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Abstract

This paper presents new order-theoretic conditions for global stability
of monotone Markov processes with possibly non-compact state spaces.
Our main result shows that a Markov process induced by a continuous
and increasing transition law is globally stable if it admits a Lyapunov-
like function, and becomes larger than any given element of the state
space with positive probability, or smaller than any given element of the
state space with positive probability. This result applies to a wide range
of stochastic economic models.
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1 Introduction

Assessing stability of stochastic economic models is necessary for both theo-
retical and quantitative research. Stability of stochastic dynamics is connected
to such phenomena as existence and uniqueness of stationary equilibria, con-
vergence, and stationarity and ergodicity in time series. In the economic lit-
erature, a popular approach to stability is to utilize monotonicity, which is a
natural property of various economic models.

A seminal contribution in this regard was made by Razin and Yahav (1979),
who derived a stability condition for monotone Markov models that satisfy
what was to become known as a “monotone mixing condition.” Their ideas
were extended to more general settings by Stokey, Lucas, and Prescott (1989)
and Hopenhayn and Prescott (1992). Further contributions were provided by
Bhattacharya and Lee (1988) and Bhattacharya and Majumdar (2001), who
studied stability in the monotone setting via a “splitting condition,” defined
in terms of an ordering on the state space. These results were significant
advances both to economic theory and to the theory of stability for Markov
processes. They have proved useful for treating a variety of economic prob-
lems (see, e.g., Huggett, 1993; Aghion and Bolton, 1997; Zhang, 2007; or Bhat-
tacharya and Majumdar, 2007).

There are, however, some rather standard cases in which these conditions
are not satisfied, especially when the underlying state space is not compact.
For example, the elementary AR(1) process Xt+1 = ρXt + Zt+1 with 0 < ρ < 1
and IID shocks with finite mean is globally stable in the sense that the distribu-
tion of Xt converges to a unique stationary distribution as t → ∞, but neither
monotone mixing nor splitting is satisfied.1

In the recent mathematical literature on Markov processes, non-compact
state spaces are usually treated by establishing “drift conditions” with respect
to “Lyapunov-like” functions. These conditions prevent the process in ques-
tion from escaping to the boundary of the state space. If a continuous (or, more
precisely, Feller) Markov process admits such a function, then it has a station-

1This is trivial for the monotone mixing condition, which requires a compact state space.
However, we show in Section 4 that the AR(1) process violates a common implication of both
monotone mixing and splitting that applies even to non-compact state spaces.
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ary distribution. If, in addition, the process is irreducible and aperiodic, then
it is globally stable.2 Unfortunately, for many economic models, irreducibility
either fails, is difficult to establish, or requires implausible assumptions.

In this paper we propose alternative, order-theoretic conditions that can
be used to establish global stability for these models. In particular, the main
result of this paper shows that a Markov process {Xt}∞

t=0 on a well-behaved
subset ofRn with the usual partial order ≤ is globally stable if it is induced by
a continuous and increasing transition law, admits a Lyapunov-like function,
and satisfies one of the following three conditions:3

(a) Given a second process {Yt}∞
t=0 independent of {Xt}∞

t=0 but obeying the
same transition law, and given any initial conditions X0 and Y0 with X0 ≥
Y0, there exists a t ∈ N such that Xt ≤ Yt with positive probability.

(b) Given any initial condition X0 and element c in the state space, there
exists a t ∈ N such that Xt ≤ c with positive probability.

(c) Given any initial condition X0 and element c in the state space, there
exists a t ∈ N such that Xt ≥ c with positive probability.

Condition (a) plays a role similar to those of irreducibility, monotone mix-
ing, and splitting in establishing global stability. In fact, it is a generalization
of the latter two conditions, and easily applies to standard models such as
the AR(1) process discussed above.4 When combined with the existence of a
Lyapunov-like function, conditions (b) and (c) each imply condition (a).

Each of the three conditions has a simple economic interpretation. For ex-
ample, suppose that Xt represents household wealth in a model of savings

2For recent treatments of these topics within the mathematical literature, see, e.g., Meyn
and Tweedie (2009, Theorems 12.1.3, 15.0.1, and 16.1.2) or Hernández-Lerma and Lasserre
(2003). For applications of these ideas to economic problems, see, e.g., Nishimura and
Stachurski (2005), Kamihigashi (2007), or Kristensen (2008). For more general discussions
of Markov processes with economic applications, see Bhattacharya and Majumdar (2007) or
Stachurski (2009). We refer the reader to those textbooks for more comprehensive discussions
of Markov processes, and to Olson and Roy (2006) for a recent survey on stochastic growth.

