(6):1695–1725, 2003.

[12] Duncan J Murdoch and Peter J Green. Exact sampling from a continuous state
space. Scandinavian Journal of Statistics, 25(3):483–502, 1998.

13



[13] Kazuo Nishimura and John Stachurski. Perfect simulation of stationary equilibria.
Journal of Economic Dynamics and Control, 34(4):577–584, 2010.

[14] James Gary Propp and David Bruce Wilson. Exact sampling with coupled markov
chains and applications to statistical mechanics. Random structures and Algorithms,
9(1-2):223–252, 1996.

[15] John Rust. Optimal replacement of gmc bus engines: An empirical model of
harold zurcher. Econometrica: Journal of the Econometric Society, pages 999–1033,
1987.

[16] Joseph Schumpeter. Creative destruction. Capitalism, socialism and democracy, 1942.

14


	DP2013-37

