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Abstract

We study rational bubbles in a standard linear asset price model.
We first consider a class of bubble processes driven by multiplicative
iid shocks. We show that a bubble process in this class either diverges
to infinity with probability one, converges to zero with probability
one, or keeps fluctuating forever with probability one, depending on
investors’ “confidence” in expected bubble growth. We call a bubble
process having the last property “recurrent.” We develop sufficient
conditions for a bubble process to be recurrent when it is driven by
non-iid shocks, when the risk-free interest rate is not constant, and
when the process is driven by non-iid shocks and the risk-free interest
rate is not constant. In the last case we demonstrate via simulation
that there can be a prolonged period in which both the bubble and
the interest rate stay close to zero.
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1 Introduction

Since the 17th century, there have been numerous episodes of dramatic rises
in asset prices followed by sharp declines. Well-known historical examples
include the Tulip mania (1637), the Mississippi and South See bubbles (1720);
more recent examples are the Japanese asset bubble in the 1980s, the IT
bubble in the 1990s, and the US housing bubble in the 2000s.1 One possible
explanation for this excessive “rise and fall” phenomenon is the presence of
“rational asset bubbles.”

An asset bubble is said to exist if the market price of an asset exceeds its
fundamental value. The simplest model to analyze “rational” bubbles would
be the following intertemporal no-arbitrage condition:

Pt = (1 + r)−1Et(Pt+1 +Dt+1), (1.1)

where Pt is the asset price in period t, Dt ≥ 0 is the dividend in period t,
and r > 0 is the risk-free interest rate. Equation (1.1) says that the expected
gross return on the asset, Et(Pt+1 + Dt+1)/Pt, must be equal to the gross
risk-free interest rate, 1 + r. This simple model has been the basis for much
of the literature on rational bubbles (e.g., Flood and Hodrick, 1990; Froot
and Obstfeld, 1991; Evans, 1991; Gürkaynak, 2008).

In this model the fundamental value of the asset in period t is defined as
the expected present discounted value of the dividend sequence from period
t+ 1 onward:

P ∗t = Et

∞∑
i=1

(1 + r)−iDt+i. (1.2)

It is easy to see that {P ∗t } solves (1.1), but there are many other solutions
to (1.1). Indeed, for any nonnegative process {Bt} following

EtBt+1 = (1 + r)Bt, (1.3)

the price process {Pt} defined by Pt = P ∗t +Bt also solves (1.1). Therefore, if
(1.1) is the only requirement on the price process {Pt}, then one cannot rule
out the possibility that the asset price Pt exceeds the fundamental value P ∗t .

Although the concept of rational bubbles as defined above has attracted
considerable attention in the economic literature, showing the presence of

1See Garber (2000), Kindleberger and Aliber (2005), and Reinhart and Rogoff (2009)
for accounts of these episodes.
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bubbles has been a challenging problem, both theoretically and empirically.
On the theoretical side, bubbles are often ruled out in a representative agent
model using a transversality condition or other optimality-based arguments
(e.g., Kamihigashi 1998, 2001, 2003). Bubbles are also ruled out in gen-
eral overlapping generations models if the value of aggregate wealth is finite
(Wilson, 1981; Santos and Woodford, 1997). Recently, however, it has been
shown that there are representative agent models with a wealth effect in
which bubbles are consistent with a transversality condition (Kamihigashi
2008a, 2008b).2 In such cases the optimality requirement for bubbles re-
duces to an equation similar to (1.1).

On the empirical side, it is well-known that bubbles are difficult to detect,
partly because sample paths of bubble processes do not necessarily appear
explosive. This was first pointed out by Evans (1991) who demonstrated
via simulation that “periodically collapsing bubbles” are not detectable by
using standard tests. This point has further been reinforced by Charemza
and Deadman (1995) and Gürkaynak (2008).3

The purpose of this paper is to stimulate further investigation of bubbles
by characterizing the asymptotic behavior of their sample paths and by illus-
trating them with simulations. We start by formalizing Evan’s (1991) point
that bubbles may not appear explosive. For this purpose we consider three
asymptotic properties: we say that a bubble process {Bt} is “explosive” if it
diverges to infinity with probability one, “implosive” if it converges to zero
with probability one, and “recurrent” if with probability one, there are two
levels B,B > 0 such that Bt > B infinitely often and Bt < B infinitely of-
ten. We are particularly interested in the last property. A recurrent bubble
process (almost) always reappears even though it may temporarily become
arbitrarily small, and always collapses to a certain level even though it may
temporarily become arbitrarily large. This property may be consistent with
the repeated phenomenon of excessive rises and falls observed in various asset
price data.

We first consider a class of bubble processes—nonnegative, nontrivial
stochastic processes satisfying the bubble equation (1.3)—with a multiplica-
tive iid shock. We show that these bubble processes are explosive, implosive,
or recurrent depending on investors’ “confidence” in expected bubble growth

2As surveyed in Brunnermeier (2007) and Iraola and Santos (2007), bubbles are also
possible in models with asymmetric information, heterogeneous beliefs, limited rationality,
limited arbitrage, or agency problems.

3See Phillips, Wu, and Yu (2009) for recent developments.
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EtBt+1/Bt. We define confidence as a measure of how sure or confident in-
vestors are about this expected value. We show that the bubble process {Bt}
is explosive if confidence is sufficiently high, and implosive if confidence is
sufficiently low. There is also a knife-edge level of confidence such that the
bubble process is recurrent.4

These results, which assume that confidence is constant, suggest that if
confidence varies with the bubble, it may be possible that the bubble tends
to shrink when it is large, and tends to grow when it is small. Such a bubble
process would be recurrent in a robust way, and more stable than the knife-
edge case mentioned above. Indeed, since the bubble equation (1.3) does not
require the shock to be iid, the distribution of the shock, or confidence, is
allowed to depend on the current bubble. Under this assumption we show
that a bubble process is recurrent if confidence becomes sufficiently low when
the bubble is extremely large, and becomes sufficiently high when the bubble
is extremely small.

A similar stabilizing effect can be obtained even if confidence is constant,
provided that the interest rate r varies with the bubble. We show that a
bubble process is recurrent if the interest rate becomes sufficiently small when
the bubble is extremely large, and becomes sufficiently large when the bubble
is extremely small. Since one may find this negative relation counterfactual,
we also consider a model in which the interest rate reacts positively to changes
in the bubble, and confidence reacts negatively to changes in the interest rate.
In this case the bubble process can once again be recurrent. We demonstrate
via simulation that there can be a prolonged period in which both the bubble
and the interest rate stay close to zero.

The rest of the paper is organized as follows. Section 2 introduces basic
definitions. Section 3 models the bubble equation (1.3) as a stochastic dif-
ference equation with a multiplicative iid shock, and offers conditions under
which the induced bubble process is explosive, implosive, or recurrent. Sec-
tion 4 interpret these conditions in terms of investors’ confidence in expected
bubble growth. Section 4 endogenizes confidence as a function of the current
bubble, and provides sufficient conditions for recurrence. Section 6 endo-
genizes the interest rate instead of confidence as a function of the current
bubble, and provides sufficient conditions for recurrence. Section 7 considers
a case in which both the interest rate and confidence are endogenous, and

4Section 3 discusses related results in the literature (e.g., Ikeda and Shibata, 1992,
1995; Salge, 1996; Kamihigashi, 2006).
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offers sufficient conditions for recurrence. Section 8 concludes the paper. The
Appendix contains technical proofs.

2 Definitions

In this section we introduce several definitions that we use throughout the
paper. We say that a nonnegative stochastic process {Bt} is a bubble process
if it satisfies the bubble equation (1.3) and

B0 > 0. (2.1)

In other words we require a bubble process to be nonnegative and nontrivial in
addition to satisfying the bubble equation (1.3). Nonnegativity often follows
from the requirement that the asset price Pt cannot be smaller than the
fundamental value P ∗t . Nontriviality requires (2.1), since if B0 = 0, the
bubble equation (1.3) and nonnegativity imply that Bt = 0 for all t ∈ N.

Next we define some asymptotic properties that a given bubble process
may or may not have. To simplify notation, let

lim = lim inf, lim = lim sup . (2.2)

Let P{A} denote the probability of the event A.5 We say that a nonnegative
stochastic process {Xt} is

• explosive if
P{lim

t↑∞
Xt =∞} = 1. (2.3)

• implosive if
P{lim

t↑∞
Xt = 0} = 1. (2.4)

• downward recurrent if

P{lim
t↑∞

Xt <∞} = 1. (2.5)

• upward recurrent if
P{lim

t↑∞
Xt > 0} = 1. (2.6)

5There should be no confusion between P{·} and Pt; we never use them together, and
Pt appears only in (6.1) in what follows.
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• recurrent if it is both downward and upward recurrent.

In words, a stochastic process {Xt} is explosive if it diverges to infinity
with probability one, implosive if it converges to zero with probability one,
and recurrent if with probability one, there exist two levels X,X > 0 such
that Xt < X infinitely often and Xt > X infinitely often.6

3 Three Benchmarks with IID Shocks

A natural way to model the bubble equation (1.3) would be to introduce an
additive iid shock:

Bt+1 = (1 + r)Bt + At+1, EtAt+1 = 0, (3.1)

where {At} is a sequence of iid shocks on R. In this formulation, however,
nonnegativity is violated with positive probability when B0 is sufficiently
small, provided that At is a nontrivial random variable (i.e., P{At < 0} >
0).7 Indeed, if the support of At is unbounded below, then we have P{B1 <
0} > 0 for any B0 > 0. Even if the support of At is bounded, we have

P{B1 < 0} = P{(1 + r)B0 + A1 < 0} = P{A1 < −(1 + r)B0}, (3.2)

which is strictly positive if B0 is sufficiently close to zero. Therefore, under
(3.1), it is not possible to ensure nonnegativity for all B0 > 0.

An alternative way to model the bubble equation (1.3) is to introduce a
multiplicative shock:

Bt+1 = (1 + r)BtSt+1, (3.3)

where {St} is a sequence of iid shocks8 such that

EtSt+1 = 1, St+1 > 0. (3.4)

6The recurrence property defined here is known as “non-evanescence” in the literature
on Markov processes (Meyn and Tweedi, 2009, p. 206). Under regularity conditions, non-
evanescence implies “recurrence” and “Harris recurrence” in Meyn and Tweedie’s (2009,
p. Theorem 9.2.2) terminology.

7Diba and Grossman (1988) recognize this point, and consider the stochastic difference
equation (3.1) without assuming that {At} is an iid process.

8Throughout the paper we follow the convention that if {εt} is a sequence of iid shocks,
then εt+1 is independent of information at time t; thus Ef(εt+1) = Etf(εt+1) for any
measurable function f (provided that both sides are well defined).
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In this formulation it is guaranteed that the stochastic process {Bt} obeying
(3.3) with B0 > 0 is always nonnegative and thus is a bubble process. A
special case of (3.3) with a log-normal shock is considered by Charemza
and Deadman (1995) and Salge (1997). In this section we study asymptotic
properties of the bubble process generated by (3.3).

We should mention that we do not specify the source of uncertainty here:
St can be a “fundamental” or “sunspot” shock. If St is a fundamental shock,
or a shock that depends on Dt, then the process here can be viewed as an
“intrinsic” bubble (Froot and Obstfeld, 1991). If St is a sunspot shock, then
it can be interpreted that the fluctuations in the bubble process are driven
by “animal spirits” (e.g., Farmer, 2008).

Taking logarithms, we can express (3.3) in additive form:

bt+1 = bt + ρ+ st+1, (3.5)

where

bt = lnBt, (3.6)

ρ = ln(1 + r), (3.7)

st = lnSt. (3.8)

In this section we assume that

E|st| <∞, r ≥ 0. (3.9)

By Jensen’s inequality and (3.4) we have

µ ≡ Est = E lnSt ≤ lnESt = 0. (3.10)

The above inequality holds strictly as long as St is a nontrivial random vari-
able.

To see the importance of the inequality in (3.10), define

ζt = st − µ. (3.11)

Then (3.5) can be rewritten as

bt+1 = bt + ρ+ µ+ ζt+1. (3.12)

Since Et(ζt+1 − µ) = 0, we see that {bt} is a random walk with drift. The
drift parameter ρ+ µ determines the direction in which the process tends to
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drift; it also determines the asymptotic behavior of the process, as we see
below.

Note from (3.5) and (3.11) that for any t ≥ 1, we have

bt = b0 + t(ρ+ µ) +
t∑
i=1

ζi. (3.13)

Dividing through by t, we obtain

bt
t

=
b0
t

+ ρ+ µ+
1

t

t∑
i=1

ζi. (3.14)

The right-hand side converges to ρ + µ with probability one by the law of
large numbers (White, 2001, p. 32):

lim
t↑∞

bt
t

= ρ+ µ with probability one. (3.15)

The following result is based on this simple observation.

Proposition 3.1. Consider the bubble process {Bt} given by (3.3) and (3.4).
Assume (3.9).

(a) Suppose that
ρ+ µ > 0. (3.16)

Then {Bt} is explosive. In particular, for any δ ∈ (0, ρ + µ), with prob-
ability one, there exists t ∈ N such that

∀t ≥ t, Bt > eδt. (3.17)

(b) Suppose that
ρ+ µ < 0. (3.18)

Then {Bt} is implosive. In particular, for any δ ∈ (0,−µ − ρ), with
probability one, there exists t ∈ N such that

∀t ≥ t, Bt < e−δt. (3.19)
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Proof. To show part (a), let δ ∈ (0, ρ + µ). From (3.15), with probability
one, there exists t ∈ N such that

∀t ≥ t,
lnBt

t
> δ. (3.20)

Thus (3.17) follows. The proof of part (b) is similar.

Part (a) of Proposition 3.1 shows that under (3.16), the bubble process
{Bt} is explosive, asymptotically growing exponentially. This property is
expected from the deterministic case, and is often considered to be a char-
acteristic of bubbles.

Part (b), on the other hand, shows that under (3.18), the bubble process
is implosive, asymptotically decaying exponentially. One might find this
result rather counterintuitive since the bubble equation (1.3) implies that
the deterministic sequence {EBt} of expected bubbles is explosive.

To understand this “exponential decay” property, consider the special
case in which ρ = 0 (i.e., r = 0) and St takes only two values as follows:

St =

{
0.5 with probability 1/2,

1.5 with probability 1/2.
(3.21)

In this specification we have (3.4) and (3.9). Suppose that B0 = 100, S1 =
0.5, and S2 = 1.5. Then B1 = 150 and B2 = 75. In other words, a 50%
decrease followed by a 50% increase results in a 25% overall decrease. We
have B2 = 75 even if we interchange the values of S1 and S2: a 50% increase
followed by a 50% decrease results in a 25% overall decrease.

More generally, if the number of good shocks is the same as that of bad
shocks over a period of time, then the bubble Bt shrinks in the end. Since
good and bad shocks are equally likely, the bubble is deemed to decay over
time. Therefore the seemingly neutral assumption EtSt+1 = 1 in fact places
downward pressure on Bt.

9

If r > 0, then this places upward pressure on Bt, and the overall effect on
Bt is determined by the relative strength of upward pressure ρ = ln(1 + r) to
downward pressure |µ| = |E lnSt|. Proposition 3.1 shows that the asymptotic
behavior of the bubble process {Bt} is indeed determined by the sign of ρ+µ.

9See Froster and Hart (2009) and the references therein for similar arguments and
results related to Proposition 3.1 in the context of measures of riskiness.
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There are some results in the literature closely related to part (b) of
Proposition 3.1. It is in fact a consequence of Kamihigashi’s (2006, Theorem
3.1) result that almost every feasible path in a one-sector stochastic growth
model with a multiplicative iid shock converges to zero exponentially fast if
the marginal product of capital is finite at zero and if the shock is sufficiently
volatile. Salge (1997, Proposition 4.2) shows a special case of Proposition
3.1(b) with a log-normal shock. The log-normal case can be viewed as a
discrete-time version of the geometric Brownian motion, which is also known
to be implosive (in our definition) under a continuous-time counterpart of
(3.18) (Kushner, 1967, p. 57). Based on a similar argument, Ikeda and
Shibata (1992, 1995) show that continuous-time intrinsic bubbles can be
implosive.10

Given these results in the literature, Proposition 3.1(b) may not be sur-
prising. Nonetheless it seems worth emphasizing that a bubble process can
decay exponentially, since it is still widely believed that “in most models
bubbles burst, while in reality bubbles seem to deflate over several weeks or
even months” (Brunnermeier, 2008). Exponential decay captures this realis-
tic feature of bubbles.

In the knife-edge case ρ+µ = 0, which is not covered by Proposition 3.1,
the logarithmic bubble process {bt} is a random walk without drift (recall
(3.12)).11 It turns out that in this case, the bubble process {Bt} is recurrent
under an additional condition. In the next result, we let V (s) denote the
variance of the random variable s.

Proposition 3.2. Let {Bt} be the bubble process given by (3.3) and (3.4).
Assume (3.9). Suppose that

ρ+ µ = 0, (3.22)

V (st+1) <∞. (3.23)

Then {Bt} is recurrent.

Proof. See the Appendix.

10Turnovsky and Weintraub (1971), Kiernan and Madan (1989), and Kelly (1992) use
similar arguments in different contexts.

11Recognizing both explosive and implosive cases, Lansing (2009) focuses on intrinsic
bubbles that can be described as a geometric random walk without drift, and also considers
“near-rational” bubbles. Branch and Evans (2010) study “recurrent” bubbles and crashes
under learning dynamics.
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Recurrence of {Bt} means that with probability one, there are two levels
B,B > 0 such that Bt < B infinitely often and Bt > B infinitely often. The
proof of Proposition 3.2 in fact shows that under its hypotheses, B and B
can be chosen in such a way that B < B and Bt ∈ [B,B] infinitely often.
This property is similar to mean reversion, but notice that {Bt} has no finite
long run mean since {EBt} is explosive by the bubble equation (1.3).

Under (3.23), Propositions 3.1 and 3.2 allow us to classify all bubble
processes obeying (3.3) and (3.4) into three classes depending on ρ+ µ:

Corollary 3.1. Consider the bubble process {Bt} given by (3.3) and (3.4).
Assume (3.9) and (3.23). Then {Bt} is either explosive, recurrent, or im-

plosive, depending on ρ+ µ T 0.

Kolmogorov’s zero-one law (e.g., Ash, 1972, p. 278) implies that

P{lim
t↑∞

Bt =∞} = 0 or 1, (3.24)

P{lim
t↑∞

Bt = 0} = 0 or 1. (3.25)

By definition, if the first probability is one, then the bubble process {Bt} is
explosive; if the second probability is one, then the process is implosive. If
neither probability is one, then the process is recurrent. Therefore {Bt} is
either explosive, recurrent, or implosive even without (3.23). Corollary 3.1
specifies in terms of ρ + µ exactly when the process is explosive, recurrent,
or implosive.

To illustrate the results so far by simulating the bubble process {Bt} given
by (3.3) and (3.4), suppose that there exists a sequence {εt} of iid shocks such
that

st = µ+ σεt, (3.26)

where
µ ≤ 0, σ ≥ 0, εt ∼ N(0, 1). (3.27)

Note that µ is the expected value of st as defined earlier, while σ is its
standard deviation. These parameters are related as follows:

µ = −σ
2

2
. (3.28)

This is because from (3.4) and normality of εt, we have

1 = EtSt+1 = Ete
st+1 = eµ+

σ2

2 . (3.29)
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Propositions 3.1 and 3.2 indicate that with r > 0 fixed, as µ gradually
decreases from 0 to a value below −ρ = − ln(1 + r), the bubble process {Bt}
is initially explosive, becomes recurrent when µ = −ρ, and then becomes
implosive. Figures 1 and 2 demonstrate how this transition takes place.
In each figure, the bubble process {Bt} is initially explosive with ρ+ µ > 0,
becomes recurrent when ρ+µ = 0, and then becomes implosive with ρ+µ < 0.

All plots in each figure share a common sample path of {εt} (or a common
sequence of pseudo-random variables); the only difference between a pair of
plots in each figure is that they use different values of µ. In both Figures 1
and 2, µ is changed exactly in the same way; the only difference between the
two figures is that they use different sample paths of {εt}.

These figures suggest that plots of the same process can appear quite dif-
ferent depending on the sample path of {εt}. This point is further illustrated
in Figures 3, 4, and 5. Each of these figures shows eight sample paths of the
same process with different sample paths of {εt}, while these figures share
a common set of sample paths of {εt}. For example, panel (b) of Figure 3,
panel (b) of Figure 4, and panel (b) of Figure 5 all use a common sample
path of {εt}.

Figure 3 shows eight sample paths of an explosive bubble process (with
identical parameter and initial values). Although Proposition 3.1 ensures
that each sample path eventually grows exponentially, and all the plots in
the figure exhibit an overall upward trend, they appear to have rather dif-
ferent growth patterns. Notice that the maximum values of these plots are
significantly different. Likewise the plots in Figure 4 exhibit an overall down-
ward trend, but they appear to have rather different decay patterns.

Figure 5 shows eight sample paths of a recurrent bubble process. As
expected, the plots in this figure exhibit neither an overall upward trend nor
an overall downward trend, though the recurrence property is not always
clear in each individual panel. This may not be surprising given that the
bubble process here is a geometric random walk.

4 Confidence

In the previous section we studied the asymptotic properties of the bubble
process given by (3.3) and (3.4) without offering any economic interpretation.
To better understand these properties, we introduce a parameter that can be
interpreted as a measure of investors’ confidence. To be specific, in addition
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Figure 2: Explosive to implosive bubbles (another example): plots of Bt

under (3.3), (3.4), (3.26), and (3.27) with r = 0.01, B0 = 1, and different
values of µ, and with different sample path of {εt} than in Figure 1
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Figure 3: Explosive bubbles: plots of Bt under (3.3), (3.4), (3.26), and (3.27)
with r = 0.01, ρ+ µ = 0.007, B0 = 1, and different sample paths of {εt}
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Figure 4: Implosive bubbles: plots of Bt under (3.3), (3.4), (3.26), and (3.27)
with r = 0.01, ρ+ µ = −0.007, B0 = 1, and different sample paths of {εt}
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with r = 0.01, ρ+ µ = 0, B0 = 1, and different sample paths of {εt}
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to (3.3) and (3.4), suppose that the logarithmic shock st takes the form of
(3.26), and that {εt} is a sequence of of iid shocks such that

Etεt+1 = 0, Vt(εt+1) = 1, ∀h > 0, Ete
hεt+1 <∞. (4.1)

Here Vt denotes the conditional variance at time t. Unlike in (3.26) we do
not assume that εt+1 is log-normal unless otherwise indicated.

Suppose now that there is a confidence index, denoted c, which measures
investors’ confidence in expected bubble growth EtBt+1/Bt = 1/(1 + r). Our
use of the term “confidence” derives from its use in probability theory as in
“confidence interval.” It is slightly different from that of Akerlof and Shiller
(2009), who consider “confidence” as one of the key aspects of animal spirits.

In our definition, if investors are almost perfectly confident, i.e., if c ≈ ∞,
then they believe that realized bubble growth Bt+1/Bt is likely to be close to
its expected value 1 + r. This can be a self-fulfilling belief provided that σ is
endogenously determined in such a way that c ≈ ∞ implies σ ≈ 0, in which
case there is little ex post volatility. On the other hand, if investors have
little confidence in expected bubble growth, i.e., if c ≈ 0, then they believe
that realized bubble growth will be highly volatile. This can once again be
a self-fulfilling belief provided that σ is endogenously determined in such a
way that c ≈ 0 implies σ ≈ ∞.

To formalize this idea, we assume that σ is a function of c having the
properties described above. This is the case if, for example, σ = 1/c. For
simplicity we assume this relationship and replace σ in (3.26) with 1/c:

st = µ+ εt/c. (4.2)

We assume that
µ < 0, c > 0. (4.3)

Note from (3.4) that

1 = EtSt+1 = Ete
st+1 = Ete

µ+εt+1/c. (4.4)

Therefore
e−µ = Ete

εt+1/c. (4.5)

Let µc be the value of µ satisfying this equation:

µc = − lnEte
εt+1/c. (4.6)

17



Define νc as the volatility of bubble growth Bt+1/Bt (= (1 + r)St+1):

νc = [Vt(Bt+1/Bt)]
1/2 = [Vt((1 + r)St+1)]

1/2. (4.7)

The following result shows that µc, and thus the drift parameter ρ + µc,
increases as confidence c increases, and that νc decreases as confidence c
increases at least when St+1 has a log-normal distribution.

Lemma 4.1. Assume (3.3), (3.4), and (4.2)–(4.3).

(a) For any c, c′ > 0 with c < c′, we have

µc < µc′ . (4.8)

(b) Suppose that εt has the standard normal distribution:

εt ∼ N(0, 1). (4.9)

Then for any c, c′ > 0 with c < c′, we have

νc > νc′ . (4.10)

Proof. See the Appendix.

Part (a) of the above result can easily be verified under (4.9), in which
case

µc = − 1

2c2
(4.11)

(recall (3.28)). This confirms that the expected logarithmic growth rate of
the bubble Bt (which is given by ρ + µc) depends positively on confidence.
In other words the bubble is likely to grow faster when confidence is higher.

Part (b) of Lemma 4.1 shows that the volatility of bubble growth Bt+1/Bt

depends negatively on confidence under (4.9). It follows from the proof of
Lemma 4.1 that

νc = (1 + r)[e1/c
2 − 1]1/2. (4.12)

Since νc can also be viewed as uncertainty about Bt+1/Bt, the conclusion of
part (b) says that when confidence is low, ex ante uncertainty about bub-
ble growth is high. This results in high ex post volatility, justifying low
confidence and high uncertainty in a self-fulfilling way.

We can now restate Propositions 3.1 and 3.2 in terms of confidence: Given
r > 0, the bubble process {Bt} given by (3.3), (3.4), and (4.2)–(4.3) is
explosive if confidence c is sufficiently high, and implosive if c is sufficiently
low. There is also a knife-edge level of c such that the bubble process is
recurrent.
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5 Recurrent Bubbles with Endogenous Con-

fidence

We have assumed so far that {St} in (3.3) is an iid process. This is not
an assumption required by the bubble equation (1.3). In fact the bubble
equation only requires {St} to satisfy (3.4) (with the strict inequality replaced
by the weak one). In this section we continue to consider bubble processes
obeying (3.3) and (3.4) while allowing {St} to be non-iid.

More specifically we assume that {st} takes the form

st+1 = µ(Bt) + εt+1/c(Bt), (5.1)

where µ : (0,∞) → (−∞, 0) and c : (0,∞) → (0,∞) are measurable func-
tions, and {εt} is a sequence of iid shocks satisfying (4.1). As in (4.6), µ(Bt)
and c(Bt) are related as follows:

µ(Bt) = − lnEte
εt+1/c(Bt). (5.2)

In this setting the logarithmic bubble process {bt} follows

bt+1 = bt + ρ+ µ(Bt) + εt+1/c(Bt). (5.3)

Proposition 3.1 suggests that the bubble Bt tends to grow when ρ +
µ(Bt) > 0, and tends to shrink when ρ+µ(Bt) < 0. This is the basic idea of
the next proposition, in which [x]+ and [x]− denote the plus and minus parts
of x:

[x]+ = max{x, 0}, [x]− = max{−x, 0}. (5.4)

Proposition 5.1. Let {Bt} be the bubble process given by (3.3), (3.4), (4.1),
and (5.1). Let ε be a random variable having the same distribution as εt.

(a) Suppose that

ρ+ lim
B↑∞

µ(B) + lim
B↑∞

E[ε]+
c(B)

− lim
B↑∞

E[ε]−
c(B)

< 0, (5.5)

lim
B↑∞

c(B) > 0, lim
B↑∞

c(B) <∞. (5.6)

Then {Bt} is downward recurrent.
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(b) Suppose that

ρ+ lim
B↓0

µ(B) + lim
B↓0

E[ε]+
c(B)

− lim
B↓0

E[ε]−
c(B)

> 0, (5.7)

lim
B↓0

c(B) > 0, lim
B↓0

c(B) <∞. (5.8)

Then {Bt} is upward recurrent.

(c) If (5.5)–(5.8) hold, then {Bt} is recurrent.

Proof. See the Appendix.

Inequality (5.5) essentially implies that the bubble Bt tends to shrink
when it is extremely large, which in turn implies that it cannot stay at
an extremely large level forever. Likewise, inequality (5.7) implies that the
bubble cannot stay at an extremely small level forever. The inequalities in
(5.6) and (5.8) are regularity conditions to ensure that these claims are indeed
true. If all of these conditions hold, the bubble process can neither diverge
to infinity nor converge to zero; thus it is recurrent.

The following result offers simpler sufficient conditions for recurrence.

Corollary 5.1. Let {Bt} be the bubble process given by (3.3), (3.4), (4.1),
and (5.1). Let ε be a random variable having the same distribution as εt.
Suppose that c : (0,∞)→ (0,∞) is decreasing and satisfies

0 < lim
B↑∞

c(B) ≤ lim
B↓0

c(B) <∞. (5.9)

Suppose further that

E[ε]+ = E[ε]−, (5.10)

ρ+ lim
B↑∞

µ(B) < 0 < ρ+ lim
B↓0

µ(B). (5.11)

Then {Bt} is recurrent.

Proof. Since c(·) is decreasing, µ(·) is decreasing by Lemma 4.1(a). Thus by
(5.9) and (5.10), inequalities (5.5) and (5.7) reduce to (5.11). Since (5.6) and
(5.8) follow from (5.9), the conclusion holds by Proposition 5.1(c).
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The inequalities in (5.11) together with (5.10) imply that when the bubble
is extremely large, investors lose confidence and the bubble tends to shrink,
and that when the bubble is extremely small, investors restores confidence
and the bubble tends to grow.

Equation (5.10) holds if εt has a distribution symmetric around zero, such
as the standard normal distribution. For the rest of this section, let us assume
that εt has the standard normal distribution. To illustrate Corollary 5.1, we
further assume that c(·) takes the following form:

c(B) = [2(θ − e−αB)]−1/2, (5.12)

where
α > 0, θ > 1. (5.13)

Note that c(·) is strictly decreasing and satisfies (5.9). From (4.11) we have

µ(B) = e−αB − θ. (5.14)

This implies that

lim
B↓0

µ(B) = 1− θ, lim
B↑∞

µ(B) = −θ. (5.15)

We also assume that
θ − 1 < ρ < 1. (5.16)

These inequalities together with (5.15) imply (5.11). Since µ(·) is continuous,
strictly decreasing, and satisfies (5.15), given any α, θ, and ρ as above, there
exists a unique B∗ > 0 such that µ(B∗) + ρ = 0. We choose the values of
α, θ, and r for which B∗ = 1:

r = 0.01, α ≈ 0.00498758, θ ≈ 1.00498. (5.17)

Figure 6 shows the graph of−µ(·) along with a horizontal line representing
ρ = ln(1 + r). When Bt < 1, we have ρ + µ(Bt) > 0, so that we can expect
Bt to grow; when Bt > 1, we have ρ+µ(Bt) > 0, so that we can expect Bt to
shrink. To put it in terms of confidence, when the bubble is small, confidence
is high and the bubble is expected to grow, while when the bubble is large,
confidence is low and the bubble is expected to shrink.

Figure 7 confirms this intuition, showing eight sample paths of the re-
current bubble process {Bt} constructed above. This figure uses the same
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Figure 6: Graph of −µ(B) (given by (5.14) and (5.17)) and horizontal line
ρ = ln(1.01)

set of sample paths of {εt} as in Figures 3–5. One can see from the plots in
Figure 7 that the bubble process tends to shrink quickly when it is large, but
repeatedly becomes visibly large. Note also that the maximum values of the
plots in this figure do not differ as much as those in Figure 5. In other words,
the bubble process in Figure 7 appears more stable than that in Figure 5.

6 Recurrent Bubbles with an Endogenous In-

terest Rate

We have so far assumed that the interest rate r is constant over time. This
assumption can easily be relaxed by assuming instead that the interest rate
between periods t and t+1 is a stochastic process whose realization is known
in period t. In this section we show that a stabilizing effect similar to that
observed in Figure 7 is obtained even if confidence is constant, provided that
the interest rate changes in such a way as to make the bubble shrink when
it is extremely large, and to make it grow when extremely small.
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Figure 7: Recurrent bubbles with endogenous confidence: plots of Bt under
(3.3), (3.4), (4.9), (5.1), (5.12), (5.14), and (5.17) with B0 = 1 and different
sample paths of {εt}
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To this end, let rt be the risk-free interest rate between periods t and
t+ 1, and replace r by rt in the intertemporal no-arbitrage condition (1.1):

Pt = (1 + rt)
−1Et(Pt+1 +Dt+1). (6.1)

The bubble equation (1.3) then modifies to

EtBt+1 = (1 + rt)Bt. (6.2)

Similarly (3.3) modifies to

Bt+1 = (1 + rt)BtSt+1, (6.3)

where {St} is a sequence of iid shocks satisfying (4.2)–(4.3). We further
assume that the interest rate rt is a function of the current bubble Bt:

rt = r(Bt), (6.4)

where r : (0,∞)→ (0,∞) is a measurable function.
Equation (6.4) can be justified by assuming the presence of a central bank

that attempts to control the bubble process by adjusting the interest rate.
It can alternatively be justified as an implication of a theoretical model with
a wealth effect (see Kamihigashi, 2008, Eq. (27)).

Under (6.4) the logarithmic bubble process {bt} follows

bt+1 = bt + ρ(Bt) + µ+ εt+1/c, (6.5)

where
ρ(Bt) = ln(1 + r(Bt)). (6.6)

Since r(B) > 0 for all B > 0, we have

∀B > 0, ρ(B) > 0. (6.7)

The following result shows that the endogenous interest rate formulated
in (6.4) can results in a recurrent bubble process.

Proposition 6.1. Let {Bt} be the bubble process given by (6.3), (6.4), and
(4.2)–(4.3).

(a) If
lim
B↑∞

ρ(B) + µ < 0, (6.8)

then {Bt} is downward recurrent.
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(b) If
lim
B↓0

ρ(B) + µ > 0, (6.9)

then {Bt} is upward recurrent.

(c) If both (6.8) and (6.9) hold, then {Bt} is recurrent.

Proof. See the Appendix.

Inequality (6.8) implies that when the bubble Bt is extremely large, the
interest rate rt becomes low enough to make it shrink; inequality (6.9) implies
that when the bubble is extremely small, the interest rate becomes high
enough to make it grow.12 Thus under these conditions, the bubble process
is recurrent.

To construct a numerical example satisfying (6.8) and (6.9), let

r, λ > 0, µ ∈ (− ln(1 + r), 0). (6.10)

We assume that
r(B) = re−λB. (6.11)

Then r(·) is strictly decreasing, and

lim
B↓0

r(B) = r, lim
B↑∞

r(B) = 0. (6.12)

From (6.10), (6.12), and (6.6), we have

lim
B↓0

ρ(B) = ln(1 + r) > −µ, (6.13)

lim
B↑∞

ρ(B) = 0 < −µ. (6.14)

These inequalities imply (6.8) and (6.9) for any r, λ, and µ satisfying (6.10).
Since ρ(·) is strictly decreasing, continuous, and satisfies (6.8) and (6.9), there
exists a unique B∗ > 0 such that ρ(B∗) + µ = 0. We choose the values of r,
λ, and µ so that B∗ = 1:

r = 0.1, λ ≈ 2.30259, µ = ln(1.01). (6.15)

12One may find this negative relation between Bt and rt counterfactual. A model in
which the relation is reversed is considered in the next section.

25



0.0 0.5 1.0 1.5 2.0
0.00

0.01

0.02

0.03

0.04

B

ΡHBL

-Μ

Figure 8: Graph of ρ(B) (given by (6.6), (6.11), and (6.15)) and horizontal
line −µ = ln(1.01)

Figure 8 shows the graph of ρ(B) along with a horizontal line representing
−µ = ln(1.01). As in Figure 6, when Bt < 1, we have ρ(Bt) + µ > 0, so that
we can expect Bt to grow; when Bt > 1, we have ρ(Bt) + µ < 0, so that we
can expect Bt to shrink. In other words, the bubble tends to grow when it
is small, and tends to shrink when it is large.

This behavior is confirmed in Figure 9, which shows eight sample paths
of the bubble process {Bt} constructed above (solid line scaled on the left)
along with the corresponding paths of rt (dashed line scaled on the right).
The length and the sample paths of {εt} used in this figure are different from
those in Figures 3–5 and 7. Since r(·) is decreasing, Bt and rt move in the
opposite directions. As depicted in the figure, when the bubble Bt is small,
the interest rate rt becomes high so that the bubble tends to grow via (6.3);
when the bubble Bt is large, the interest rate rt becomes low so that the
bubble Bt tends to shrink.
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Figure 9: Plots of Bt (solid line scaled on right) and rt (dashed line scaled
on left) under (6.3), (6.4), (4.2)–(4.3), (6.10), (6.11), and (6.15).
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7 Recurrent Bubbles with an Endogenous In-

terest Rate and Endogenous Confidence

For a bubble process to be recurrent, Proposition 6.1 essentially requires a
negative relation between the interest rate and the bubble. This is incon-
sistent with the conventional wisdom that the central bank is expected to
raise interest rates when the market is overheated, and to cut them when
the market is performing poorly. Furthermore, the market is conventionally
expected to react negatively when interest rates are raised, and positively
when interest rates are cut.

To capture these ideas, we allow in this section the interest rate rt to
depend positively on the current bubble, while we allow confidence to depend
negatively on rt. The bubble equation (6.2) remains the same as in the
previous section, and we continue to assume (6.3) and (6.4). However we
assume that

st+1 = µ(r(Bt)) + εt+1/c(r(Bt)), (7.1)

where r : (0,∞) → (0,∞), c : (0,∞) → (0,∞), and µ : (0,∞) → (0,∞) are
measurable functions. The last two functions are related as in (5.2).

Equation (7.1) means that the shock process {St} depends on confidence,
which in turn depends on the risk-free interest rate rt = r(Bt). In this case
the logarithmic bubble process {bt} follows

bt+1 = bt + ρ(Bt) + µ(r(Bt)) + εt+1/c(r(Bt)), (7.2)

where ρ(·) is given by (6.6).
The next result shows that a bubble process can be recurrent even if the

interest rate depends positively on the bubble, provided that changes in con-
fidence counteract the destabilizing effect of changes in the interest rate. The
result is similar to Proposition 5.1, but the condition for upward recurrence
in part (b) is somewhat different from that of Proposition 5.1. While the
latter essentially requires that the constant interest rate r be strictly posi-
tive, the condition here, (7.5), allows r(0) = 0; we do not rule out the zero
interest-rate bound.

Proposition 7.1. Let {Bt} be the bubble process given by (6.3), (6.4), (7.1),
and (4.1). Let ε be a random variable having the same distribution as εt.
Suppose that both r : (0,∞)→ (0,∞) and µ : (0,∞)→ (−∞, 0) are bounded.
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(a) Suppose that

lim
B↑∞

[ρ(B) + µ(r(B))] + lim
B↑∞

E[ε]+
c(r(B))

− lim
B↑∞

E[ε]−
c(r(B))

< 0, (7.3)

lim
B↑∞

c(r(B)) > 0, lim
B↑∞

c(r(B)) <∞. (7.4)

Then {Bt} is downward recurrent.

(b) Suppose that

∃B > 0,∀B ∈ (0, B], ρ(B) + µ(r(B)) ≥ E[ε]−
c(r(B))

. (7.5)

Then {Bt} is upward recurrent.

(c) If (7.3)–(7.5) hold, then {Bt} is recurrent.

Proof. See the Appendix.

Corollary 7.1. Let {Bt} be the bubble process given by (6.3), (6.4), (7.1),
and (4.1). Let ε be a random variable having the same distribution as εt.
Assume (5.10). Suppose that r : (0,∞)→ (0,∞) is bounded and increasing,
and that c : (0,∞)→ (−∞, 0) is decreasing and satisfies

0 < lim
B↑∞

c(r(B)) <∞. (7.6)

Suppose further that

lim
B↑∞

ρ(B) + lim
B↑∞

µ(r(B)) < 0, (7.7)

lim
B↓0

c(r(B))[ρ(B) + µ(r(B))] =∞. (7.8)

Then {Bt} is recurrent.

Proof. Since c(·) is decreasing and satisfies (7.6), µ(·) is decreasing and
bounded by Lemma 4.1(a) and (4.6). Thus both limits in (7.7) exist. By
(5.10) and monotonicity of c(·) and r(·), the last two terms on the right-hand
side of (7.3) cancel out each other. Hence (7.3) reduces to (7.7). We obtain
(7.4) from (7.6). It is easy to see that (7.8) implies (7.5). Therefore the
conclusion holds by Proposition 7.1.
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If limB↓0 r(B) > 0, then it is easy to construct a recurrent bubble process
satisfying the conditions of Corollary 7.1; in fact we can easily modify the
parametric example constructed in Section 5 in this case. In what follows we
construct a more complicated bubble process to allow for the zero interest-
rate bound: limB↓0 r(B) = 0.13 The difficulty here is to ensure (7.8) when
both ρ(B) and µ(r(B)) converge to zero as B goes to zero.

We start by specifying the interest rate function

r(B) = r(1− e−B), (7.9)

where
r ∈ (0, 1). (7.10)

We have
lim
B↓0

r(B) = 0, lim
B↑∞

r(B) = r, lim
B↓0

r′(B) = r. (7.11)

The interest rate is lowered to zero when there is no bubble, and is raised
toward r when the bubble grows without bound. It follows that

lim
B↓0

ρ(B) = 0, lim
B↑∞

ρ(B) = ln(1 + r) < 1, lim
B↓0

ρ′(B) = r. (7.12)

We assume that εt has the standard normal distribution. Let us specify
the confidence function

c(z) = 2−1/2(1− e−αr−1(z))−2, (7.13)

where α is a strictly positive parameter and r−1(·) is the inverse of r(·):

∀z ∈ (0, r), r−1(z) = − ln
(

1− z

r

)
. (7.14)

Note from (4.11) that

µ(r(B)) = − 1

2c(r(B))2
= −(1− e−αB)4. (7.15)

We define
σ(B) = 1/c(r(B)) = 21/2(1− e−αB)2. (7.16)

13See Robinson and Stone (2006) for an analysis of the effect of this bound in a simple
linear model.
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We have

lim
B↓0

µ(r(B)) = 0, lim
B↑∞

µ(r(B)) = −1, lim
B↓0

dµ(r(B))/dB = 0, (7.17)

lim
B↓0

σ(B) = 0, lim
B↑∞

σ(B) = 21/2, lim
B↓0

σ′(B) = 0. (7.18)

Furthermore, since 1− e−αB < 1 for all B > 0, we have

∀B > 0, −µ(r(B)) < σ(B). (7.19)

From (7.10), (7.12), and (7.17), we obtain (7.7). From (7.12) and (7.19) we
have

c(r(Bt))[ρ(B) + µ(r(B))] =
ρ(B)

σ(B)
+
µ(r(B))

σ(B)
>
ρ(B)

σ(B)
− 1. (7.20)

The rightmost side tends to∞ as B ↓ 0 by the derivative conditions in (7.12)
and (7.18). Thus we obtain (7.8). It follows by Corollary 7.1 that {Bt} is
recurrent.

It follows from (7.7), (7.12), and (7.17) that there exists B∗ > 0 such that
ρ(B∗) + µ(r(B∗)) = 0. We specify the values of r and α in such a way that
B∗ = 1:

r = 0.1, α ≈ 0.688302. (7.21)

Figure 10 shows the graphs of ρ(B),−µ(r(B)), and σ(B) in this speci-
fication on two different domains. Panel (a) confirms (7.7) and shows that
all these functions are increasing and bounded. Panel (b) illustrates the
derivative conditions in (7.12), (7.17), and (7.18). Panel (a) also shows that
ρ(B) + µ(r(B)) > 0 for B < 1 and ρ(B) + µ(r(B)) < 0 for B > 1. This
suggests that the bubble Bt tends to grow when Bt < 1, and tends to shrink
when Bt > 1.

Figure 11 plots eight sample paths of the bubble process {Bt} constructed
above. This figure uses the same set of sample paths of {εt} as in Figure 9.
By construction the bubble Bt and the interest rate r(Bt) move in the same
direction. Some of the plots, especially those in panels (b) and (e), suggest
that there can be a prolonged period in which both the bubble and the
interest rate stay close to zero. This is because when the bubble is close
to zero, the interest rate is also close to zero, which implies that the bubble
grows very slowly even though confidence is extremely high. Nevertheless the
bubble process here is recurrent, so that it is only a matter of time before it
starts to reappear.
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Figure 10: Graphs of ρ(B),−µ(r(B)), and σ(B) = 1/C(r(b)) (given by (7.9),
(6.6), (7.15), (7.16), and (7.21) )
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Figure 11: Plots of Bt (solid line scaled on left) and rt (dashed line scaled on
right) under (6.3), (6.4), (7.1), (4.9), (7.9), (7.13), (7.15), and (7.21).
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8 Concluding Comments

In this paper we have studied rational bubbles in a simple linear asset price
model. We have characterized the asymptotic behavior of bubble processes
driven by multiplicative iid shocks in terms of investors’ confidence in ex-
pected bubble growth. We have shown that a bubble process in this class
is explosive if confidence is sufficiently high, and implosive if confidence is
sufficiently low. There is also a knife-edge level of confidence such that the
bubble process is recurrent. We have also developed sufficient conditions for
recurrence when confidence depends on the current bubble, when the interest
rate depends on the current bubble, and when the interest rate depends on
the current bubble and confidence depends on the current interest rate. Most
of our conditions for recurrence are based on the simple idea that a bubble
process should be recurrent if confidence becomes sufficiently low when the
bubble is extremely large, and becomes sufficiently high when the bubble is
extremely small. We have also illustrated our results with simulated sample
paths of bubble processes.

Of particular interest for future research is to examine if any of the models
studied here performs well on real data. In doing so, it would be useful to
note that our results in the last two sections do not require that the interest
rate function be continuous, although our numerical examples use continuous
interest rate functions for simplicity. For example, one can use an interest
rate function that takes discrete values so that the interest rate is changed
much less frequently than in our simulations.

This paper, especially Section 7, is partly motivated by Japan’s post-
bubble experience. Since the collapse of the asset bubble in the early 1990s,
until this writing, Japan has been suffering from low asset prices and low
interest rates. The simulation results in Section 7 suggest that the com-
bination of low asset prices and low interest rates could be an endogenous
phenomenon generated by a simple mechanism like (7.2), even though those
results are based on some ad hoc assumptions and may not offer a plausible
explanation.

In concluding this paper we wish to emphasize that equations such as (1.3)
and (6.2) can be derived from various economic models of serious interest,
and our analysis can be extended to such models. We hope that the results
in this paper will facilitate and stimulate further investigation of economic
problems involving bubbles.
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A Proofs

A.1 Proof of Proposition 3.2

Under (3.22), {bt} is a random walk. Meyn and Tweedie (2009, Proposition
9.4.5) show that a random walk satisfying (3.23) is “non-evanescent” (Meyn
and Tweedie, 2009, p. 206).14 This means that with probability one, there
exist b, b ∈ R such that bt ∈ [b, b] infinitely often, i.e., Bt ∈ [B,B] infinitely

often with B = eb and B = eb. Therefore {Bt} is recurrent.

A.2 Proof of Lemma 4.1

(a) We show equivalently that

c > c′ ⇒ µc > µc′ . (A.1)

To this end, let c, c′ > 0 with
c > c′. (A.2)

Define σ = 1/c and σ′ = 1/c′. Let ε be a random variable having the same
distribution as εt+1. We have

eσ
′ε = e(σ

′−σ)ε+σε ≥ eσε + εeσε(σ′ − σ), (A.3)

where the inequality holds by convexity of the exponential function. Note
that

εeσε = 1{ε ≥ 0}εeσε + 1{ε < 0}εeσε (A.4)

≥ 1{ε ≥ 0}ε+ 1{ε < 0}ε = ε, (A.5)

where 1{·} is the indicator function. The above inequality holds strictly as
long as ε 6= 0. From this, (A.3)–(A.5), and (4.1), we have

Eeσ
′ε > Eeσε + (σ′ − σ)Eε = Eeσε. (A.6)

Thus lnEeσ
′ε > lnEeσε, i.e.,

µc′ = − lnEeσ
′ε < − lnEeσε = µc. (A.7)

14There is a typo in the statement of their Proposition 9.4.5: R+ should be replaced
with R.

35



This establishes (A.1).
(b) Define

ν̂c = [Vt(Bt+1/((1 + r)Bt))]
1/2 = [Vt(St+1)]

1/2. (A.8)

Since r is constant, it suffices to show that ν̂c, instead of νc, is decreasing in
c. To this end, let c > 0 and σ = 1/c. Assume (4.9). Let ε be a standard
normal random variable, and let S = eµ+σε. Note that

ν̂2c = E(S − 1)2 = E(S2 − 2S + 1) = ES2 − 1. (A.9)

Since S2 = (eµ+σε)2 = e2µ+2σε with µ = −σ2/2 (by (3.28)), we have

ν̂2c + 1 = ES2 = Ee2µ+2σε = e2µ+2σ2

= eσ
2

. (A.10)

Hence ν̂c is strictly increasing in σ = 1/c, i.e., strictly decreasing in c.

A.3 Proof of Proposition 5.1

To show part (a), assume (5.5) and (5.6). Define σ(·) = 1/c(·). Recalling
(5.2) we see that there exit µ, σ, σ ∈ R such that

lim
B↑∞

µ(B) < µ < 0, (A.11)

lim
B↑∞

σ(B) < σ <∞, (A.12)

lim
B↑∞

σ(B) > σ > 0, (A.13)

ρ+ µ+ σE[εt]+ − σE[εt]− < 0. (A.14)

Define
Ω̃ = {ω ∈ Ω : lim

t↑∞
Bt(ω) =∞}. (A.15)

Suppose that {Bt} is not downward recurrent. Then P (Ω̃) > 0. Define

Ω+ =

{
ω ∈ Ω : lim

t↑∞

1

t

t∑
i=1

[εi(ω)]+ = E[ε]+

}
, (A.16)

Ω− =

{
ω ∈ Ω : lim

t↑∞

1

t

t∑
i=1

[εi(ω)]− = E[ε]−

}
, (A.17)

Ω = Ω̃ ∩ Ω+ ∩ Ω−. (A.18)
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Since P (Ω+ ∩ Ω−) = 1 by the law of large numbers, we have

P (Ω) = P (Ω̃) > 0. (A.19)

Let
ω ∈ Ω. (A.20)

By (5.3) and (A.11)–(A.13), there exists t ∈ Z+ such that for all t ≥ t, we
have

bt+1(ω) ≤ bt(ω) + ρ+ µ+ σ[εt(ω)]+ − σ[εt(ω)]−. (A.21)

Without loss of generality, we assume that t = 0. Then we have

bt(ω) ≤ b0 + t(ρ+ µ) + σ
t∑
i=1

[εi(ω)]+ − σ
t∑
i=1

[εi(ω)]−. (A.22)

Dividing through by t, we obtain

bt(ω)

t
≤ b0

t
+ ρ+ µ+ σ

1

t

t∑
i=1

[εi(ω)]+ − σ
1

t

t∑
i=1

[εi(ω)]−. (A.23)

Recalling (A.16) and (A.17), we see that the right-hand side converges to

ρ+ µ+ σE[ε]+ − σE[ε]− < 0, (A.24)

where ε is a random variable with the same distribution as εt, and the in-
equality holds by (A.14). Let δ > 0 be such that

ρ+ µ+ σE[ε]+ − σE[ε]− < −δ. (A.25)

Then for t sufficiently large, we have

bt(ω)

t
< −δ, (A.26)

i.e., bt(ω) < −δt, or Bt(ω) < e−δt, which contradicts (A.20). This completes
the proof of part (a).

The proof of part (b) is similar. Part (c) follows from parts (a) and (b).
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A.4 Proof of Proposition 6.1

To show part (a), assume (6.8). Let σ = 1/c. It follows from (6.5) that for
t ≥ 1, we have

bt
t

=
b0
t

+
1

t

t∑
i=1

[ρ(Bi) + µ+ σεi]. (A.27)

Define
Ω̃ = {ω ∈ Ω : lim

t↑∞
Bt(ω) =∞}. (A.28)

Suppose that {Bt} is not downward recurrent. Then P (Ω̃) > 0. Define

Ω̂ =

{
ω ∈ Ω : lim

t↑∞

1

t

t∑
i=1

εi(ω) = 0

}
, (A.29)

Ω = Ω̃ ∩ Ω̂. (A.30)

Since P (Ω̂) = 1 by the law of large numbers, we have

P (Ω) = P (Ω̃) > 0. (A.31)

Let
ω ∈ Ω. (A.32)

Let ρ > 0 be such that
lim
B↑∞

ρ(B) < ρ < −µ. (A.33)

It follows from (A.27) and (A.33) that for t ≥ 1 sufficiently large, we have

bt(ω)

t
< ρ+ µ+ σ

1

t

t∑
i=1

εi(ω). (A.34)

Let δ ∈ (0,−ρ−µ). Recalling (A.29), we see that for t ≥ 1 sufficiently large,
we have bt(ω) < −δt, or Bt(ω) < e−δt, contradicting (A.28).

The proof of part (b) is similar. Part (c) follows from parts (a) and (b).
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A.5 Proof of Proposition 7.1

Part (a) can be shown by slightly modifying the proof of part (a) of Propo-
sition 5.1. Part (b) requires a different argument because we wish to allow
limB↓0 r(B) = 0. To show part (b), note first that it suffices to show that

∃b ∈ R, bt ≥ b infinitely often. (A.35)

This means that Bt ≥ B infinitely often with B = eb, which implies that
{Bt} is upward recurrent.

To show (A.35), we express (7.2) as

bt+1 = f(bt, εt+1), (A.36)

where
f(b, ε) = b+ ρ(eb) + µ(r(eb)) + ε/c(r(eb)). (A.37)

We extend this function to b = ∞ by defining f(∞, ε) = ∞. Note that the
stochastic process {bt} given by (A.36) is a Markov process on (−∞,∞]. It
follows from Meyn and Tweedie (2009, Theorem 9.4.1) that if there exists a
function w : (−∞,∞]→ R+ such that

∃b ∈ R,∀b ≤ b, Ew(f(b, ε)) ≤ w(b), (A.38)

lim
b↓−∞

w(b) =∞, (A.39)

then (A.35) holds.
We verify that the function w defined below satisfies (A.38) and (A.39):

w(b) = [b]− = |b|1{b ≤ 0}. (A.40)

Since w(b) = |b| for b ≤ 0, we have (A.39). Regarding (A.38), since both ρ(·)
and µ(·) are bounded by hypothesis, there exists b ≤ lnB (with B given by
(7.5)) such that

∀b ≤ b, b+ ρ(eb) +m(eb) ≤ 0, (A.41)

where
m(eb) = µ(r(eb)). (A.42)

Fix b ≤ b. To simplify notation, define

b′ = b+ ρ(B) +m(B) + σ(B)ε, (A.43)

39



where
B = eb, σ(B) = 1/c(r(B)). (A.44)

Note that b′ = f(b, ε). We have

Ew(b′) = E[−b′1{b′ ≤ 0}] (A.45)

= −[b+ ρ(B) +m(B)]1{b′ ≤ 0} − σ(B)Eε1{b′ ≤ 0} (A.46)

≤ −[b+ ρ(B) +m(B)] + σ(B)E[ε]− (A.47)

≤ −b = w(b), (A.48)

where (A.47) uses (A.41), and (A.48) uses (7.5). Since b ≤ b was arbitrary,
we have verified (A.38). This completes the proof of part (b).

Finally part (c) follows from parts (a) and (b).
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