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1 Introduction

Hopenhayn and Prescott’s stability theorem [28, theorem 2] is a standard tool for
analysis of dynamics and stationary equilibria. For example, Huggett [30] used the
theorem to study asset distributions in incomplete-market economies with infinitely-
lived agents.1 The theorem was also applied to variants of Huggett’s model with
features such as habit formation, endogenous labor supply, capital accumulation
and international trade [22, 31, 53, 42, 55]. It was used to study the classical one-
sector optimal growth model by Hopenhayn and Prescott [28], a stochastic endoge-
nous growth model by de Hek [21], and a small open economy by Chatterjee and
Shukayev [15]. It has been used in a wide range of OLG models with features
such as credit rationing [1, 54], human capital [52, 40, 13, 17, 12], international trade
[56, 18], nonconcave production [47], and occupational choice [40, 4, 5]. Other well-
known applications include variants of Hopenhayn and Rogerson’s [29] model of
job turnover [11, 59], as well as variants of Hopenhayn’s [27] model of entry and
exit [16, 58].

The contributions of this paper are twofold. First, we show that the conditions of
Hopenhayn and Prescott’s stability theorem have an additional implication beyond
existence, uniqueness and stability of stationary equilibria: They also imply ergodic-
ity, in the sense that sample averages of time series converge with probability one to
their corresponding expectations under the stationary distribution, independent of
initial conditions. This is particularly important from a computational perspective,
implying as it does that stationary cross-sectional probabilities can be calculated by
time averages, where the time series is started from any point in the state space. In
particular, we need no prior information about the stationary distribution to com-
pute stationary outcomes via simulation.

Our second contribution is to weaken the conditions of the theorem, and show
how it can be applied to a broader range of models. We do this by introducing a
mixing condition called order reversing that is weaker than the mixing condition
used by Hopenhayn and Prescott. We also relax the restriction that the state space
be compact and order bounded. In this setting, we obtain general conditions for
monotone, order reversing processes to attain global stability. The conditions are
also necessary, and hence we are able to characterize global stability for monotone,
order reversing processes. Finally, we show that the ergodicity results discussed

1See [32] for a recent extension of Huggett’s analysis.
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above are valid under these conditions.
One reason that the Hopenhayn-Prescott theorem has not previously been ex-

tended is that their proof of the existence of a stochastic steady state uses the Knaster-
Tarski fixed point theorem, and for non-compact state spaces the Knaster-Tarski the-
orem cannot be applied, since a chain in the space of distributions need not have
a supremum or an infimum. Our fixed point argument is new, combining order-
theoretic and topological results to obtain existence of the stochastic steady state.

Freeing Hopenhayn and Prescott’s existence result from the Knaster-Tarski the-
orem has the obvious benefit of permitting more general state spaces. It also relaxes
a tension that is present in the original formulation of the Hopenhayn-Prescott sta-
bility theorem. In the original formulation, a compact state space is needed to apply
the Knaster-Tarski theorem, which yields existence of a stationary distribution. On
the other hand, the restriction to compact state spaces requires that shocks have
relatively small supports, which in turn implies less mixing. Since mixing is as-
sociated with uniqueness and stability of stationary distributions, reduced mixing
means that these properties are less likely to hold.2

As the conditions in this paper yield existence without the compact state space,
they permit the study of models with larger shocks and more mixing. This makes
it possible to prove existence, uniqueness and stability for models where even ex-
istence cannot be established using earlier techniques. It also allows researchers to
address new questions, such as whether or not large shocks are destabilizing.

Some of these ideas are illustrated in our applications at the end of the paper.
The applications include an infinite horizon optimal growth model, an overlapping
generations model and a nonlinear autoregression. In all three applications, we il-
lustrate situations where the conditions of our extended Hopenhayn-Prescott theo-
rem are satisfied, while those of the theorem in its original formulation do not hold.
As far as we are aware, no current theory from the literature on Markov processes
can be used to obtain existence of a stationary distribution in these cases.

Our applications also shed some light on the extent to which large shocks are
destabilizing. Our results suggest that, provided that the fundamentals of the model
act against divergence, large shocks are not destabilizing. On the contrary, large
shocks generate mixing, and mixing promotes stability.

Concerning related literature, the sequence of results leading to the Hopenhayn-
Prescott stability theorem began with the seminal contribution of Razin and Yahav

2For a discussion of the relationship between mixing and stability see Stokey et al. [62, p. 380].
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[57]. Razin and Yahav introduced a condition now called the monotone mixing con-
dition (MMC), and showed that the MMC implies global stability for monotone and
suitably continuous Markov processes evolving on a closed interval of R. Stokey,
Lucas and Prescott [62] generalized this result to multiple dimensions.

Meyn and Tweedie [44] and Herández-Lerma and Lasserre [25] give excellent
overviews of the classical theory of discrete time Markov processes. For monotone
Markov models, important contributions to the theory aside from those mentioned
above were provided by Dubins and Freedman [23], Bhattacharya and Lee [7], Bhat-
tacharya and Majumdar [8] and Bhattacharya et al. [9]. These authors studied sta-
bility in the monotone setting via a “splitting condition,” defined in terms of an
ordering on the state space. This condition is stricter than order reversing. At the
same time, the literature on splitting contains many important results not treated in
this paper.3

The rest of the paper is structured as follows: Section 2 reviews some basic defi-
nitions concerning Markov processes, and introduces the concept of order reversing.
Section 3 states the main results (theorems 3.1–3.4), and compares them to the orig-
inal formulation of the Hopenhayn-Prescott stability theorem. Section 4 provides
sufficient conditions for order reversing, and other results useful for checking the
conditions of theorems 3.1–3.4. Section 5 gives applications and section 6 concludes.

2 Preliminaries

At each time t = 0, 1, . . . , the state of the economy is described by a point Xt in
topological space S. The space S is equipped with its Borel sets BS and a closed
partial order ≤. An order interval of S is a set of the form [a, b] := {x ∈ S : a ≤
x ≤ b}. A function f : S → R is called increasing if f (x) ≤ f (y) whenever x ≤ y. A
subset B of S is called order bounded if there exists an order interval [a, b] ⊂ S with
B ⊂ [a, b]. In addition, B is called increasing if its indicator function 1B is increasing,
and decreasing if 1B is decreasing.

To simplify terminology, we often use the word “distribution” to mean “prob-
ability measure on (S, BS)”. The set of all probability measures on (S, BS) will be
denote by PS. We let cbS denote the continuous bounded functions from S to R,
and ibS denote the set of increasing bounded measurable functions from S toR. We

3A recent technical note by Kamihigashi and Stachurski [36] also studied monotone Markov pro-
cesses. The result in that note is used in the proof of our main stability result.
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use inner product notation to represent integration, so that

〈µ, h〉 :=
∫

h(x)µ(dx) for µ ∈PS and h ∈ ibS ∪ cbS.

We adopt the standard definitions of convergence in distribution and stochastic
domination: Given sequence {µn}∞

n=0 in PS, we say that µn converges to µ and write
µn → µ0 if 〈µn, h〉 → 〈µ0, h〉 for all h ∈ cbS. We say that µ2 stochastically dominates µ1

and write µ1 � µ2 if 〈µ1, h〉 ≤ 〈µ2, h〉 for all h ∈ ibS.
Following Hopenhayn and Prescott [28], we assume that S is a normally ordered

polish space.4 Hopenhayn and Prescott assume in addition that S is compact, with
least element a and greatest element b.5 Since we wish to include more general state
spaces such as Rn, we make the weaker assumption that a subset of S is compact if
and only if it is closed and order bounded. This is obviously the case in Hopenhayn
and Prescott’s setting, where all subsets of S are order bounded, and any closed sub-
set is compact. It also holds for S = R

n with its standard partial order, since order
boundedness is then equivalent to boundedness. In addition, it holds in common
state spaces such as Rn

+ or Rn
++, or in any set of the form I1 × · · · × In ⊂ Rn, where

each Ii is an open, closed, half-open or half-closed interval in R.6

Throughout the paper, we suppose that the model under consideration is time-
homogeneous and Markovian. The dynamics of such a model can be summarized
by a stochastic kernel Q, where Q(x, B) represents the probability that the state
moves from x ∈ S to B ∈ BS in one unit of time. As usual, we require that
Q(x, ·) ∈PS for each x ∈ S, and that Q(·, B) is measurable for each B ∈ BS.

Here and below, (Ω, F ,P) denotes a fixed probability space on which all ran-
dom variables are defined, andE is the corresponding expectations operator. Given
µ ∈ PS and stochastic kernel Q, an S-valued stochastic process {Xt} is called
Markov-(Q, µ) if X0 has distribution µ and Q(x, ·) is the conditional distribution of
Xt+1 given Xt = x.7 If µ is the distribution δx ∈ PS concentrated on x ∈ S, we

4A polish space is a separable and completely metrizable topological space. The space (S,≤) is
normally ordered if, given any closed increasing set I and closed decreasing set D with I ∩ D = ∅,
there exists an f in ibS ∩ cbS such that f (x) = 0 for all x ∈ D and f (x) = 1 for all x ∈ I.

5A point a is called a least element of S if a ∈ S and a ≤ x for all x ∈ S. A point b is called a greatest
element of S if b ∈ S and x ≤ b for all x ∈ S.

6A simple example that does not satisfy our assumptions is S = (0, 1) ∪ (2, 3). In this case the
order interval [0.5, 2.5] is closed and order bounded but not compact.

7More formally, P[Xt+1 ∈ B |Ft] = Q(Xt, B) almost surely for all B ∈ BS, where Ft is the
σ-algebra generated by the history X0, . . . , Xt.
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call {Xt} Markov-(Q, x). We call {Xt} Markov-Q if {Xt} is Markov-(Q, µ) for some
µ ∈PS.

Example 2.1. Many economic models result in processes for the state variables rep-
resented by nonlinear, vector-valued stochastic difference equations. As a generic
example, consider the S-valued process

Xt+1 = F(Xt, ξt+1), {ξt}
IID∼ φ, (1)

where {ξt} takes values in Z ⊂ Rm, the function F : S×Z → S is measurable, and φ

is a probability measure on the Borel sets of Z. Let QF be the kernel

QF(x, B) := P{F(x, ξt) ∈ B} = φ{z ∈ Z : F(x, z) ∈ B}. (2)

Then {Xt} in (1) is Markov-QF.8

For each t ∈ N, let Qt be the t-th order kernel, defined by

Q1 := Q, Qt(x, B) :=
∫

Qt−1(y, B)Q(x, dy) (x ∈ S, B ∈ BS).

The value Qt(x, B) represents the probability of transitioning from x to B in t steps.
A sequence {µn} ⊂ PS is called tight if, for all ε > 0, there exists a compact

K ⊂ S such that µn(K) ≥ 1− ε for all n. A stochastic kernel Q is called bounded in
probability if {Qt(x, ·)}t≥0 is tight for all x ∈ S. Intuitively, Q is bounded in proba-
bility if, for any initial condition, the entire sequence of distributions is almost sup-
ported on a single compact set, and hence probability mass does not diverge as
n→ ∞.

For each Q we define two operators, sometimes called the left and right Markov
operators. The left Markov operator maps µ ∈PS into µQ ∈PS, where

(µQ)(B) :=
∫

Q(x, B)µ(dx) (B ∈ BS). (3)

The right Markov operator maps bounded measurable function h : S → R into
bounded measurable function Qh, where

(Qh)(x) :=
∫

h(y)Q(x, dy) (x ∈ S).

8Although the process (1) is only first order, models including higher order lags of the state and
shock process can be rewritten in the form of (1) by redefining the state variables.
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The interpretation of the left Markov operator µ 7→ µQ is that it shifts the distribu-
tion for the state forward by one time period. In particular, if {Xt} is Markov-(Q, µ),
then µQt is the distribution of Xt. The interpretation of the right Markov operator
h 7→ Qh is that (Qth)(x) is the expectation of h(Xt) given X0 = x. If QF is the kernel
in (2), then (QFh)(x) =

∫
h[F(x, z)]φ(dz). It is well known (see, e.g., Stokey et al.

[62, p. 219]) that the left and right Markov operators are adjoint, in the sense that,
for any such h and any µ ∈ PS, we have 〈µ, Qh〉 = 〈µQ, h〉. Also, given any x ∈ S,
B ∈ BS and t ∈ N, the t-th order kernel and the left and right Markov operators are
related by Qt(x, B) = (δxQt)(B) = (Qt

1B)(x). Here 1B is the indicator function of
B.

If µ∗ ∈ PS and µ∗Q = µ∗, then µ∗ is called stationary (or invariant) for Q. If Q
has a unique stationary distribution µ∗ in PS, and, in addition, µQt → µ∗ as t→ ∞
for all µ ∈PS, then Q is called globally stable. In this case, µ∗ is naturally interpreted
as the long-run equilibrium of the economic system. If µ∗ is stationary, then any
Markov-(Q, µ∗) process {Xt} is strict-sense stationary with Xt ∼ µ∗ for all t.

If µ ∈ PS and µQ � µ, then µ is called excessive. If µ � µQ, then µ is called
deficient. If Q satisfies µQ � µ′Q whenever µ � µ′, then Q is called increasing.9

It is in fact sufficient to check that Q(x, ·) � Q(x′, ·) whenever x ≤ x′. A third
equivalent condition is that Qh ∈ ibS whenever h ∈ ibS.10 If, on the other hand,
Qh ∈ cbS whenever h ∈ cbS, then Q is called Feller. Finally, if Q and Q′ are two
kernels with µQ � µQ′ for all µ ∈ PS, then we say that Q′ dominates Q and write
Q � Q′. An equivalent condition is that Qh ≤ Q′h for all h ∈ ibS.11

Remark 2.1. Let Q be an increasing stochastic kernel. If A is an increasing set, then
x 7→ Q(x, A) is increasing. If A is a decreasing set, then x 7→ Q(x, A) is decreasing.

9Many examples of models with increasing kernels were given in the introduction. Other ex-
amples not discussed there include various infinite horizon optimal growth models with features
such as irreversible investment, renewable resources, distortions, and capital-dependent utility.
Increasing kernels are also found in stochastic OLG models besides those mentioned previously,
such as models with limited commitment, and in a variety of stochastic games. See, for example,
[2, 3, 26, 6, 49, 51, 19, 45]. For an empirical test of the increasing property, see [38].

10For example, suppose that Qh ∈ ibS whenever h ∈ ibS. Pick any µ ∈PS. Fixing h ∈ ibS, we have
Qh ≤ Q′h. Integrating with respect to µ gives 〈µ, Qh〉 ≤ 〈µ, Q′h〉, or, equivalently, 〈µQ, h〉 ≤ 〈µQ′, h〉.
Since h was an arbitrary element of ibS, we have shown that µQ � µQ. The proof of the converse is
also straightforward.

11If g and h are two real-valued functions on S, then g ≤ h means that g(x) ≤ h(x) for all x ∈ S.
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Remark 2.2. If S has a least element a, then δa is deficient for any kernel Q, because
δa � µ for every µ ∈ PS, and hence δa � δaQ. Similarly, if S has a greatest element
b, then δb is excessive for Q.

Example 2.2. Let F and QF be as in example 2.1. If x 7→ F(x, z) is increasing, then
QF is increasing.12 If x 7→ F(x, z) is continuous, then QF is Feller.

Example 2.3. Let F and QF be as in example 2.1. Consider a second process

Xt+1 = G(Xt, ξt+1), {ξt}
IID∼ φ,

where G : S× Z → S is measurable. Let QG be the corresponding stochastic kernel.
If G(x, z) ≤ F(x, z) for all (x, z) ∈ S× Z, then QG � QF.13

2.1 Order Reversing

Our first step is to introduce a new order-theoretic mixing condition. We will say
that a stochastic kernel Q is order reversing if, given any x and x′ in S with x′ ≤ x, and
independent Markov-Q processes {Xt} and {X′t} starting at x and x′ respectively,
there exists a t ∈ N with P{Xt ≤ X′t} > 0. In other words, the initial ordering is
reversed at some point in time with positive probability.

It is helpful to provide a second, more succinct, definition. To do so, let

G := graph(≤) := {(y, y′) ∈ S× S : y ≤ y′},

so that y ≤ y′ iff (y, y′) ∈ G. Also, let Q be a stochastic kernel on S, and consider the
product kernel Q×Q on S× S defined by

(Q×Q)((x, x′), A× B) = Q(x, A)Q(x′, B) (4)

for (x, x′) ∈ S × S and A, B ∈ BS.14 The product kernel represents the stochastic

12The statement that F(·, z) is increasing means that x, x′ ∈ S with x ≤ x′ and z ∈ Z implies
F(x, z) ≤ F(x′, z). Since QFh(x) =

∫
h[F(x, z)]φ(dz), to prove that QF is increasing, it suffices to

show that if x ≤ x′ and h ∈ ibS, then
∫

h[F(x, z)]φ(dz) ≤
∫

h[F(x′, z)]φ(dz). As h ∈ ibS and F(·, z) is
increasing for each z, this follows from monotonicity of the integral.

13To see this, observe that if h ∈ ibS, then QGh ≤ QFh, since, for any x ∈ S, we have (QGh)(x) =∫
h[G(x, z)]φ(dz) ≤

∫
h[F(x, z)]φ(dz) = (QFh)(x).

14Sets of the form A× B with A, B ∈ BS provide a semi-ring in the product σ-algebra BS⊗BS that
also generates BS ⊗BS. Defining the probability measure Q((x, x′), ·) on this semi-ring uniquely
defines Q((x, x′), ·) on all of BS ⊗BS. See, e.g., [24, theorem 3.2.7].
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kernel of the joint process {(Xt, X′t)}when {Xt} and {X′t} are independent Markov-
Q processes. Using this notation, Q is order reversing if and only if

∀ x, x′ ∈ S with x′ ≤ x, ∃ t ∈ N such that (Q×Q)t((x, x′),G) > 0.

This second definition emphasizes the fact that order reversing is a property of the
kernel Q alone (taking S and ≤ as given).

Remark 2.3. In verifying order reversing, it is clearly sufficient to check the existence
of a t with (Q× Q)t((x, x′),G) > 0 for arbitrary pair x, x′ ∈ S. Often this is just as
easy, and much of the following discussion proceeds accordingly.

Example 2.4. Suppose we are studying a dynamic model of household wealth. In-
formally, the model is order reversing if, for two households receiving idiosyncratic
shocks from the same distribution, the wealth of the first household is less than that
of the second at some point in time with non-zero probability, regardless of initial
wealth for each of the two households.

Example 2.5. Let S be a compact metric space with least element a and greatest
element b, and let Q be an increasing kernel on S. In this setting, Q is said to satisfy
the MMC [57, 62, 28] whenever

∃ x̄ ∈ S and k ∈ N such that Qk(a, [x̄, b]) > 0 and Qk(b, [a, x̄]) > 0. (5)

Under these conditions, Q is order reversing: If we start independent Markov-Q
process {Xa

t } and {Xb
t } at a and b respectively, then (5) implies the order reversal

Xb
k ≤ Xa

k occurs at time k with positive probability. Since Q is increasing, closer
initial conditions only make this event more likely.15

Example 2.6. Consider the stochastic kernel Q(x, B) = P{ρx + ξt ∈ B} on S = R

associated with the linear AR(1) model

Xt+1 = ρXt + ξt+1, {ξt}
IID∼ N(0, 1). (6)

This kernel fails to satisfy the MMC. On the other hand, it is order reversing. To see
this, fix (x, x′) ∈ R2, and take two independent Markov-Q processes

Xt+1 = ρXt + ξt+1 with X0 = x, X′t+1 = ρX′t + ξ ′t+1 with X′0 = x′,

15To be precise, let x̄ and k be as in (5). Fix x, x′ ∈ S and let {Xt} and {X′t} be independent, Markov-
(Q, x) and Markov-(Q, x′) respectively. By independence and {Xk ≤ x̄ ≤ X′k} ⊂ {Xk ≤ X′k}, we
have P{Xk ≤ x̄}P{x̄ ≤ X′k} = P{Xk ≤ x̄ ≤ X′k} ≤ P{Xk ≤ X′k}. But P{x̄ ≤ X′k} = Qk(x, [a, x̄]) and
P{Xk ≤ x̄} = Qk(x, [x̄, b]) are strictly positive by (5) and remark 2.1. Hence Q is order reversing.
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where {ξt} and {ξ ′t} are IID, standard normal, and independent of each other. We
can see that P{Xt ≤ X′t} > 0 is satisfied with t = 1, because

P{X1 ≤ X′1} = P{ρx + ξ1 ≤ ρx′ + ξ ′1} = P{ξ1 − ξ ′1 ≤ ρ(x′ − x)}.

Since ξ1 − ξ ′1 is Gaussian, this probability is strictly positive.

3 Main Results

We can now state our main results, which concern stability and ergodicity of in-
creasing, order reversing stochastic kernels.

3.1 Global Stability

Our first result extends Hopenhayn and Prescott’s stability theorem to a broader
class of models. It also characterizes the set of increasing order reversing kernels
that are globally stable. The proof is in section 7.

Theorem 3.1. Let Q be a stochastic kernel that is both increasing and order reversing. Then
Q is globally stable if and only if

1. Q is bounded in probability, and
2. Q has either a deficient or an excessive distribution.

Remark 3.1. In terms of sufficient conditions for global stability, the order reversing
assumption cannot be omitted, even for existence of a stationary distribution. In
particular, there exist increasing kernels that are bounded in probability and possess
an excessive or deficient distribution, but have no stationary distribution.16

To see that the conditions of theorem 3.1 are weaker than those of the original
Hopenhayn-Prescott stability theorem, suppose as they do that S is a compact metric
space with least element a and greatest element b, and Q is an increasing kernel
satisfying the MMC. The conditions of theorem 3.1 then hold. First, Q is increasing

16An example is the kernel Q associated with the deterministic process on S = R+ defined by
Xt+1 = 1/2 + ∑∞

n=0 1{n ≤ Xt < n + 1}(n + (Xt − n)/2). It is easy to check that Xt+1 > Xt with
probability one, and hence Xt+1 and Xt can never have the same distribution. On the other hand,
Q is increasing, bounded in probability (because each interval [n, n + 1) is absorbing) and has the
deficient distribution δ0 (cf., remark 2.2).
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by assumption. Second, Q is order reversing, as shown in example 2.5. Third, Q
is bounded in probability, since S is compact and hence {Qt(x, ·)} is always tight.
Fourth, Q has a deficient distribution because S has a least element (see remark 2.2).

To see that the conditions of theorem 3.1 are strictly weaker than those of Hopen-
hayn and Prescott, consider the AR(1) model (6) with ρ ∈ [0, 1). Here the Gaussian
shocks force us to choose the state space S = R, which is not compact, and the
Hopenhayn-Prescott theorem in its original formulation cannot be applied. On the
other hand, all the conditions of theorem 3.1 are satisfied.17 (Of course the AR(1)
model is a trivial example. Nontrivial applications are presented in section 5.)

Regarding the proof of theorem 3.1, boundedness in probability and existence
of an excessive or deficient distribution generalize Hopenhayn and Prescott’s as-
sumption that S is compact and has a least and greatest element. As Hopenhayn
and Prescott show, if S is compact and has a least and greatest element, then the
Knaster-Tarski fixed point theorem implies that every increasing stochastic kernel
has a stationary distribution. Adding the MMC then yields uniqueness and global
stability. In our setting, the same fixed point argument cannot be applied. As re-
mark 3.1 shows, our mixing condition plays an essential role in the proof of ex-
istence, and the proof is fundamentally different to the Knaster-Tarski fixed point
argument.

We make two final remarks. First, one of the most attractive features of the MMC
is that it is straightforward to check in applications when it holds. In section 4.3, we
provide conditions for order reversing that are also straightforward to verify when
they hold. Second, there is no continuity requirement in theorem 3.1. However, in
many applications the kernel Q will have the Feller property (see example 2.2). If Q
is Feller, then condition 2 can be omitted. Since this result is likely to be useful, we
state it as a second theorem.

Theorem 3.2. Let Q be increasing, order reversing, and Feller. Then Q is globally stable if
and only if Q is bounded in probability.

3.2 Ergodicity

As stated in the introduction, we show in this paper that the conditions of the
Hopenhayn-Prescott stability theorem have additional implications. We now turn

17That the model is order reversing was shown in example 2.5. Monotonicity follows from exam-
ple 2.2. Boundedness in probability is shown in example 4.1 below. For existence of a µ with µ � µQ,
we can take µ = N(0, (1− ρ2)−1).
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to this point. To begin, let Q be a stochastic kernel on S with stationary distribution
µ∗, and let h be a measurable function from S into R. We say that the pair (Q, h)
satisfies the strong law of large numbers if, for any x ∈ S and any Markov-(Q, x)
process {Xt}, we have

1
n

n

∑
t=1

h(Xt)→
∫

h dµ∗ as n→ ∞ (7)

with probability one (i.e., P-almost surely).18

Theorem 3.3. Let Q be increasing, order reversing and bounded in probability. If Q has a
stationary distribution and h ∈ ibS, then (Q, h) satisfies the strong law of large numbers.

Remark 3.2. One of the most important implications of theorem 3.3 is that ergodicity
holds under the conditions of the original Hopenhayn-Prescott stability theorem,
since all of the conditions of theorem 3.3 are satisfied in that case.

Remark 3.3. In view of theorems 3.1 and 3.2, when Q is increasing, order reversing
and bounded in probability, existence of a stationary distribution will be guaranteed
whenever Q has an excessive or deficient distribution, or when Q is Feller. Theo-
rem 3.3 then applies.

Remark 3.4. Since finite intersections of probability one sets have probability one,
if h1, . . . , hk all satisfy (7), then h := α1h1 + · · · + αkhk satisfies (7) for any scalars
α1, . . . , αk. As a result, the implications of theorem 3.3 extend to any h in the lin-
ear span of ibS. For example, they extend to any bounded measurable decreasing
function, and to any function of bounded variation when S is an interval of R. As
we prove below, they also extend to any continuous bounded function under an
additional assumption on the state space.

The most significant aspect of theorem 3.3 is that the probability one convergence
is valid for any initial condition x ∈ S. This allows us to compute stationary proba-
bilities and expectations by simulating time series from arbitrary initial conditions.
Let us now consider the particular problem of computing the stationary distribu-
tion itself. To this end, note that theorem 3.3 concerns the behavior of the empirical

18For a general discussion of the strong law of large numbers in the classical Markov setting see
[44, chapter 17] or [25, chapter 2]. For a law of large numbers under the assumptions of compact
state space and Feller stochastic kernel see [62, chapter 14].
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distribution µX
n corresponding to the process {Xt}, which is defined by∫

h dµX
n :=

1
n

n

∑
t=1

h(Xt) for measurable h : S→ R.

Ideally we would like the conditions of theorem 3.3 to imply that µX
n converges to µ∗

with probability one, which is to say that the event
∫

h dµX
n →

∫
h dµ∗ for all h ∈ cbS

has probability one. This is not implied by theorem 3.3. In fact we cannot even say
that the event

∫
h dµX

n →
∫

h dµ∗ for all h ∈ ibS has probability one, because, for
each choice of h ∈ ibS, the probability one set on which

∫
h dµX

n →
∫

h dµ∗ holds
depends on h, and the function class ibS is uncountable.19 Nevertheless, with an
additional restriction on S, we are able to obtain the desired probability one conver-
gence of µX

n to µ∗. The new restriction strengthens our separability assumption for
S, and is satisfied for many common state spaces (e.g., when S is a cone in Rm with
the usual partial order):

Assumption 3.1. There exists a countable subset A of S such that, given any x ∈ S
and neighborhood U of x, there are a, a′ ∈ A such that a, a′ ∈ U and a ≤ x ≤ a′.

Theorem 3.4. If the conditions of theorem 3.3 hold and assumption 3.1 is satisfied, then,
for any x ∈ S and any Markov-(Q, x) process {Xt}, the empirical distribution µX

n satisfies
µX

n → µ∗ as n→ ∞ with probability one.20

4 Verifying the Conditions

Theorem 3.1 requires that Q is increasing, order reversing, bounded in probability,
and possesses an excessive or deficient distribution. A sufficient condition for Q to
be increasing was given in example 2.2. In this section, we present a number of suffi-
cient conditions for the remaining properties. Throughout the following discussion,
we use the simple AR(1) model for illustrative purposes. Nontrivial applications
are deferred to section 5.

19In fact ibS is not only uncountable, but typically non-separable. This is the essence of the prob-
lem.

20That is to say, P{ω ∈ Ω : 〈µX(ω)
n , h〉 → 〈µ∗, h〉, ∀ h ∈ cbS} = 1.
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4.1 Boundedness in Probability

Boundedness in probability is a standard condition in the Markov process literature.
In this section, we briefly review some standard techniques for checking bounded-
ness in probability, and introduce a new one based on order-theoretic ideas.

Let Q be a stochastic kernel on S = R, and let {Xt} be Markov-(Q, x). Then Q is
bounded in probability when suptE |Xt| < ∞ for any initial x. The same statement
is valid if we replace |Xt|with X2

t . Intuitively, boundedness of these moments means
that the process does not diverge.

To go beyond the case of S = R, recall that V : S → R+ is called coercive if the
sublevel sets La := {x ∈ S : V(x) ≤ a} are precompact for all a > 0.21 It is known
that Q is bounded in probability if

∀ x ∈ S, ∃ a coercive function V with sup
t

∫
V(y)Qt(x, dy) < ∞. (8)

This condition is in fact equivalent to boundedness in probability, and necessary for
global stability [44, lemma D.5.3]. Thus every proof of global stability requires ver-
ification of (8), either directly or indirectly. One way to verify (8) directly is via a
“drift” condition. For example, let QF be the kernel (2). Then (8) will be satisfied if
there exist positive constants α and β with α < 1 and

EV[F(x, ξt)] ≤ αV(x) + β, ∀ x ∈ S. (9)

Example 4.1. Consider the AR(1) process (6) with S = R. Here (9) is satisfied for
V(x) := |x| whenever |ρ| < 1. Indeed, by the triangle inequality, E |ρx + ξt| ≤
|ρ| · |x|+E |ξt|. This corresponds to (9) with α := |ρ| and β := E |ξt|.

More examples of how to verify (8) are given in section 5.22 Before finishing
this section, we introduce a new result that can be used to check boundedness in
probability, and also relates to our techniques for checking existence of deficient
and excessive distributions discussed in section 4.2 below.

21A subset A of S is called precompact if every sequence in A has a subsequence converging to an
element of S. For S = R

n, a natural example of a coercive function is V(x) = ‖x‖. V is coercive
on S because La is the compact set B̄(0, a) = {x ∈ R

n : x ≤ a}. However, if S = R
n
++, then

V(x) = ‖x‖ is not coercive, because La = R
n
++ ∩ B̄(0, a), which is not precompact. On the other hand,

V(x) = 1/‖x‖+ ‖x‖ is coercive on Rn
++. In essence, V is coercive on state space S if V(xn) → ∞

whenever xn “diverges” towards the “edges” of S. (Here and elsewhere, ‖ · ‖ refers to the euclidean
norm, but all of the statements in this footnote remain valid if we use any other norm onRn.)

22Further examples can be found in [61, 48, 35, 37, 44].
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Proposition 4.1. Let Q`, Q, Qu be stochastic kernels on S. If Q` � Q � Qu and both Q`

and Qu are bounded in probability, then Q is bounded in probability.

4.2 Existence of Excessive and Deficient Distributions

Condition 2 of theorem 3.1 requires existence of either an excessive or a deficient
distribution. If S has a least element or a greatest element then the condition al-
ways holds (see remark 2.2). However, there are many settings where S has neither
(S = R

n and S = R
n
++ are obvious examples), and the existence is harder to ver-

ify. In this case, one can work more carefully with the definition of the model to
construct excessive and deficient distributions. One example is Zhang [64], who
constructs such distributions for the stochastic optimal growth model. However,
it is useful to have a more systematic method that is relatively straightforward to
check in different applications. To this end we provide the following result:

Proposition 4.2. Let Q be a stochastic kernel on S. If there exists another kernel Qu such
that Qu is Feller, bounded in probability and Q � Qu, then Q has an excessive distribu-
tion. Likewise, if Q` is Feller, bounded in probability and Q` � Q, then Q has a deficient
distribution.

Examples of how to use this result are provided in the applications. In addition,
we note that propositions 4.1 and 4.2 can be combined with theorem 3.1 to obtain
the following stability result:

Theorem 4.1. Suppose that Q is increasing and order reversing. If there exist kernels
Q` � Q � Qu such that Q` and Qu are bounded in probability and at least one of them is
Feller, then Q is globally stable.

4.3 Order Reversing

In this section we give sufficient conditions for order reversing. To state them, we
introduce two new definitions: We call kernel Q on S upward reaching if, given any
x and c in S, there exists a t ∈ N such that Qt(x, {y ∈ S : c ≤ y}) > 0. We
call Q downward reaching if, given any x and c in S, there exists a t ∈ N such that
Qt(x, {y ∈ S : y ≤ c}) > 0.
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Example 4.2. The AR(1) process in (6) is both upward and downward reaching. For
example, fix x, c in S = R, and take t = 1. We have

Q(x, {y ∈ S : y ≤ c}) = P{ρx + ξ1 ≤ c} = P{ξ1 ≤ c− ρx},

which is positive because ξt ∼ N(0, 1). Hence Q is downward reaching.

We can now present the main result of this section.

Proposition 4.3. Suppose that Q is bounded in probability. If Q is either upward or down-
ward reaching, then Q is order reversing.

Corollary 4.1. The statements in theorem 3.1 and theorem 3.2 remain valid if order revers-
ing is replaced by either upward or downward reaching.

Using proposition 4.3, we can also provide more specialized results for the model
in example 2.1. To simplify the exposition, we assume without loss of generality that
Z is the support of φ.23 Suppose that, in addition to prior assumptions, the state
space S is a Borel subset of Rn. Given vectors x and y in S, we write x < y if xi < yi
for all i. Finally, as an additional point of notation, observe that each finite path of
shock realizations {zi}t

i=1 ⊂ Z and initial condition X0 = x ∈ S determines a path
{xi}t

i=0 for the state variable up until time t via (1). Let Ft(x, z1, . . . , zt) denote the
value of xt determined in this way.24

Proposition 4.4. Suppose that x 7→ F(x, z) is increasing for each z ∈ Z, F is continuous
on S × Z, and QF is bounded in probability. Then QF is globally stable if any one of the
following three conditions holds:

1. ∀ x, c ∈ S, ∃ {zi}k
i=1 ⊂ Z such that Fk(x, z1, . . . , zk) < c.

2. ∀ x, c ∈ S, ∃ {zi}k
i=1 ⊂ Z such that Fk(x, z1, . . . , zk) > c.

3. ∀ x, x′ ∈ S, ∃ {zi}k
i=1 and {z′i}k

i=1 with Fk(x, z1, . . . , zk) < Fk(x′, z′1, . . . , z′k).

Example 4.3. Consider the AR(1) model in (6), where F(x, z) = ρx + z. All of condi-
tions 1–3 in proposition 4.4 hold. For example, taking condition 1, fix x, c ∈ R. We
need to choose a shock sequence that drives the process below c when it starts at x.
This can be done in one step, by choosing z1 such that ρx + z1 < c.

23That is, φ(Z) = 1, and φ(G) > 0 whenever G ⊂ Z is nonempty and open. Z can always be
re-defined so that this assumption is valid.

24Formally, F1 := F and Ft+1(x, z1, . . . , zt+1) := F(Ft(x, z1, . . . , zt), zt+1) for all t ∈ N.
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5 Applications

We now turn to more substantial applications of the results described above.

5.1 Optimal Growth

The infinite-horizon stochastic optimal growth model forms the foundations of many
dynamic models, spanning fields such as growth, development, international trade,
monetary policy, fiscal policy, commodity pricing and environmental economics.
The existence of globally stable, non-trivial stochastic equilibria is of fundamental
importance when comparing predictions with data. While global stability of the
elementary one-sector concave model with IID shocks and inelastic labor is well-
known, conditions for stability of many of the variations used in applications re-
main to be investigated.

Consider an elementary model, with consumption chosen in order to maximize
E ∑∞

t=0 βtu(ct) subject to 0 ≤ kt+1 + ct ≤ ξt f (kt). All variables are nonnegative
and {ξt}

IID∼ φ. For now, we assume that u is bounded with u′ > 0, u′′ < 0, and
u′(0) = ∞; while f (0) = 0, f ′ > 0, f ′′ < 0, f ′(0) = ∞ and f ′(∞) = 0. To study
the dynamics of the optimal process, we take yt = ξt f (kt) as the state variable,
and consider the income process yt+1 = ξt f (yt − σ(yt)), where σ(·) is the optimal
consumption policy. Let Q be the corresponding stochastic kernel. For the state
space we take S = R++. Zero is deliberately excluded from S so that any stationary
distribution on S is automatically non-trivial.

Brock and Mirman [10] were the first to prove global stability of Q, in the case
where ξt has support [a, b] for some 0 < a < b.25 The case where ξt has un-
bounded support was treated in [61, 48, 35, 64]. For example, Stachurski [61] re-
placed the assumption of bounded support with the small tail conditions E ξt < ∞
and E (1/ξt) < ∞, in addition to the assumption that ξt has a density that is con-
tinuous and everywhere positive. Zhang [64] showed that global stability continues
to hold when ξt has no density, provided that P{ξt ≤ z} > 0 for all z ∈ S, or
P{ξt ≥ z} > 0 for all z ∈ S.

All of these global stability results, proved using a range of specialized argu-
ments, can be obtained as special cases of either one of theorem 3.1 or theorem 3.2.
Indeed, it is well-known that under the stated assumptions Q is increasing, Feller

25See [28, 51, 35, 14] for additional discussion of the case where ξt has bounded support.
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and bounded in probability (cf., e.g., [62, p. 393] and [48, proposition 4.4]). Hence
it suffices to show that Q is either order reversing, upward reaching or downward
reaching (theorem 3.2 and corollary 4.1). For the bounded shock case, Hopenhayn
and Prescott [28] proved that the MMC holds, which implies order reversing (see
example 2.5). For the unbounded case, consider the conditions of Zhang [64] men-
tioned above. Suppose in particular that P{ξt ≤ z} > 0 for all z ∈ S. In this case,
for all fixed y0 and ȳ in S, we have

P{y1 ≤ ȳ} = P{ξ1 f (y0 − σ(y0)) ≤ ȳ} = P{ξ1 ≤ ȳ/ f (y0 − σ(y0))} > 0. (10)

Hence Q is downward reaching, and therefore globally stable.26

These initial stability results can be extended in many ways. For example, take
again the conditions of Zhang [64], but without the assumption that f is concave.
Models with nonconcave reproduction arise in areas such as renewable resource
exploitation, when f is biologically determined.27 Without concavity of f , optimal
consumption is not necessarily continuous, and Q is no longer Feller. Moreover,
without additional assumptions, the MMC does not apply, Q is not irreducible, the
splitting condition fails, the model is not an expected contraction and the standard
Harris recurrence conditions are not satisfied.28 Indeed, to the best of our knowl-
edge, global stability of Q—or even existence of a stationary distribution—cannot
be established using any result in the existing literature.29 On the other hand, the-
orem 3.1 can easily be applied. Q is still increasing and bounded in probability
[48]. Existence of an excessive distribution is not difficult to establish.30 Moreover,
the downward reaching proof in (10) goes through unchanged. Hence theorem 3.1
applies, and Q is globally stable.

26Since S = R++ and optimal consumption is interior, we have f (y0 − σ(y0)) > 0.
27For motivation and further discussion, see, for example, [20, 41, 46].
28For a discussion of irreducibility and Harris recurrence, see, e.g., [44]. On the splitting condition,

see, e.g., [7, 8]. For expected contractions, see, e.g., [60, p. 1952].
29The closest result is [48, theorem 3.1]. That result requires that ξt has a density that is continuous

and strictly positive everywhere on S.
30To do so we can use proposition 4.2. Since f ′(∞) = 0, we can choose positive constants α, β

with αE ξt < 1 and f (x) ≤ αx + β [48, proposition 4.3]. Now take G(x, z) := z(αx + β), so that
F(x, z) := z f (x− σ(x)) ≤ z f (x) ≤ G(x, z). Letting QF and QG be the corresponding kernels, the last
inequality implies QF � QG. In view of proposition 4.2, it remains only to show that QG is Feller
and bounded in probability. Since G(·, z) is continuous, QG is Feller. Using αE ξt < 1, condition (9)
can be established for V(x) = x + 1/x, which is coercive on S = R++. Boundedness in probability
then follows.

18



Remark 5.1. It is interesting to note that in order to prove stability we used order
reversing, and to prove order reversing we relied on nonzero probability of arbi-
trarily bad productivity shocks. These shocks are stabilizing rather than destabiliz-
ing because the Inada conditions prevent divergence, and the large shocks promote
mixing.

Since the conditions of theorems 3.3 and 3.4 apply, we can compute stationary
moments or the stationary distribution itself at each set of parameters, by simulating
from an arbitrary initial condition. Figure 1 shows a collection of stationary distri-
butions for log yt, each one corresponding to a different value of the discount factor
β. Here the production function is nonconcave, as might be the case in a model
of biological resource exploitation.31 For this model, a sudden shift in the optimal
harvest policy occurs around β = 0.965. As a result, a very small difference in the
patience of the agent can lead to a large difference in the steady state population of
the stock.

5.2 An OLG Model of Wealth Distribution

Next we consider an OLG model of wealth distribution. The model can be viewed as
a stochastic version of the small open economy of Matsuyama [43], but we introduce
persistence in inequality by assuming that an old agent provides financial support
to her child. This is a common assumption in the literature on wealth distribution
(e.g., [4, 5, 13, 17, 39, 40, 52, 54, 56]).

Agents live for two periods, consuming only when old. Households consist of
one old agent and one child. There is a unit mass of such households indexed by
i ∈ [0, 1]. In each period t, the old agent of household i provides financial support bi

t
to her child. The child has the option to become an entrepreneur, investing one unit
of the consumption good in a “project,” and receiving stochastic output θ + ηi

t+1
in period t + 1. Let ki

t+1 ∈ {0, 1} be young agent i’s investment in the project. If
the remainder bi

t − ki
t+1 is positive, then she invests this quantity at the world risk-

free rate R. If it is negative then she borrows ki
t+1 − bi

t at the same risk-free rate.

31The utility function is u(x) = 1− exp(−θxγ) and production is f (x) = xα`(x), where ` is the
logistic function `(x) = a + (b − a)/(1 + exp(−c(x − d))). The parameters are a = 1, b = 2, c =

20, d = 1, θ = 0.5, γ = 0.9 and α = 0.5. The discount factor β ranges from 0.945 to 0.99. The
shock is lognormal (−0.1, 0.2). The optimal policy is calculated by fitted value function iteration.
To compute each stationary distribution, we simulated a time series of length 106 from the process
yt+1 = ξt f (yt − σ(yt)), where σ(·) is the computed policy.
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Figure 1: Stationary distributions

Independent of her investment choice, she receives an endowment of ei
t+1 units of

the consumption good when old. Suppressing the i superscript to simplify notation,
her wealth at the beginning of period t + 1 is therefore

wt+1 = (θ + ηt+1)kt+1 − R(kt+1 − bt) + et+1. (11)

We assume that
et+1 = ρet + εt+1, 0 < ρ < 1. (12)

The idiosyncratic shocks {ηt} and {εt} are taken to be IID and nonnegative, and εt

satisfies P{εt > z} > 0 for any z ≥ 0. (For example, εt might be lognormal.) We
also assume that R < θ, which implies that becoming an entrepreneur is always
profitable, even ex-post, and every agent would choose to do so absent additional
constraint. Due to a credit market imperfection, however, each agent may borrow
only up to a fraction λ ∈ (0, 1) of θ + ρet, the minimum possible value of her old-age
income. That is,

R(kt+1 − bt) ≤ λ(θ + ρet). (13)
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As becoming an entrepreneur is always profitable, young agents do so whenever
feasible, implying

kt+1 = κ(bt, et) := 1{R(1− bt) ≤ λ(θ + ρet)}. (14)

(Here 1{·} is an indicator function.) Let ct+1 denote consumption at t + 1. It is
common in the literature on wealth distribution to assume that each agent derives
utility from her own consumption and financial support to her child. Following
this approach, we assume that young agents maximize E t[c

1−γ
t+1 bγ

t+1] subject to (11),
(13), and the budget constraint ct+1 + bt+1 = wt+1. Regarding the parameter γ we
assume that γR < 1. Maximization of c1−γ

t+1 bγ
t+1 subject to the budget constraint

implies that bt+1 = γwt+1. Combining this equality, (11) and (12), we obtain

bt+1 = γ[(θ + ηt+1 − R)κ(bt, et) + Rbt + ρet + εt+1]. (15)

Together, (12) and (15) define a Markov process with state vector Xt := (bt, et) taking
values in state space S := [0, ∞)× [0, ∞). Let Q denote the corresponding stochastic
kernel.32

Recalling that R < θ, ρ ∈ (0, 1) and ηt+1 ≥ 0, and observing that κ(bt, et) is
increasing in (bt, et), we can see from (12) and (15) that (bt+1, et+1) is increasing in
(bt, et) when the values of the shocks are held fixed. Hence Q is increasing (cf.,
example 2.2). On the other hand, (15) is discontinuous in (bt, et), so Q is not Feller.

As far as we are aware, no existing Markov process theory can be used to show
that Q is globally stable unless additional conditions are imposed. In contrast, global
stability can be obtained in a straightforward way from theorem 3.1. To begin, let
mη := E ηt and mε := E εt. To see that Q is bounded in probability, we can take
expectations of (12) and iterate backwards to obtain

E et ≤ mε/(1− ρ) + ρte0 ≤ mε/(1− ρ) + e0 =: e (16)

for all t. In addition, it follows from (15) and (16) that

E bt+1 ≤ γ[θ + mη − R + RE bt + e].

Using γR < 1 and iterating backwards, we obtain the bound

E bt ≤ γ[θ + mη − R + e]/(1− γR) + b0 (17)

32We do not exclude (0, 0) from the state space since it is not an absorbing state.
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for all t. Together, (16) and (17) imply that Q is bounded in probability.33 Since
P{εt > z} > 0 for any z ≥ 0, and since both bt and et can be made arbitrarily large by
choosing εt sufficiently large (see (12) and (15)), it follows that Q is upward reaching,
and thus order reversing by proposition 4.3. In view of these results and theorem 3.1,
Q will be globally stable whenever it has a deficient or excessive distribution. Since
(0, 0) is a least element for S, remark 2.2 implies that Q has a deficient distribution,
and we conclude that Q is globally stable.

Since the conditions of theorems 3.3 and 3.4 apply, we can compute the stationary
distribution at each set of parameters by simulating from an arbitrary initial condi-
tion. Figure 2 shows smoothed histograms representing the marginal stationary dis-
tribution of wealth at two different values of λ, while figure 3 is a two-dimensional
projection of the bivariate stationary distribution, represented as a histogram.34 The
shift in figure 2 shows how the distribution of wealth in the stationary equilibrium
can be extremely sensitive to the value of the borrowing constraint parameter λ.

5.3 Nonlinear Autoregression

Consider a general additive shock nonlinear autoregressive model of the form

Xt+1 = f (Xt) + ξt+1, {ξt}
IID∼ φ, E ‖ξt‖ < ∞, (18)

where S = R
n, and f : Rn → R

n. Let Q be the stochastic kernel, defined by
Q(x, B) = P{ f (x) + ξt ∈ B}. We assume that (i) f is increasing, (ii) P{ξt ≤ z}
is non-zero for all z ∈ Rn, and (iii) there exists an α ∈ [0, 1) and L ≥ 0 such that
‖ f (x)‖ ≤ α‖x‖+ L for all x ∈ Rn. The last assumption is a growth condition on f .
Global stability cannot hold without some restriction along these lines. The second
assumption is used below to prove that Q is downward reaching. It can be replaced
by: P{ξt ≥ z} is non-zero for all z ∈ Rn. If this condition holds then Q will be
upward reaching.

We know of no previous results that can be used to prove global stability here
without additional assumptions. On the other hand, a straightforward proof of

33The function V(b, e) = b + e is coercive on S, and equations (16) and (17) imply that
suptE [V(bt, et)] ≤ suptE [bt] + suptE [et] < ∞, which gives (8).

34In figure 2, the values of λ are 0.57 and 0.58. In figure 3, λ is set to 0.58. The other parameters
are γ = 0.2, R = 1.05, θ = 1.1 and ρ = 0.9. The shock ε is lognormal with parameters µ = −3
and σ = 0.1. The shock η is beta with shape parameters 3,10. The simulated time series are of
length 106 for each stationary distribution. The distributions in figure 2 are calculated with Gaussian
nonparametric kernel density estimates.
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global stability can be constructed via theorem 3.1. To begin, note that F(x, z) :=
f (x) + z is increasing in x for each z because f is increasing, and hence, by exam-
ple 2.2, Q is increasing. Second, Q is bounded in probability, as can be shown by
taking V(x) := ‖x‖ in (9).35 Third, Q is downward reaching by an argument similar
to that of example 4.2: If we fix x, c ∈ S = R

n and let E be the event {ξ1 ≤ c− f (x)},
then, by assumption, P(E) > 0. Moreover, if E occurs, then f (x) + ξ1 ≤ c. Hence Q
is downward reaching. In view of proposition 4.3, Q is also order reversing.

To complete the proof of global stability via theorem 3.1, it only remains to show
existence of a deficient or excessive distribution. For this purpose, we use proposi-
tion 4.2. To apply the proposition, we aim to find a kernel Qu such that Qu is Feller,
bounded in probability, and satisfies Q � Qu. To construct Qu, consider the process

Xt+1 = g(Xt) + ξt+1, g(x) := α‖x‖1 + L1. (19)

Here 1 is the unit vector inRn, and α and L are as given in the assumptions following
(18). We let Qu be the stochastic kernel corresponding to (19). Qu is easily shown to
be Feller and bounded in probability.36 Moreover, f (x) + z ≤ g(x) + z for all x and
z, because if fi(x) is the i-th component of f (x), then fi(x) ≤ | fi(x)| ≤ ‖ f (x)‖ ≤
α‖x‖+ L, and hence f (x) ≤ α‖x‖1 + L1 = g(x). It now follows from example 2.3
that Q � Qu. We conclude that the conditions of proposition 4.2 are satisfied, and
the proof of global stability is done.

6 Conclusion

The Hopenhayn-Prescott stability theorem has become an important tool for as-
sessing the dynamics of stochastic economic models. This paper strengthens and
extends their theorem. We strengthen their results by establishing ergodicity (theo-
rems 3.3 and 3.4). In addition, we extend the theorem to cover a significantly broader
class of models (theorem 3.1). In particular, the version of the Hopenhayn-Prescott
theorem presented in this paper opens up to study the dynamics of models with
large shocks and high degrees of mixing. This makes it possible to develop new
perspectives on the stability problem, and extend Hopenhayn and Prescott’s sta-
bility results to models where relatively little other structure beyond mixing is im-
posed. We provide applications in section 5 where global stability can be established

35By the triangle inequality, E ‖ f (x) + ξ1‖ ≤ ‖ f (x)‖+E ‖ξ1‖ ≤ α‖x‖+ L +E ‖ξ1‖.
36Since g is continuous, Q is Feller. In addition, (9) is valid for the coercive function V(x) :=
‖x‖∞ := maxn

i=1 |xi|, and hence boundedness in probability also holds.
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even though neither the original Hopenhayn-Prescott theorem nor any other exist-
ing Markov process theory yields stability (or even existence of a stationary distribu-
tion). Our applications cover an infinite horizon model, an overlapping generations
model and a nonlinear autoregression.

Other significant new results contained in the paper are propositions 4.1–4.4 and
theorem 4.1. These results provide additional stability conditions and aid in verifi-
cation of order reversing and other conditions of our main stability theorems. Their
usefulness is illustrated in the applications discussed in section 5.

7 Proofs

Before proving theorem 3.1, we need some additional results and notation. To begin, let Φ
be any stochastic kernel on polish space D, let x ∈ D and let D-valued stochastic process
{Xt} be Markov-(Φ, x). The joint distribution of {Xt} over the sequence space D∞ will be
denoted by PΦ

x . For example, PΦ
x {Xt ∈ B} = Φt(x, B) for any B ⊂ D, and PΦ

x ∪∞
t=0 {Xt ∈ B}

is the probability that the process ever enters B. The symbol EΦ
x represents the expectations

operator corresponding to PΦ
x .

For given kernel Φ, we say that Borel set B ⊂ D is

• strongly accessible if PΦ
x ∪∞

t=0 {Xt ∈ B} = 1 for all x ∈ D, and
• C-accessible if, for all compact K ⊂ D, there exists an n ∈ Nwith infx∈K Φn(x, B) > 0.

The following lemma is fundamental to our results, although the proofs are delayed to main-
tain continuity.

Lemma 7.1. Let B be a Borel subset of D. If Φ is bounded in probability and B is C-accessible, then
B is strongly accessible.

Let Q be a given kernel on S, and let Q × Q be the product kernel (4). For given pair
(x, x′) ∈ S × S, let {Xt} and {X′t} be Markov-(Q, x) and Markov-(Q, x′) respectively, and
also independent of each other. As discussed in section 2.1, the bivariate process {(Xt, X′t)},
which takes values in S × S, is Markov-(Q × Q, (x, x′)). Its joint distribution over the se-
quence space (S× S)∞ is denoted by PQ×Q

x,x′ . In this notation, Q is order reversing if

∀ x, x′ ∈ S with x ≥ x′, ∃ k ≥ 0 such that PQ×Q
x,x′ {Xk ≤ X′k} > 0.

Following Kamihigashi and Stachurski [36], Q is called order mixing if PQ×Q
x,x′ ∪∞

t=0 {Xt ≤
X′t} = 1 for all x, x′ ∈ S. Put differently, Q is order mixing if G := {(y, y′) ∈ S× S : y ≤ y}
is strongly accessible for the product kernel Q×Q.
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Lemma 7.2. If Q is bounded in probability, then so is the product kernel Q×Q.

Lemma 7.3. If Q is increasing and bounded in probability, then {µQt} is tight for all µ ∈PS.

Lemma 7.4. If Q is increasing and order reversing, thenG is C-accessible for Q×Q.

Proofs are given at the end of this section.
Let us now turn to the proof of theorem 3.1. The proof proceeds as follows: First we

show that under the conditions of the theorem, Q is order mixing. Using order mixing, we
then go on to prove existence of a stationary distribution, and global stability.

Lemma 7.5. If Q is increasing, bounded in probability and order reversing, then Q is order mixing.

Proof. To show that Q is order mixing we need to prove that G is strongly accessible for
Q×Q under the conditions of theorem 3.1. Since Q is bounded in probability, Q×Q is also
bounded in probability (lemma 7.2), and hence, by lemma 7.1, it suffices to show that G is
C-accessible for Q×Q. This follows from lemma 7.4.

We now prove global stability, making use of order mixing. In the sequel, we define icbS
to be the bounded, increasing and continuous functions from S to R (i.e., icbS = ibS ∩ cbS).
We will make use of the following results, which are proved at the end of this section.

Lemma 7.6. Let µ, µ′, µn ∈PS.

1. µ � µ′ iff 〈µ, h〉 ≤ 〈µ′, h〉 for all h ∈ icbS,
2. µ = µ′ iff 〈µ, h〉 = 〈µ′, h〉 for all h ∈ icbS, and
3. µn → µ iff {µn} is tight and 〈µn, h〉 → 〈µ, h〉 for all h ∈ icbS.

Proof of theorem 3.1. We begin by showing that if Q is globally stable, then conditions 1–2 of
the theorem hold. Regarding condition 1, fix x ∈ S. Global stability implies that {µQt} is
convergent for each µ ∈PS, and hence {Qt(x, ·)} = {δxQt} is convergent. Since convergent
sequences are tight [24, proposition 9.3.4] and x ∈ S was arbitrary, we conclude that Q is
bounded in probability, and condition 1 is satisfied. Condition 2 is trivial, because global
stability implies existence of a stationary distribution, and every stationary distribution is
both deficient and excessive.

Next we show that if Q is increasing, order reversing and conditions 1–2 of theorem 3.1
hold, then Q has at least one stationary distribution. By lemma 7.5, Q is order mixing, and
hence, by Kamihigashi and Stachurski [36, theorem 3.1], for any ν and ν′ in PS we have

lim
t→∞
|〈νQt, h〉 − 〈ν′Qt, h〉| = 0, ∀ h ∈ ibS. (20)

Now let {µQt} be a tight and �-monotone sequence, existence of which is guaranteed by
conditions 1–2 of theorem 3.1 and lemma 7.3. We suppose without loss of generality that
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{µQt} is �-increasing, since the other case changes nothing in what follows except the di-
rection of the inequalities.

By Prohorov’s theorem [24, theorem 11.5.4], tightness implies existence of a subsequence
of {µQt} converging to some ψ∗ ∈PS. Since {µQt} is �-increasing, it follows that, for any
given h ∈ icbS, the entire sequence 〈µQt, h〉 converges up to 〈ψ∗, h〉. Because {µQt} is tight,
part 3 of lemma 7.6 implies that µQt → ψ∗.

In addition to µQt → ψ∗, we also have µQt � ψ∗ for all t ≥ 0, because for any h ∈ icbS
and t ≥ 0 we have

〈µQt, h〉 ≤ sup
t≥0
〈µQt, h〉 = lim

t→∞
〈µQt, h〉 = 〈ψ∗, h〉.

The inequality µQt � ψ∗ now follows from part 1 of lemma 7.6.
Next, we claim that ψ∗ � ψ∗Q. To see this, pick any h ∈ icbS. Since µQt � ψ∗ for all t,

and since Qh ∈ ibS,
〈µQt, Qh〉 ≤ 〈ψ∗, Qh〉 = 〈ψ∗Q, h〉.

Using this inequality and the fact that h ∈ cbS, we obtain

〈ψ∗, h〉 = lim
t→∞
〈µQt+1, h〉 = lim

t→∞
〈µQt, Qh〉 ≤ 〈ψ∗Q, h〉.

Hence 〈ψ∗, h〉 ≤ 〈ψ∗Q, h〉 for all h ∈ icbS, and ψ∗ � ψ∗Q as claimed. Iterating on this
inequality we obtain ψ∗ � ψ∗Qt for all t.

To summarize our results so far, we have µQt � ψ∗ � ψ∗Q � ψ∗Qt for all t ≥ 0, and
hence

〈µQt, h〉 ≤ 〈ψ∗, h〉 ≤ 〈ψ∗Q, h〉 ≤ 〈ψ∗Qt, h〉 for all h ∈ icbS.

Applying (20), we obtain 〈ψ∗, h〉 = 〈ψ∗Q, h〉 for all h ∈ icbS. By lemma 7.6, this implies that
ψ∗ = ψ∗Q. In other words, ψ∗ is stationary for Q.

It remains to show that Q is globally stable. Fixing µ ∈ PS and applying (20) again, we
have

〈µQt, h〉 → 〈ψ∗, h〉, ∀ h ∈ ibS. (21)

Since icbS ⊂ ibS and {µQt} is tight (cf., lemma 7.3), this implies that µQt → ψ∗ (lemma 7.6,
part 3). Finally, uniqueness is also immediate, because if µ is also stationary, then by (21) we
have 〈µ, h〉 = 〈ψ∗, h〉 for all h ∈ icbS. By lemma 7.6, we then have µ = ψ∗.

Proof of theorem 3.2. Under the conditions of the theorem, Q is order mixing, as proved in
lemma 7.5. In addition, boundedness in probability and the Feller property guarantee
the existence of a stationary distribution by the Krylov-Bogolubov theorem [44, proposi-
tion 12.1.3 and lemma D.5.3]. Given existence of a stationary distribution ψ∗, the proof that
Q is globally stable is now identical to the proof of the same claim given for theorem 3.1 (see
the discussion surrounding equation (21)).
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Next we turn to the proof of theorem 3.3. In the proof, S∞ is the space of S-valued se-
quences, and B∞

S is the product σ-algebra. If {Xt} is Markov-(Q, x) then PQ
x denotes its

distribution on (S∞, B∞
S ), and EQ

x is the corresponding expectation. Without loss of gen-
erality, we can set (Ω, F ) = (S∞, B∞

S ), and define Xt to be the t-th projection of S∞ onto
S, so that Xt(ω) = Xt(x0, x1, . . .) = xt [44, chapter 3]. The shift operator θ is defined as
usual by θ(x0, x1, . . .) = (x1, x2, . . .). For any random variable H we set θH(ω) = H(θω).
We say that H is shift-invariant if θH = H. We make use of the strong Markov property,
which states [44, p. 66] that if τ is a stopping time and Fτ is the induced σ-algebra, then
EQ

x [θ
τ H |Fτ] = EQ

Xτ
H on the set {τ < ∞}. Finally, we say that a bounded measurable

function f is harmonic if Q f = f .

Lemma 7.7. Let Q be any stochastic kernel, let H be a bounded random variable, and let f (x) :=
EQ

x H. If H is shift invariant, then f is harmonic. If, in addition, τ is a stopping time satisfying
PQ

x {τ < ∞} = 1, then EQ
x f (Xτ) = f (x) for all x ∈ S.

Proof. The first assertion follows from the second by choosing τ ≡ 1. Regarding the second
assertion, fix x ∈ S. The strong Markov property and the law of iterated expectations give
EQ

x f (Xτ) = EQ
x EQ

Xτ
H = EQ

x EQ
x [θ

τ H |Fτ] = EQ
x θτ H = EQ

x H = f (x).

Lemma 7.8. Let Q be any stochastic kernel and let f : S → R+. If f is harmonic, then the set
{x ∈ S : f (x) = 0} is absorbing.37

Proof. Let F := {x ∈ S : f (x) = 0}. The claim is that Q(x, F) = 1 for all x ∈ F. To see this, fix
x ∈ F and observe that 0 = f (x) = Q f (x) = EQ

x f (X1) = EQ
x f (X1)1{ f (X1) > 0}. It follows

that PQ
x 1{ f (X1) > 0} = 0, or Q(x, F) = PQ

x 1{ f (X1) = 0} = 1.

The following lemma is also relatively straightforward, although the proof is delayed
until the end of this section:

Lemma 7.9. Let Q be order mixing and let D be a Borel set. If D is nonempty, decreasing and
absorbing, then D is strongly accessible.

We endow the set S∞ with the pointwise order inherited from (S,≤). In particular, we
say that {xt} ≤ {x′t} if xt ≤ x′t in S for all t. We let ibS∞ be the set of bounded measurable
increasing functions from S∞ to R, and for probability measures ν and ν′ on (S∞, B∞

S ) we
write ν � ν′ if

∫
hdν ≤

∫
hdν′ for all h ∈ ibS∞.

The next two results are proved in [34, proposition 2, theorem 2] and [25, corollary 2.5.2]
respectively.

Theorem 7.1. If Q is an increasing stochastic kernel on S and x, y ∈ S with x ≤ y, then PQ
x � PQ

y .

37A set C ∈ BS is called absorbing for Q if Q(x, C) = 1 for all x ∈ C.
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Theorem 7.2. If Q is a stochastic kernel on S with unique stationary distribution µ∗ and h : S→ R

satisfies
∫
|h| dµ∗ < ∞, then there exists a set R ∈ BS such that

1. µ∗(R) = 1, and

2. n−1 ∑n
t=1 h(Xt)→

∫
h dµ∗ almost surely whenever x ∈ R and {Xt} is Markov-(Q, x).

Theorem 7.2 is important from a theoretical perspective, but of limited practical value,
since the set R typically depends on h and is difficult to identify. However, if the conditions
of theorem 3.3 are satisfied, then R is all of S, as we now show.

Proof of theorem 3.3. Let Q be an increasing, order reversing kernel that is bounded in prob-
ability, and has stationary distribution µ∗. Note that Q is order mixing by lemma 7.5, and
globally stable since the conditions of theorem 3.1 all hold. We claim that (Q, h) satisfies
the strong law of large numbers whenever h ∈ ibS. To see this, fix h ∈ ibS. Without loss
of generality we can assume that 〈µ∗, h〉 = 0, so the claim is that, for all x ∈ S, we have
n−1 ∑n

t=1 h(Xt)→ 0 almost surely whenever {Xt} is Markov-(Q, x). To prove this claim, we
define

G := 1

{
lim sup

n→∞

1
n

n

∑
t=1

h(Xt) > 0

}
and α(x) := EQ

x G.

The random variable G is bounded and shift-invariant, so lemma 7.7 applies to α. In ad-
dition, the function α is increasing on S. To see this, observe that G can be written as
G = g({Xt}) where g({xt}) = 1{lim sup n−1 ∑n

t=1 h(xt) > 0}. Since h ∈ ibS, we have
g ∈ ibS∞. Taking x ≤ x′ and applying theorem 7.1, we obtain

α(x) = EQ
x G =

∫
g dPQ

x ≤
∫

g dPQ
x′ = α(x′).

Now let D := {x ∈ S : α(x) = 0}. Since α is increasing, the set D is decreasing. By
theorem 7.2, there exists a set R with π∗(R) = 1 and R ⊂ D. In particular, D is nonempty.
By lemmas 7.7 and 7.8, the set D is absorbing. Giving that Q is order mixing, lemma 7.9 now
implies that D is strongly accessible.

Pick any x ∈ S. Let {Xt} be Markov-(Q, x), and let τ := inf{t ≥ 0 : Xt ∈ D}. Because D
is strongly accessible, τ is finite with probability one. As a result, lemma 7.7 applies, and we
have α(x) = EQ

x α(Xτ). This expectation is zero, since Xτ ∈ D by definition. We conclude
that α(x) = 0 for any given x ∈ S. In other words,

PQ
x

{
lim sup

n→∞

1
n

n

∑
t=1

h(Xt) > 0

}
= 0 for all x ∈ S.
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A symmetric argument shows that

PQ
x

{
lim inf

n→∞

1
n

n

∑
t=1

h(Xt) < 0

}
= 0 for all x ∈ S.

Hence (Q, h) satisfies the strong law of large numbers as claimed.

Now we turn to the proof of theorem 3.4. In the proof, we let ic(S, [0, 1]) be the functions
in icbS taking values in [0, 1]. As usual, µn → µ means that 〈µn, f 〉 → 〈µ, f 〉 for all f ∈ cbS.
Also, we require the following definition: Letting G and H be sets of bounded measurable
functions, we say that H is monotonically approximated by G if, for all h ∈ H , there exist
sequences {g1

n} and {g2
n} in G with g1

n ↑ h and g2
n ↓ h pointwise. The proofs of the next two

lemmas are given at the end of this section.

Lemma 7.10. If H is monotonically approximated by G , then G is convergence determining for
H , in the sense that if {νn} and ν are elements of PS, and 〈νn, g〉 → 〈ν, g〉 for all g ∈ G , then
〈νn, h〉 → 〈ν, h〉 for all h ∈H .

Lemma 7.11. If the conditions of theorem 3.4 hold, then there exists a countable class G such that
(Q, g) satisfies the strong law of large numbers for every g ∈ G , and, moreover, ic(S, [0, 1]) is
monotonically approximated by G .

Proof of theorem 3.4. Fix x ∈ S. Let {Xt} be Markov-(Q, x), and let µn be the associated em-
pirical distribution. In particular, we let µω

n ∈PS be defined by µω
n (B) := n−1 ∑n

t=1 1{Xt(ω) ∈
B}. As a first step of the proof, we claim that {µω

n } is tight with probability one. To see this,
fix ε > 0, and let K be a compact subset of S with µ∗(K) ≥ 1− ε. Since compact subsets
of S are order bounded, we have a, b ∈ S with K ⊂ [a, b]. Let I := {y ∈ S : y ≥ a}
and J := {y ∈ S : y � b}. Note that both of these sets are increasing, and [a, b] = I \ J.
Appealing to theorem 3.3, we let Fa ⊂ Ω with P(Fa) = 1 and µω

n (I) → µ∗(I) whenever
ω ∈ Fa; and Fb ⊂ Ω with P(Fb) = 1 and µω

n (J)→ µ∗(J) whenever ω ∈ Fb. Picking arbitrary
ω ∈ F := Fa ∩ Fb, we have

µω
n ([a, b]) = µω

n (I)− µω
n (J)→ µ∗(I)− µ∗(J) = µ∗([a, b]) ≥ µ∗(K) ≥ 1− ε.

Since closed order intervals are compact by assumption, it follows that {µω
n } is tight for all

ω in the probability one set F.
As the second step of the proof, we claim there exists a probability one set F′ such that,

for any given ω ∈ F′, we have 〈µω
n , f 〉 → 〈µ∗, f 〉 for all f ∈ icbS. To see that this is so, let

G be as in lemma 7.11. Since G is countable and the law of large numbers holds for every
element of G , there exists a probability one set F′ ⊂ Ω such that, for each ω ∈ F′, we have
〈µω

n , g〉 → 〈µ∗, g〉 for all g ∈ G . Fix ω ∈ F′. Since ic(S, [0, 1]) is monotonically approximated
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by G , lemma 7.10 implies that 〈µω
n , f 〉 → 〈µ∗, f 〉 for all f ∈ ic(S, [0, 1]). It immediately

follows that 〈µω
n , f 〉 → 〈µ∗, f 〉 for all f ∈ icbS.38

Now let F′′ be the probability one set F ∩ F′. For any ω ∈ F′′, the sequence of distribu-
tions {µω

n } is tight, and satisfies 〈µω
n , f 〉 → 〈µ∗, f 〉 for all f ∈ icbS. In view of lemma 7.6, we

then have 〈µω
n , f 〉 → 〈µ∗, f 〉 for all f ∈ cbS. This concludes the proof of theorem 3.4.

Proof of proposition 4.1. Pick any x ∈ S and fix ε > 0. Let K be a compact set such that
Qt

`(x, K) ≥ 1− ε for all t. Compact sets are order bounded by assumption, so there exists an
x` ∈ S with K ⊂ I := {y ∈ S : y ≥ x`}. As a result, Qt

`(x, I) ≥ 1− ε for all t. Since Q` � Q,
and since I is an increasing set, we have Qt

`1I ≤ Qt1I , and hence

1− ε ≤ Qt
`(x, I) = Qt

`1I(x) ≤ Qt1I(x) = Qt(x, I) = Qt(x, {y ∈ S : y ≥ x`}).

Applying similar reasoning to Q � Qu,

∃ xu ∈ S such that 1− ε ≤ Qt(x, {y ∈ S : y ≤ xu}) for all t ≥ 0.

Combining these bounds, we obtain Qt(x, [x`, xu]) ≥ 1− 2ε for all t. Evidently [x`, xu] is
order bounded. Moreover, since the partial order ≤ is assumed to be closed, [x`, xu] is also
compact. We have now shown that {Qt(x, ·)} is tight, and, as x ∈ S was arbitrary, Q is
bounded in probability.

Proof of proposition 4.2. Suppose that Q` is Feller and bounded in probability with Q` � Q.
By the Krylov-Bogolubov theorem [44, proposition 12.1.3 and lemma D.5.3], Q` has at least
one stationary distribution µ. For this µ we have µ = µQ` � µQ. In other words, µ is
deficient for Q. A similar argument shows that if Qu is Feller and bounded in probability
with Q � Qu then Q has an excessive distribution.

Proof of proposition 4.3. Let Q be bounded in probability. Suppose first that Q is upward
reaching. Pick any (x, x′) ∈ S× S. Let {Xt} and {X′t} be independent, Markov-(Q, x) and
Markov-(Q, x′) respectively. We need to prove existence of a k ∈ N such thatP{Xk ≤ X′k} >
0.

Since Q is bounded in probability, there exists a compact C ⊂ S with P{Xt ∈ C} > 0
for all t ≥ 0. Since compact sets are assumed to be order bounded, we can take an order
interval [a, b] of S with C ⊂ [a, b]. For this a, b we have P{a ≤ Xt ≤ b} > 0 for all t ≥ 0. As
Q is upward reaching, there is a k ∈ N such that P{b ≤ X′k} > 0. Using independence, we
now have

P{Xk ≤ X′k} ≥ P{Xk ≤ b ≤ X′k} = P{Xk ≤ b}P{b ≤ X′k} > 0,

as was to be shown. The proof for the downward reaching case is similar.

38If f ∈ icbS, then there exists a g ∈ ic(S, [0, 1]) and constants a, b such that f = a + bg.
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Proof of corollary 4.1. We discuss only theorem 3.1, since the discussion for theorem 3.2 is al-
most identical. To begin, observe that if Q is globally stable then Q is bounded in probability
and has an excessive distribution, as shown in the proof of theorem 3.1. Conversely, suppose
that Q is increasing, upward reaching, bounded in probability and has either a deficient or
an excessive distribution. By proposition 4.3, Q is order reversing. Theorem 3.1 now implies
that Q is globally stable. The proof of the downward reaching case is similar.

Proof of proposition 4.4. Let {ξt} and {ξ ′t} be IID draws from φ and independent of each other.
Consider first condition 3. We claim that QF is order reversing. Fix x, x′ ∈ S. Let {zt}k

t=1 and
{z′t}k

t=1 be as in the statement of the proposition. Define the constant

γ := P{Fk(x, ξ1, . . . , ξk) < Fk(x′, ξ ′1, . . . , ξ ′k)}.

We need only show that γ > 0. By hypothesis, Fk(x, z1, . . . , zk) < Fk(x′, z′1, . . . , z′k). By
continuity of F, there exist open neighborhoods Nt of zt and N′t of z′t such that

z̃t ∈ Nt and z̃′t ∈ N′t for t ∈ {1, . . . , k} =⇒ Fk(x, z̃1, . . . , z̃k) < Fk(x′, z̃′1, . . . , z̃′k).

This leads to the estimate

γ ≥ P∩n
t=1 {ξt ∈ Nt and ξ ′t ∈ N′t} =

n

∏
t=1

φ(Nt)φ(N′t).

Since Z is the support of φ, this last term is positive, and γ > 0. Thus, QF is order reversing.
Since QF is also Feller, increasing and bounded in probability, theorem 3.2 implies that QF

is globally stable.
The proof of the corollary will be complete if conditions 1–2 of the corollary imply that

QF is upward and downward reaching respectively (see proposition 4.3). The arguments
are very similar to the proof just completed and hence we omit them.

Finally, we complete the proof of all remaining lemmas stated in this section.

Proof of lemma 7.1. Let B be a C-accessible subset of D. To prove the lemma, it suffices to
show that PΦ

x ∪t {Xt ∈ B} = 1 whenever {Φt(x, ·)} is tight. To this end, fix x ∈ D, and
assume that {Φt(x, ·)} is tight. Let τ := inf{t ≥ 0 : Xt ∈ B}. Evidently we have ∪∞

t=0{Xt ∈
B} = {τ < ∞}. Thus, we need to show that PΦ

x {τ < ∞} = 1.
Fix ε > 0. Since {Φt(x, ·)} is tight, there exists a compact set C such that

inf
t

PΦ
x {Xt ∈ C} = inf

t
Φt(x, C) ≥ 1− ε.

Since B is C-accessible, there exists an n ∈ N and δ > 0 such that infy∈C Φn(y, B) ≥ δ. For
t ∈ N, define pt := PΦ

x {τ ≤ tn}. We wish to obtain a relationship between pt and pt+1. To
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this end, note that

1{τ ≤ (t + 1)n} = 1{τ ≤ tn}+ 1{τ > tn}1{τ ≤ (t + 1)n}
≥ 1{τ ≤ tn}+ 1{τ > tn}1{X(t+1)n ∈ B}
≥ 1{τ ≤ tn}+ 1{τ > tn}1{Xtn ∈ C}1{X(t+1)n ∈ B}.

Taking expectations yields

pt+1 ≥ pt + EΦ
x 1{τ > tn}1{Xtn ∈ C}1{X(t+1)n ∈ B}.

We estimate the last expectation as follows:

EΦ
x 1{τ > tn}1{Xtn ∈ C}1{X(t+1)n ∈ B}

= EΦ
x [1{τ > tn}1{Xtn ∈ C}EΦ

x [1{X(t+1)n ∈ B}|Ftn]]

= EΦ
x [1{τ > tn}1{Xtn ∈ C}Φn(Xtn, B)]

≥ EΦ
x 1{τ > tn}1{Xtn ∈ C}δ

= EΦ
x (1− 1{τ ≤ tn})1{Xtn ∈ C}δ

= EΦ
x 1{Xtn ∈ C}δ− EΦ

x 1{τ ≤ tn}1{Xtn ∈ C}δ
≥ (1− ε)δ− EΦ

x 1{τ ≤ tn}δ
= (1− ε)δ− ptδ.

∴ pt+1 ≥ pt + (1− ε)δ− ptδ = (1− δ)pt + (1− ε)δ.

The unique, globally stable fixed point of qt+1 = (1− δ)qt + (1− ε)δ is 1− ε, so

1− ε ≤ lim
t→∞

pt = PΦ
x {τ < ∞} ≤ 1

Since ε was arbitrary, we obtain PΦ
x {τ < ∞} = 1.

Proof of lemma 7.2. Fix x, x′ ∈ S and ε > 0. Since Q is bounded in probability, we can choose
compact sets C and C′ such that

Qt(x, C) ≥ (1− ε)1/2 and Qt(x′, C′) ≥ (1− ε)1/2 for all t.

∴ (Q×Q)t((x, x′), C× C′) = Qt(x, C)Qt(x′, C′) ≥ 1− ε for all t.

Since C× C′ is compact in the product space, Q×Q is bounded in probability.

Proof of lemma 7.3. Fix µ ∈ PS and ε > 0. Since individual elements of PS are tight (Dud-
ley, 2002, theorem 11.5.1), we can choose a compact set Cµ ⊂ S with µ(Cµ) ≥ 1 − ε. By
assumption, we can take an order interval [a, b] of S with Cµ ⊂ [a, b]. For this a, b, we have

µ([a, b]c) = µ(S \ [a, b]) ≤ ε. (22)
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By hypothesis, {Qt(x, ·)} is tight for all x ∈ S, so we choose compact subsets Ca and Cb of S
with Qt(a, Ca) ≥ 1− ε and Qt(b, Cb) ≥ 1− ε for all t. Since Ca ∪ Cb is also compact, we can
take an order interval [α, β] of S with Ca ∪Cb ⊂ [α, β] ⊂ S. We then have Qt(a, [α, β]) ≥ 1− ε

and Qt(b, [α, β]) ≥ 1− ε for all t. Letting Iα := {x ∈ S : x ≥ α} and Dβ := {x ∈ S : x ≤ β},
this leads to

Qt(a, Iα) ≥ 1− ε and Qt(b, Dβ) ≥ 1− ε for all t. (23)

In view of remark 2.1 and (23), we have

a ≤ x =⇒ Qt(x, Iα) ≥ Qt(a, Iα) ≥ 1− ε,

and, by a similar argument,

x ≤ b =⇒ Qt(x, Dβ) ≥ Qt(b, Dβ) ≥ 1− ε.

Since [α, β] := {x ∈ S : α ≤ x ≤ β} = Iα ∩ Dβ, we have

Qt(x, [α, β]c) = Qt(x, Dc
β ∪ Ic

α) ≤ 2−Qt(x, Dβ)−Qt(x, Iα).

This leads to the estimate

a ≤ x ≤ b =⇒ Qt(x, [α, β]c) ≤ 2ε. (24)

Combining (22) and (24), we now have

µQt([α, β]c) =
∫

Qt(x, [α, β]c)µ(dx)

=
∫
[a,b]

Qt(x, [α, β]c)µ(dx) +
∫
[a,b]c

Qt(x, [α, β]c)µ(dx)

≤
∫
[a,b]

2ε µ(dx) + µ([α, β]c) ≤ 3ε.

Since [α, β] is compact and t is arbitrary, we conclude that {µQt} is tight.

Proof of lemma 7.4. Let C be any compact subset of S× S. We need to prove existence of an
n ∈ N and δ > 0 such that (Q × Q)n((x, x′),G) ≥ δ whenever (x, x′) ∈ C. To do so, we
introduce the function

ψn(x, x′) := (Q×Q)n((x, x′),G) = PQ×Q
x,x′ {Xn ≤ X′n}.

where (Xn, X′n) is Markov-(Q×Q, (x, x′)). Intuitively, since Q is increasing, the event {Xn ≤
X′n} becomes less likely as x rises and x′ falls, and hence ψn(x, x′) is decreasing in x and
increasing in x′ for each n. A routine argument confirms this is the case.
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Since C ⊂ S× S is compact, we can take an order interval [a, b] of S with C ⊂ [a, b]×
[a, b].39 Moreover, since Q is order reversing, we can take n ∈ N such that δ := ψn(b, a) > 0.
Observe that

(x, x′) ∈ C =⇒ (x, x′) ∈ [a, b]× [a, b] =⇒ x ≤ b and x′ ≥ a.

∴ (x, x′) ∈ C =⇒ (Q×Q)n((x, x′),G) = ψn(x, x′) ≥ ψn(b, a) = δ.

In other words,G is C-accessible for Q×Q.

Proof of lemma 7.6. The statement µ � µ′ iff 〈µ, h〉 ≤ 〈µ′, h〉 for all h ∈ icbS holds for ev-
ery normally ordered space, as shown by Whitt [63, theorem 2.6]. Moreover, since � is a
partial order on PS [33, theorem 2], and hence antisymmetric, it follows that µ = µ′ iff
〈µ, h〉 = 〈µ′, h〉 for all h ∈ icbS. Regarding the third assertion of the lemma, observer first
that if µn → µ, then since S is polish the sequence {µn} is tight [24, theorem 11.5.3]. The
statement 〈µn, h〉 → 〈µ, h〉 whenever h ∈ icbS is obvious. To prove the converse, suppose
that {µn} is tight and 〈µn, h〉 → 〈µ, h〉 for all h ∈ icbS. Take any subsequence {µn}n∈N1

of {µn}. By tightness and Prohorov’s theorem [24, theorem 11.5.4], this subsequence has a
subsubsequence converging to some ν ∈PS:

∃N2 ⊂ N1 such that lim
n∈N2
〈µn, h〉 = 〈ν, h〉 for all h ∈ cbS.

Since 〈µn, h〉 → 〈µ, h〉 for all h ∈ icbS, we now have limn∈N2〈µn, h〉 = 〈ν, h〉 = 〈µ, h〉 for
all h ∈ icbS, and hence ν = µ. We have now shown that every subsequence of {µn} has a
subsubsequence converging to µ, and hence the entire sequence also converges to µ.

Proof of lemma 7.9. Pick any x ∈ S. Since D is nonempty we can choose some xd ∈ D. We
let {Xt} and {Xd

t } be independent and Markov-(Q, x) and (Q, xd) respectively, defined on
some common probability space (Ω, F ,P). Define τ := inf{t ≥ 0 : Xt ≤ Xd

t }. Since Q is
order mixing, P{τ < ∞} = 1. Since D is absorbing and xd ∈ D, the set {Xd

t ∈ D} also has
probability one. Therefore P{Xd

t ∈ D} ∩ {τ < ∞} = 1. Moreover, since D is decreasing
and, by definition, Xτ ≤ Xd

τ on {τ < ∞}, we have

{Xd
t ∈ D} ∩ {τ < ∞} ⊂ {Xt ∈ D} ∩ {τ < ∞} ⊂ ∪∞

t=0{Xt ∈ D}.

It now follows thatP∪∞
t=0 {Xt ∈ D} = 1. As x was arbitrary, we conclude that D is strongly

accessible.
39To see this, let K be a compact subset of S with C ⊂ K×K. (Such a K can be obtained by projecting

C onto the first and second axis, and defining K as the union of these projections.) Since K is order
bounded in S by assumption, we just choose a, b ∈ S with K ⊂ [a, b].
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Proof of lemma 7.10. Let {νn} and ν be probability measures on S, and suppose that 〈νn, g〉 →
〈ν, g〉 for all g ∈ G ⊂ bS. We claim that 〈νn, h〉 → 〈ν, h〉 for all h ∈ H ⊂ bS. To see this, pick
any h ∈H , and choose sequences {g1

n} and {g2
n} in G with g1

n ↑ h and g2
n ↓ h. Clearly

lim inf
n
〈νn, h〉 ≥ lim inf

n
〈νn, g1

k〉 = 〈ν, g1
k〉 for all k.

∴ lim inf
n
〈νn, h〉 ≥ sup

k
〈ν, g1

k〉 = lim
k
〈ν, g1

k〉 = 〈ν, h〉.

A symmetric argument applied to {g2
n} yields lim supn〈νn, h〉 ≤ 〈ν, h〉.

Proof of lemma 7.11. Let A be the countable subset of S in assumption 3.1. For a ∈ A, let
Ia := 1{y ∈ S : y ≥ a}. Let L be the set of functions ` = rIa for some r ∈ Q ∩ [0, 1] and
a ∈ A. Let G1 be all functions g = sup`∈F ` where F ⊂ L is finite. Clearly G1 is countable,
and, by theorem 3.3, every element of G1 satisfies the strong law of large numbers. We claim
that for each f ∈ ic(S, [0, 1]) there exists a sequence {gn} in G1 converging up to f . To verify
this claim it suffices to show that

sup{`(x) : ` ∈ L and ` ≤ f } = f (x) for any x ∈ S. (25)

Indeed, if (25) is valid, then take {`k} to be an enumeration of all ` ∈ L with ` ≤ f and
choose gn = sup1≤k≤n `k.

To establish (25), fix x ∈ S and ε > 0. By continuity of f and assumption 3.1, we can
find an a ∈ A with a ≤ x and f (x)− ε < f (a). Let r ∈ Q be such that f (x)− ε < r < f (a)
and let `(x) := rIa. Since ` ≤ f (a)Ia and f is increasing we have ` ≤ f . On the other hand,
f (x)− ε < r = `(a) ≤ `(x). Since ε was arbitrary we conclude that (25) is valid.

To complete the proof of lemma 7.11, we show existence of a class of functions G2 such
that G2 is countable, every element of G2 satisfies the strong law of large numbers, and, for
each f ∈ ic(S, [0, 1]), there exists a sequence {gn} in G2 converging down to f . The claim in
lemma 7.11 is then satisfied with G := G1 ∪ G2.

To construct G2, let Da := 1{y ∈ S : y ≤ a}, and let L be the set of functions ` : S→ [0, 1]
with `(x) = 1− rDa for some r ∈ Q ∩ [0, 1] and a ∈ A. Let G2 be all functions g = inf`∈F `

where F ⊂ L is finite. The set G2 is countable and every element satisfies the LLN. We claim
that for each f ∈ ic(S, [0, 1]) there exists a sequence {gn} in G2 converging down to f . To
verify this claim it suffices to show that

inf{`(x) : ` ∈ L and ` ≥ f } = f (x) for any x ∈ S. (26)

To establish (26), fix x ∈ S and ε > 0. By continuity of f and assumption 3.1, we can find
an a ∈ A with x ≤ a and f (a) < f (x) + ε. Let r ∈ Q be such that f (a) < 1− r < f (x) + ε

and let `(x) := 1− rDa. It is now easy to check that ` ≥ f and `(x) < f (x) + ε. Since ε was
arbitrary we conclude that (26) is valid.
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