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Abstract
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Stachurski (2010). We first consider a stochastic kernel on an arbitrary
measurable space and establish some general results. We then introduce a
preorder and consider an increasing stochastic kernel. None of our results
requires any topological assumption. To make this note self-contained,
we include some of the definitions reviewed or discussed in Kamihigashi
and Stachurski (2010).
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1 Basic Definitions

We begin with basic definitions concerning discrete-time Markov processes on
an arbitrary measurable space (X , X ). Let PX be the probability measures
on X , let X∞ = ×∞

t=0X be the set of all X -valued sequences, and let X ∞ =

⊗∞
t=0 X be the product σ-algebra. A stochastic kernel on X is a function Q : X×

X → [0, 1] such that (a) Q(x, ·) ∈ PX for each x ∈ X , and (b) Q(·, B) is
X -measurable for each B ∈ X .

Given a stochastic kernel Q on X , a discrete-time, X -valued stochastic pro-
cess {Xt}∞

t=0 on a probability space (Ω, F ,P) is said to be Markov-(Q, µ) if X0

has distribution µ ∈ PX , and Q(x, ·) is the conditional distribution of Xt+1

given Xt = x:

P[Xt+1 ∈ B |F X
t ] = Q(Xt, B) ∀B ∈ X . (1.1)

Here F X
t is the σ-algebra generated by the history X0, . . . , Xt. If the initial

distribution µ is the probability measure δx ∈ PX concentrated on x ∈ X ,
we call {Xt} Markov-(Q, x) rather than Markov-(Q, δx). We say that {Xt} is
Markov-Q if {Xt} is Markov-(Q, µ) for some µ ∈ PX . Whenever we intro-
duce a Markov process, we implicitly take the underlying probability space
(Ω, F ,P) as given.

It is well-known (e.g., Pollard, 2002, p. 101) that for each µ ∈ PX and
stochastic kernel Q on (X , X ), there exists a unique probability measure Pµ

Q
on (X∞, X ∞) with the property that Pµ

Q is the joint distribution of any Markov-
(Q, µ) process. That is, if {Xt} is Markov-(Q, µ), then P{{Xt} ∈ C} = Pµ

Q(C)

for all C ∈ X ∞. If µ = δx, we write Px
Q rather than Pδx

Q .
For each n ∈ N, let Qn be the n-th order kernel, defined by

Q1 := Q, Qn(x, B) :=
∫

Qn−1(y, B)Q(x, dy) (x ∈ X , B ∈ X ).

Each Qn is a stochastic kernel in its own right, and Qn(x, B) represents the
probability of transitioning from x to B in n steps. We extend the definition of
Qn to the case n = 0 by letting

Q0(x, B) := 1B(x) (x ∈ X , B ∈ X ).
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Let h : X → R be measurable and bounded, and let µ ∈ PX . We define the
right Markov operator h 7→ Qh by

(Qh)(x) :=
∫

h(y)Q(x, dy) (x ∈ X ), (1.2)

and the left Markov operator µ 7→ µQ by

(µQ)(B) :=
∫

Q(x, B)µ(dx) (B ∈ X ). (1.3)

The t-th iterates of these operators can be interpreted as follows:

(Qth)(x) = E[h(Xt) |X0 = x],

(µQt)(B) = P[Xt ∈ B |X0 ∼ µ],

where {Xt} is any Markov-Q process. We also define

µh :=
∫

h(x)µ(dx). (1.4)

Given two independent Markov-Q processes {Xt}∞
t=0 and {X′t}∞

t=0, the X×
X -valued process {(Xt, X′t)}∞

t=0 is also a Markov process. Indeed, if we define
the product kernel Q×Q on X×X by

(Q×Q)((x, x′), A) =
∫ ∫

1A(y, y′)Q(x, dy)Q(x′, dy′) (1.5)

for (x, x′) ∈ X×X and A ∈ X ⊗X , then Q×Q is a stochastic kernel onX×X ,
and {(Xt, X′t)}∞

t=0 is Markov-Q×Q. When A = B×B′ for some B, B′ ∈ X , then
(1.5) reduces to

(Q×Q)((x, x′), B×B′) = Q(x, B)Q(x′, B). (1.6)

2 Some General Results

Fix a stochastic kernel Q on a measurable space (X , X ). Given a Markov-Q
process {Xt}, a random variable ξ : Ω → Z+ ∪ {∞} is called a stopping time
if the event {ξ = n} ∈ F X

n for all n ∈ Z+. For any x ∈ X , C ∈ X , and
Markov-Q process {Xt}, let

τx
C := inf{t ≥ 0 : Xt ∈ C}
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be the first hitting time of C. In this definition, we adhere to the usual conven-
tion that inf ∅ = ∞. Note also that the distribution of τx

C is determined by Q
and x alone, as all Markov-(Q, x) processes have the same distribution Px

Q. Let
η(x, C) denote the probability that a Markov-(Q, x) process never visits C:

η(x, C) := P{τx
C = ∞} = lim

t→∞
P{τx

C ≥ t}. (2.1)

We establish two useful properties of this function below.

Lemma 2.1. Let ξ be a stopping time for a Markov-Q process {Xt}∞
t=0. For any

x ∈ X and C ∈ X we have

η(x, C) ≤ E1{ξ < ∞}1{τx
C ≥ ξ}η(Xξ , C) +P{ξ = ∞} (2.2)

≤ E1{ξ < ∞}η(Xξ , C) +P{ξ = ∞}. (2.3)

Proof. To simplify notation, let τ := τx
C. Note that

1{τ = ∞} =
∞

∏
t=0
1{Xt 6∈ C}

= 1{τ ≥ ξ}
∞

∏
t=ξ

1{Xt 6∈ C}

≤ 1{ξ < ∞}1{τ ≥ ξ}
∞

∏
t=ξ

1{Xt 6∈ C}+ 1{ξ = ∞}.

Taking expectations we have

η(x, C) ≤ E
[
1{ξ < ∞}1{τ ≥ ξ}

∞

∏
t=ξ

1{Xt 6∈ C}
]
+P{ξ = ∞}

= E

[
E

[
1{ξ < ∞}1{τ ≥ ξ}

∞

∏
t=ξ

1{Xt 6∈ C}
∣∣∣F X

ξ

]]
+P{ξ = ∞}

= E

[
1{ξ < ∞}1{τ ≥ ξ}E

[
∞

∏
t=ξ

1{Xt 6∈ C}
∣∣∣F X

ξ

]]
+P{ξ = ∞},

(2.4)

where F X
ξ is the σ-algebra associated with the stopping time ξ:

F X
ξ := {A ∈ F : ∀n ∈ Z+, {ξ = n} ∩ A ∈ F X

n } (2.5)
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(see Meyn and Tweedie, 2009, p. 66). We have

E

[
∞

∏
t=ξ

1{Xt 6∈ C}
∣∣∣F X

ξ

]
= η(Xξ , C) (2.6)

on {ξ < ∞} by the strong Markov property (Meyn and Tweedie, 2009, Propo-
sition 3.4.6). Substituting (2.6) into (2.4) yields the inequality in (2.2). The
inequality in (2.3) holds since 1{τ ≥ ξ} ≤ 1.

Lemma 2.2. Let C ∈ X . If there exists a measurable function w : X → [1, ∞) and
a λ ∈ [0, 1) such that (Qw)(x) ≤ λw(x) whenever x /∈ C, then η(x, C) = 0 for all
x ∈ X .

Proof. Pick any x ∈ X , and let {Xt}∞
t=0 be Markov-(Q, x). Let τ := τx

C, and let
Mt := w(Xt)1{τ ≥ t} for t ∈ Z+. For any t ∈ Z+, we have

E[Mt+1 |F X
t ] = E[w(Xt+1)1{τ ≥ t + 1} |F X

t ]

= E[w(Xt+1) |F X
t ]1{τ ≥ t + 1}

= (Qw)(Xt)1{τ ≥ t + 1}
≤ λw(Xt)1{τ ≥ t + 1}
≤ λw(Xt)1{τ ≥ t}
= λMt.

Taking expectations we obtain EMt+1 ≤ λEMt. Iterating backwards to M0,
we have

EMt ≤ λtM0 ∀t ∈ N.

We have

η(x, C) ≤ P{τ ≥ t}
= E1{τ ≥ t}
≤ Ew(Xt)1{τ ≥ t}
= EMt

≤ λtM0.

