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Abstract

We discuss stability of discrete-time Markov chains satisfying monotonicity and

an order-theoretic mixing condition that can be seen as an alternative to irreducibility.

A chain satisfying these conditions has at most one stationary distribution. Moreover,

if there is a stationary distribution, then the chain is stable in an order-theoretic sense.
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1 Introduction

In this paper we consider an order-theoretic mixing condition for Markov chains called

“order mixing.” This condition was introduced in Kamihigashi and Stachurski (2009) and

shown to imply stability of a stationary distribution under certain conditions.1 Informally,

a Markov chain is order mixing if, given any two independent versions {Xt}t∈Z+ and

{X′t}t∈Z+ of the same process with different initial conditions, we have

P
(
∪t∈Z+{Xt ≤ X′t}

)
= 1. (1)

We show that if the chain is monotone in a standard sense as well as order mixing, then

there is at most one stationary distribution. Moreover, if there is a stationary distribution,

then the chain is stable in an order-theoretic sense. These results are particularly useful

when the chain fails to be irreducible or cannot easily be verified to be irreducible.

Bhattacharya and Lee (1988, 1997) and others (e.g., Bhattacharya and Majumdar, 2007;

Bhattacharya et al., 2010) have used an alternative order-theoretic mixing condition called

“splitting” to study stability of Markov chains in the absence of irreducibility. As we show

in section 4, order mixing is weaker than the splitting condition.2

There is also a natural connection between order mixing and the classical stability

theory for Markov chains initiated by Doeblin (1938). The latter studies chains such that,

given any two independent versions {Xt} and {X′t} of the same process, we have

P
(
∪t∈Z+{Xt = X′t}

)
= 1. (2)

This “classical coupling” condition implies that there is at most one stationary distribu-

1See Stachurski (2009) for a special case of this result.
2See Hopenhayn and Prescott (1992) for a mixing condition for compact state spaces that is similar to

the splitting condition.
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tion, and, if there is one, then the chain is stable in terms of convergence in total variation.

Conditions (1) and (2) thus have similar implications, but the latter implies a stronger sta-

bility property. On the other hand, the order mixing condition (1) is considerably weaker

than (2), and is applicable even when convergence in total variation fails. Since existence

of a “successful coupling” often implies convergence in total variation (see Thorisson,

2000), order mixing can be viewed as an alternative to such coupling methods.

In section 4 we present an example that is not irreducible and does not satisfy the

splitting condition. Standard coupling methods are not applicable to this example either.

However, it is easily shown to be order mixing.

The rest of the paper is organized as follows. In section 2 we review basic definitions

concerning Makov chains and formalize the concept of order mixing. In section 3 we

present the main results of the paper. In section 4 we discuss the splitting condition and

the example mentioned above.

2 Preliminaries

We begin with basic definitions concerning Markov chains, starting with chains on arbi-

trary measurable spaces, and then moving to monotone chains on preordered spaces.

2.1 Standard Definitions

Let (X , X ) be a measurable space, let P(X ) be the probability measures on (X , X ), and

let bX be the bounded measurable functions from X to R. A stochastic kernel on X is a

function Q : X ×X → [0, 1] such that Q(x, ·) ∈ P(X ) for each x ∈ X , and Q(·, B) is

measurable for each B ∈ X .

Each stochastic process we consider is assumed to be an independent draw from a

common probability space (Ω, F ,P); this is to avoid defining a new probability measure
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for each stochastic process introduced. Given a stochastic kernel Q on X , a discrete-

time, X -valued stochastic process {Xt}t∈Z+ is called Markov-(Q, µ) if X0 has distribution

µ ∈ P(X ), and Q(x, ·) is the conditional distribution of Xt+1 given Xt = x (more formally,

P[Xt+1 ∈ B |X0, . . . , Xt] = Q(Xt, B) almost surely for all B ∈ X ). If µ is the probability

measure δx ∈ P(X ) concentrated on x ∈ X , we call {Xt} Markov-(Q, x) rather than

Markov-(Q, δx). We say that {Xt} is Markov-Q if {Xt} is Markov-(Q, µ) for some µ ∈

P(X ).

