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1 Introduction

Dechert and Nishimura (1983) studied a one-sector optimal growth model
with a convex-concave production function, showing that any optimal (cap-
ital) path is monotone and converges to a steady state. One of their major
findings is that there exists a unique critical capital stock such that any op-
timal path from an initial capital stock below this critical stock converges to
zero, and any optimal path from an initial capital stock above this critical
stock converges to a nonzero steady state. This threshold property is often
associated with important economic phenomena such as history dependence
and poverty traps.

Dechert and Nishimura’s (1983) analysis has been extended by various
studies on optimal growth with nonconvexities (e.g., Majumdar and Mitra,
1982; Majumdar and Nermuth, 1982; Mitra and Ray, 1984; Kamihigashi and
Roy, 2007; Hung et al., 2009). The threshold property described above is
also widespread even outside the optimal growth literature, arising in a broad
range of economic problems concerning, for example, optimal investment for
firms (e.g, Hartl and Kort, 2004; Haunschmied, et al., 2005; Wagener, 2005),
renewable resources (e.g., Wirl, 2004), political behavior (e.g, Caulkins et
al., 2001; Caulkins et al., 2007), and drug control (Tragler et al., 2001; Levy
et al., 2006). A critical capital stock in such models is often referred to as a
“Dechert-Nishimura-Skiba” point, after Dechert and Nishimura (1983) and
Skiba (1978).

In terms of economic significance, the critical capital stock of the Dechert-
Nishimura model seems to be comparable to the nonzero steady state of the
one-sector neoclassical growth model. The latter can be regarded as charac-
terizing the long run behavior of an economy under neoclassical assumptions,
and its comparative statics is one of the most powerful tools for economists
in explaining cross-country differences. For example, it is well understood
that a more patient country invests more and produces more in the long run,
and countries with similar levels of patience have similar steady states. As
for the critical capital stock of the Dechert-Nishimura model, although it is
literally critical in determining whether the economy grows or shrinks, even
its basic comparative statics properties are unknown in the current literature.
For example, the literature does not offer the answers to the following basic
questions: Does a more patient country have a smaller critical capital stock?
Do countries with similar levels of patience have similar critical stocks?

The second question concerns parametric continuity. Without this prop-
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erty, a small change in a parameter could cause a sudden regime shift: after
a small change, an economy in a poverty trap could suddenly start to grow,
or a growing economy could suddenly start to shrink. Are such dramatic
regime shifts possible?

In this paper we show that the critical capital stock of the Dechert-
Nishimura model is a decreasing and continuous function of one of the funda-
mental parameters, the discount factor. We use a comparative statics result
shown by Amir et al. (1991) to establish that the critical capital stock is
decreasing in the discount factor. This result means that a more patient
country has a lower critical capital stock, and thus is more likely to escape
from a poverty trap. A more significant contribution of this paper is to
establish the continuity property of the critical capital stock. We do so by
utilizing the value functions corresponding to the maximization problem with
the additional constraint that feasible paths must be decreasing, and the one
with the additional constraint that feasible paths must be increasing. This
continuity result makes it clear that a small change in the discount factor
does not cause a sudden regime shift and does not have a large impact on
long run economic performance unless the economy is exactly at the critical
capital stock.

In addition to the above results, we show that the critical capital stock
converges to the “minimum sustainable capital stock” as the discount factor
increases to a certain boundary value, and merges with a nonzero steady state
as the discount factor decreases to another boundary value. If the discount
factor decreases further, then the steady state disappears, and all optimal
paths converge to zero.

The rest of the paper is organized as follows. In Section 2 we present
the Dechert-Nishimura model under slightly weaker assumptions than in the
original model. In Section 3 we collect various preliminary results to facilitate
the proofs of our main results. In Section 4 we state our main results, which
we prove in Section 5.
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2 The Model

Consider the following maximization problem:

max
{ct,xt+1}∞t=0

∞∑
t=0

βtu(ct) (2.1)

s.t. ct + xt+1 = f(xt), (2.2)

ct, xt+1 ≥ 0, (2.3)

x0 ≥ 0 given, (2.4)

where ct is consumption in period t, xt is the capital stock at the beginning
of period t, β ∈ (0, 1) is the discount factor, u is the utility function, f is the
production function, and (2.2) and (2.3) are required to hold for all t ∈ Z+.
We maintain the following assumptions throughout the paper.

Assumption 2.1. u : R+ → R+ is continuously differentiable on (0,∞),
continuous, strictly increasing, strictly concave, and satisfies u(0) = 0 and
limc↓0 u

′(c) =∞.

Assumption 2.2. f : R+ → R+ is continuously differentiable on (0,∞),
continuous, strictly increasing, and satisfies f(0) = 0.

Assumption 2.3. There exists xI > 0 such that f is strictly convex on
[0, xI ] and strictly concave on [xI ,∞).

Assumption 2.4. There exists x > xI such that f(x) = x and f(x) < x for
all x > x.

Unlike Dechert and Nishimura (1983), we do not assume that u and
f are twice continuously differentiable.1 Assumption 2.3 means that f is
convex-concave, or S-shaped. Assumption 2.4 implies that all capital and
consumption paths satisfying (2.2) and (2.3) are bounded. We call x the
maximum sustainable capital stock. We also define the minimum sustainable
capital stock x as follows:

x = sup{x > 0 : ∀y ∈ (0, x), f(y) < y}. (2.5)

1However, Dechert and Nishimura’s (1983) main arguments do not require u and f to
be twice continuously differentiable.
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If there is no x > 0 such that f(y) < y for all y ∈ (0, x), we define x = 0. If
x > 0, then

∀x ∈ (0, x), f(x) < x. (2.6)

Thus any capital stock below x is not sustainable. Assumptions 2.2 and 2.4
together with (2.5) and (2.6) imply that

x ≤ x, f(x) = x. (2.7)

We use the following standard definitions. A feasible path (from x ≥
0) is a capital path {xt}∞t=0 such that for some consumption path {ct}∞t=0,
{ct, xt+1}∞t=0 satisfies (2.2)–(2.4) for all t ∈ Z+ (with x0 = x). An optimal
path (from x ≥ 0) is a feasible path {xt} (from x) such that for some con-
sumption path {ct}, {ct, xt+1} solves the maximization problem (2.1)–(2.4).
A stationary path is a constant path. A capital stock x ≥ 0 is a steady state
if the stationary path {xt} such that xt = x for all t ∈ Z+ is optimal.

3 Preliminary Results

In this section we present various preliminary results to facilitate the proofs
of our main results.

3.1 Basic Properties of Optimal Paths

In this subsection we show some preliminary results after stating without
proof several results from Dechert and Nishimura (1983) and Kamihigashi
and Roy (2007) as well as their immediate consequences.2 One of the key
results in this subsection is a proposition that summarizes Dechert and
Nishimura’s (1983) main conclusions on the critical capital stock.

By a standard argument, an optimal path from any x ≥ 0 exists (see,
e.g, Le Van and Morhaim, 2002, Theorem 1). For x ≥ 0, let v(x) be the

2There are similar and related results in the literature (e.g., Majumdar and Mitra,
1982; Majumdar and Nermuth, 1982; Mitra and Ray, 1984); see Kamihigashi and Roy
(2007) for discussion of the literature.
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maximized value of the objective function:

v(x) = max
{ct,xt+1}∞t=0

∞∑
t=0

βtu(ct) (3.1)

s.t. ct + xt+1 = f(xt), (3.2)

ct, xt+1 ≥ 0, (3.3)

x0 = x. (3.4)

The value function v satisfies the Bellman equation

v(x) = max
y∈[0,f(x)]

{u(f(x)− y) + βv(y)}. (3.5)

Let K denote the (optimal) policy correspondence:

K(x) = argmax
y∈[0,f(x)]

{u(f(x)− y) + βv(y)}. (3.6)

It follows from Dechert and Nishimura (1983, Theorem 1) that the policy
correspondence K is strictly increasing in the following sense:

∀x ≥ 0, ∀x′ > x,∀y ∈ K(x),∀y′ ∈ K(x′), y < y′. (3.7)

The following two lemmas are immediate consequences of (3.7).

Lemma 3.1. Any optimal path is strictly increasing, strictly decreasing, or
stationary.

Lemma 3.2. Let x0 ≥ 0 and x′0 > x0. Let {xt} and {x′t} be optimal paths
from x0 and x′0, respectively. Then xt < x′t for all t ∈ N.

Since limc↓0 u
′(c) =∞, the nonnegativity constraints (2.3) are never bind-

ing as long as x0 > 0. Thus

∀x > 0,∀y ∈ K(x), 0 < y < f(x). (3.8)

Furthermore, for any optimal path {xt} from x0 > 0, the Euler equation
holds for all t ∈ Z+:

u′(f(xt)− xt+1) = βu′(f(xt+1)− xt+2)f
′(xt+1). (3.9)
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This implies that any nonzero steady state x > 0 satisfies βf ′(x) = 1. To
consider solutions to this equation, we define

βI =
1

f ′(xI)
, β0 =

1

limx↓0 f ′(x)
. (3.10)

We have βI < β0 since f is strictly convex on [0, xI ], but we do not know if
β0 or βI is less than one. The following result is an immediate consequence
of (3.10) and Assumptions 2.3 and 2.4.

Lemma 3.3. (i) There exists a capital stock x∗ ≥ xI with βf ′(x∗) = 1 if and
only if β ≥ βI . If such x

∗ exists, it is unique. (ii) There exists a capital stock
x∗ ∈ (0, xI ] with βf ′(x∗) = 1 if and only if β ∈ [βI , β0). If such x∗ exists, it
is unique.

For x ≥ 0, define
γ(x) = βf(x)− x. (3.11)

Kamihigashi and Roy (2007) call this the gain function. Provided that x∗
and x∗ exist and are distinct (i.e., βI < β < β0), we have

γ′(x)



< 0 for x ∈ (0, x∗),

= 0 for x = x∗,

> 0 for x ∈ (x∗, x
∗),

= 0 for x = x∗,

< 0 for x > x∗.

(3.12)

If x∗ does not exist but x∗ does (i.e., β0 ≤ β < 1), then

γ′(x)


> 0 for x ∈ (0, x∗),

= 0 for x = x∗,

< 0 for x > x∗.

(3.13)

We borrow the next four results from Kamihigashi and Roy (2007, Lemma
3.5, Propositions 3.2, 3.1, 4.2) and Dechert and Nishimura (1983, Theorem
2).

Lemma 3.4. Let {xt} be an optimal path that is not stationary. Then there
exists t ∈ N such that γ(xt) > γ(x0).
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Lemma 3.5. Let y ≥ 0. If y = argmaxx≥0 γ(x), then y is a steady state.

Lemma 3.6. Any optimal path converges to a steady state.

Lemma 3.7. Suppose that limx↓0 γ
′(x) < 0. Then there exists y > 0 such

that any optimal path from x ∈ (0, y] converges to zero.

The next result is due to Dechert and Nishimura (1983, Lemma 3). We
prove it here as a simple consequence of Lemma 3.4.3

Lemma 3.8. Suppose that x∗ exists. Then there exists no optimal path from
x0 ∈ (0, x∗) ∪ (x∗,∞) that converges to x∗.

Proof. Suppose that there exists an optimal path {xt} from x0 ∈ (0, x∗) ∪
(x∗,∞) that converges to x∗. Since x∗ is a local minimizer of γ by (3.12),
it follows by Lemma 3.1 that {γ(xt)}∞t=i is strictly decreasing for sufficiently
large i. Since {xt}∞t=i is optimal from xi, this contradicts Lemma 3.4.

The next result combines the main results of Dechert and Nishimura
(1983, Theorems 3, 4, 5) into a simple form. While Dechert and Nishimura
(1983) consider three different cases based on the size of β, we consider only
two cases based on whether or not x∗ is a steady state. Our result here allows
for the possibility that xc = 0 or x∗.4

Proposition 3.1. (i) Suppose that x∗ exists and is a steady state. Then
there exists a critical capital stock xc ∈ [x, x∗] such that any optimal path
from x ∈ (0, xc) converges to zero and any optimal path from x ∈ (xc,∞)
converges to x∗. (ii) Suppose that x∗ does not exist or is not a steady state.
Then any optimal path from x > 0 converges to zero.

Proof. Let y = sup{x ≥ 0 : there exists an optimal path from x that con-
verges to zero}. Note from (2.6) that

x ≤ y. (3.14)

We claim that

if y > 0, any optimal path {xt} from x ∈ (0, y) converges to zero. (3.15)

3Since Dechert and Nishimura (1983, Lemma) only outline their proof, we prove Lemma
3.8 to confirm that it is valid under our assumptions.

4Proposition 4.1 identifies when such cases occur.
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To see this, note that there exists an optimal path {x′t} from x′ ∈ (x, y] that
converges to zero. Thus by Lemma 3.2, {xt} also converges to zero.

To prove part (i), let y = inf{x > 0 : there exists an optimal path from x
that converges to x∗}. We have y ≤ y ≤ x∗ by Lemma 3.2. By the argument
for (3.15), any optimal path from x ∈ (y, x∗) converges to x∗. Suppose that
y < y. If x∗ exists, let x ∈ (y, y)\{x∗}; if x∗ does not exist, let x ∈ (y, y). By
definition of y and y and Lemma 3.8, there is no optimal path from x that
converges to a steady state. Since this contradicts Lemma 3.6, we have y = y.
Letting xc = y (≥ x by (3.14)), we see that xc has the desired properties.

To prove part (ii), recall from Lemma 3.3 that if x∗ exists, then x∗ ≤ xI .
Thus any optimal path from x > xI converges to zero by Lemmas 3.6 and 3.8.
This implies that y =∞, and any optimal path from any x > 0 converges to
zero by (3.15).

For the rest of the paper, we let xc be the critical capital stock given by
Proposition 3.1 provided that x∗ exists and is a steady state. We define

x̃ = sup{x > 0 : ∀y ∈ (0, x), γ(y) < 0}. (3.16)

If there is no x > 0 such that γ(y) < 0 for all y ∈ (0, x), then we define
x̃ = 0. We also define

x̂ = argmax
x>0

{f(x)/x}, (3.17)

β̂ =
1

f(x̂)/x̂
= 1/f ′(x̂). (3.18)

Provided that x̃ ∈ (0,∞) we have

x < x̃ ≤ x̂ < x, (3.19)

where x and x are defined in (2.5) and Assumption 2.4, respectively. The
location of xI relative to x and x̃ is not clear, but since f cannot be strictly
convex on [0, x̂], we have

xI < x̂. (3.20)

Recalling (3.10) we see that

βI < β̂ < β0. (3.21)

Lemma 3.9. (i) If β̂ ≥ 1, then there exists no nonzero steady state. (ii) If
β̂ < 1 and β ≥ β̂, then x∗ exists and is a steady state.
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Proof. To see part (i), suppose that β̂ ≥ 1. Let x > 0. Then f(x)/x ≤ 1/β̂ ≤
1, i.e., f(x) ≤ x. Thus by (3.8) we have y < f(x) ≤ x for all y ∈ K(x).
Hence the conclusion follows. To see part (ii), note that existence of x∗

follows from Lemma 3.3(i) and (3.21). Since 1/f ′(x∗) = β ≥ β̂ = 1/f ′(x̂),
we have f ′(x∗) ≤ f ′(x̂). Since x̂ > xI by (3.20), it follows that x∗ ≥ x̂
by concavity of f on [xI ,∞). Thus by (3.12), (3.13), and (3.18), we have
γ(x∗) ≥ γ(x̂) ≥ β̂f(x̂) − x̂ = 0. Hence x∗ = argmaxx≥0 γ(x) by (3.12) and
(3.13). This together with Lemma 3.5 shows that x∗ is a steady state.

Now we introduce two functions that play a key role in showing the con-
tinuity of the critical capital stock: for x ≥ 0, define

vd(x) = max
{ct,xt}∞t=0

∞∑
t=0

βtu(ct) (3.22)

s.t. ct + xt+1 = f(xt), (3.23)

ct, xt+1 ≥ 0, (3.24)

xt+1 ≤ xt, (3.25)

x0 = x. (3.26)

Note that vd(x) is the maximized value of the objective function under the
additional constraint that feasible paths must be decreasing.5 We define vi(x)
similarly by replacing (3.25) with

xt+1 ≥ min{xt, f(xt)}. (3.27)

The right-hand side reflects the fact that it may not be feasible to choose
xt+1 ≥ xt, since xt > f(xt) if xt < x or xt > x. However, since x ≤ xc ≤
x∗ < x by Proposition 3.1 and (3.8), we could restrict the domain of vi to
[x, x] without affecting the analysis of xc. We do not do so here for notational
convenience.

Lemma 3.10. (i) vd, vi : R+ → R+ are continuous. (ii) Suppose that x∗

exists and is a steady state. Then

∀x ∈ (0, xc) ∪ (x∗,∞), vd(x) = v(x) > vi(x), (3.28)

∀x ∈ (xc, x∗), vd(x) < v(x) = vi(x). (3.29)

5In this paper, “decreasing” means “nonincreasing,” and “increasing” means “nonde-
creasing.”
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Furthermore,

vd(x) = vi(x) = v(x) ⇐⇒ x ∈ {0, xc, x∗}. (3.30)

Proof. Part (i) follows from a standard argument (e.g, Stokey and Lucas,
1989, Theorem 4.6). To see part (ii), note from Proposition 3.1, Lemma
3.1, and (3.8) that any optimal path from x ∈ (0, xc) ∪ (x∗,∞) is strictly
decreasing with strictly positive consumption in each period. Thus vd(x) =
v(x) > vi(x). Hence (3.28) follows. We obtain (3.29) similarly.

The ⇒ part of (3.30) is immediate from (3.28) and (3.29). The ⇐ part
is also immediate if x ∈ {0, x∗}. Consider the case x = xc. It follows from
(3.28) and part (i) that vd(x) = v(x) ≥ vi(x). Likewise vd(x) ≤ v(x) = vi(x)
by (3.29). Hence we obtain vd(x) = v(x) = vi(x).

Lemma 3.11. Suppose that x∗ exists and is a steady state. (i) If x̃ ∈ (0,∞),
then xc ≤ x̃. (ii) If x > 0, then x < xc.

Proof. To see part (i), suppose that x̃ ∈ (0,∞). Note from (3.12) that
x∗ < x̃ if x∗ exists. Since γ′(x̃) ≥ 0, we have x̃ ≤ x∗ by (3.12) and (3.13).
If γ(x∗) > 0, then by Lemmas 3.4, 3.6, and 3.8, any optimal path from x̃
converges to x∗. If γ(x∗) = 0, then x̃ = x∗. In either case, we have xc ≤ x̃.

To see part (ii), suppose that x > 0. Note from (3.8) that y < f(x) = x
for any y ∈ K(x). Thus by Lemmas 3.1, 3.6, and 3.8, any optimal path from
x converges to zero, which implies that vd(x) > vi(x). Since vd and vi are
continuous, it follows that x < xc.

3.2 Comparative Statics

Since our main results are concerned with how the critical capital stock xc

depends on β, in what follows we make explicit the dependence on β of
v(x), vd(x), x∗, xc, etc., by writing instead v(x, β), vd(x, β), x∗(β), xc(β), etc.
In addition, given β ∈ (0, 1), we call a capital path {xt} that is optimal for
the maximization problem (2.1)–(2.4) β-optimal.

We start by observing (without proof) how x∗(β), x∗(β), and x̃(β) vary
with β.

Lemma 3.12. (i) x∗(β) is strictly increasing and continuous in β ∈ [βI , 1)
with

x∗(βI) = xI , lim
β↑1

x∗(β) < x. (3.31)
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(ii) x∗(β) is strictly decreasing and continuous in β ∈ [βI , β0) with

x∗(βI) = xI , lim
β↑β0

x∗(β) = 0. (3.32)

(iii) If β̂ < 1, then x̃(β) is strictly decreasing and continuous in β ∈ [β̂, βm)
with

x̃(β̂) = x̂, lim
β↑βm

x̃(β) = x, (3.33)

where
βm = min{β0, 1}. (3.34)

It follows from Amir et al. (1991, Theorem 5.5(d)) that the policy corre-
spondence K(x, β) is strictly increasing in β for any x > 0:

∀β ∈ (0, 1),∀β′ ∈ (β, 1),∀y ∈ K(x, β),∀y′ ∈ K(x, β′), y < y′. (3.35)

An immediate consequence of this is the following.

Lemma 3.13. Let x > 0. Let β ∈ (0, 1) and β′ ∈ (β, 1). Then for any β-
optimal path {xt} from x and β′-optimal path {x′t} from x, we have xt < x′t
for all t ∈ N.

The following result can be shown by a straightforward argument.

Lemma 3.14. For each x > 0, v(x, β), vd(x, β), and vi(x, β) are strictly
increasing and continuous in β ∈ (0, 1).

4 Main Results

In this section we state the main results of this paper, which are concerned
with how the critical capital stock varies with β. Existence of a critical capital
stock by definition assumes existence of a nonzero steady state. Therefore, to
examine the properties of the critical capital stock, we need to assume that
there exists a nonzero steady state at least for some β ∈ (0, 1). By Lemma
3.9, a necessary and sufficient condition for this is the following.

Assumption 4.1. β̂ < 1.

For the rest of this paper, we maintain Assumption 4.1 in addition to
Assumptions 2.1–2.4. We are ready to state the first of our main results:
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Proposition 4.1. There exists β ∈ [βI , β̂] such that x∗(β) exists and is a
steady state if and only if β ∈ [β, 1). Furthermore, the critical capital stock
xc(β) is decreasing and continuous in β ∈ [β, 1).

Proof. See Section 5.

The monotonicity of x∗(·) in β is a simple consequence of (3.35). The
proof of the continuity of x∗(·) uses Lemmas 3.10 and 3.14 to derive a con-
tradiction under the hypothesis that xc(·) is discontinuous at some β.

The next result completes the picture by identifying the boundary values
of xc(·):

Proposition 4.2. Let β and βm be given by Proposition 4.1 and (3.34),
respectively. We have

∀β ∈ (β, βm), x < xc(β) < x∗(β). (4.1)

Furthermore,

xc(β) = x∗(β), (4.2)

lim
β↑βm

xc(β) = x. (4.3)

If β0 < 1, then
∀β ∈ [β0, 1), xc(β) = 0. (4.4)

Proof. See Section 5.

Provided that β0 < 1, Proposition 4.2 along with Propositions 4.1 and
3.1 shows that for all β ∈ [β0, 1), we have xc(β) = 0, and all optimal paths
from x > 0 converge to x∗(β). For any β ∈ (β, β0), we have xc(β) > 0, and
xc(β) increases to x∗(β) as β decreases to β. If β decreases any further, both
xc(β) and x∗(β) disappear, and all optimal paths converge to zero.

5 Proofs of Propositions 4.1 and 4.2

We prove Propositions 4.1 and 4.2 after preparing several lemmas.

Lemma 5.1. Let β, β′ ∈ [βI , 1) be such that β < β′ and both xc(β) and
xc(β′) exist. Then xc(β) ≥ xc(β′).
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Proof. Suppose to the contrary that xc(β) < xc(β′). Fix x ∈ (xc(β), xc(β′)).
Let {xt} be a β-optimal path from x, and {x′t} be a β′-optimal path from x.
Since x > xc(β), {xt} is strictly increasing. Since x < xc(β′), {x′t} is strictly
decreasing. But this contradicts Lemma 3.13.

Lemma 5.2. Let β ∈ [βI , 1) be such that x∗(β) is a steady state. Then for
any β′ ∈ (β, 1), x∗(β′) is a steady state.

Proof. Let β′ ∈ (β, 1). Let k : R+ → R+ be any selection from the policy
correspondence K(·, β′). Then k(x∗(β)) > x∗(β) by (3.35). Since k(·) is
strictly increasing by (3.7), and since k(x) < f(x) = x by (3.8), k(·) has a
fixed point in [x∗(β), x] by the Knaster-Tarski fixed point theorem (Aliprantis
and Border, 1999, p. 15). If x∗(β

′) exists, then x∗(β
′) < x∗(β) by Lemma

3.12. Hence only x∗(β′) can be a fixed point of k(·) in [x∗(β), x]. It follows
that x∗(β′) is a fixed point of k(·), i.e., x∗(β′) is a steady state.

Lemma 5.3. There exists β ∈ [βI , β̂] such that x∗(β) is not a steady state
for any β ∈ [βI , β), and is a steady state for any β ∈ [β, 1).

Proof. Define β = inf{β ∈ [βI , β̂] : x∗(β) is a steady state}. By (3.21) and
Lemma 3.9(ii), β exists. By definition of β, x∗(β) is not a steady state for
any β ∈ [βI , β). It follows from Lemma 5.2 that x∗(β) is a steady state for
any β ∈ (β, 1).

It remains to show that x∗(β) is a steady state. To this end, suppose that
x∗(β) is not a steady state. Then by Proposition 3.1(ii), any optimal path
from x∗(β) converges to zero. Hence

vd(x∗(β), β) = v(x∗(β), β) > vi(x∗(β), β). (5.1)

Note from Proposition 3.1(i) that xc(β) ≤ x∗(β) for all β ∈ (β, 1). Since
xc(·) is decreasing by Lemma 5.1, and since x∗(·) is continuous and strictly
increasing by Lemma 3.12(i), it follows that xc(β) ≤ x∗(β) < x∗(β) for all
β ∈ (β, 1). Thus by Lemma 3.10(ii),

∀β ∈ (β, 1), vd(x∗(β), β) ≤ v(x∗(β), β) = vi(x∗(β), β). (5.2)

Letting β ↓ β and recalling Lemma 3.14, we have vd(x∗(β), β) ≤ vi(x∗(β), β),
which contradicts (5.1).

For the rest of this section we let β ∈ [βI , β̂] be given by Lemma 5.3.
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Lemma 5.4. xc(β) is continuous in β ∈ [β, 1).

Proof. Suppose that xc(·) is discontinuous at some β∗ ∈ [β, 1). This means
that

xc(β∗) > lim
β↓β∗

xc(β) (5.3)

or that β < β∗ and
xc(β∗) < lim

β↑β∗
xc(β). (5.4)

Suppose that β < β∗ and (5.4) holds. Let y = limβ↑β∗ x
c(β). Fix x ∈

(xc(β∗), y). By Lemma 3.10 we have

vd(x, β∗) < v(x, β∗) = vi(x, β∗). (5.5)

Since x < y ≤ xc(β) for all β ∈ (β, β∗), by Lemma 3.10 we have

∀β ∈ (β, β∗), vd(x, β) = v(x, β) > vi(x, β). (5.6)

Letting β ↑ β∗ and recalling Lemma 3.14, we obtain vd(x, β∗) ≥ vi(x, β∗),
which contradicts (5.5). Hence (5.4) is ruled out. By a similar argument,
(5.3) is also ruled out. It follows that xc(·) is continuous.

Lemma 5.5. We have (4.1) in Proposition 4.2.

Proof. Note from Assumption 4.1 and (3.21) and (3.34) that β̂ < βm, which
implies β < βm. Let β′ ∈ (β, βm) and β ∈ (β, β′). Then by Lemma 5.1,
Proposition 3.1(i), and Lemma 3.12(i), we have

xc(β′) ≤ xc(β) ≤ x∗(β) < x∗(β′). (5.7)

If x > 0, then by Lemma 3.11(ii) we have

x < xc(β′). (5.8)

Suppose that x = 0. Then f ′(0) ≡ limx↓0 f
′(x) ≥ 1 by definition of x. Thus

β0 = 1/f ′(0) ≤ 1, so that β0 = βm > β′. We have β′f ′(0) < β0f
′(0) = 1.

Hence by Lemma 3.7 we have xc(β′) > 0 = x, i.e., (5.8) holds again.
It follows from (5.7) and (5.8) that x < xc(β′) < x∗(β′). Since β′ ∈ (β, βm)

was arbitrary, we obtain (4.1).

Lemma 5.6. We have (4.2) and (4.3) in Proposition 4.2.
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Proof. To see (4.3), let β ∈ (β̂, βm). Then x < x̃(β) < x̂ by Lemma 3.12(iii).
From (4.1) and Lemma 3.11(i), we have x < xc(β) ≤ x̃(β). Thus (4.3) follows
from Lemma 3.12(iii).

To see (4.2), let y = xc(β). Note from (4.1) that y ≤ x∗(β) since both
xc(·) and x∗(·) are continuous. Suppose that y < x∗(β). Fix x ∈ (y, x∗(β)).
For any β ∈ (0, β), since x∗(β) does not exist or is not a steady state by
Lemmas 3.3(i) and 5.3, any β-optimal path from x converges to zero by
Proposition 3.1(ii). Thus

∀β ∈ (0, β), vd(x, β) = v(x, β) > vi(x, β). (5.9)

Since x > y ≥ xc(β) for all β ∈ (β, βm) by Lemma 5.1, we have

∀β ∈ (β, βm), vd(x, β) < v(x, β) = vi(x, β). (5.10)

Letting β → β in (5.9) and (5.10), it follows from Lemma 3.14 that vd(x, β) =
v(x, β) = vi(x, β). Since this is true for any x ∈ (y, x∗(β)), we have a
contradiction to (3.30).

5.1 Proof of Proposition 4.1

The first statement of the proposition follows from Lemmas 5.3 and 3.3. The
second statement follows from Lemmas 5.1 and 5.4.

5.2 Proof of Proposition 4.2

We have (4.1)–(4.3) by Lemmas 5.5 and 5.6. Suppose that β0 < 1. Then
βm = β0 and x = 0. We obtain (4.4) from (4.3) since xc(·) is decreasing and
continuous by Proposition 4.1.
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