Since this is true for any t ∈ N, we obtain η(x, C) = 0.
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3 Anticipation

For C ⊂ X and n ∈ Z+, let Vn
C ⊂ X be the set of X -valued sequences which

visit C at time n, and let VC ⊂ X∞ be the set of X -valued sequences which
visit C at least once over an infinite horizon:

Vn
C := {{xt}∞

t=0 ∈ X∞ : xn ∈ C}, VC := ∪n≥0Vn
C. (3.1)

Given any Markov-(Q, x) process {Xt}∞
t=0, we have

P{Xn ∈ C} = Px
Q(Vn

C) = Qn(x, C),

P∪∞
t=0 {Xt ∈ C} = Px

Q(VC).

Given any B, C ∈ X , we say that

• B weakly anticipates C with respect to Q (written B w.a.−→
Q

C) if1

Px
Q(VC) > 0 ∀x ∈ B.

• B totally anticipates C with respect to Q (written B t.a.−→
Q

C) if

Px
Q(VC) = 1 ∀x ∈ B.

• B simultaneously anticipates C with respect to Q (written B s.a.−→
Q

C) if there

exists an n ∈ Z+ and an ε > 0 such that

Px
Q(Vn

C) = Qn(x, C) ≥ ε ∀x ∈ B.

Observe that

B w.a.−→
Q

C ⇐⇒ ∀x ∈ B, η(x, C) < 1, (3.2)

B t.a.−→
Q

C ⇐⇒ ∀x ∈ C, η(x, C) = 0. (3.3)

1The following property is known as accessibility in the literature on Markov processes
(Meyn and Tweedie, 2009). We use our nonstandard terminology to make the binary rela-
tions defined here “readable.”
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Lemma 3.1. The binary relations w.a.−→
Q

, s.a.−→
Q

, and t.a.−→
Q

are all preorders on X .2

Proof. Reflexivity of all of the binary relations w.a.−→
Q

, t.a.−→
Q

, and s.a.−→
Q

follows from

the fact that any sequence starting from x ∈ B belongs to V0
B. For the rest of

the proof, let {Xt}∞
t=0 be Markov-(Q, x).

For transitivity of s.a.−→
Q

, suppose that A s.a.−→
Q

B s.a.−→
Q

C. This means that there

exists an εB > 0 and an nB ∈ N such that QnB(x, B) ≥ εB for all x ∈ A, and
there exists an εC > 0 and an nC ∈ N such that QnC(x, C) ≥ εC for all x ∈ B.
To conclude that A s.a.−→

Q
C, it suffices to show that Qn(x, C) ≥ ε for all x ∈ A

with n := nB + nC and ε := εBεC. To this end, note that

1{Xn ∈ C} ≥ 1{XnB ∈ B}1{XnB+nC ∈ C}.

Taking expectations we have

Qn(x, C) ≥ E1{XnB ∈ B}1{XnB+nC ∈ C}

= E

[
E

[
1{XnB ∈ B}1{XnB+nC ∈ C}

∣∣∣F X
nB

]]
= E

[
1{XnB ∈ B}E

[
1{XnB+nC ∈ C}

∣∣∣F X
nB

]]
= E [1{XnB ∈ B}Q(XnB , C)]

≥ E1{XnB ∈ B}εC

= Q(x, B)εC

≥ εBεC.

It follows that A s.a.−→
Q

C.

For transitivity of t.a.−→
Q

, suppose that A t.a.−→
Q

B t.a.−→
Q

C. To establish A t.a.−→
Q

C,

it suffices to show that η(x, C) = 0 for all x ∈ A. To this end, fix x ∈ A, and
note that τx

B < ∞ almost surely. Hence by (2.3) with ξ = τx
B , we have

η(x, C) ≤ Eη(Xτx
B
, C).

2A binary relation is called a preorder if it is reflexive and transitive. Although the fact that
these binary relations are preorders is not used in Kamihigashi and Stachurski (2010), it is
natural to ask whether they are preorders, and we answer this question here.
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But since Xτx
B
∈ B and η(y, C) = 0 for any y ∈ B, we obtain η(x, C) = 0. Since

x was arbitrary, we conclude that X t.a.−→
Q

C.

For transitivity of w.a.−→
Q

, suppose that A w.a.−→
Q

B w.a.−→
Q

C. Fix x ∈ A. Applying

(2.3) with ξ = τx
B , we obtain

η(x, C) ≤ E1{τx
B < ∞}η(Xτx

B
, C) +P{τx

B = ∞}
< E1{τx

B < ∞}+E1{τx
B = ∞}

= 1,

where the strict inequality holds sinceP{τx
B < ∞} > 0 and η(y, C) < 1 for any

y ∈ B. Since x was arbitrary, we conclude that X w.a.−→
Q

C.

Lemma 3.2. For any B, C ∈ X , if X t.a.−→
Q

B and B s.a.−→
Q

C, then X t.a.−→
Q

C.

Proof. Suppose that X t.a.−→
Q

B s.a.−→
Q

C. Since B s.a.−→
Q

C, there exists an n ∈ N and

an ε > 0 such that Qn(x, C) ≥ ε for all x ∈ B. Define

η := sup
x∈X

η(x, C).

We show that η = 0. By (2.2) with ξ = n + 1, for any x ∈ B, we have

η(x, C) ≤ E1{τx
C ≥ n + 1}η(Xn+1, C)

≤ E1{τx
C ≥ n + 1}η

≤ P{Xn 6∈ C}η
= [1−Qn(x, C)]η

≤ (1− ε)η.

For any x ∈ X , we have τx
B < ∞ almost surely, so that by (2.3) with ξ = τx

B ,

η(x, C) ≤ Eη(Xτx
B
, C) ≤ (1− ε)η.

Taking the supremum of the leftmost side over all x ∈ X , we obtain η ≤
(1− ε)η, which implies that η = 0.
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4 Markov Processes on Preordered Spaces

Let (X , X ) be a measurable space, and suppose that X is endowed with a
preorder ≤. Given a, b ∈ X , we define

(−∞, b] := {x ∈ X : x ≤ b},
[a, ∞) := {x ∈ X : a ≤ x},
[a, b] := {x ∈ X : a ≤ x ≤ b}.

The graph of the preorder ≤ is the set

G := {(x, x′) ∈ X×X : x ≤ x′},

i.e., (x, x′) ∈ G iff x ≤ x′.
In this section, we assume the following:

Assumption 4.1. The state space X is endowed with a preorder ≤, the σ-
algebra X is generated by {(−∞, b] : b ∈ X} ∪ {[a, ∞) : a ∈ X},3 and the
graphG of ≤ is measurable in the product space X×X (i.e.,G ∈ X ⊗X ).

A set C ∈ X is called increasing if [a, ∞) ⊂ C whenever a ∈ C, decreasing if
(−∞, b] ⊂ C whenever b ∈ C, and order bounded if there exists a pair a, b ∈ X
such that C ⊂ [a, b]. Let X i denote the set of increasing measurable subsets
of X . We say that a function h : X → R is increasing if h(x) ≤ h(y) whenever
x ≤ y, and decreasing if −h is increasing. Let ibX denote the set of increasing
bounded measurable functions from X to R.

Let Q be a stochastic kernel on X . We say that Q is increasing if Qh ∈ ibX
for any h ∈ ibX . It is immediate from (1.2) that if Q is increasing, then Qn is
increasing for any n ∈ N.

A distribution µ∗ ∈ PX is called stationary if µ∗Q = µ∗. Given any µ∗ ∈
PX and sequence {µt} ⊂ PX , we write µt → µ∗ if

lim
t→∞

µth = µ∗h ∀h ∈ ibX (4.1)

3If X ⊂ Rn, this generates the Borel subsets of X in the usual topology of Rn; see Folland
(1999, p. 22, 23) and Aliprantis and Border (1999, p. 135, 146).
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(recall (1.4)). Note that, in Rn with the usual partial order, this convergence
criterion implies weak convergence.4 We say that µ∗ is globally stable if µ∗ is a
unique stationary distribution and µQt → µ∗ for all µ ∈ PX . We say that Q is
globally stable if Q has a globally stable distribution.

Lemma 4.1. Suppose that

∀µ, ν ∈ PX , ∀h ∈ ibX , lim sup
t→∞

[(µQt)h− (νQt)h] ≤ 0. (4.2)

Then

(a) Q has at most one stationary distribution.

(b) If Q has a stationary distribution, then Q is globally stable.

Proof. Suppose that Q satisfies (4.2). Then, reversing the roles of µ and ν, we
also have

∀µ, ν ∈ PX , ∀h ∈ ibX , lim sup
t→∞

[(νQt)h− (µQt)h] ≤ 0.

This inequality is equivalent to

lim inf
t→∞

[(µQt)h− (νQt)h] ≥ 0.

