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Abstract

This paper studies wealth distribution dynamics in a small open
economy with a continuum of consumers indexed by initial wealth.
Each of them solves a discrete-choice problem whose optimal policy
function exhibits ergodic chaos. We show that for any initial distribu-
tion of wealth given by a density, the wealth distribution converges to
a unique invariant distribution, and aggregate wealth converges to the
corresponding value. Thus ergodic chaos leads to aggregate stability
rather than instability. These results are illustrated with various nu-
merical examples.
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1 Introduction

It has been known since the mid-1980s that deterministic infinite-horizon
optimization problems in economics can generate chaotic dynamics. Most
of these problems are optimal growth models, which are typically solved
using dynamic programming.1 Another class of models that exhibit chaos are
discrete-choice problems of the type studied by Kamihigashi (2000a, 2000b,
2012), which give rise to complex dynamics in a very natural way.

Although many of these problems can be regarded as aggregate economies,
they are in fact nothing more than single-agent optimization problems, none
of which involves actual aggregation. A natural question then is, what if
one aggregates the behavior of many agents each of whom obeys a chaotic
policy?

To address this question in a simplest possible framework, we consider a
small open economy with a continuum of consumers each of whom solves a
special case of Kamihigashi’s (2000a) discrete-choice problem. In this model
the consumption good can only be purchased and consumed in whole units.
We show that for any initial distribution of wealth given by a density, the
wealth distribution converges to a unique invariant distribution, and aggre-
gate wealth converges to the corresponding value.2 These results apply to
cases in which initial wealth is almost identical across consumers. In such
cases, a typical consumer’s wealth and aggregate wealth follow similar paths
at the beginning, but they differ completely in the long run: while the former
keeps fluctuating forever, the latter converges to the unique long run value.

We use a simple discrete-choice model merely as an illustration of the idea
that ergodic chaos may lead to aggregate stability rather than instability.
This idea seems to be new in the context of aggregate economic dynamics
though our results are immediate consequences of the “statistical stability”
of the “Rény” map. Since the same property is shared by other maps such
as the “tent” and “quadratic” maps (e.g., Lasota and Mackey, 1994), the
idea of this paper can also be applied to an aggregated version of an optimal
growth model whose optimal policy function is given by such a map.

The rest of the paper is organized as follows. In the next section we review
the mathematical concepts used in our analysis. In Section 3 we present

1See Mitra et al. (2006) for a survey on chaos in optimal growth models. See Le Van
and Dana (2003), Le Van (2006), and Kamihigashi (2008) for optimal growth and dynamic
programming.

2See Bond et al. (2012) for wealth distribution dynamics in a two-country model.
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a special case of Kamihigashi’s (2000a) discrete-choice problem along with
some basic results. In Section 4 we show our results on the dynamics of the
wealth distribution and aggregate wealth. These results are illustrated with
numerical examples in Section 5.

2 Preliminaries

Here we review the mathematical concepts used in our analysis. Most of the
definitions discussed here are adapted from Lasota and Mackey (1994).

Let I denote an interval in R equipped with its Borel σ-algebra B. For
any (Borel-)measurable function f : I → R, we define ‖f‖ =

∫
I
|f(x)|dx. Let

L1 be the set of measurable functions f : I → R such that ‖f‖ <∞. Given
any {ft}∞t=0 ⊂ L1 and f ∗ ∈ L1, we write limt↑∞ ft = f ∗ if limt↑∞ ‖ft−f ∗‖ = 0.
Let F be the set of probability densities on I, i.e., the set of nonnegative
measurable functions f : I → R+ such that ‖f‖ = 1. An operator P : L1 →
L1 is called a Markov operator if it is a linear operator and if Pf ∈ F for all
f ∈ F . Given a Markov operator P : L1 → L1, a density f ∈ F is called
invariant under P if Pf = f . A Markov operator P is called asymptotically
stable if it has a unique invariant density f ∗ ∈ F and if limn↑∞ P

nf = f ∗ for
all f ∈ F , where P 2f = P (Pf), P 3f = P (P 2f), etc.3

Let a measurable map g : I → I be given. For B ∈ B, define

g−1(B) = {x ∈ I : g(x) ∈ B}. (2.1)

We say that g is nonsingular if λ(g−1(B)) = 0 for any B ∈ B with λ(B) = 0,
where λ is the Lebesgue measure on I. Provided that g is nonsingular, the
Frobenius-Perron operator Pg : L1 → L1 associated with g is defined by∫

B

(Pgf)(x)dx =

∫
g−1(B)

f(x)dx, B ∈ B. (2.2)

This operator determines the evolution of densities under g. More specifically,
if the distribution of a random variable X is given by the density f ∈ F , then
the distribution of g(X) is given by the new density Pgf ∈ F . Since Pg is
linear by (2.2), it follows that Pg is a Markov operator. We say that g is
statistically stable if Pg is asymptotically stable.

3To be precise, we require f∗ to be unique only up to sets of measure zero. Throughout
this paper we follow the convention of identifying functions that differ only on a set of
measure zero.
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A set B ∈ B is called invariant under g if g−1(B) = B. A density
f ∈ F is called invariant under g if it is invariant under Pg. A density f ∈ F
invariant under g is called ergodic if any set B ∈ B invariant under g satisfies∫
B
f(x)dx = 0 or

∫
B
f(x)dx = 1. Following Nishimura et al. (1994, Definition

1) we say that g exhibits ergodic chaos if g has an ergodic invariant density.
Lasota and Mackey (1994, Proposition 5.6.2) show that if g is statistically
stable, then it exhibits ergodic chaos.4

3 Individual Dynamics

In this section we present an individual consumer’s problem. It is a special
case of the discrete-choice model studied by Kamihigashi (2000a). The prob-
lem here is a standard life-cycle model except that the consumption good
can only be purchased and consumed in whole units. We assume that the
price of the good is one, and the interest rate is constant over time. To be
specific, consider the following maximization problem:

max
{ct,xt+1}∞t=0

∞∑
t=0

βtu(ct) (3.1)

s.t. x0 ≥ 0 given, (3.2)

∀t ≥ 0, xt+1 = Rxt − ct, (3.3)

xt+1 ≥ 0, (3.4)

ct ∈ Z+, (3.5)

where β ∈ (0, 1) is the discount factor, R > 1 is the gross interest rate,
xt+1 is wealth at the end of period t (or Rxt is wealth at the beginning of
period t), and ct is consumption. The integer constraint (3.5) means that
the consumption good must be purchased and consumed in whole units. We
assume that the utility function u : R+ → R is continuous, concave, and
strictly increasing with u(0) = 0.

We say that a wealth path {xt}∞t=0 is optimal (from x) if there exists a con-
sumption path {ct}∞t=0 such that {ct, xt+1} solves the maximization problem
(3.1)–(3.5) (with x0 = x). Given any subset A of R+, a function g : B → R+

4They show that if g is statistically stable, then g is “exact”, which implies that g is
“mixing” and thus “ergodic”; see Lasota and Mackey (1994, p. 65, 66, 59). Their definition
of ergodicity is equivalent to the definition of ergodic chaos above.
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is called an optimal policy function on A if for any x ∈ A there exists an
optimal wealth path {xt} from x such that x1 = g(x). The following result
is a special case of Kamihigashi (2000a, Theorem 1).

Lemma 3.1. Given any y > 0, there exists βy ∈ (0, 1) such that if β < βy,
then there exists a unique optimal policy function g on [0, y]; furthermore, g
is given by5

g(x) = Rx mod 1. (3.6)

See Kamihigashi (2000a) for an explanation and interpretation of this
result. The map g in (3.6) is a special case of a pseudo-random number
number generator called a linear congruential generator. In fact the map
g itself typically generates erratic paths; see Figure 1.6 For the rest of this
paper we assume that β < β1, which implies that g is a unique optimal policy
function on [0, 1] by Lemma 3.1.7

Let I = [0, 1). Since g maps [0, 1] into I, we restrict the domain of g to I
unless otherwise stated. The following result is the basis for our analysis of
wealth distribution dynamics in the next section.

Proposition 3.1. The map g is statistically stable and exhibits ergodic chaos.

Proof. Lasota and Mackey (1994, Theorem 6.2.1) show that the Frobenius-
Perron operator Pg associated with g is asymptotically stable; thus g is stat-
ically stable by definition, which implies that g exhibits ergodic chaos; recall
Section 2.

4 Wealth Distribution Dynamics

Consider a small open economy with a continuum of consumers indexed by
initial wealth x0. The price of the good and the gross interest rate are
constant and exogenously given as in the previous section. Except for initial
wealth, all consumers face the same problem (3.1)–(3.5), obeying the same
optimal policy g. Let F be the set of probability densities on I. We normalize

5For any a, b ≥ 0, a mod b = a− bmax{n ∈ Z+ : nb ≤ a}.
6See Kamihigashi (2000a) and Gentle (2003) for more on random number generators.

The map g is known as the Rényi map, and is called the R-adic map if R ∈ N (Lasota
and Mackey, 1994, p. 144).

7Even if β does not satisfy this inequality, complex dynamics arise naturally in this
model; see Kamihigashi (2000a, 2012).
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Figure 1: Optimal policy functions and optimal wealth paths (β < β1)

the population of consumers to unity, and assume that the distribution of
initial wealth x0 is given by a density f0 ∈ F . Let ft ∈ F denote the density
of period-t wealth xt for each t ∈ Z+. The evolution of these densities is
determined by the Frobenius-Perron operator Pg associated with g (recall
(2.2)); i.e., ft+1 = Pgft for all t ∈ Z+. Aggregate wealth Xt in period t is
given by

Xt =

∫ 1

0

xft(x)dx. (4.1)

We illustrate how various densities are mapped by Pg after showing the fol-
lowing result.

Proposition 4.1. The map g has a unique invariant density f ∗ ∈ F . Fur-
thermore, for any f0 ∈ F , we have

lim
t↑∞

ft = f ∗, (4.2)

lim
t↑∞

Xt =

∫ 1

0

xf ∗(x)dx. (4.3)
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Proof. Recall from the proof of Proposition 3.1 that Pg is asymptotically
stable; thus it has a unique invariant density f ∗ ∈ F , which satisfies (4.2).
To see (4.3) note that for any t ∈ Z+,∣∣∣∣∫ 1

0

xft(x)dx−
∫ 1

0

xf ∗(x)dx

∣∣∣∣ ≤ ∫ 1

0

x|ft(x)− f ∗(x)|dx (4.4)

≤
∫ 1

0

|ft(x)− f ∗(x)|dx = ‖ft − f ∗‖. (4.5)

Now (4.3) follows from (4.2).

Remark 4.1. Proposition 4.1 shows that even though individual dynamics
may be extremely complicated, distributional and aggregate dynamics are
always stable and convergent. Since (4.2) and (4.3) hold for any f0 ∈ F ,
they hold even if f0 is almost concentrated at one point. For example, let
z ∈ (0, 1) and f0 = U z+ε

z−ε , where for any a, b ∈ I with a < b, U b
a : I → R+

denotes the uniform distribution on [a, b):

U b
a(x) =

{
1/(b− a) if x ∈ [a, b),

0 otherwise.
(4.6)

Then for any ε > 0 with z − ε, z + ε ∈ I, (4.2) and (4.3) hold by Proposition
4.1. Thus erratic paths such as those in Figure 1 are impossible for aggregate
wealth in the long run no matter how small ε > 0 may be.

Before we discuss Proposition 4.1 further, it is useful to understand how
densities are mapped under g. For this purpose we express Pg as

(Pgf)(x) =
1

R

[ ∑
i∈N:i≤R

f

(
x+ i− 1

R

)
+ f

(
x+ [R]

R

)
1{x < g(1)}

]
, (4.7)

where [R] is the largest integer n with n ≤ R; see Lasota and Mackey (1994,
(6.2.4)) for the derivation of (4.7). Using this formula, we can explicitly
compute Pgf for any f ∈ F . Note that if R ∈ N, then g(1) = 0 and the
second term in the square brackets in (4.7) is zero.

Figure 2 assumes that R = 3 and f0 = U b
a with 0 < a < 1/3 < b < 2/3.

Panel (a) shows how f0 is mapped under g. In panels (b) and (c), f0 is
decomposed into two parts:

f0 = f 1
0 + f 2

0 , f
1
0 (x) = 1[0,1/3)(x)f0(x), f 2

0 (x) = 1[1/3,1)(x)f0(x), (4.8)
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Figure 2: Decompositions of f0 and f1 as in (4.8) and (4.9) (R = 3)

where 1A is the indicator function on set A; i.e., 1A(x) = 1 if x ∈ A, and
= 0 otherwise. The two components f 1

0 and f 2
0 are mapped separately under

g in panels (b) and (c). Since Pg is a linear operator, we have

f1 = Pgf0 = Pg(f
1
0 + f 2

0 ) = Pgf
1
0 + Pgf

2
0 = f 1

1 + f 2
1 , (4.9)

where f i1 = Pgf
i
0 for i = 1, 2. Thus we can recover panel (a) by combining

panels (b) and (c).
Figure 3 gives three more examples. In panel (a), R = 3 and f0 = U1

0 .
This density is separated by dashed lines into three components. Each of
them has mass 1/3 and is mapped to (1/3)1I . Multiplying this function by
3 yields U1

0 , which equals f1 as well as f0. Thus U1
0 is an invariant density

here.
In panel (b), R = 2.5, but f0 is the same as in panel (a). This density

is separated by a dashed line into two components. The larger (left) compo-
nent is mapped to a constant function on I, while the smaller to a constant
function on [0, 1/2]. Adding these functions results in f1.

In panel (c), R = 2.5, and f0(x) = 2 − 2x. This density is divided
into two components as in panel (b). The larger component is mapped to
a decreasing linear function on I, while the smaller to a decreasing linear
function on [0, 1/2]. We obtain f1 by adding these functions.

The convergence result (4.2) in Proposition 4.1 is particularly easy to
understand if R ∈ N. In this case, for any n ∈ N, we have

gn(x) = Rnx mod 1. (4.10)
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See Figure 4(a)–(c). Note that (4.10) is true only if R ∈ N; see Figure
4(d)–(f). For simplicity, let us assume for the moment that f0 = U b

a with
0 ≤ a < b ≤ 1. Since ft = P t

gf0 = Pgtf0 for any t ∈ N (Lasota and Mackey,
1994, p. 43), we can visualize the transition from f0 to ft in one step as
in Figures 2 and 3. To this end, for any t ∈ N, we divide f0 into three
components

f t,10 = 1[0,ã)f0, f t,20 = 1[ã,b̃)f0, f t,30 = 1[b̃,1)f0, (4.11)

where

ã = min{i/Rt : i/Rt ≥ a, i ∈ Z+}, (4.12)

b̃ = max{i/Rt : i/Rt ≤ b, i ∈ Z+}. (4.13)

See Figure 5(a), where R = 3 and t = 3. Let f it = Pgtf
t,i
0 for i = 1, 2, 3.

Note that f 2
t is a constant function on I; see Figure 5(c). As t ↑ ∞, we have

ã → a and b̃ → b, and f 1
t and f 3

t converge to zero uniformly; see Figure
5(b),(d). Hence if t is sufficiently large, ft approximately equals f 2

t , which in
turn approximately equals U1

0 . This explains why ft converges to f ∗ = U1
0 in

the case R ∈ N. If R 6∈ N, however, we have f ∗ 6= U1
0 :

Proposition 4.2. We have f ∗ = U1
0 if and only if R ∈ N. If R 6∈ N, then

f ∗ is nonconstant, bounded, and decreasing (i.e., nonincreasing).

Proof. Suppose that R ∈ N. Then it follows from Figure 3(a) that U1
0 is

invariant. Since there is only one invariant density by Proposition 4.1, we
have f ∗ = U1

0 . If R 6∈ N, then U1
0 cannot be invariant by Figure 3(b), and f ∗

is bounded and decreasing by Lasota and Yorke (1982, Theorem 4).

5 Numerical Examples

In this section we illustrate the results of the preceding section with a series
of numerical examples. Throughout this section we assume that f0 = U0.28

0.26 ;
i.e., the initial distribution of wealth is almost concentrated at 0.27. All the
examples here are computed by discretizing I into 10,000 equally spaced grid
points.

Figure 6 demonstrates that {ft} quickly converges to U1
0 if R = 3. As

Proposition 4.2 shows, we have f ∗ = U1
0 here. Figure 7 illustrates the stark
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Figure 6: f0, f1, . . . , f9 (R = 3)
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Figure 7: {xt} with x0 = 0.27 and {Xt} with f0 = U0.28
0.26 (R = 3)
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Figure 8: f0, f1, . . . , f11 (R = 2.5)

difference between individual and aggregate dynamics: while the individual
wealth path {xt} with x0 = 0.27 keeps fluctuating, the aggregate wealth path
{Xt} with f0 = U0.28

0.26 converges very quickly.
Since R is the “expansiveness” of the map g, we can expect that {ft}

converges more slowly the smaller R is. This can be seen by comparing
Figure 6 (R = 3) and Figure 8 (R = 2.5). Figure 8 also confirms that f ∗ is
decreasing if R 6∈ N, as shown by Proposition 4.2. Figure 9 shows that {Xt}
still converges fairly quickly, while {xt} keeps fluctuating. These points are
further illustrated by Figures 10 and 11, where R = 1.5.

If R = 1.1, both {ft} and {Xt} converge rather slowly; see Figures 12 and
13. Figure 12 confirms once again that f ∗ is decreasing if R 6∈ N, but shows
that f ∗ is considerably smoother here than in Figures 8 and 10. Figures 7,
9, 11, and 13 suggest that the more erratic individual wealth is, the faster
aggregate wealth converges.
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Figure 12: f0, f1, . . . , f95 (R = 1.1)
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Figure 13: {xt} with x0 = 0.27 and {Xt} with f0 = U0.28
0.26 (R = 1.1)
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