Given h ∈ bX , we define the right Markov operator by

h 7→ Qh, (Qh)(x) =
∫

h(y)Q(x, dy). (3)

The t-th iterate has the property (Qth)(x) = Eh(Xt) for any Markov-(Q, x) chain {Xt}.

Given µ ∈ P(X ), we define the left Markov operator by

µ 7→ µQ, (µQ)(B) =
∫

Q(x, B)µ(dx), (4)

with the property (µQt)(B) = P{Xt ∈ B} for any Markov-(Q, µ) chain {Xt}. A distribu-

tion µ∗ ∈ P(X ) is called stationary if µ∗Q = µ∗.

To simplify notation, for µ ∈ P(X ) and h ∈ bX , we define

〈µ, h〉 =
∫

h(x)µ(dx).

It is easy to see that, for any Markov-(Q, µ) chain {Xt}, we have

〈µQt, h〉 = 〈µ, Qth〉 = Eh(Xt) for all t ∈ N. (5)

For Markov-(Q, µ) chain {Xt} and C ∈ X , we let LQ(µ, C) represent the probability
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that {Xt} ever visits C. That is,

LQ(µ, C) = P
(
∪t∈Z+{Xt ∈ C}

)
. (6)

Since all Markov-(Q, µ) chains induce the same probability distribution on the product

space (X∞, X ∞), the value of LQ(µ, C) does not depend on the particular Markov-(Q, µ)

chain chosen. If µ = δx for some x ∈ X , then we write LQ(x, C) rather than LQ(δx, C). A

standard conditioning argument shows that

LQ(µ, C) =
∫

LQ(x, C)µ(dx). (7)

2.2 Monotonicity

Next we specialize to monotone Markov chains on preordered spaces. Our main interest

is on well-behaved subsets of Rn with the usual partial order, but we want to emphasize

that topology plays no role in the analysis. For this reason, we take our state space E to

be a preordered space equipped with preorder ≤.3 Letting Ib = {x ∈ E : b ≤ x} and

Db = {x ∈ E : x ≤ b}, we define E as the sigma-algebra generated by the family of sets

{Ib : b ∈ E} ∪ {Db : b ∈ E}; this mimics the construction of the Borel sigma-algebra on

R
n. The graph of ≤ is denotedG. That is,

G = {(x, x′) ∈ E×E : x ≤ x′}.

We assume that the graphG of≤ is measurable in the product space E×E (i.e.,G ∈ E⊗E ).

This is satisfied if, for example, E = R
n and ≤ is the usual partial order.

A function h : E → R is called increasing if h(x) ≤ h(y) whenever x ≤ y. A set C ⊂ E is

3A binary relation is called a preorder if it is reflexive and transitive.
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called increasing if its indicator function 1C is increasing. The set of all increasing bounded

measurable functions from E to R is denoted by ibE . A stochastic kernel Q on E is called

increasing if Qh ∈ ibE for any h ∈ ibE (and hence Qnh ∈ ibE for any n ∈ N).

Lemma 2.1. If µ, ν ∈ P(E) satisfy 〈µ, h〉 = 〈ν, h〉 for all h ∈ ibE , then µ = ν.

Proof. Let µ, ν ∈ P(E) with 〈µ, h〉 = 〈ν, h〉 for all h ∈ ibE . Let E i be the increasing sets in

E . Note that µ and ν agree on E i since 1C ∈ ibE for any C ∈ E i. The family E i is closed

under finite intersections; thus it is a π-system . Furthermore, E i generates E since, given

b ∈ E , any sigma-algebra containing E i contains both Ib and Db, the latter because E \ Db

is increasing. It follows by Billingley (1995, p. 42) that µ and ν agree on E .