3This result is in fact proved for a more general topological space equipped with a preorder.
See Assumptions A.1 and A.2.

4See Section 4 for details. Condition (a) is also a considerable generalization of the “order
mixing” condition discussed in Kamihigashi and Stachurski (2009) and Stachurski (2009).
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and investment. Condition (a) means that, given two households X and Y
that obey the same model but face independent, idiosyncratic shocks, even if
household X is far richer than household Y initially, there is a small probability
that household Y will be richer than household X at some point in the future.
Condition (b) means that any household can be arbitrarily close to bankruptcy
after an extremely unlucky sequence of shocks. Condition (c) means that any
household can be arbitrarily rich after an extremely lucky sequence of shocks.
These are natural properties of many economic models, and can easily be sat-
isfied whether the state space is compact or not.

We emphasize that our result requires only one of these conditions to be
satisfied, so that it can be used in various settings. To illustrate this point, we
analyze a range of models including AR(1) processes, the benchmark Brock-
Mirman (1972) model, the Brock-Mirman model with irreversible investment
(Olson, 1989), and a stochastic version of the small open economy of Mat-
suyama (2004) with correlated shocks. The last two applications offer new
results; in particular, the former may be of independent interest.

The rest of the paper is structured as follows. Section 2 reviews basic defini-
tions concerning general and monotone Markov processes. Section 3 states the
main result and then specializes to the case where the process is generated by
a stochastic difference equation. Section 4 discusses the relations between our
results and those based on monotone mixing and splitting. Section 5 provides
economic applications. Remaining proofs are given in Appendices A and B.

2 Preliminaries

In this section we review basic definitions concerning both general and mono-
tone discrete-time Markov processes.

2.1 Discrete-Time Markov Process

We begin with basic definitions concerning discrete-time Markov processes on
an arbitrary measurable space (X , X ). Let PX be the probability measures
on X . A stochastic kernel on X is a function Q : X ×X → [0, 1] such that
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(i) Q(x, ·) ∈ PX for each x ∈ X , and (ii) Q(·, B) is X -measurable for each
B ∈ X .

Given a stochastic kernel Q on X , a discrete-time, X -valued stochastic pro-
cess {Xt}∞

t=0 on a probability space (Ω, F ,P) is said to be Markov-(Q, µ) if (i)
X0 has distribution µ ∈ PX , and (ii) Q(x, ·) is the conditional distribution of
Xt+1 given Xt = x:

P[Xt+1 ∈ B |F X
t ] = Q(Xt, B) ∀B ∈ X .

Here F X
t is the σ-algebra generated by the history X0, . . . , Xt. If the initial dis-

tribution µ is the probability measure δx ∈ PX concentrated on x ∈ X , we call
{Xt}Markov-(Q, x) rather than Markov-(Q, δx). We say that {Xt} is Markov-Q
if {Xt} is Markov-(Q, µ) for some µ ∈ PX . Whenever we introduce a stochas-
tic process, we implicitly take the underlying probability space (Ω, F ,P) as
given.

For each n ∈ N, let Qn be the n-th order kernel, defined by

Q1 := Q, Qn(x, B) :=
∫

Qn−1(y, B)Q(x, dy) (x ∈ X , B ∈ X ). (2.1)

Each Qn is a stochastic kernel in its own right, and Qn(x, B) represents the
probability of transitioning from x to B in n steps.

Let h : X → R be measurable and bounded, and let µ ∈ PX . We define the
right Markov operator h 7→ Qh by

(Qh)(x) :=
∫

h(y)Q(x, dy) (x ∈ X ), (2.2)

and the left Markov operator µ 7→ µQ by

(µQ)(B) :=
∫

Q(x, B)µ(dx) (B ∈ X ). (2.3)

The t-th iterates of these operators can be interpreted as follows:

(Qth)(x) = E[h(Xt) |X0 = x] and (µQt)(B) = P[Xt ∈ B |X0 ∼ µ],

where {Xt}∞
t=0 is any Markov-Q process. Given any B ∈ X , letting 1B denote

the indicator function of B,5 we have

Q(x, B) = (Q1B)(x) =
∫
1B(y)Q(x, dy) ∀x ∈ X .

5That is, 1B(y) = 1 if y ∈ B, and = 0 otherwise.
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A distribution µ∗ ∈ PX is called stationary if µ∗Q = µ∗. If X has a topol-
ogy and X is the Borel sets, then Q is called Feller if Qh is continuous on X
whenever h : X → R is continuous and bounded.

Let V : X → R+ be a measurable function. The following condition is often
called a “drift” condition:

∃ α ∈ [0, 1), ∃ β ∈ R+, ∀ x ∈ X , (QV)(x) ≤ αV(x) + β. (2.4)

This condition implies that the process drifts towards areas of the state space
where V is small.

Given independent Markov-Q processes {Xt}∞
t=0 and {X′t}∞

t=0, the X×X -
valued process {(Xt, X′t)}∞

t=0 is also a Markov process. Indeed, if we define the
product kernel Q×Q on X×X by

(Q×Q)((x, x′), A) =
∫ ∫

1A(y, y′)Q(x, dy)Q(x′, dy′) (2.5)

for (x, x′) ∈ X×X and A ∈ X ⊗X , then Q×Q is a stochastic kernel on X×X ,
and {(Xt, X′t)}∞

t=0 is Markov-Q×Q. When A = B×B′ for some B, B′ ∈ X , then
(2.5) reduces to

(Q×Q)((x, x′), B×B′) = Q(x, B)Q(x′, B). (2.6)

2.2 Monotone Markov Processes

For the rest of the paper (except for Appendix A), let X be a Borel subset of
R

m with m ∈ N, and let X be the Borel subsets of X .6 To introduce monotone
Markov processes, let ≤ be the usual partial order onRm.7 Given a, b ∈ X , we
define

(−∞, b] := {x ∈ X : x ≤ b},
[a, ∞) := {x ∈ X : a ≤ x}, and

[a, b] := {x ∈ X : a ≤ x ≤ b}.
6Our general results, Theorems 3.1 and 3.2, are in fact established for a more general state

space. See Assumptions A.1 and A.2 for details.
7That is, (x1, . . . , xm) ≤ (y1, . . . , ym) whenever xi ≤ yi for all i = 1, . . . , m. We define ≥

similarly.
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These subsets of X are called order intervals. The graph of ≤ is the set

G := {(x, x′) ∈ X×X : x ≤ x′},

so that (x, x′) ∈ G iff x ≤ x′.
A set C ∈ X is called increasing if [a, ∞) ⊂ C whenever a ∈ C, decreasing if

(−∞, b] ⊂ C whenever b ∈ C, and order bounded if there exists a pair a, b ∈ X
such that C ⊂ [a, b]. We say that a function h : X → R (or X ) is increasing if
h(x) ≤ h(y) whenever x ≤ y, and decreasing if h(x) ≥ h(y) whenever x ≤ y.
Let ibX (dbX ) denote the set of increasing (decreasing) bounded measurable
functions from X to R.

Let Q be a stochastic kernel on X . We say that Q is increasing if Qh ∈ ibX
for any h ∈ ibX . It is immediate from (2.2) and (2.1) that if Q is increasing,
then Qn is increasing for any n ∈ N, and Qg ∈ dbX for any g ∈ dbX .8

Remark 2.1. If Q is increasing, then for any c ∈ X , we have Q(·, [c, ∞)) =

Q1[c,∞) ∈ ibX , and Q(·, (−∞, c]) = Q1(−∞,c] ∈ dbX , since 1[c,∞) ∈ ibX and
1(−∞,c] ∈ dbX .

Given any µ∗ ∈ PX and sequence {µt} ⊂ PX , we write µt → µ∗ if

lim
t→∞

∫
h(x)µt(dx) =

∫
h(x)µ∗(dx) ∀h ∈ ibX . (2.7)

This convergence criterion is stronger than the standard notion of “weak” con-
vergence.9 We say that µ∗ is globally stable if µ∗ is a unique stationary distribu-
tion and µQt → µ∗ for all µ ∈ PX . We say that Q is globally stable if Q has a
globally stable distribution.

3 The Main Result

The main result of this paper provides sufficient conditions for a stochastic
kernel Q on X to be globally stable. Those sufficient conditions are based on

8To see that Qg ∈ dbX , note that −Qg = Q[−g] by (2.2), and that −g ∈ ibX . Therefore,
−Qg ∈ ibX , i.e., Qg ∈ dbX .

9Recall that weak convergence in Rm means that limt→∞ µt((−∞, c]) = µ∗((−∞, c]) for
all continuity points c of the distribution function F(x) := µ∗(−∞, x] (see Billingsley, 1995,
p. 378). Since 1X\(−∞,c] = 1 − 1(−∞,c] ∈ ibX , (2.7) with h = 1X\(−∞,c] implies that
limt→∞ µt((−∞, c]) = µ∗((−∞, c]) for all c ∈ X .
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the order-theoretic concepts that we introduce below.
We say that a function V : X → R+ has order bounded sublevel sets if the

sublevel set {x ∈ X : V(x) ≤ r} is order bounded for each r > 0. We say
that Q is order constricting if there exists a measurable function V : X → R+

satisfying the drift condition (2.4) and having order bounded sublevel sets. We
assume the following for the rest of the paper (except for Appendix A).

Assumption 3.1. For all a, b ∈ X with a ≤ b, the order interval [a, b] is com-
pact.10

We say that Q is

(a) order reversing if, given any x, x′ ∈ X with x ≥ x′, there exists an n ∈ N
such that (Q×Q)n((x, x′),G) > 0.

(b) downward reaching if, given any x, c ∈ X , there exists an n ∈ N such that
Qn(x, (−∞, c]) > 0.

(c) upward reaching if, given any x, c ∈ X , there exists an n ∈ N such that
Qn(x, [c, ∞)) > 0.

The statement that Q is order reversing means that, given any indepen-
dent Markov-(Q, x) and Markov-(Q, x′) processes {Xt}∞

t=0 and {X′t}∞
t=0 with

x ≥ x′, there exists an n ∈ N such that Xn ≤ X′n with positive probability.
In other words, if a pair of initial conditions are ordered, the order can be re-
versed with positive probability in finite time. The definition above clarifies
the fact that order reversal is a property of Q, and does not depend on the
particular Markov-Q processes {Xt} and {X′t}. The following is a simple suf-
ficient condition for order reversal that does not involve the product kernel
Q×Q.

Remark 3.1. If, given any x, x′ ∈ X with x ≥ x′, there exists a c ∈ X and an
n ∈ N such that Qn(x, (−∞, c]) > 0 and Qn(x′, [c, ∞)) > 0, then Q is order
reversing.11

10This assumption is satisfied in all common state spaces. For example it is satisfied if X is
an increasing subset of Rm, if X can be expressed as the cartesian product of intervals in R
(each open, closed, or half open), or if X is any closed subset ofRm.

11This follows from (2.6) with B = (−∞, c] and B′ = [c, ∞), and the inclusionG ⊃ (−∞, c]×
[c, ∞).
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The statement that Q is downward reaching means that any Markov-Q
process {Xt}∞

t=0 becomes smaller than any element c in X with positive prob-
ability at some point in the future. The case in which Q is upward reaching is
similar.

We are now ready to state the main result of this paper.

Theorem 3.1. Let Assumption 3.1 hold. Suppose that Q is Feller, increasing, and
order constricting. Suppose further that Q is either (a) order reversing, (b) downward
reaching, or (c) upward reaching. Then Q is globally stable.

Proof. See Appendix A.

In the proof, the only role of the Feller property is to ensure existence of
a stationary distribution. More specifically, it is shown that Q has a station-
ary distribution if it is Feller and order constricting. Given the existence of a
stationary distribution, we need only assume that Q is increasing, order con-
stricting, and order reversing to prove that Q is globally stable. The proof of
Theorem 3.1 is then completed by verifying that Q is order reversing if it is
order constricting and either downward reaching or upward reaching.12

As suggested by the outline of the proof in the preceding paragraph, among
conditions (a)–(c), order reversal is the more fundamental concept, while (b)
and (c) are more directed towards applications. As discussed in the Introduc-
tion, order reversal is a generalization of several existing stability conditions.
These issues are elaborated on in Section 4. Before doing so, we first develop a
second version of Theorem 3.1 that is convenient for studying many economic
models.

3.1 Stochastic Difference Equations

In economic modelling, many Markov processes arise as stochastic difference
equations of the form

Xt+1 = F(Xt, Zt+1) (t ≥ 0), (3.1)

12As long as compact sets are order bounded, part (a) of Theorem 3.1 generalizes the main
result of Kamihigashi and Stachurski (2009, Theorem 5.2), which assumes that X ⊂ Rn and
Q is given by (3.1) and (3.2). By contrast, Theorem 3.1 is proved in Appendix A under only
Assumptions A.1, A.2, and 3.1. Parts (b) and (c) of the theorem are entirely new.
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where {Zt}∞
t=1 is an IID shock process taking values in metric space Z with

Borel sets Z , and F : X×Z → X is measurable.13 In what follows, we develop
a version of Theorem 3.1 that is directly applicable to (3.1).

Let φ : Z → [0, 1] be the common distribution of Zt. For x ∈ X and B ∈ X ,
define

Q(x, B) := P{F(x, Z1) ∈ B} =
∫
1B(F(x, z))φ(dz). (3.2)

Then Q is a stochastic kernel on X , the stochastic process {Xt}∞
t=0 in (3.1) is

Markov-Q, and the right Markov operator (2.2) takes the form

(Qh)(x) =
∫

h(F(x, z))φ(dz) (x ∈ X ). (3.3)

Each finite path of shock realizations {zt}n
t=1 ⊂ Z and initial condition

X0 = x ∈ X determines a path {xt}n
t=0 for the state variable up until time n

via (3.1). Let Fn(x, {zt}n
t=1) denote the value of xn determined this way.14 We

then have the relation

Qn(x, B) = P{Fn(x, {Zt}n
t=1) ∈ B} (x ∈ X , B ∈ X , n ∈ N).

We assume the following whenever we consider a model of the form (3.1).

Assumption 3.2. The state space X satisfies Assumption 3.1, Z is a separable
metric space with Borel sets Z , and Z is equal to the support of φ.15 The
function F is continuous on X×Z with respect to the product topology, and
F(·, z) is increasing for each z ∈ Z .

It easily follows from this assumption and (3.3) that Q is Feller and increas-
ing. Further, the drift condition (2.4) can now be written as

∃ α ∈ [0, 1), ∃ β ∈ R+, ∀ x ∈ X ,
∫

V(F(x, z))φ(dz) ≤ αV(x) + β. (3.4)

13This formulation is relatively general. Many models with additional lags and non-IID

shocks can be expressed in the form (3.1) by readjusting the definition of the state variables.
14Formally, F1 := F and Fi+1(x, {zt}i+1

t=1) := F(Fi(x, {zt}i
t=1), zi+1) for all i ∈ N.

15That is, φ(Z) = 1, and φ(G) > 0 for any nonempty open G ⊂ Z . This can be assumed
without loss of generality as long as φ is a distribution on a separable metric space; for then
φ has a unique support (see Aliprantis and Border, 1999, p. 374, 73 ), and we can simply let Z
denote this support.
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If a measurable function V : X → R+ satisfying (3.4) and having order
bounded sublevel sets can be found, then, in view of Theorem 3.1, global
stability will be established whenever Q is either order reversing, downward
reaching, or upward reaching. In the present setting, we can obtain sufficient
conditions for these properties using the extra structure provided by F:

Theorem 3.2. Let Assumption 3.2 hold. Suppose that there exists a measurable func-
tion V : X → R+ satisfying (3.4) and having order bounded sublevel sets. Then Q is
globally stable if one of the following conditions holds:

(a) For any pair x, x′ ∈ X with x ≥ x′, there exist finite Z-valued sequences
{zt}n

t=1 and {z′t}n
t=1 such that Fn(x, {zt}n

t=1)� Fn(x′, {z′t}n
t=1).

16

(b) For any pair x, c ∈ X , there exists a finite Z-valued sequence {zt}n
t=1 such that

Fn(x, {zt}n
t=1)� c.

(c) For any pair x, c ∈ X , there exists a finite Z-valued sequence {zt}n
t=1 such that

c� Fn(x, {zt}n
t=1).

Proof. See Appendix A.

Remark 3.2. As suggested above, under the hypotheses of Theorem 3.2, condi-
tions (a), (b), and (c) imply that the corresponding stochastic kernel Q is order
reversing, downward reaching, and upward reaching, respectively.

4 Discussions

As we remarked after Theorem 3.1, among conditions (a)–(c) in the theorem,
order reversal is the more fundamental concept, while (b) and (c) are more
directed towards applications. In this section we discuss some well-known
stability conditions for monotone Markov processes, and clarify the relations
between order reversal and those conditions. We also illustrate our results in a
simple setting by applying them to an AR(1) process. Furthermore, we discuss

16The notation (x1, . . . , xm) � (x′1, . . . , x′m) means that xi < x′i for all i = 1, . . . , m. When
X is a more general state space (as in Appendix A), x � x′ means that (x, x′) is interior to G
with respect to the product topology.

10



a stability condition introduced in Kamihigashi and Stachurski (2009) and its
relation to our results.

To facilitate the comparison, we introduce an additional concept: We say
that Q is simultaneously order inducing if there exists an ε > 0 and an n ∈ N
such that, given any x, x′ ∈ X , we have (Q×Q)n((x, x′),G) ≥ ε. If Q is
simultaneously order inducing, then there exists a fixed n ∈ N and ε > 0 such
that the event {Xn ≤ X′n} occurs with probability at least ε, regardless of initial
conditions. Evidently, simultaneous order inducement is considerably stricter
than order reversal. The following is a sufficient condition for simultaneous
order inducement that does not involve the product kernel Q×Q.

Remark 4.1. If there exists a c ∈ X , an ε > 0, and an n ∈ N such that
Qn(x, (−∞, c]) ≥ ε and Qn(x, [c, ∞)) ≥ ε for all x ∈ X , then Q is simulta-
neously order inducing.17

4.1 Monotone Mixing

Consider the well-known Monotone Mixing Condition (MMC) of Razin and
Yahav (1979), Stokey, Lucas, and Prescott (1989), and Hopenhayn and Prescott
(1992). To state the MMC, assume that X is compact and takes the form [a, b]
for some a, b ∈ X . In this setting, a stochastic kernel Q on X satisfies the MMC
whenever there exists a c ∈ X and an n ∈ N such that Qn(a, [c, b]) > 0 and
Qn(b, [a, c]) > 0.

The MMC implies simultaneous order inducement. To see this, let ε be
the smaller of Qn(a, [c, b]) and Qn(b, [a, c]). Since Q is increasing, Qn is also
increasing, so that Qn(x, [c, ∞)) is increasing in x by Remark 2.1. Hence, for all
x ∈ X ,

Qn(x, [c, ∞)) = Qn(x, [c, b]) ≥ Qn(a, [c, b]) ≥ ε.

The same bound holds for Qn(x, (−∞, c]) over all x ∈ X . Thus Q is simulta-
neously order inducing by Remark 4.1.

Stokey, Lucas, and Prescott (1989, Theorem 12.12) state that if Q is increas-
ing, Feller, and satisfies the MMC, then Q is globally stable. This is a special
case of Theorem 3.1. To see this, recall that the MMC implies simultaneous

17See the discussion in the footnote to Remark 3.1.
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order inducement, and hence order reversal. To verify that Q is order con-
stricting, let V be identically zero. Then V trivially satisfies the drift condition
(2.4) and has order bounded sublevel sets. Indeed, (2.4) holds with α = β = 0,
and the sublevel set {x ∈ X : V(x) ≤ r} = [a, b] is order bounded for any
r > 0. The conditions of the theorem are now verified.

The stability result of Hopenhayn and Prescott (1992, Theorem 2) is stronger
than that of Stokey, Lucas, and Prescott in that Q is not required to be Feller.
This is possible because the Knaster-Tarski fixed point theorem can be used
to ensure existence of a stationary distribution when X is a compact order
interval and Q is increasing. In our case, since we do not even assume that
X is order bounded, we use a continuity-based approach to ensure existence.
Therefore, our result and that of Hopenhayn and Prescott are not directly com-
parable due to the difference in approach to existence. Once existence is estab-
lished, however, order reversal considerably weakens the MMC, as we further
illustrate below.

4.2 Splitting

Dubin and Friedman (1966), Bhattacharya and Lee (1988), and Bhattacharya
and Majumdar (2001) consider a “splitting” condition and its relationship to
stability for monotone random systems. To define the condition, consider the
setting of Section 3.1. The splitting condition (Bhattacharya and Lee, 1988)
requires existence of a c ∈ X and an n ∈ N satisfying

P{∀x ∈ X , Fn(x, {Zt}n
t=1) ≤ c} > 0, and (4.1)

P{∀x ∈ X , Fn(x, {Zt}n
t=1) ≥ c} > 0. (4.2)

We show that the splitting condition implies simultaneous order induce-
ment. Let ε be the smaller of the two probabilities in (4.1) and (4.2). Then,
given any x ∈ X , we have

Qn(x, (−∞, c]) = P{Fn(x, {Zt}n
t=1) ≤ c}

≥ P{∀y ∈ X , Fn(y, {Zt}n
t=1) ≤ c} ≥ ε.

The same bound holds for Qn(x, [c, ∞)) over all x ∈ X . Thus Q is simultane-
ously order inducing by Remark 4.1
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Dubin and Friedman (1966) and Bhattacharya and Majumdar (2001) es-
tablish global stability of Q under the splitting condition and additional as-
sumptions when X is an interval in R; Bhattacharya and Lee (1988) and Bhat-
tacharya, Majumdar, and Hashimzade (2009) consider the case X ⊂ Rn with
n ∈ N. Since they allow F(x, z) to be increasing or decreasing in x depending
on z, their results are not directly comparable to ours.18 However, we argue
below that the splitting condition (as well as the MMC) is not satisfied even in
some standard cases where our results easily apply.

4.3 AR(1) Processes

As discussed above, the MMC and the splitting condition are both stricter than
simultaneous order inducement. However, simultaneous order inducement is
itself too strong for many standard models. The problem can be illustrated by
considering an elementary scalar AR(1) process of the form

Xt+1 = ρXt + Zt+1, 0 < ρ < 1, (4.3)

where {Zt}∞
t=1 is IID with finite mean. Let φ be the distribution of Zt, and let

Z ⊂ R be the support of φ. Define F(x, z) := ρx + z, and let Q be the stochastic
kernel on X := R associated with (4.3) via (3.2).

To see that Q is not simultaneously order inducing, let {Zt}∞
t=1 and {Z′t}∞

t=1
be independent IID processes with common distribution φ. Simultaneous or-
der inducement requires existence of an ε > 0 and an n ∈ N such that, for any
x, x′ ∈ X ,

P{Fn(x, {Zt}n
t=1) ≤ Fn(x′, {Z′t}n

t=1)} ≥ ε.

However, if n is fixed, then the left-hand side goes to zero as x → ∞ and
x′ → −∞. Hence Q is not simultaneously order inducing.

On the other hand, Q is order reversing whenever Z contains at least two
distinct elements. To see this, let z, z′ ∈ Z with z < z′. Let {zt}∞

t=1 and {z′t}∞
t=1

be constant sequences equal to z and z′ respectively. Then, for any x, x′ ∈ R
with x ≥ x′, Fn(x, {zt}n

t=1) → z/(1− ρ) and Fn(x′, {z′t}n
t=1) → z′/(1− ρ) as

18Even if F(x, z) is not monotone in x, the splitting condition implies simultaneous order
inducement since Remark 4.1 holds true for any stochastic kernel Q.
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n → ∞. Since z < z′, condition (a) of Theorem 3.2 is established, and Q is
order reversing.

To further illustrate our results, let us now show that Q is globally stable
using Theorem 3.2. It remains only to show that there exists a measurable func-
tion V : X → R+ satisfying the drift condition (3.4) and having order bounded
sublevel sets. For this purpose, note that V(x) := |x| has order bounded sub-
level sets because, for any r > 0,

{x ∈ X : V(x) ≤ r} = {x ∈ X : |x| ≤ r} = [−r, r].

Moreover, V satisfies the drift condition (3.4) since∫
V(F(x, z))φ(dz) =

∫
|ρx + z|φ(dz) ≤ ρV(x) +

∫
|z|φ(dz),

which implies (3.4) with α = ρ and β =
∫
|z|φ(dz). