

DP2013-33

Does Women's Empowerment Reduce Prevalence of Stunted and Underweight Children in Rural India?

> Katsushi S. IMAI Samuel Kobina ANNIM Veena S. KULKARNI Raghav GAIHA

> > October 22, 2013

* The Discussion Papers are a series of research papers in their draft form, circulated to encourage discussion and comment. Citation and use of such a paper should take account of its provisional character. In some cases, a written consent of the author may be required.

Research Institute for Economics and Business Administration **Kobe University** 2-1 Rokkodai, Nada, Kobe 657-8501 JAPAN

Does Women's Empowerment Reduce Prevalence of Stunted and Underweight Children in Rural India? *

Katsushi S. Imai *

Economics, School of Social Sciences, University of Manchester, Arthur Lewis Building, Oxford Road, Manchester M13 9PL, UK & RIEB, Kobe University, Japan; Email: <u>Katsushi.Imai@manchester.ac.uk</u>

Samuel Kobina Annim Department of Economics, University of Cape Coast, Cape Coast, Ghana; Email: <u>skannim@gmail.com</u>

Veena S. Kulkarni Department of Criminology, Sociology & Geography, Arkansas State University, P.O. Box 2410, AR 72467, USA; Email: <u>vkulkarni@astate.edu</u>

> Raghav Gaiha Faculty of Management Studies, University of Delhi, Kamla Nagar New Delhi, DL India; Email: <u>gaiha@MIT.EDU</u>

> > First Draft: 10th March 2012 Second Draft: 26th August 2012 This Draft: 22nd October 2013

Abstract

This study investigates whether mother's empowerment as measured by her bargaining power relative to father's affects children's nutritional status using the three rounds of NFHS data in India. First, the relative educational attainment of mothers significantly contributes to z scores pertaining to the short-term measures of nutritional status of children. Besides, the quantile regression results show strong associations between women's bargaining power and better nutritional status of children in terms of the long-term measure of nutrition at the low end of its conditional distribution. Finally, we find the relation between access to health schemes and better nutritional measures of children.

Key Words: Child Nutrition, Malnutrition, Empowerment, Bargaining, NFHS, NCAER, Quantile Regressions, Pseudo Panel, India

JEL Codes: C21, C23, C26, I14

*Corresponding Author: Katsushi S. Imai (Dr) Economics, School of Social Sciences, University of Manchester, Arthur Lewis Building, Oxford Road, Manchester M13 9PL, UK Phone: +44-(0)161-275-4827; Fax: +44-(0)161-275-4928; E-mail: Katsushi.Imai@manchester.ac.uk

Acknowledgements

This study is funded by ESRC research grant entitled 'On the Change of Poverty and Undernutrition in Rural India' (RES-000-22-4028). We appreciate useful comments from the participants in Workshop on Poverty and Inequality in China and India, the University of Manchester in March 2012, the 15th Kansai Development Microeconomics (KDME) Workshop at Osaka, Japan, July 2012, and a research seminar at Dosisha University in August 2012. We thank Md Azam, David Bloom. Subhasish Dey, Per Eklund, Raghbendra Jha, and Takahiro Sato for their valuable advice at various stages of the project. The views expressed here are those of the author and the usual disclaimer applies.

Does Women's Empowerment Reduce Prevalence of Stunted and Underweight Children in Rural India?

1. Introduction

Malnutrition remains a major concern in India despite the country's impressive economic growth. India has one of the worst levels of low birth weight, underweight and wasting among children in BRIC and SAARC¹ countries (IAMR, 2011). While 43% (38%) of children under age five are moderately underweight (stunted) in India, the corresponding figures are 6% (11%) in China, 23% (14%) in Sri Lanka, 31% (37%) in Pakistan, 39% (43%) in Nepal and 41% (36%) in Bangladesh in 2000-7 (ibid., 2011).

However, this is not to deny the gradual decline in the rates of moderately underweight and stunted children in India experienced over the past three decades (Deaton and Drèze, 2009). A recent study employing the first two rounds of National Family Health Survey (NFHS) data dated 1992-93 and 1998-99, documents that notwithstanding the rise in ruralurban disparity favouring urban children and in gender disparity favouring girls, there was an improvement in overall nutritional status of children under three during the 1990s (Tarozzi & Mahajan, 2007). Another piece of research based on the survey conducted in 2010-11 covering 112 rural districts of nine relatively poor states, reports that (i) the prevalence of underweight children declined from 53 % in 2004 to 42 % in 2010-11 with an average annual rate of reduction of 2.9%; (ii) the nutritional advantage of girls over boys aged 0-3 years is reversed in the 3-5 age category (in both height-for-age and weight-for-age); and (iii) underweight children are more prevalent among mothers with low levels of education (Naandi Foundation, 2011).

In spite of the positive trends in the reduction of malnutrition levels, the rates are high enough to cause concern, especially since they persist amidst a phase of impressive economic growth. The high levels of child malnutrition potentially impact country's prospects for continued economic growth as child malnutrition in early years may result in malnutrition, lower cognitive skills and lower productivity in adult years. Additionally, high rates of prevalence of nutritional deprivation is a humanitarian concern requiring policy-makers and international communities to refocus their policy priorities on direct and indirect interventions to reduce children's malnutrition.

The extant literature on determinants of child health and malnutrition in developing countries in general and in India in particular highlights the significance of economic, social, cultural, and/or infrastructural factors impacting at multiple levels, such as individual, household and community (Ackerson & Subramanian, 2008; Allendorf, 2007; Kandpal & McNamara, 2009; Kravdal, 2004; Smith et al., 2003). Recent empirical studies on child malnutrition in India tend to focus on one of the following three factors as determinants of children's nutritional or health status: (i) mothers' education, empowerment, and/or relative bargaining power vis-a-vis fathers' (e.g. Ackerson & Subramanian, 2008; Gaiha & Kulkarni 2005; Kandpal & McNamara, 2009), to which the present study has a close link, (ii) social capital at community levels (e.g. Borooah, 2005; Kravdal 2004); and (iii) policy interventions such as the Integrated Child Development Services (ICDS) (e.g. Das Gupta et al., 2005). Though the results are context specific, mother's characteristics have consistently emerged as significant when examining child malnutrition status (Gaiha & Kulkarni 2005; Kravdal 2004; Luke & Xu 2011; Shroff et al., 2009).

The findings on women's role in reducing the prevalence of malnutrition are corroborated by the opinions of the policymakers. For instance, Olivier de Schutter presented to the UN in March 2013 and argued that "(s)haring power with women is a shortcut to reducing hunger and malnutrition, and is the single most effective step to realizing the right to food," and urged "world governments to adopt transformative food security strategies that address cultural constraints and redistribute roles between women and men" (de Schutter, 2013). IFAD, UN also emphasised earlier the important role of women's empowerment at community levels in reducing child malnutrition in Asia (Eklund et al., 2007; Imai and Eklund, 2008). However, rigorous studies to estimate the role of women' autonomy in reducing child malnutrition based on the large household datasets are scarce for developing countries in general and for India in particular. The present investigation attempts to fill the gap.

This study estimates the determinants of nutritional measures of children under age three in rural India during the period 1992-2006 with the focus on the role of mother's empowerment as measured by mother's relative (to father's) bargaining power. The findings are therefore expected to contribute to our understanding of the factors related to child nutrition in India. We address the following two questions: (i) Whether the mother's relative bargaining power is associated with to the nutritional status of her children? and (ii) What are the household level, infrastructural and policy variables that are related to children's nutrition status?. We employ all the three rounds of National Family Health Survey data (NFHS henceforth) conducted in 1992-93, 1998-99 and 2005-06 and construct pseudo panel data to obviate the shortcomings stemming from the cross-sectional nature that majority of the previous studies suffer from.

The rest of the paper proceeds as follows. The next section briefly reviews the existing body of literature on child malnutrition in the context of developing countries in general and in the context of India in particular. Section 3 outlines the theoretical and the basic analytical framework that underlie our econometric analysis. After describing the data in Section 4, we discuss the econometric models and specifications in Section 5. Section 6 reports the econometric results. The final section offers concluding remarks.

2. Literature Review

We briefly review the following two strands of literature that are pertinent to the present study. The first dimension pertains to the definitions and measurement of women's empowerment or relative bargaining power. The second strand relates to the more empirical question of how women's empowerment or relative bargaining power affects children's nutritional status.

(1) Definitions and measurement of women's empowerment

On the first part, it is important to acknowledge that "women's empowerment" is a broad concept usually employed in multi-disciplinary studies on development. In contrast, "women's bargaining power" is typically modelled and empirically tested by economists within the literature of intra-household resource allocations. While women's empowerment can encompass women's inherent ability or capability to make strategic choices in society (e.g. Kabeer, 1999; Malhotra et al., 2002), it can be more narrowly defined as "women's relative position or exercise of power within the gender system" (Williams, 2005, p.7) where 'gender system' is defined as the 'socially constructed expectations for male and female behaviour that are found (in variable from) in every known society' (Mason, 1995, p.1, cited by Williams, 2005, p.7). This is close to the concept of "women's bargaining power" in the economics literature and the present study adopts the narrow definition of "women's empowerment".

It is not straightforward to measure women's empowerment or their bargaining power given that it is a somewhat ambiguous concept. Due to the multidimensionality of women's empowerment and bargaining power, different measures have been used in the empirical literature (Doss, 2013). A basic issue is whether it should be measured in terms of variables that drive the bargaining process or bargaining strength (e.g. access to employment, credit) or

in terms of outcomes of bargaining (household allocation of expenditure on health and education of children) (ibid., 2013). However, it should be noted that women's preferences are taken as revealed in the outcomes.²

The empirical literature of intra-household resource typically assumes that the wives' economic positions or education/knowledge in the household affect their bargaining power vis-a-vis the husbands. Typical proxies for women's empowerment include inheritance or assets at marriage (Quisumbing and Malluccio, 2003; Fafchamps et al., 2009), male and female non-labour income (Thomas et al., 1997) and couple's education differences (Smith et al., 2003; Thomas, 1994). Using only the macro data and without relying on the locally available micro data, Smith and Haddad (2002) defined "women's status" as "the ratio of female life expectancy at birth to male life expectancy at birth" or "female gross secondary school enrolment rates" to show the role of women's empowerment in improving child nutrition. Fafchamps et al.'s (2009) study is unique in employing new variables, such as, violence or cognitive ability as proxies of women's empowerment or bargaining. Additionally, research apart from the intra-household resource allocations, has focused on non-economic dimensions of women's empowerment. Hashemi et al. (1996) analyses various dimensions of women's empowerment in the context of microcredit programmes in Bangladesh, such as, decision-making power, political and legal awareness, and participation in public protest and political campaign. Bloom et al. (2001) in their study focus on control over finances, decision-making power, and freedom of movement.

For the purpose of the current analyses, given the data constraints, we conceptualize women's empowerment in a more narrow way and adopt the one which is closer to the concept of women's bargaining power used in economics. In order to capture non-economic dimensions in women's empowerment we employ the following measures; (a) relative achievement in education in terms of the ratio of mother's and father's schooling years; (b) presence of domestic violence (whether a husband beats a wife if she is unfaithful to him); and (c) whether the wife needs permission from the husband when she goes to the market. The first variable captures the relative educational background of father or mother which affects the bargaining process. On the other hand, the second is a proxy for the extent to which a wife is threatened by physical violence in her decision making or bargaining with her husband. This is, in our view, largely a domestic affair and thus more closely linked to women's bargaining power. The third variable proxies the extent to which a wife is restricted in her autonomous decision-making. While the third proxy reflects social norms of societies, there is often the close interplay of social norms and women's autonomy (Doss, 2013) and we assume that the latter is likely to be a significant element in this interplay.

(2) The relationship between women's empowerment and child nutrition

On the second strand of the literature, the empirical findings on the relationship between women's empowerment and bargaining power and children's nutritional status in the context of India present a mixed picture. For instance, drawing upon the 1994 NCAER data, Gaiha and Kulkarni (2005) find that reduction in wage gap between men and women reduces severe stunting in terms of the number of stunted children in a household. Also, their analysis indicates that household income, composition of household and children and caste are significant variables in reducing stunting. Using the NFHS-2 data, Maitra (2004) shows that child health is affected only indirectly through the improved usage of health care, which is determined by women's education and control over household resources or bargaining power. Kravdal's (2004) study, again, employing the NFHS-2 data finds that women's empowerment index as measured by i) sum of binary response variables, such as, whether a husband is justified beating his wife in certain situations and ii) average women's education in the census enumeration area, have significant association with child mortality levels.

Ackerson et al. (2008) based on NFHS-2 data find that domestic violence, an indication of weak bargaining power of wives against husbands increases the prevalence of stunted children and of underweight adult women.

Outside India, most studies have found that increased women's empowerment or bargaining power has a positive effect on children's nutritional status. For example, Duflo (2003) studied the impact of the cash transfer programme in South Africa on children's nutritional status and found that pensions received by women has a large impact on the anthropometric status of only girls. Smith et al. (2003) used cross-country data and found a positive effect of women's empowerment on child nutrition indicators. Using various measures of women's bargaining and household data on rural Ethiopia, Fafchamps et al. (2009) concluded that female bargaining power improved child nutritional status.

3. Theoretical Considerations

This section discusses theoretical arguments on how women's bargaining power affects child nutritional status. In conceptualizing the determinants of child nutritional status, researchers choose to either specify a structural health production function (Thomas, 1994) or to model the intrahousehold bargaining between a mother and a father and then derive the reduced form equation for child health or nutrition where the bargaining or empowerment index is used as a determinant together with household characteristics. Thomas (1994) combines a health production function where child health as an output is a function of a number of inputs (e.g. nutrient intakes and the quantity and quality of child/ health care and individual and household characteristics) with a standard utility function of the household member under a budget constraint for the household. This process can be typically done in the framework of unitary household models in which the household head makes a decision on behalf of household members, all the household resources are pooled, and a mother and a father have an identical taste (Becker, 1974, see Park, 2007 for the application to child nutrition)³.

In the non-unitary model framework, personal preference and bargaining power matter. This consists of cooperative bargaining models and non-cooperative bargaining models. In the cooperative bargaining models, a mother or a father derives his or her utility from own consumption of commodities and public goods (e.g. health or nutritional status of children) and the bargaining process is affected by an outside option or the extra-household environmental parameters (EEP) which are, for example, conditional on the threat of martial dissolution or on other environmental factors (McElroy & Horney, 1981; McElroy, 1990). In case of bargaining over child health or nutritional status, a mother and a father are assumed to make decisions over the quality of health, nutritional conditions of children or the spending on child health care independently as a part of his or her utility maximization problem (Maitra, 2004, Park, 2007, Fafchamps et al. 2009)⁴. Non-cooperative bargaining models include Lundberg and Pollak's (1993) model which specifies the threat point as a non-cooperative equilibrium within marriage and define it in terms of traditional gender roles and gender role expectations.

Because the health production approach requires detailed data on health inputs (e.g. health care, nutritional intakes, and prices), our conceptual framework is based on the cooperative bargaining model following most of the empirical studies of child health and nutrition. We assume that a household consists of a mother, m, a father, f, and a certain number of children, k, considered to be 'a public good' for both parents. It is assumed that children are not decision-makers and for simplicity parents care about the health quality or nutritional status of children. ⁵ Let x_j be the j^{th} person's consumption (j = m, f), and q be the (average) health quality of children. The j^{th} person's utility is defined as $U_j(x_j, q_j | A_j)$. Here we define A_j , EEP, a vector consisting of exogenous factors that determine the preferences of the

individual *j*. A_j may depends on the factors determined outside the household, e.g. unearned income for *j*, as well as his or her individual characteristics.

Each individual is assumed to choose x_j (own consumption) and q (child health quality) to maximise. In this setting, the household utility function is defined as $\gamma U_m(x_m,q;A_m)+(1-\gamma)U_f(x_f,q;A_f)$ where γ represents the "bargaining power" of the mother (wife) in a household ($0 < \gamma < 1$). The household's utility maximization problem is specified as follows:

$$\underset{x_m, x_f, q}{Max} U^H = \gamma U_m(x_m, q; A_m) + (1 - \gamma) U_f(x_f, q; A_f)$$
(1)

subject to

$$I = p_m x_m + p_f x_f + p_c q \tag{2}$$

where *I* is a household's income, p_i is the price of the private goods for the mother or the father, and p_c is the shadow price of public goods, that is, children in this case. In general, the optimal q^* (health quality of child) will depend on parameters such as γ , p_c , *I*, p_i , and A_i as follows:

$$q^{*} = q^{*} (\gamma, I, p_{m}, p_{f}, p_{c}, A_{m}, A_{f})$$
(3)

This model sheds light on the household decision on child health. For example, "bargaining power" γ may reflect women's empowerment represented by female education and female labour force participation. Given that a female is more likely than a male, to value q, the quality of children's health, the stronger bargaining power of a female reflected in higher γ leads to a better nutritional outcome. In this framework, a higher level of education is likely to improve the nutritional status of children through higher γ . A_i represents each household member's attitude toward health care, which may be different in various classes or social groups. Economic growth increases a household's income level I and improves the health of children.

However, the above conceptual framework is limited in the sense that the "bargaining power" γ is treated as an exogenous variable and determined by, for instance, female education or cultural factors, in other words, γ affects the household decision on the number of children, but not the other way around. It is assumed here that the bargaining coefficient, γ , is exogenously determined by, e.g., female education or cultural factors: in other words, γ affects the household decision on the number of children, but not the other way around. It is education or cultural factors: in other words, γ affects the household decision on the number of children, but not the other way around. However, the bargaining coefficient, γ , can be endogenous in reality, that is, the household decision on the health quality of children in turn affects γ , as modelled by Basu (2006) who assumed the endogeneity of γ in the collective-bargaining model. This endogeneity is not taken into account in the above framework, but the endogeneity of γ is econometrically addressed by the IV estimation in the empirical section.

4. Data

This study draws upon three rounds of NFHS data, NFHS-1 (year 1992-3), NFHS-2 (year 1998-9) and NFHS-3 (year 2005-06). The NFHS is a major nationwide, large multi-round survey conducted in a representative sample of households in India with a focus on health and nutrition of household members, especially of women and young children.⁶ The survey covers the issues including fertility, family planning, maternal and child health, gender, HIV/AIDS, nutrition and malaria. Data were collected at the individual level (children, mothers and fathers in NFHS-3) as well as household and community level. This study uses the data on children aged zero to three years in rural areas for NFHS-1, 2 and 3. This is because children below age four are covered in NFHS-1, below age three in NFHS-2, and below age five in NFHS-3. It is also well known that nutritional conditions from zero to three years have the most fundamental effect on stunting in later life (Maluccio et al., 2007).

We measure the nutritional status as z scores of 'height-for-age' (stunting), 'weight-forage' (underweight) as well as 'weight-for-height' for children below three years. We follow the z score measure based on 'children from a diverse set of countries such as Brazil, Ghana, India, Norway, Oman and the USA' (WHO 2006, p.1) put forward by WHO (2006). Following WHO (1997), we define z score as:

$$z - score = (x_i - x_{median}) / \sigma^x \tag{4}$$

where x_i is, for example, height of child *i*, x_{median} is the median height from the reference population of the same age and gender, and σ^* is the standard deviation from the mean of the reference population. The z-score for the reference population has a standard normal distribution in the limit. Thus, there is a less than 2.3% probability that a healthy child will have a z score less than -2 (WHO, 1997). We classify, as per the common practice, children with a z score below -3 as 'severely stunted', and those with a z score between -3 and -2 as 'moderately stunted'. Underweight or wasting is defined in a similar manner. In this study, however, we define children with z score below -4 as 'acutely malnourished' given the large number of children severely or moderately malnourished. Such a classification would help us examine the determinants of acute malnutrition at the tail end of the distribution. Although there is no clear biological justification for "-4" as a threshold, yet given that WHO defines children with "z score below -3" as "severely stunted", the level of malnutrition for those below "-4" should be acutely severe and is likely to have serious health consequences in their later life.⁷ Also, as the factors influencing underweight and overweight children are likely to be different, we consider the factors affecting those in other appropriate ranges.

5. Econometric Specifications

Our main objective of the econometric analyses is to identify determinants of child malnutrition in rural India to test (i) 'Whether the mother's empowerment as measured by mother's relative (to father's) bargaining power is associated with the nutritional status of her children?' and (ii) 'Which factors (including those associated with children, households, infrastructure and policy) are correlated with children's nutritional status?'.

Methodologically, we apply multiple techniques which make the present study distinct from extant empirical studies on child malnutrition in India. First, following Borooah (2005) and Kandpal and McNamara (2009), we apply QR (in addition to OLS) to estimate different coefficient estimates at different points in the conditional distribution of nutritional status, rather than at the mean. Second, IV estimation has been also applied to take into consideration the endogeneity of (i) bargaining power of women and (ii) access to health insurance schemes. Third, we use pseudo panel data models by combining two or three rounds of the NFHS data.

OLS and IV

We presented a simple version of the bargaining model in Section 3, but it is not easy to find the variables which would exactly capture different factors specified in the theoretical model (e.g. the extrahousehold environmental parameters and the bargaining coefficient, γ). We therefore use the reduced form equation approach in which the child nutritional condition is a function of the bargaining indicators and household characteristics since the NFHS data do not contain the variables, such as prices specific to father's or mother's consumption or the individual unearned income.

We consider the reduced form equation which estimates the effect of (a proxy of) the bargaining power on child nutritional status. Here we distinguish three units, child, household and community.⁸ We denote *i* for the *i*th child (or an ID number identifying a particular child) and *h* for the h^{th} household (a household ID number) in a total sample at time *t* (year). We

estimate q_{ih} , a nutritional status indicator (namely, z score of height-for-age, weight-for-age, or weight-for-height) as:

$$q_{ih} = q_{ih}(\gamma_h, B_i, X_h, Z_h, H_h, R, P)$$
(5)

It is assumed here that A_m and A_f (or A_m/A_f) in the equation (3) can be captured by a single variable γ_h representing the mother's relative (to father's) bargaining power. The variable, γ_h is our measure of women's empowerment and comprises our central independent variable. As we discussed in Section 2, we proxy γ_h by (i) the proportion of mother's years of schooling to father's years of schooling ([schooling years of mother]/ [schooling years of father]) (after controlling for average schooling years of mother and father); (ii) a dummy variable on whether the father (husband) is justified in hitting or beating the mother (wife) when the mother (wife) is unfaithful to the father (husband) (1 for Yes; 0 for No); (iii) a dummy variable on whether the mother the mother (wife) needs permission from the father (husband) when she goes to market (1 for Yes; 0 for No).