Given E -valued, independent Markov-Q chains {Xt}t∈Z+ and {X′t}t∈Z+ , the E×E -

valued process {(Xt, X′t)}t∈Z+ is also Markov. In particular, if we define the product ker-

nel Q×Q on E×E by

(Q×Q)((x, x′), A) =
∫ ∫

1A(y, y′)Q(x, dy)Q(x′, dy′) (8)

for (x, x′) ∈ E×E and A ∈ E ⊗ E , then Q×Q is a stochastic kernel on E ×E , and

{(Xt, X′t)}t∈Z+ is Markov-Q×Q.

Using the product kernel Q×Q on E×E in (6), we now formally define order mixing:

we say that Q (or any Markov-Q chain) is order mixing if

LQ×Q((x, x′),G) = 1 for all (x, x′) ∈ E × E . (9)

This makes precise the idea that independent Markov-Q chains {Xt} and {X′t} starting at

x and x′ attain Xt ≤ X′t eventually with probability one. If Q is order mixing, then (7) and

(9) imply that

LQ×Q((µ, ν),G) = 1 for all µ, ν ∈ P(E). (10)
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Remark 2.1. It is easy to verify that if Qm is order mixing for some m ∈ N, then Q itself is

order mixing.

3 Stability

Let (E , E ) be as in the previous section. Let Q be a stochastic kernel on E .

Theorem 3.1. If Q is increasing and order mixing, then for any µ, ν ∈ P(E), we have

lim
t→∞
{〈µQt, h〉 − 〈νQt, h〉} = 0 for all h ∈ ibE . (11)

Before proving the theorem, we state the most important implications:

Corollary 3.1. If the conditions of theorem 3.1 hold, then Q has at most one stationary distribu-

tion. Moreover, if a stationary distribution µ∗ exists, then for any µ ∈ P(E), we have

lim
t→∞
〈µQt, h〉 = 〈µ∗, h〉 for all h ∈ ibE . (12)

Proof. First, if both µ and ν are stationary, then by (11) we have 〈µ, h〉 = 〈ν, h〉 for all

h ∈ ibE . Equality of µ and ν now follows by lemma 2.1. Regarding the second claim,

suppose that Q has a (necessarily unique) stationary distribution µ∗. Let µ ∈ P(E), and

let h ∈ ibE . Applying (11) again we obtain 〈µQt, h〉 → 〈µ∗, h〉. Since µ and h were

arbitrary, we obtain (12).

While the stability criterion (12) is not traditional, it implies that µQt converges weakly

to µ∗ if E = R
n with the standard partial order. Indeed, in this case, (12) implies that

limt→∞(µQt)(Db) = µ∗(Db) for all b ∈ Rn and, a fortiori, for all continuity points b of the

distribution function of µ∗; i.e., µQt converges weakly to µ∗ (e.g., Billingsley, 1995, p. 378).
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Proof of theorem 3.1. It is sufficient to prove that, for any µ, ν ∈ P(E), we have

lim sup
t→∞

{〈µQt, h〉 − 〈νQt, h〉} ≤ 0 for all h ∈ ibE . (13)

Indeed, if this is the case, then, reversing the roles of µ and ν, we also have

lim sup
t→∞

{〈νQt, h〉 − 〈µQt, h〉} ≤ 0 for all h ∈ ibE ,

or, equivalently, lim inft→∞{〈µQt, h〉 − 〈νQt, h〉} ≥ 0. This and (13) yield (11).

Let µ, ν ∈ P(E). To verify (13), fix h ∈ ibE . Adding a sufficiently large constant to h

(which does not affect the inequality in (13)), we can assume without loss of generality

that h ≥ 0. Let {(Xt, X′t)} be Markov-(Q×Q, µ×ν). Let τ = inf{t ∈ Z+ : Xt ≤ X′t}, where

inf ∅ = ∞. Since Q is order mixing, we have P{τ < ∞} = 1 by (10). Note from (5) that,

for given t ∈ N,

〈νQt, h〉 = Eh(X′t) ≥ E1{τ ≤ t}h(X′t) = E[E[1{τ ≤ t}h(X′t)|Fτ]], (14)

where Fτ is the pre-τ sigma-algebra.4 The inner expectation on the rightmost side of (14)

can be written (almost surely) as

1{τ ≤ t}E[h(X′t)|Fτ] = 1{τ ≤ t}(Qt−τh)(X′τ), (15)

where the equality is due to the strong Markov property (e.g., Meyn and Tweedie, 2009).5

Since Q is increasing, Qt−τh ∈ ibE for any t ≥ τ (with Q0h = h). Moreover, by the

4If Ft is the sigma-algebra generated by (X0, X′0), . . . , (Xt, X′t), then Fτ is all sets B ∈ F such that
{τ = t} ∩ B ∈ Ft for all t ∈ Z+. See Meyn and Tweedie (2009, p. 66).

5Equation (15) can be seen in more detail as follows: by the strong Markov property and Fu-
bini’s theorem (e.g., Billingsley, 1995), provided that τ ≤ t, we have E[h(X′t)|Fτ ] =

∫
h(y′)(Q ×

Q)t−τ((Xτ , X′τ), d(y, y′)) =
∫ [∫

h(y′)Qt−τ(X′τ , dy′)
]

Qt−τ(Xτ , dy) =
∫

h(y′)Qt−τ(X′τ , dy′) = (Qt−τh)(X′τ).
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definition of τ we have Xτ ≤ X′τ, so (Qt−τh)(X′τ) ≥ (Qt−τh)(Xτ). Combining this with

(14) and (15), we have

〈νQt, h〉 ≥ E[1{τ ≤ t}(Qt−τh)(Xτ)].

Applying the arguments from (14) and (15) to {Xt} instead of {X′t}, we have

E1{τ ≤ t}h(Xt) = E[1{τ ≤ t}(Qt−τh)(Xτ)].

∴ 〈νQt, h〉 ≥ E1{τ ≤ t}h(Xt) = Eh(Xt)−E1{τ ≥ t + 1}h(Xt).

Recalling Eh(Xt) = 〈µQt, h〉 and setting M = supx∈E h(x), we now have

〈µQt, h〉 − 〈νQt, h〉 ≤ P{τ ≥ t + 1}M.

The right-hand side converges to zero because P{τ < ∞} = 1, and we obtain (13).

4 Discussions

4.1 The Splitting Condition

Bhattacharya and Lee (1988, 1997) consider stability of monotone Markov chains in the

absence of irreducibility.6 Their environment consists of a sequence of IID monotone (in-

creasing or decreasing) maps {αt} from E to itself, and a process {Xt} generated by

Xt = αtXt−1 = αt ◦ · · · ◦ α1(x),

6See Bhattacharya and Majumdar (2007) and Bhattacharya et al. (2010) for extensions of their work.
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where x ∈ E is the initial condition. The corresponding kernel is Q(x, B) = P{α1(x) ∈ B}.

They consider a “splitting condition,” which requires the existence of a c ∈ E and m ∈ N

such that

(a) P{αm ◦ · · · ◦ α1(x) ≤ c, ∀x ∈ E} > 0, and

(b) P{αm ◦ · · · ◦ α1(x) ≥ c, ∀x ∈ E} > 0.

As we now show, this condition implies order mixing. Without loss of generality, suppose

that (a) and (b) hold with m = 1; if m > 1, a small modification of the following argument

shows that Qm is order mixing, and if Qm is order mixing then Q is order mixing by

remark 2.1. Let {αt} and {α′t} be independent versions of the IID map sequence, let Xt =

αt(Xt−1) and X′t = α′t(X′t−1) with initial conditions X0 = x and X′0 = x′ respectively, and

let τ = inf{t ∈ Z+ : Xt ≤ X′t}. We need to show that P{τ < ∞} = 1.

To see this, let At = {αt(x) ≤ c, ∀x}, A′t = {α′t(x) ≥ c, ∀x}, and Bt = At ∩ A′t. Let

ε = P(Bt) = P(At)P(A′t), which does not depend on t since {αt} and {α′t} are IID. By

the splitting condition (with m = 1), ε > 0. Moreover, we have Bt ⊂ {Xt ≤ X′t}, and

hence ∪tBt ⊂ {τ < ∞}, or, equivalently, {τ = ∞} ⊂ ∩t(Ω \ Bt). Since the events Bt are

independent and P(Bt) = ε, we then have

0 ≤ P{τ = ∞} ≤ P∩t (Ω \ Bt) = lim
T→∞

(1− ε)T = 0.

Hence P{τ < ∞} = 1, and order mixing is established.

Two remarks are in order. First, the above argument does not require the IID maps αt to

be monotone, so that the splitting condition implies order mixing whenever both condi-

tions are well defined. Second, under additional assumptions that may not be restrictive

in applications, the splitting condition ensures that there exists a unique stationary distri-

bution µ∗ and that µQt converges to µ∗ uniformly and exponentially in a suitable metric
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for all initial distributions µ (see also Bhattacharya et al., 2010). In other words, the split-

ting condition alone implies a stronger version of Corollary 3.1. Hence, order mixing can

be an alternative to the splitting condition only if the existence of a stationary distribution

is known (or can be shown) and the rate of convergence is not an issue.

4.2 AR(1) Processes on R+

Consider the AR(1) process on E = R+ given by

Xt+1 = θXt + Ut+1, (16)

where θ ∈ (0, 1) and {Ut} is a nonnegative IID process. Since the right-hand side of (16)

is increasing in Xt, the associated stochastic kernel is increasing. The splitting condition

does not hold here, since, given any c ∈ R+ and m ∈ N, we have P{Xm < c} → 0 as

X0 ↑ ∞.7

For the rest of the discussion, we assume that

θ = 1/3, Ut =


2/3 with probability 1/2,

0 with probability 1/2.
(17)

In this case, the chain is not irreducible. To see this, note that the stationary distribu-

tion of the chain is the distribution of ∑i∈Z+
3−iUi. Thus the support of the stationary

distribution is the Cantor set, which we denote by Λ:

Λ =

{
∑
i∈N

ai

3i : ai ∈ {0, 2} for all i ∈ N
}

. (18)

7We should mention that the process here is an “average contraction,” for which various stability results
are available (e.g., Bhattacharya and Majumdar, 2007, sec. 3.7). Here we use this simple model to illus-
trate an order mixing chain that can easily be shown to satisfy neither irreducibility nor standard coupling
conditions.
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It is easy to see that if Xt ∈ [0, 1], then P[Xt+1 ∈ Λ |Xt] > 0 if and only if Xt ∈ Λ.

Therefore, if X0 ∈ [0, 1] \ Λ, then P{Xt ∈ Λ} = 0 all t ∈ Z+. Since any irreducibility

measure must be supported on Λ (see Meyn and Tweedie, 2009, p. 232), it follows that

the chain cannot be irreducible.

To consider coupling methods, let {X′t} be an independent version of (16) under (17).

Suppose that X0 is rational and X′0 is irrational. Then, for all t, t′ ∈ Z+, the support of Xt

is a set of rationals, and that of X′t′ is a set of irrationals. Thus the supports of Xt and X′t′

are always disjoint, so there is no successful distributional shift-coupling, which implies

that there is neither successful exact coupling nor successful distributional coupling (see

Thorisson (2000) for definitions).

While none of the above methods works here, it is not difficult to show that the chain

is order mixing. To see this, let {Xt} and {X′t} be independent versions of (16) with the

corresponding IID processes {Ut} and {U′t}. Let Vt = Xt − X′t and Wt = Ut+1 −U′t+1 for

all t ∈ Z+. Then {Vt} is an AR(1) process on R: Vt+1 = (1/3)Vt + Wt+1. It is easy to see

that8

P
(
∪t∈Z+{Vt ≤ 0}

)
= 1. (19)

Since Vt = Xt − X′t by definition, it follows that {Xt} is order mixing.
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