This combined with (4.2) yields

∀µ, ν ∈ PX , ∀h ∈ ibX , lim
t→∞

[(µQt)h− (νQt)h] = 0. (4.3)

Suppose that µ∗, ν∗ ∈ PX are both stationary. Then, for any B ∈ X i, by
(4.3) with h = 1B, we have µ∗1B = ν∗1B, i.e., µ∗(B) = ν∗(B). Let σ(X i) be the
σ-algebra generated by X i. We have σ(X i) ⊂ X since X i ⊂ X and X is a
σ-algebra. To see that X ⊂ σ(X i), note that

X i ⊃ {[a, ∞) : a ∈ X} ∪ {X \ (−∞, b] : b ∈ X},
4Recall that weak convergence in Rn means that limt→∞ µt((−∞, b]) = µ∗((−∞, b]) for

all continuity points b of the distribution function F(x) := µ∗(−∞, x]. Since 1(−∞,b] is de-
creasing and thus 1− 1(−∞,b] = 1X\(−∞,b] is increasing, (4.1) with h = 1X\(−∞,b] implies that
limt→∞ µt((−∞, b]) = µ∗((−∞, b]) for all b ∈ X .
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which implies that

σ(X i) ⊃ {(−∞, b] : b ∈ X} ∪ {[a, ∞) : a ∈ X}.

Since the right-hand side generates X , it follows that σ(X i) ⊃ X . Therefore,
σ(X i) = X . Since, in addition, X i is a π-system (i.e., are closed under fi-
nite intersections), we have µ∗(B) = ν∗(B) for all B ∈ X , i.e., µ∗ = ν∗ (see
Billingley, 1995, p. 42). We have verified part (a).

To see part (b), suppose that Q has a stationary distribution µ∗. By part (a),
µ∗ is the unique stationary distribution. Let µ ∈ PX , and let h ∈ ibX . By (4.3)
with ν = µ∗ and stationarity, we have

lim
t→∞

[(µQt)h− µ∗h] = 0,

i.e., limt→∞(µQt)h = µ∗h. Since µ and h were arbitrary, it follows that Q is
globally stable.

Lemma 4.2. If Q is increasing and X×X t.a.−→
Q×Q

G, then Q satisfies (4.2).

Proof. Suppose that Q is increasing and X ×X t.a.−→
Q×Q

G. To verify (4.2), let

{Xt}∞
t=0 and {Yt}∞

t=0 be independent Markov-(Q, µ) and Markov-(Q, ν) pro-
cesses, respectively. Then the bivariate process {(Xt, Yt)} is Markov-(Q×Q, µ×
ν). Let

τ := inf{t ∈ Z+ : Xt ≤ Yt}.

Since X×X t.a.−→
Q×Q

G, we have

lim
t→∞

P{τ ≥ t} = 0. (4.4)
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Let h ∈ ibX and t ∈ N. We have

(νQt)h = Eh(Yt)

≥ E1{τ ≤ t}h(Yt)

= E[E[1{τ ≤ t}h(Yt)|F (X,Y)
τ ]]

= E[1{τ ≤ t}E[h(Yt)|F (X,Y)
τ ]]

= E[1{τ ≤ t}(Qt−τh)(Yτ)] (4.5)

≥ E[1{τ ≤ t}(Qt−τh)(Xτ)] (4.6)

= E[1{τ ≤ t}E[h(Xt)|F (X,Y)
τ ]] (4.7)

= E[E[1{τ ≤ t}h(Xt)|F (X,Y)
τ ]]

= E1{τ ≤ t}h(Xt)

= Eh(Xt)−E1{τ ≥ t + 1}h(Xt)

≥ (µQt)h−P{τ ≥ t + 1}M,

where the definition of F
(X,Y)
τ is analogous to (2.5) and M := supx∈X |h(x)|.

The equality in (4.5) uses the strong Markov property and independence, (4.6)
holds because Qt−τh is increasing, and (4.7) uses the strong Markov property
and independence again. It follows that

(µQt)h− (νQt)h ≤ P{τ ≥ t + 1}M.

Since the right-hand side converges to zero by (4.4), we obtain the inequality
in (4.2). Since µ, ν, and h were arbitrary, we have (4.2).

The following result is immediate from the preceding two lemmas.

Proposition 4.1. Q is globally stable if the following three conditions hold:

(i) Q is increasing.

(ii) Q has a stationary distribution.

(iii) X×X t.a.−→
Q×Q

G.
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