In case of the IV estimation which has been tried for NFHS-3⁹, γ_h is instrumented by the (proportional) difference of father's age and mother's age on the grounds that the relatively older father tends to have a greater bargaining power, but it does not have a separate and direct impact on their child's nutritional conditions. Also, we use the village-level average of the ratio of predicted wage rates for women and those of men as an additional instrument.¹⁰ The idea is that the gender difference of implied aggregate wages would determine the extent to which a woman is disadvantaged in her village, yet as it based on village level aggregate, it is unlikely to have a direct effect on child nutrition at the individual level. The instrument is validated by the specification tests as will be shown in the next section.

 B_i is a vector of characteristic of the i^{th} child: whether male or not; age and its square; and whether the second, third or fourth child.

 X_h is a vector of household specific variables, such as household characteristics and compositions, such as, household size; share of children under the age of five in total number of household members; the average schooling years of the mother and the father; mother's age; its square; and whether a household has access to electricity; whether a household has a radio (or a TV; bicycle; a flush toilet).

 Z_h is a vector of variables capturing the social, environmental or infrastructural factors specific to the h^{th} household: time necessary for getting water; whether a household belongs to scheduled castes (SCs) (or scheduled tribes (STs), other backward groups); religion dummies (e.g. Hindu, Muslim, Christians).

 H_h is a policy variable that would affect child's health: whether any member of the household to which a child belongs has access to a health insurance or a healthcare scheme. This is a household level variable. Health insurance or a healthcare scheme is broadly defined as an aggregate category that includes e.g. government sponsored health insurance schemes or private medical insurance schemes. This is instrumented by two instruments in the IV regression, (i) the infrastructure variables to capture the availability of information, as indicated by the number of households in the village that have access to a telephone¹¹ and (ii) the village-level need for health care which is proxied by the village-level average of the access, both of which are likely to have only weak correlations with child malnutrition at the individual level. One may criticise that both of these may affect child malnutrition even though the village-level averages are taken, but these are validated by specification tests as will be shown in the next section. It should be also noted that the coefficient estimate for H_h is at best, Intent-to-Treat (ITT) estimates (not ATT, Average Treatment Effects on Treated) and that the estimate does not imply causality.

R is a vector of regional dummies (BIMARU¹², South, East, and West) as well as state dummies to take account of state fixed effects. *P* is a price vector (for sugar, egg, and cereal).

Quantile Regressions

As discussed by Aturupane et al. (2008) and Borooah (2005), it is important to estimate the effect of various variables on child nutritional status on different points in its conditional distributions because behavioral response to predictors (e.g. mother's bargaining power) is likely to be different between a malnourished child and an overweight child. As in Koenker and Bassett Jr. (1978), quantile regression for the θ^{th} percentile takes the form:

$$\underset{b \in \mathbb{R}^{\mathbb{N}}}{\min} \left[\sum_{i \in \{i:q_i \ge X_i b\}} \quad \theta |q_i - X_i b| + \sum_{i \in \{i:q_i \prec X_i b\}} (1 - \theta) |q_i - X_i b| \right]$$
(6)

where $0 < \theta < 1$, q_i is a dependent variable (z score of child nutritional status), and X_i is a vector of all the explanatory variables in Equation (5). For example, if $\theta = 0.5$, this is a median regression. Most of the studies show the results $\theta = 0.05$, 0.1, 0.25, 0.75 and so on, but we have chosen the median of each nutritional group for θ to estimate the (approximate) determinants of nutritional conditions for each group. For example, if we find that 12% of children are severely undernourished (z < -3.0), we have used 0.06 as θ . Also, because the error terms in each group are likely to be heteroscedastic, bootstrap estimates of the asymptotic variances are calculated with 100 repetitions.

Pseudo Panel Data Model

One of the limitations of the above model is that each round of the NFHS data is used separately for the cross-sectional estimations. To overcome this and to identify the determinants of child nutritional status over the years, we also apply the pseudo panel model which aggregates micro-level data by any cohort that is commonly observed across cross-sectional data sets in different years. We apply the pseudo panel for the cohort *k* based on the combination of states and mother's age groups (15-19 years, 20-24 years, ..., 45-49 years).¹³ The cohort is denoted as *k* in the equation (7) below.

$$\overline{q_{ih}}_{kt} = \overline{q_{ih}}_{kt} \left(\overline{\gamma_h}_{kt}, \overline{B_i}_{kt}, \overline{X_h}_{kt}, \overline{Z_h}_{kt}, \overline{P}_{kt} \right)$$
(7)

where k denotes cohort and t stands for survey years for three rounds of NFHS data, 1992, 1998 and 2005. The upper bar means that the average of each variable is taken for each cohort, k for each round, t. Regional variables do not have time variation and have been dropped. A variable on health scheme or health insurance has been also dropped as this is available only in NFHS-3.

Equation (7) can be estimated by the standard static panel model, such as fixed effects or random effects model.

$$\overline{q}_{i\,kt} = \alpha + \sum_{l=1}^{w} \overline{X}_{i}^{\ l} {}_{kt} \beta^{l} + D_{t} \chi + \overline{\mu}_{kt} + \overline{e}_{kt}$$

$$\tag{8}$$

where $\overline{q_{i_{kt}}}$ is a dependent variable, $\overline{X_{i_{kt}}}^{l}$ represents explanatory variables in Equation (7), D_{t} is a vector of year dummies, $\overline{\mu}_{kt}$ is the unobservable individual effect specific to cohort k(e.g. cultural effects which are not captured by explanatory variables), and \overline{e}_{kt} is an error term. The issue is whether equation (8) is a good approximation to the underlying household panel models for household i in equation (8)' below. It is not straightforward to check this as we do not have 'real' panel data.

$$q_{it} = \alpha' + \sum_{l=1}^{w} X^{l}_{it} \beta^{l} + D_{t} \chi + \mu_{i} + e_{it}$$
(8)'

However, as shown by Verbeek and Nijman (1992) and Verbeek (1996), if the number of observations in cohort *k* tends to infinity, $\overline{\mu}_{kt} \rightarrow \mu_k^*$ and the estimator is consistent. In our case, the average number of observations in each cohort (combination of states and mother's age groups) is 73.6 for NFHS data. This is not ideal, but reasonably large reflecting the huge sample size of our datasets covering all parts of India and thus the estimator is close to being consistent. It may be noted that, we, as is usually done interpret the results of pseudo panel estimations with caution. Once we take account of the cohort population, Equation (8) will

become the model developed by Deaton (1985) whereby $\overline{q_i}_{kt}$ and $\overline{X_i}_{kt}$ are considered to be error-ridden measurements of unobservable cohort means, which leads to so-called 'error-in-variables estimator' (see Fuller, 1987, for more details).

6. Results

This section discusses the central results emerging from the models presented in Section 5. Table 1 summarizes the coefficient estimates of bargaining indicators estimated by NFHS data, namely, a) the ratio of mother's schooling years to father's schooling years (for NFHS-1, 2 and 3); b) whether a husband is justified in beating his wife when she is unfaithful; or c) whether a wife is allowed to go to the market without permission from a husband (NFHS-2 and 3 only). Each variable is included one at a time. The average education of a father and a mother is considered as a control variable for the ratio of schooling years. Table 2 gives a summary of the signs and statistical significance of coefficient estimates for all the explanatory variables based on OLS, IV and quantile regressions applied to the three rounds of NFHS data. Table 3 reports the results of pseudo panel model based on NFHS data. As the variables available for NFHS-1 are limited, we present two our results for the three different child nutrition measures in two parts. The first part is based on NFHS 1, 2 and 3 and the second part is based on NFHS 2 and 3. These are shown in columns (1) to (6) in Table 3. The choice between fixed effects model and random effects model is based on the Hausman test and except one case for 'weight-for-age' (column (2), Table 3), we have chosen the fixed effects model. In the interest of space, we discuss the key findings for several representative explanatory variables categorized as, 'Women's empowerment or bargaining measures', 'Health insurance or health care schemes' and 'Other selected covariates'.

(Tables 1, 2, and 3 to be inserted)

(1) Women's empowerment or bargaining measures

Relative educational attainment of mothers

First, we discuss the results based on the three bargaining variables, (a) the ratio of mother's to father's schooling years, (b) presence of domestic violence (whether a husband beats a wife if she is unfaithful) and (c) autonomy in the wife's decision-making in everyday life (proxied by whether she is allowed to go to market without her husband's permission).

It should be noted that in all the regressions, we have controlled for the average schooling years of a father and a mother to see the conditional correlation between their relative difference in educational attainments and child nutritional status. The average schooling years are positive and significant in most cases - irrespective of years or estimation methods (OLS, IV, or quantile regressions) except Table 3 where the pseudo panel model is applied. Our results underscore the importance of parental education in improving child nutrition¹⁴, though the estimates need to be interpreted cautiously since statistical significance does not necessarily imply causality between parental education and child nutrition. The same caveat applies to all the regression results in Tables 1-3.

Our results on "the ratio of mother's and father's schooling years" show that, after controlling for the average level of parental education, a child whose mother is relatively better educated tends to have a better nutritional status in some cases. For the NFHS-1 data, the conditional correlation between the two variables is statistically significant for the stunting measure (which relies mainly on the statistical correlation for relatively stunted children, as suggested by the QR results) and for the underweight measure (on average - based on OLS). In case of NFHS-2, the statistical relation between the two is significant for the underweight measure (on average - based on OLS as well as for relatively underweight children - based on QR). It is also significant, in case of NFHS-3, for the stunting measure (for relatively stunted children, as suggested by QR) as well as for the wasting measure (on

average - based on OLS and IV, and for relatively under-nourished or normal children - based on QR) (Table 1). A significant correlation is also found in the second column of Table 3 in which the random-effects model is applied for pseudo panel. While the results vary according to the specifications, we can conclude that the empowerment of women (proxied by their relative education) is associated with better nourishment of children at the lower conditional distribution of nutritional measures. This suggests that children of mothers with little education tend to be undernourished and they have to be supported by government interventions.

Domestic Violence

Domestic violence (whether a husband beats a wife if she is unfaithful) is not statistically significant in OLS for any of the three child undernutrition measures in 1998-99, but it is noted that it is statistically significant at the tail end of distribution (for the acutely undernourished children with Z score -4.0) for 'weight-for-age' and 'weight-for-height' measures. That is, the lack of women's empowerment, which is represented by domestic violence, is statistically associated with the short-term measures of children's undernourishment in 1998-99.

In 2005-06, domestic violence is *positively* associated with "height-for-age" measure, though this is a counter-intuitive result that seems to be driven by adequately or over nourished children (with Z score 1 to 2), as suggested by QR. On the contrary, it is *negatively* associated with "weight-for-height" mainly for overweight children (with Z score 2 to 3). Overall, the violence variable is negative and significant at 5 % level (OLS). As a larger value in height tends to increase "height-for-age" and decrease "weight for height", this is not surprising and more emphasis should be generally placed on the results of the former. It is safe to conclude that the relation of women's empowerment on child nutrition has become weaker over time.

However, domestic violence in general appears to be *positively* correlated with "weightfor-age" as suggested by column (5) of Table 3, the case of pseudo panel analysis. It does not suggest any causality relationships and our policy implications about the importance of reducing domestic violence, which can be derived from the data in 1998-99, will not be affected.

Autonomy in wife's decision-making in everyday life

In 1998-99 autonomy in the wife's decision-making in everyday life which is proxied by the variable on "whether she is allowed to go to market without her husband's permission", is positive and statistically significant in the case of OLS for "weight-for-age" and "weight-for-height". It is not significant for "height-for-age". The results of QR suggest that the positive association for "weight-for-age" and "weight-for-height" are more clearly observed for children undernourished or 'adequately' nourished than those over-nourished. Taking the case of "weight-for-age", the coefficient estimate is positive and significant for those with z score ranging from -4 to -2 with the estimate larger for more malnourished children. The size of coefficient implies that having autonomy (changing the value from 0 to 1) is associated with improvement in z score for underweight by 0.067 to 0.142 for undernourished children. With the caveat that the results show conditional statistical correlations rather than causality, they suggest that wife's autonomy could play a potentially important role in reducing the prevalence of underweight children.

On the other hand, the autonomy in everyday decision-making is positively and significantly associated with "height-for-age", chronic measure of child nutrition in 2005-06, but not with "weight-for-age" or "weight-for-height" (except one case for the latter, z score of -2.0, where a negative and significant correlation is found). On the results of QR for "height-for-age", significant coefficient estimates are found for z scores -3, -1 and 1. Here wife's autonomy could reduce the prevalence of stunted children given the same caveat. It is

not easy to generalize the pattern of the results, but the pseudo panel analysis in Table 3 support the significant and positive association between the proxy for wife's autonomy and stunting and underweight measures. This posits the overall significant correlation between women's empowerment and child undernutrition.

(2) Household access to health insurance or healthcare schemes

The variable on whether a household has access to health scheme or health insurance is available for only NFHS-3. When we apply IV to "height-for-age" or "weight-for-age", where it is instrumented by the availability of telephone in the region and village-level access to vaccination to take account of the endogeneity problem, the result suggests that household access to health insurance or healthcare schemes is associated with better nutritional status of children. Specification test results for IV estimations are shown in the last panel of Table 1. In the first stage, the availability of landline telephone as an instrument is statistically significant at the 1% level and the village-level access to vaccination is either significant at the 10% level (in the case of "weight-for-height") or insignificant with t values ranging from 1.52 to 1.55 in the other two cases. The result of under-identification test implies that the excluded instruments are correlated with the endogenous regressors and the correlation is not weak. Also, Hansen's over-identification test shows that the joint null hypothesis that the instruments are uncorrelated with the error term is not rejected, which supports the validity of the instruments. Apart from the need for cautious interpretations for the over-identification test, Deaton (2010) argued that the IV result should not be interpreted as guidance for policy because of the underlying heterogeneity of the impact across different agents - which in our view is partly addressed by QR - and the difficulty in establishing the case for "exogeneity", which is often confused with "externality" by researchers. While IV results cannot be used as evidence for the causal relationship between the health insurance scheme and child nutritional status, it is safe to mention the conditional correlation between the two, that is, the household

access to health insurance scheme is statistically associated with better nutritional status of children. The actual "impact" of health insurance scheme would have to be evaluated by using real panel data or by carrying out carefully designed experimental studies.

(3) Other Covariates

In the interest of brevity, we only summarise the results based on the cross-sectional regressions for three rounds of NFHS data in Table 2.¹⁵ The first column of each panel summarizes the results of OLS and IV where '+' or '-' are shown in case the coefficient estimate is significant. If it is significant only for OLS or IV, it is shown as, e.g., "+(ols)" or "+(iv)". If the variables are not available, it is shown as '(NA)'. In case of QR, while '+' and '-' signs indicate statistically significant cases, we show, e.g. '+M' for the case where a positive and significant coefficient is found in one of the categories 'malnourished' (z score <-2.0), '+N' (or '-N') for significant cases for 'normal' (-2.0<z < 2.0) and '+O' (or '-O') for significant cases for 'normal' (-2.0<z < 2.0) and '+O' (or '-O') for significant cases observed in different categories, the results are summarized, for example, as "-MN; +O".

It is important to note that the coefficient estimates of OLS based on the mean of the conditional distribution of a dependent variable do not necessarily reflect the coefficient estimates of each group derived by QR, though as expected the results of OLS by and large reflect the results for the 'mean' group (which is normally close to the median). The results of QR are useful to check whether those of OLS will hold for all the nutritional groups across the entire conditional distribution of z. In a few cases, the results of QR are not only different from those of OLS, but change the signs at different points of conditional distributions. For example, a child's age is positive and statistically significant for 'weight-for-height' (wasting) in OLS and IV for NFHS-3 (see the final column of Table 2), but is positive and significant up to the group with z score <-1.0, not significant for the group with z between -1

and negative and significant for those with z score >1.0. This implies that the change of 'weight-for-height' is in the direction of being equalized as the child gets older, but OLS is not able to capture that. This is the point emphasized by Borooah (2005). However, such cases are few and far between and we get results mostly consistent across different estimation methods. Again, given the space limitations, we highlight estimates provided in Tables 2 and 3 for select covariates in addition to the women's empowerment variables.

Environment

'Time necessary for getting water' has an expected negative and significant sign in some cases, in particular, for underweight and wasting (Table 2). Pseudo panel analysis confirms that it is negatively and significantly associated with "weight-for-height". As women are responsible for fetching water, there is an unavoidable trade-off between this activity and childcare. Access to electricity has a positive and significant coefficient for underweight and wasting measures in Table 2. It is negative and significant in column (3) of Table 3, "weight-for-height" for pseudo panel applied to all the three rounds.

Child characteristics

Consistent with previous studies (Borooah, 2005; Kandpal & McNamara, 2009), whether a child is male is negative and significant in most cases in Table 2 and the case of "weight for height" in Table 3. However, given that previous research suggests by, that the sign of a sex dummy of a child over the years can differ across countries (Charmarbagwala et al. 2004), our results are likely to be context specific. Age of a child is negative and significant with its square positive and significant in both Tables 2 and 3, implying that z score is decreasing as a child grows but a marginal change will be smaller as he or she grows. Consistent with Gaiha and Kulkarni (2005), the present estimates in Table 2 show that irrespective of which measure is used higher birth order negatively affects nutritional status.

Household Compositions or Characteristics

24

Mother's age is positive and significant with its square negative and mostly significant, implying that older mothers tend to have better nourished children with a non-linear effect (Table 2 and Columns (2), (3) and (6) of Table 3). Having more children under the age of five is associated with lower levels of nutrition mainly for short-term measures of undernutrition, namely "weight-for-age" and "weight-for-height" (see Table 2). However, it is negative and significant in Column (4) of Table 3 where height-for-age is estimated by the pseudo panel method covering NFHS-2 and 3. Owning a TV is associated with better child nutritional status across different years and for different measures, particularly for the children undernourished (see Table 2), which has been broadly confirmed by the pseudo panel estimates (see Table 3). This result implies that TV may help households access the information on nutrition. There is some evidence that having a flush toilet at home is associated with better child nutrition. Further, children belonging to Scheduled Castes, Tribes or other backward groups tend to have lower nutritional levels than the rest (see Table 2).

Food Price

As hypothesised, in Table 2 we obtained negative and significant coefficient estimates for food price for NFHS-1 in 1992-93. Further, food price is positive and significant for 'weight for age' for the pseudo panel for NFHS 2 and 3 (see Column 5, Table 3). Price of sugar is negative and significant for 'weight for age' in 2005-06. These inconsistencies across years call for further examination, for example, in terms of whether a household is a net food consumer or a net food producer (Ivanic & Martin, 2008). Moreover, the commodity disaggregation has to be more detailed to reflect changing compositions of different food commodities (e.g. sweetened beverages, and fried and processed foods need to be taken account as their intake has increased). Finally, cross-price effects on complements and substitutes are often significant and not captured here.

7. Concluding Observations

This study investigates whether mother's empowerment measured as mother's relative bargaining power affects children's nutritional status using three rounds of NFHS data for the years 1992-93, 1998-99, and 2005-06.¹⁶ OLS, IV, quantile regressions (QR) and pseudo panel models are applied to these data sets. We summarise our central findings in the following paragraphs.

First, the relative bargaining index defined as the share of mother's schooling years over father's schooling years is found to be positively and significantly associated with z scores pertaining to the short-term measures of nutritional status of children, namely, "weight-for-age" and "weight-for-height". The results of QR suggest, however, that the bargaining power is statistically correlated with a chronic measure of nutritional status, 'height-for-age', at the low end of conditional distribution of z score. Second, the result of IV estimation indicates that access to health scheme or health insurance is statistically associated with higher values of 'weight- for- age' in 2005-06. Third, health-related facility, infrastructure and environment are related to lower prevalence of child malnutrition. It is implied, for instance, that wider access to a flush toilet is likely to improve nutritional status of children in terms of stunting and underweight. Easier access to radio and TV is likely to be important for improving the measures of 'stunting' and 'underweight' particularly at the lower distribution. Also, children belonging to scheduled caste are more likely to be undernourished.

Despite the steady decline in the prevalence of undernourished children, India is still one of the few countries with the worst levels of low birth weight, underweight and wasting among children in BRIC and SAARC countries. In terms of policy implications, more provisions of healthcare or health insurance schemes are likely to be effective in reducing the short-term nutritional deprivation of children. Policies to empower women in poor households that tend to have more malnourished children are also required for reducing not only short-term nutritional deprivations but also chronic deprivations. As children of women with low educational levels are more likely to experience poor nutritional outcomes, concerted efforts to disseminate information on children's nutrition and health to women with low education levels would help. In a similar vein targeted programs to enhance access to enhance educational and employment opportunities for the scheduled caste/scheduled tribe (ST/ST) population and in particular to the SC/ST women would potentially positively impact children's nutritional levels. Further, improvement in infrastructure facilities in forms of improved access to safe drinking water, sanitation and electricity are likely to be significant in alleviating nutritional deprivation.

If we go by the predictions of household models, both Beckerian and bargaining, expanding outside employment options for women is key to their empowerment. However, there are many other factors, such as women's own asset holding, income, consumption or production skills, which would lead to women's empowerment (e.g. Doss, 2013; Kabeer, 1999, 2005). Future works should carry out rigorous evaluations of policy interventions or poverty alleviation measures, such as microfinance, in terms of whether they would affect these outside options that empower women and thus reduce the prevalence of child malnutrition in developing countries.

References

- Ackerson, Leland K., & Subramanian, S.V. (2008). Domestic Violence and Chronic Malnutrition among Women and Children in India. *American Journal of Epidemiology*, 167 (10), 1188-1196.
- Allendorf, Keera. (2007). Do Women's Land Rights Promote Empowerment and Child Health in Nepal? *World Development*, 35 (11), 1975-1988.

- Aturupane, H., Deolalikar, A., & Gunewardena, D. (2008). The Determinants of Child Weight and Height in Sri Lanka: A Quantile Regression Approach. Working Papers RP2008/53. World Institute for Development Economic Research. Helsinki: UNU-WIDER.
- Basu, K. (2006). Gender and Say: a Model of Household Behaviour with Endogenously Determined Balance of Power. *The Economic Journal*, 116, 558–80.
- Becker, G. S. (1974). A theory of Social Interactions. *Journal of Political Economy*, 82, 1063-1094.
- Bloom, S. S., Wypij, D. & Gupta, M. d. (2001). Dimensions of Women's Autonomy and the Influence on Maternal Health Care Utilization in a North Indian City. *Demography*, 38(1), 67-78.
- Borooah, V. A. (2005). 'The height-for-age of Indian children', *Economics and Human Biology*, 3, 45-65.
- Charmarbagwala, R., Ranger, M., Waddington, H., & White, H. (2004). *The Determinants of Child Health and Nutrition: A Meta-Analysis*. Independent Evaluation Group (IEG) Working Paper. Washington DC: World Bank.
- Das Gupta, M., Gragnolati, M., Ivaschenko, O., Lokshin, M. (2005). Improving Child Nutrition Outcomes In India: Can The Integrated Child Development Services Be More Effective? World Bank Policy Research Working Paper 3647, Washington DC: World Bank.
- de Schutter, O. (2013). Empowering women is shortcut to tackling hunger UN expert on right to food. <<u>http://www.srfood.org/en/empowering-women-is-shortcut-to-tacklinghunger-un-expert-on-right-to-food</u>> Accessed October 2013.
- Deaton, A. (1985). Panel data from time series of cross-sections. *Journal of Econometrics*, 30(1-2), 109-126.

- Deaton, A. (2010). Instruments, Randomization, and Learning about Development. *Journal* of *Economic Literature*, 48(2), 424-55.
- Deaton, A., & Drèze, J. (2009). Food and Nutrition in India: Facts and Interpretations. *Economic and Political Weekly*, XLIV(7), 42-65.
- Doss, C. (2013). Intrahousehold Bargaining and Resource Allocation in Developing Countries. Policy Research Working Paper 6337, Washington DC: World Bank.
- Duflo, E. (2003). Grandmothers and Granddaughters: Old Age Pensions and Intrahousehold Allocation in South Africa. *The World Bank Economic Review*, 17(1), 1-25.
- Eklund, P., Imai, K., & Felloni, F. (2007). Women's Organisations, Maternal Knowledge, and Social Capital to Reduce Prevalence of Stunted Children- Evidence from Rural Nepal, *Journal of Development Studies*, 43 (3), 456-489.
- Fafchamps, M., Kebede, B., & Quisumbing, A. (2009). Intra-household Welfare in Rural Ethiopia. Oxford Bulletin of Economics and Statistics, 71(4), 567-599.
- Fuller, W. A. (1987). Measurement Error Models. New York: Wiley and Sons.
- Gaiha, R., & Kulkarni, V. (2005). Anthropometric Failure and Persistence of Poverty in Rural India. *International Review of Applied Economics*, 19(2), 179-197.
- Hashemi, S. M., Schuler, S. R. & Riley, A. P. (1996). Rural credit programs and women's empowerment in Bangladesh. *World Development*, 24(4), 635-653.
- IAMR (Institute of Applied Manpower Research) (2011). *India Human Development Report* 2011: Towards Social Inclusion. New Delhi: Oxford University Press.
- Imai, K., & Eklund, P. (2008). Women's Organisations and Social Capital to Reduce Prevalence of Stunted Children -Evidence from Papua New Guinea. Oxford Development Studies, 36(2), 209-233.
- Ivanic, M., & Martin, W. (2008). Implications of higher global food prices for poverty in low-income countries. *Agricultural Economics*, 39(s1), 405-416.

- Kabeer, N. (1999). Resources, Agency, Achievements: Reflections on the Measurement of Women's Empowerment. *Development and Change*, 30(3), 435-464.
- Kabeer, N. (2005). Is Microfinance a 'Magic Bullet' for Women's Empowerment? Analysis of Findings from South Asia. *Economic and Political Weekly*, 40 (44/45) 4709-4718.
- Kandpal, E. (2011). Beyond Average Treatment Effects: Distribution of Child Nutrition Outcomes and Program Placement in India's ICSD. World Development, 39(8), 1410-1421.
- Kandpal, E., & McNamara, P. E. (2009). Determinants of Nutritional Outcomes of Children in India: A Quantile Regression Approach. *Conference Proceeding: the Agricultural and Applied Economics Association 2009 AAEA & ACCI Joint Annual Meeting*. Milwaukee, Wisconsin: AAEA & ACCI.
- Koenker, R. W., & Bassett Jr, G. (1978). Regression Quantiles. Econometrica, 46(1), 33-50.
- Kravdal, Ø. (2004). Child mortality in India: the community-level effect of education. *Population Studies*, 58, 177-192.
- Luke, N., & Xu, H. (2011). Exploring the meaning of context for health: Community influences on child health in South India. *Demographic Research*, 24, 345-374.
- Lundberg, S., & Pollak, R. A., (1993). Separate Spheres Bargaining and the Marriage Market. *Journal of Political Economy*, 101(6), 988-1010.
- Maitra, P. (2004). Parental Bargaining, Health Inputs and Child Mortality in India. *Journal of Health Economics*, 23(2), 259-291.
- Malhotra, A., Schuler, S. R. & Boender, C. (2002). Measuring Women's Empowerment as a Variable in International Development. Working Paper, Washington DC: World Bank.
- Maluccio, J., Hoddinott, J., Behrman, J. R., Martorell, R., Quisumbing, A. R., & Stein, A. D. (2007). The Impact of an Experimental Nutritional Intervention in Childhood on

Education among Guatemalan Adults. FCND Discussion Paper 207. Washington DC:, IFPRI.

- McElroy, M. B. (1990). The empirical content of Nash-bargained household behaviour. *Journal of Human Resources*, 25(4), 559-583.
- McElroy, M. B., & Horney, M. J. (1981). Nash-Bargained Household Decision: Towards a Generalisation of the Theory of Demand. *International Economic Review*, 22(2), 333-349.

The Naandi Foundation (2011). HUNGaMA: Fighting Hunger & Malnutrition –The HUNGaMA Survey Report - 2011 <<u>http://www.hungamaforchange.org/</u>> Accessed October 2013.

- Park, C. (2007). Marriage Market, Parents' Bargaining Powers and Child Nutritional and Education. *Oxford Bulletin of Economics and Statistics*, 69(6), 773-793.
- Quisumbing, A. R., & Maluccio, J. A. (2003). Resources at Marriage and Intrahousehold Allocation: Evidence from Bangladesh, Ethiopia, Indonesia, and South Africa. Oxford Bulletin of Economics and Statistics, 65(3), 283-327.
- Sachdev, H.P., Satyanarayana, L., Kumar, S., Puri, R.K. (1992). Classification of nutritional status as 'Z score' or per cent of reference median--does it alter mortality prediction in malnourished children? *International Journal of Epidemiology*, 21(5), 916-21.
- Shroff, Monal, Griffiths, Paula, Adair, Linda, Suchindran, Chirayath, & Bentley, Margaret. (2009). Maternal Autonomy is Inversely Related to Child Stunting in Andhra Pradesh, India. *Maternal & Child Nutrition*, 5 (1), 64-74.
- Smith, L. C., & Haddad, L. (2002). How Potent Is Economic Growth in Reducing Undernutrition? What Are the Pathways of Impact? New Cross-Country Evidence. *Economic Development and Cultural Change*, 51(1), 55-76.

- Smith, L. C., Ramakrishnan, U., Ndiaye, A. Haddad, L., & Martorell, R. (Eds.) (2003). The Importance of Women's Status for Child Nutrition in Developing Countries. International Food Policy Research Institute (IFPRI), series 131.
- Tarozzi, A., & Mahajan, A. (2007). Child Nutrition in India in the Nineties. *Eonomic Development and Cultural Change*, 55(3), 441-486.
- Thomas, D. (1994). Like Father, like Son: Like Mother, like Daughter: Parental Resources and Child Height. *Journal of Human Resources*, 29(4), 950-988.
- Thomas, D., Contreras, D. & Frankenberg, E. (1997). Child Health and the Distribution of Household Resources at Marriage. RAND, Santa Monica, California, and University of California at Los Angeles, Department of Economics.
- Verbeek, M. (1996). Pseudo Panel Data. In Matyas, L. & Sevestre, P. (Eds.), The econometrics of panel data: A handbook of the theory with applications, second edition, in Advanced Studies in Theoretical and Applied Econometrics, vol. 33. Boston and London: Kluwer Academic.
- Verbeek, M., & Nijman T. E. (1992). Can Cohort Data Be Treated As Genuine Panel Data?. *Empirical Economics*, 17, 9-23.
- WHO (1997). WHO Global Database on Child Growth and Malnutrition, Geneva: WHO.
- WHO (2006). Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods and development, Geneva: WHO.
- Williams, J. (2005). Measuring gender and women's empowerment using confirmatory factor analysis. Working paper POP2005-01. Population Program, Institute of Behavioural Science, University of Colorado, Boulder.

	OLS				Quantile	Regression			
		Une	der-nourish	ed		Normal		Over-nourished	
		(1) Z score -4.0	(2) Z score -3.0	(3) Z score -2.0	(4) Z score -1.0	(5) Z score -0	(6) Z score 1.0	(7) Z score 2.0	(8) Z score 3.0
	Height for Age *1 *2	Height for	Age						
[Mother's Schooling Yrs/	0.0508	0.000238	0.122**	0.0750*	0.0442	0.00342	-0.0315	-0.0740	-0.179
Father's Schooling Yrs]	(1.504)	(0.00364)	(2.755)	(2.127)	(1.235)	(0.0637)	(-0.397)	(-0.643)	(-1.523)
Average Schooling Years	0.0343+	0.0110	0.0402	0.0490*	0.0415+	0.0465+	0.0227	0.0576	0.0866
	(1.784)	(0.354)	(1.118)	(2.265)	(1.847)	(1.750)	(0.525)	(0.672)	(0.756)
	Weight for Age	Weight for	Age						
[Mother's Schooling Yrs/	0.0400+	0.0741	0.0672*	0.0406	0.0591*	0.00499	-0.00794	-0.0656	-0.127
Father's Schooling Yrs]	(1.901)	(1.384)	(2.170)	(1.494)	(2.284)	(0.188)	(-0.241)	(-1.327)	(-0.550)
Average Schooling Years	0.0446**	0.0214	0.0435**	0.0505**	0.0544**	0.0613**	0.0597**	0.0684*	0.00818
	(3.676)	(0.768)	(2.598)	(3.337)	(3.692)	(4.005)	(2.994)	(2.334)	(0.0689)
	Weight for Height	Weight for	Height						
[Mother's Schooling Yrs/	-0.00508	-0.0830	-0.0387	0.0630	0.0173	4.13e-06	-0.0427	-0.0349	-0.0708
Father's Schooling Yrs]	(-0.177)	(-0.919)	(-0.499)	(1.540)	(0.449)	(0.000145)	(-0.936)	(-0.431)	(-0.509)
Average Schooling Years	0.0381*	0.0661	0.0476	0.0548+	0.0319	0.0376+	0.0310	0.0565	0.0283
	(2.356)	(1.106)	(1.158)	(1.737)	(1.546)	(1.936)	(1.583)	(1.455)	(0.417)

 Table 1. A summary of Effects of Bargaining Power of Mother on child malnutrition in Rural India (NFHS 1, 2 and 3)

 NFHS-1 Rural 1992-3

Table 1. A summary of Effects of Bargaining Power of Mother on child malnutrition in Rural India (NFHS 1, 2 and 3)(cont.)

NFHS-2 Rural 1998-9

	OLS		Quantile Regression										
		Ui	nder-nourish	ed		Normal	Over-nourished						
		(1) Z score -4.0	(2) Z score -3.0	(3) Z score -2.0	(4) Z score -1.0	(5) Z score -0	(6) Z score 1.0	(7) Z score 2.0	(8) Z score 3.0				
	Height for Age *1 *2	Height for	Age										
[Mother's Schooling Yrs/	-0.00176	0.0277	0.0183	-0.0016	-0.00940	0.00407	0.00550	-0.0177	-0.0284				
Father's Schooling Yrs]	(-0.147)	(1.035)	(1.189)	(-0.126)	(-0.677)	(0.259)	(0.228)	(-0.762)	(-0.632)				
Average Schooling Years	0.0421**	0.0416**	0.0551**	0.0490**	0.0470**	0.0398**	0.0310**	0.0175	0.0303				
	(7.865)	(3.768)	(8.449)	(8.125)	(7.934)	(5.328)	(2.904)	(1.073)	(1.215)				
Whether a husband beats	0.000834	0.0290	0.0161	0.0128	-0.0168	0.0355	0.0620	-0.139	-0.474**				
if a wife is unfaithful	(0.0243)	(0.464)	(0.369)	(0.319)	(-0.416)	(0.688)	(0.844)	(-1.341)	(-2.693)				

Whether a wife is allowed to go to market without	0.0353			0.0607	0.0701	0.0318	-0.00761	0.0725	0.0794	-0.0939	4.70e-05
permission from a husband	(0.937)			(0.918)	(1.425)	(0.800)	(-0.170)	(1.302)	(1.001)	(-0.798)	(0.000256)
	Weight for	Age		Weight for	Age						
[Mother's Schooling Yrs/	0.0222*	0.0368	0.0231*	0.0649**	0.0364*	0.0272**	0.00654	0.0221	0.0118	0.00631	-0.0423
Father's Schooling Yrs]	(2.327)	(0.483)	(2.263)	(3.157)	(2.384)	(3.150)	(0.637)	(1.422)	(0.612)	(0.197)	(-0.826)
Average Schooling Years	0.0448**	0.0549	0.0478**	0.0420**	0.0603**	0.0505**	0.0396**	0.0383**	0.0276**	0.0252	0.0291
	(10.39)	(1.075)	(3.616)	(3.826)	(8.692)	(7.981)	(8.392)	(7.278)	(3.249)	(1.639)	(1.197)
Whether a husband beats	-0.0369	1.670		-0.141+	-0.0290	-0.0317	-0.0124	0.00586	-0.0400	-0.0283	-0.0248
if a wife is unfaithful	(-1.322)	(0.190)		(-1.835)	(-0.678)	(-0.896)	(-0.352)	(0.175)	(-0.750)	(-0.267)	(-0.124)
Whether a wife is allowed to go to market without	0.0633*		-0.806	0.142+	0.124*	0.0672+	0.0382	0.0878*	0.0107	0.126	0.0989
permission from a husband	(2.119)		(-0.208)	(1.810)	(2.474)	(1.803)	(1.068)	(2.323)	(0.182)	(1.205)	(0.532)
	Weight for	Height		Weight for	Height *3						
[Mother's Schooling Yrs/	0.00592	0.175	0.0279	0.0324	0.0623**	0.0401*	0.0136	0.0201	0.00560	-0.0321	-
Father's Schooling Yrs]	(0.415)	(0.289)	(0.648)	(0.863)	(2.655)	(2.394)	(1.140)	(1.412)	(0.260)	(-0.858)	-
Average Schooling Years	0.0194**	0.161	0.0557	0.0384**	0.0531**	0.0376**	0.0307**	0.0170**	0.00883	- 0.00674	-
	(2.890)	(0.319)	(1.120)	(3.708)	(4.920)	(5.234)	(5.587)	(2.750)	(0.834)	(-0.651)	-
Whether a husband beats	-0.0698	24.81		-0.156+	-0.0631	-0.0380	-0.0782*	-0.0461	-0.0553	-0.0458	-
if a wife is unfaithful	(-1.617)	(0.280)		(-1.832)	(-0.815)	(-0.710)	(-2.508)	(-1.436)	(-0.773)	(-0.586)	-
Whether a wife is allowed to go to market without	0.126**		-9.118	0.188*	-0.0183	0.0746	0.0663+	0.105*	0.162*	0.104	-
permission from a husband	(2.645)		(-0.738)	(2.381)	(-0.243)	(1.328)	(1.710)	(2.331)	(2.405)	(1.471)	-

 Table 1. A summary of Effects of Bargaining Power of Mother on child malnutrition in Rural India (NFHS 1, 2 and 3) (cont.)

NFHS-3 Rural 2005-6												
	OLS		IV					Quantile I	Regression			
					Under-nourished				Normal	Over-n	ourished	
					(1) Z score -4.0	(2) Z score -3.0	(3) Z score -2.0	(4) Z score -1.0	(5) Z score -0	(6) Z score 1.0	(7) Z score 2.0	(8) Z score 3.0
	Height for	Age			Height for	Age					-	
		Case 1	Case 2	Case 3								
[Mother's Schooling Yrs/	-0.0188	-0.00608	-0.0183	-0.0237	0.0635**	0.0359**	0.0111	-0.00050	-0.0104	0.00210	-0.0041	-0.0619
Father's Schooling Yrs]	(-1.302)	(-0.381)	(-0.342)	(-0.982)	(3.379)	(2.796)	(1.014)	(-0.0461)	(-0.622)	(0.0799)	(-0.123)	(-0.832)
Average Schooling Years	0.0418**	0.0225+	0.0395	0.0384**	0.0416**	0.0492**	0.0502**	0.0449**	0.0350**	0.0208*	0.0144	-0.0286
	(6.888)	(1.896)	(0.570)	(3.636)	(3.045)	(7.515)	(9.498)	(9.363)	(5.258)	(1.998)	(0.936)	(-0.897)
Whether a husband beats	0.0800+		-0.297		-0.0192	-0.0532	-0.0320	0.0420	0.0840	0.183**	0.310**	0.330

if a wife is unfaithful	(1.782)		(-0.031)		(-0.280)	(-0.921)	(-0.819)	(1.011)	(1.422)	(2.846)	(2.658)	(1.339)
Whether a wife is allowed	0.0944*			0.571	0.000545	0.0910+	0.0335	0.0564+	0.0232	0.106*	0.152	0.124
to go to market without permission from a husband	(2.189)			(0.365)	(0.00809)	(1.841)	(0.909)	(1.762)	(0.469)	(2.018)	(0.918)	(0.613)
Whether a household has	-0.0141	4.729+		(0.000)	-0.115	0.222+	-0.0241	0.0820	-0.0954	0.0389	0.180	-0.207
access to Health Insurance	(0.404)	(4.007)			(0, (00)	(4, 000)	(0.405)	(0.000)	(0.500)	(0, 400)	(0.0.10)	(0.470)
or Health case schemes	(-0.131)	(1.897)			(-0.432)	(1.683)	(-0.195)	(0.868)	(-0.588) avour of valid	(0.136)	(0.649)	(-0.473)
			First Stage I		Sper				avour or valiu	Instruments		
		Case 1* 0.0796	Case 2*	Case 3*	*Case 1: Un	deridentificati	ion test (Kleil	pergen-Paan r	k LM statistic)	· 11 237** (Ch	i-sa(2) P-val	= 0 0036)
Village-level average land-		(3.06)**					•		all instrument	•		•
line phone access		• • •					•		A statistic): 0.1	, ,		•
Village-level access to		0.016 (1.52)						• •	all instrument			,
vaccination		(1.52)	0.00039	0.0007	-		•		k LM statistic)	, ,		•
Age difference of mother and			(0.33)	(0.55)			•	• •	all instrument	•	,	•
father			-0.013	(0.55) -0.157			(oronaonan			o): 01100 (011	04(1)1 101-	0.0000)
Village-level the ratio of men's				-0.157 (-2.29)*								
and women's implied wage rates	Weight for	· Age	(-0.19)	(-2.29)	Weight for	Age						
	OLS	Age	IV		Weight for	Age						
[Mother's Schooling Yrs/	-0.00424	0.00374	0.0185	-0.0218	-0.0302	0.0237	0.0102	0.00422	0.00904	0.0212	-0.0111	-0.0228
Father's Schooling Yrs]	(-0.360)	(0.285)	(0.488)	(-1.092)	(-1.193)	(1.135)	(1.354)	(0.392)	(0.823)	(1.325)	(-0.594)	(-0.377)
Average Schooling Years	0.0439**	0.0267**	0.0746	0.0323**	0.0537**	0.0615**	0.0469**	0.0392**	0.0370**	0.0395**	0.0208	-0.00315
	(9.386)	(2.816)	(1.485)	(3.260)	(3.123)	(13.32)	(14.27)	(15.67)	(7.928)	(5.052)	(1.397)	(-0.145)
Whether a husband beats	-0.0142		3.880	. ,	-0.00647	-0.0492	-0.0175	0.0142	0.0123	0.0638	0.108	-0.0430
if a wife is unfaithful	(-0.429)		(0.604)		(-0.0703)	(-1.104)	(-0.429)	(0.459)	(0.293)	(1.196)	(1.352)	(-0.272)
Whether a wife is allowed	0.0316			2.103	0.0290	0.0381	0.0202	-0.0147	-0.0384	-0.0465	0.0424	0.210
to go to market without permission from a husband	(1.000)			(1.508)	(0.245)	(0.835)	(0.483)	(-0.477)	(-1.110)	(-0.976)	(0.444)	(1.516)
Whether a household has	0.000801	4.621*		(1.000)	0.0697	0.0888	0.0153	0.0328	0.0507	0.184	0.666+	0.176
access to Health Insurance												
or Health case schemes	(0.00881)	(2.263)		.,	(0.403)	(0.578)	(0.107)	(0.482)	(0.502) avour of valid	(0.920)	(1.651)	(0.404)
			First Stage I		Sper				avour or valiu	Instruments	are shown i	
		Case 1*	Case 2*	Case 3*	*Casa 4. Un	de vi de véifie eti	ion toot (Kloil	arean Doon r	k I M atatiatia)	. 44 622** (Ch		0.0020)
Village-level average land-		0.0783					•	• ·	k LM statistic) all instrument	•		•
line phone access		(3.10)**			-		-					
Village-level access to		0.016						• •	A statistic): 0.5 all instrument			,
vaccination		(1.55)	0.00000	0.00040	-		•			, ,		•
Age difference of mother and			0.00088	0.00010			•		k LM statistic)	•	,	•
father			(0.76)	(0.09)	nan	Sen J StatiStic		cation test of	all instrument	sj. 0.155 (Chi	-54(1) F-val =	0.0330j

					-							
Village-level the ratio of men's			-0.0039	-0.168								
and women's implied wage rates			(-0.06)	(-2.47)*								
	Weight for	r Height			Weight for	· Height						
[Mother's Schooling Yrs/	0.0286*	0.0300*	0.0451	0.00609	0.0325	0.0297+	0.00530	0.00527	0.00188	0.0219+	0.0217	-0.00318
Father's Schooling Yrs]	(2.284)	(2.311)	(0.935)	(0.270)	(1.020)	(1.946)	(0.406)	(0.456)	(0.214)	(1.959)	(0.948)	(-0.118)
Average Schooling Years	0.0284**	0.0266**	0.0545	0.0160	0.0404**	0.0583**	0.0399**	0.0245**	0.0208**	0.0204**	0.0255**	0.0114
	(5.648)	(3.411)	(0.748)	(1.485)	(2.947)	(4.221)	(7.180)	(5.634)	(6.766)	(3.094)	(3.100)	(0.673)
Whether a husband beats	-0.0847*		3.531		0.144	-0.0801	-0.0667	-0.0712	-0.0384	-0.0358	-0.123*	-0.327*
if a wife is unfaithful	(-2.369)		(0.361)		(1.545)	(-1.409)	(-1.623)	(-1.512)	(-1.330)	(-0.770)	(-2.384)	(-2.545)
Whether a wife is allowed to go to market without	-0.0388			2.041	0.0531	-0.109	-0.067+	-0.0449	-0.0275	-0.0381	-0.0119	0.0642
permission from a husband	(-1.142)			(1.368)	(0.550)	(-1.498)	(-1.676)	(-1.228)	(-0.757)	(-0.935)	(-0.182)	(0.509)
Whether a household has access to Health Insurance	-0.00355	0.695			0.591**	0.0590	-0.0382	0.0241	0.0577	-0.0024	0.153	-0.321
or Health case schemes	(-0.0382)	(0.449)			(2.747)	(0.400)	(-0.355)	(0.255)	(0.520)	(-0.016)	(0.863)	(-0.964)
		I	First Stage I	V	*Spe	cification Te	sts for IV (t	he cases in f	avour of valid	instruments	are shown ii	n bold)
		Case 1*	Case 2*	Case 3*								
Village-level average land-		0.0868			*Case 1: Un	deridentificat	ion test (Kleil	pergen-Paap r	k LM statistic)	: 13.261** (Ch	ni-sq(2) P-val :	= 0.0013)
line phone access		(3.31)**			Har	nsen J statisti	c (overidentif	ication test of	all instrumen	ts): 0.162 (C	hi-sq(1) P-va	= 0.6873)
Village-level access to		0.017			*Case 2: Un	deridentificatio	n test (Kleiber	gen-Paap rk Ll	M statistic): 0.2	243 (Chi-sq(2)	P-val = 0.88	54)
vaccination		(1.66)+			Har	nsen J statisti	c (overidentif	ication test of	all instrumen	ts): 1.263 (Ch	i-sq(1) P-val =	• 0.2611)
Age difference of mother and			0.000558	0.00040	*Case 3: Un	deridentificat	ion test (Kleil	pergen-Paap r	k LM statistic)	: 6.0109* (Ch	i-sq(2) P-val =	= 0.0496)
father			(0.48)	(0.33)	Han	sen J statistic	: (overidentifi	cation test of	all instrument	s): 0.351 (Chi	-sq(1) P-val =	0.5534)
Village-level the ratio of men's			0.0093	-0.168								
and women's implied wage rates			(0.14)	(-2.42)*								

Notes: *1. t-statistics in parentheses (** p<0.01, * p<0.05, + p<0.1). Statistically significant coefficients are shown in bold. *2. Coefficient estimates cannot be obtained in the case of "Z score 3.0".

			NFHS-1	(1992/3)					NFHS-2	(1998/9)			NFHS-3 (2005/6)						
	HA	λZ ^{*1}	W	/AZ ^{*1}	HW	/Z* ¹	HA	\Z ^{*1}	WA	Z ^{*1}	HW	Z* ¹	HAZ	<u>Z</u> *1	WA	Z ^{*1}	HW	Z* ¹	
VARIABLES	OLS	QR	OLS	QR	OLS/IV	QR	OLS	QR	OLS	QR	OLS	QR	OLS/IV	QR	OLS/IV	QR	OLS/IV	QR	
Bargaining/ Wom	en's Em	powerme	nt																
Ratio of schooling years (mother/father)		+ <i>M</i>	÷	+ <i>M</i>					+	+ <i>M</i>		+ <i>M</i>		+ <i>M</i>			÷	+ <i>M</i> N	
Average schooling years	+	+ <i>M</i> N	+	+	+	+N	+	+ <i>M</i> N	+	+ <i>M</i> N	+	+ <i>M</i> N	+(ols)	+	+	+	÷	+	
Whether a husband beats his wife if she is unfaithful	•		1	• Available' or N	<u>.</u>		•	-0	•		•	-м	1 (013)	+NO	•	•	-(ols)	-o	
Whether a wife is allowed to go to market without husband's permission				(NA)						+ <i>M</i>	+	+ <i>M</i> N	+(ols)	+N	+ (iv)			-м	
Policy Whether a household has access to health insurance/healthcare				(NA)					(NA)				+(ols)	+ <i>M</i>				+ <i>M</i>	
scheme				(IVA)					(IVA)				1 (0.0)	• ••	1				
Environment Time necessary for getting water		-N	-N						-	-м				- <i>M</i> N	-	-N		-м	
Whether a household has access to electricity			÷	+ <i>M</i> N	÷	+N			÷	+ <i>M</i>		+ <i>M</i>		+ <i>M</i> N		-NO	-	-0	
Child Characteris	tics																		
Whether child is Male	-	-м		- <i>M</i> N		- <i>M</i> N	-	-	-	-м	-	- <i>M</i> N	-	- <i>M</i> N	-	-м	-	<i>-M</i> N;	
Child's Age	-	-	-	-			-	-	-	-	-	-м	-	-	-	-	÷	+ <i>M</i> ; -NO;	
Age squared	+	+	+	+	+	+NO	+	+	+	+	+	+ <i>M</i> N	+	+	+	+		- <i>M</i> ; +O	
Whether second child		-N	-	+ <i>M</i> ; -N		+0	-	- <i>M</i> N		-N		-N				-м	-	-NO	
Third child		-0	+	-0		-N	-	- <i>M</i> N	-	- <i>M</i> N	-	-N		- <i>M</i> N		- <i>M</i> N		-N	
Fourth more	-	-NO	-	-NO	-	-NO	-	- <i>M</i> N	-	- <i>M</i> N	-	-N	-	-MN	-(ols)	-MN		-N	
Household Comp	osition a	& Charact	eristics																
Mother's age	+	+NO	+	+	+	+N	+	+ <i>M</i> N	+	+ <i>M</i> N	÷	+N	+	+ <i>M</i> N	+	+ <i>M</i> N		-0	
Mother's age squared		+NO	-	-	-		-	- <i>M</i> N	-	- <i>M</i> N	-	-N	-	- <i>M</i> N	-	- <i>M</i> N		+0	
Household size			•					<i>-M</i> O						- <i>M</i> N; +O			+	+ <i>M</i> N	

Table 2. Summary of Results of OLS, IV and Quantile Regressions (QR) based on NFHS Data

Share of children under 5				-0	-	-NO				+0	÷		-	-NO				+N
Whether a household holds Radio		+ <i>M</i>	+ +	+ <i>M</i> N	+	+ <i>M</i> N								+ <i>M</i> N	+ (iv)	- <i>M</i> N		-м
TV	+	+ <i>M</i>		+ <i>M</i>			÷	+ <i>M</i> N	÷	+ <i>M</i> N		+ <i>M</i> N		+ <i>M</i> N	÷	+	+	
Fridge										+м	÷			÷	÷	+ <i>M</i> N		+ <i>M</i>
Bicycle								-N						+ <i>M</i> ; -0		-NO	-	-NO
Flush toilet		+M				-0	+		+	+NO				+ <i>M</i> N	+	+		+N
Whether a household belongs to Scheduled Caste		+N			-	-N	-	- <i>M</i> N	-	- <i>M</i> N		-м	-	-	-			
Whether a household belongs to Scheduled Tribe						-N	-	-NO	-	- <i>M</i> N		- <i>M</i> N	-	- <i>M</i> N	-	- <i>M</i> N	-	- <i>M</i> N
Whether a household belongs to Other Disadvantaged Groups	-			-м	÷	+ <i>M</i> O	-	+N	-	- <i>M</i> N	-	- <i>M</i> N	-	- <i>M</i> N	-(iv)	-N		+м
Hindu		+0				-м				- <i>M</i> N	-		+	+NO				+0
Muslim								+0	-			-м		+NO				
Christian							÷	+NO		+0								
Sikh										-		- <i>M</i> N		+NO				
Regional Dummie	S																	
BIMARU								- <i>M</i> ; +O		-	÷		-(iv)	-N	-		=(ols)	
South				+N									-	÷	-	+ <i>M</i> O		- <i>M</i> N
East		-0	-										-(ols)	+NO	-(iv)			+N
West	+	+ <i>M</i> O	-		-	-NO			-	+ <i>M</i> ; -O			-(iv)	- <i>M</i> N	-(ols)	-N		-0
Food Price																		
Food Price	-	-м		-N		+ <i>M</i> ; -NO	÷	+NO	÷		÷				(N.	<u>4)</u>		
Sugar Price			(NA))					1)	VA)			-	+	+ols	+		+N
Egg Price			(NA))					1)	VA)			-(iv)	-NO				-NO
Cereal Price			(NA))					(NA)								+ <i>M</i>

*1 HAZ: Z score for Height for Age; WAZ: Z score for Weight for Age; WHZ: Z score for Weight for Age; WHZ: Z score for Weight for Height. *2 "+" or "-" is shown in the case where the coefficient estimates are statistically significant. In the case of Quantile Regression (QR), M stands for "Malnourished" (shown as Italics to emphasise the factors associated with the nutritional changes of under-nourished children). That is, "+M" means "positive and statistically significant only for malnourished children. Similarly, N stands for Normal and O stands for Over-nourished. We put M (or N, O) if we find any sub-group for which a coefficient estimate is statistically significant. A full set of results are furnished on request.

VARIABLES	(1) Height for Age	(2). Weight for Age	(3). Weight for Height	(4). Height for Age	(5). Weight for Age	(6). Weight for Height
Fixed or Random	Base	d o NFHS 1, 2	2 and 3	Bas	ed on NFHS 2	and 3
Effects Model	FE ^{*1}	RE ^{*1}	FE	FE	FE	FE
Bargaining/ Women's Empowern	nent					
[Mother's Schooling Yrs/	0.0432	0.197** ^{*3}	0.280**	0.0601	0.243**	0.281*
Father's Schooling Yrs]	(0.476) *2	(3.372)	(3.451)	(0.497)	(3.047)	(2.484)
Average schooling years	0.0143	0.00645	-0.0354	0.0353	0.0231	-0.0298
	(0.367)	(0.316)	(-1.012)	(0.814)	(0.809)	(-0.736)
Whether a husband beats his	-	-	-	0.388	0.376*	0.260
wife if she is unfaithful				(1.451)	(2.140)	(1.040)
Whether a wife is allowed to go to market without husband's	-	-	-	0.453+	0.342*	0.136
permission				(1.946)	(2.230)	(0.627)
Environment						
Time necessary for getting water	0.00188	-0.00105	-0.01000**	0.00276	0.00300	-0.00894*
	(0.468)	(-0.404)	(-2.772)	(0.627)	(1.035)	(-2.175)
Whether a household has access	0.349	-0.0861	-0.463+	0.296	-0.169	-0.447
to electricity	(1.273)	(-0.638)	(-1.890)	(0.988)	(-0.858)	(-1.595)
Child Characteristics						
Whether child is male	-0.0312	-0.156	-0.400*	-0.174	-0.292+	-0.468*
	(-0.145)	(-1.043)	(-2.076)	(-0.735)	(-1.876)	(-2.123)
Child's age	-0.218**	-0.0760*	-0.0785+	-0.149**	-0.0675+	-0.0722
	(-4.153)	(-2.103)	(-1.670)	(-2.654)	(-1.823)	(-1.374)
Age squared	0.00357**	0.00182*	0.00208+	0.00194	0.00133	0.00198
	(2.752)	(2.030)	(1.792)	(1.396)	(1.454)	(1.531)
Whether second child	0.566	-0.213	-0.472	0.829+	0.0624	-0.890*
	(1.401)	(-0.776)	(-1.306)	(1.813)	(0.207)	(-2.084)
Third child	0.354	-0.368	-0.427	1.072+	-0.167	-0.909+
	(0.781)	(-1.194)	(-1.053)	(1.920)	(-0.454)	(-1.745)
Fourth more	0.480	-0.721**	-0.844*	1.122*	-0.0291	-1.041*
	(1.132)	(-2.694)	(-2.222)	(2.347)	(-0.0923)	(-2.331)
Household Composition & Chara		0.404**	0.445*	0.0700	0.0000	0.440
Mother's age	0.0259	0.124**	0.115*	-0.0730	0.0263	0.113+
	(0.412)	(2.979)	(2.040)	(-1.029)	(0.564)	(1.710)
Mother's age squared	-0.000351	-0.0017**	-0.00158*	0.000809	-0.000455	-0.00148
Obere of children under 5	(-0.405)	(-2.982)	(-2.030)	(0.824)	(-0.705)	(-1.614)
Share of children under 5	-0.485	-0.381+	0.0672	-3.348**	0.398	2.541*
	(-1.521)	(-1.885)	(0.235)	(-3.012)	(0.544)	(2.448)
Whether a household holds	0.400	0.237	-0.324	-0.0536	0.0240	-0.251
Radio - TV	(1.533) 0.00482	(1.492)	(-1.390) 0 767**	(-0.181)	(0.123)	(-0.907)
- 1 V		0.165	0.767**	0.752*	0.675**	0.914**
Fridae	(0.0163)	(0.905)	(2.893)	(2.155)	(2.939)	(2.803)
- Fridge	0.311	0.0471	0.0649	0.0581	0.371	-0.0460
Disusla	(0.814)	(0.203)	(0.190)	(0.119)	(1.155)	(-0.101)
- Bicycle	0.363	0.161	-0.112	-0.0972	0.215	-0.137
Eluph Toilot	(1.534)	(1.302) 0.654**	(-0.528)	(-0.354)	(1.187)	(-0.535)
- Flush Toilet	0.949**	0.654**	-0.647*	0.374	-0.0266	-0.688*
W/bothor o household belance to	(3.274)	(4.184) 0.600**	(-2.495)	(1.024)	(-0.111) 1 026**	(-2.017)
Whether a household belongs to	-1.191** (-3 884)	-0.699** (-3 731)	-0.499+ (_1 810)	-1.402**	-1.036** (-4.318)	-1.000** (_2.937)
Scheduled Caste	(-3.884)	(-3.731)	(-1.819)	(-3.845)	(-4.318)	(-2.937)
Whether a household belongs to	0.378	-0.00342	-0.0479	-0.217	-0.382	-0.427
Scheduled Tribe	(1.078)	(-0.0197)	(-0.153)	(-0.502)	(-1.344)	(-1.059)

Whether a household belongs to	-0.137	0.129	0.388+	-0.129	0.112	0.110
Other Backward Groups						
	(-0.522)	(0.895)	(1.658)	(-0.422)	(0.556)	(0.385)
Hindu	-0.389	-0.431+	0.157	-0.592	0.118	0.185
	(-0.538)	(-1.648)	(0.243)	(-0.740)	(0.224)	(0.248)
Muslim	-1.140	-0.380	0.111	-1.674*	-0.350	-0.0777
	(-1.529)	(-1.406)	(0.166)	(-1.983)	(-0.630)	(-0.0986)
Christian	-1.190+	-0.245	0.161	-1.242+	0.309	0.385
	(-1.925)	(-0.999)	(0.292)	(-1.910)	(0.723)	(0.634)
Sikh	-2.442*	-0.375	1.871*	-2.605*	0.0285	2.176*
	(-2.344)	(-1.033)	(2.007)	(-2.377)	(0.0396)	(2.125)
rural	-	-0.629	-	-	-	
		(-0.906)				
Regional Dummies						
BIMARU	0.392	-0.310**	1.169**	0.526	0.716*	1.316**
	(0.968)	(-3.831)	(3.229)	(1.229)	(2.544)	(3.295)
South	-0.819*	-0.199*	-0.00629			0.329
	(-2.463)	(-2.537)	(-0.0212)			(0.960)
East	-0.440*	-0.296**	-0.201	-0.505*	-0.581**	-0.286
	(-2.447)	(-3.893)	(-1.249)	(-2.553)	(-4.468)	(-1.551)
West	, , , , , , , , , , , , , , , , , , ,	-0.255**	, , , , , , , , , , , , , , , , , , ,	0.570	0.0563	· · ·
		(-3.078)		(1.551)	(0.233)	
Food price	-0.000239	-0.00124	0.00242	0.00420	0.00625*	0.00640
	(-0.0941)	(-1.377)	(1.065)	(0.875)	(1.978)	(1.427)
Time Dummies						· · · · ·
Whether 1998	0.0809	0.461+	2.054+			
	(0.0631)	(1.736)	(1.791)			
Whether 2005	0.523		1.900	1.688	1.917*	1.039
	(0.258)		(1.050)	(1.210)	(2.089)	(0.798)
Constant	-0.211	-1.728	-3.896	0.706	-4.204	-4.172
	(-0.0939)	(-1.852)	(-1.935)	(0.344)	(-3.118)	(-2.191)
Observations	390	419	390	338	338	338
R-squared	0.377		0.486	0.408	0.404	0.498
Number of state	29	29	29	29	29	29
Hausman Test	Chi ² (29)=	Chi ² (30)=	Chi ² (29)=	Chi ² (30)=	Chi ² (30)=	Chi ² (31)=
	93.17**	19.23	280.85**	59.79**	138.07**	66.55**
Prob>chi ²	0	0.935	0	0.001	0	0.0002
Chosen Model (fixed-effects (FE)					-	
or random-effects (RE) model)	FE *1	RE ^{*1}	FE	FE	FE	FE

Notes: *1. FE stands for Fixed-Effects Model and RE random effects model. *2. t-statistics in parentheses (** p<0.01, * p<0.05, + p<0.1). *3. Statistically significant coefficients are shown in bold.

NOTES

¹ BRIC comprises the fast growing countries of Brazil, Russia, India and China. SAARC stands for The South Asian Association for Regional Cooperation.

² Doss (2013, p.35) argued that "(g)iven the convincing evidence that bargaining power is important in some specific cases, we should be more willing to accept the findings of less rigorous studies as well as those that simply demonstrate correlations."

³ The health production approach could be incorporated in non-unitary or bargaining household models (Thomas, 1994).

⁴ Maitra (2004) assumes that parents bargain over the use of health care (e.g. prenatal care and hospital delivery) and examines the effects of health care on child mortality. To avoid complication in the empirical model, we assume that parents can directly bargain over child health and nutritional status where the bargaining coefficient captures both direct effects of bargaining and indirect effects through the use of health care.

⁵ An underlying assumption is that parents care about the average health quality of their children without their preferences over boys or girls in improving their health following the theoretical literature (e.g. Maitra, 2004) as inclusion of different preferences for mothers and mothers will unnecessarily complicate the model. Further, the nutritional advantage of girls over boys aged 0-3 years has been found in India (e.g. Naandi Foundation, 2011) and it is not entirely clear the extent to which son's preference exists among parents and how it results in different nutritional outcomes between boys and girls. We have included the interaction of child's age and various women's empowerment measures to see how its or their effects on child's nutritional status differ according to child's sex, but they are not statistically significant. This implies that there is no significant interacted effect between women's empowerment and child's sex. This does not necessarily imply the lack of son's preference, but it indirectly supports our assumption in the model.

⁶ See <u>http://www.nfhsindia.org/index.html</u> for the detailed description of NFHS.

⁷ Sachdev et al. (1992) reported that 37 died among 382 children under 5 due to fatal diarrhoea in India had a mean z score of -4.3 (with s.d. 1.2) for weight- for- age and of -3.8 (s.d. 1.3) "for height- for- age", which implies the acuteness of malnutrition corresponding to z score under -4.

⁸ Variance should be clustered at the household level, but as *Stata 11.0* does not allow clustering for QR or IV regressions, we take account of the clustering effects only for OLS. But in case of OLS, once we introduce the heteroscedasticity-robust estimator, 'clustering' cannot be corrected. However, we find (in case of OLS) that clustering at household or at community level does not change the results significantly and so given the large sample size, we present the case where only heteroscedasticity is adjusted by a robust estimator.

⁹ IV estimations were tried for the NFHS-2 as well, but no plausible results were obtained due to the lack of valid instruments.

¹⁰ As the NFHS-3 data do not include wage rates, we have estimated men's wage rates and women's wage rates separately using the NCAER data in 2005 and applied Two Sample Two Stage Least Squares to obtain the implied wage rates for men and women separately using the NFHS-3 data and then have taken village-level averages. Details of the results of wage equations will be furnished on request. This method is limited as the wage levels are derived as implied values, but will be useful in obtaining a valid instrument for bargaining variables under the data constraints. This method is not possible with NFHS-2 due to the data limitations (e.g. lack of the data for adult men or unavailability of NCAER data in the same year).

¹¹ Ideally, the variable on mobile phone access should be also used, but the survey did not cover such data.

¹² BIMARU stands for the states of Bihar, Madhya Pradesh, Rajasthan, and Uttar Pradesh.

¹³ It is assumed here that the regional effects are supposed to be constant. Taking account of time-variant regional factors, such as regional health initiatives, is important, but our data do not include such information.

¹⁴ The positive and significant coefficient estimate of the average education could imply the importance of knowing about appropriate parenting practices, knowing where to access additional information (e.g. health clinic, ICDS center, TV, newspaper) and being able to use these sources of information. We thank one of the referees for pointing this out.

¹⁵ A full set of results will be furnished on request.

¹⁶ The National Council of Applied Economic Research (NCAER) data in 2005 were also used to derive the implied values of wage rates for women and men which have been used to construct an instrument. In fact, we have used NCAER data in 1994 and 2005 and attempted all the cases (OLS, IV, QR and pseudo panel) to cross-check the results. While there are a few inconsistencies (e.g. the bargaining variables are not statistically significant), the overall patterns of the results are similar. The results will be furnished on request.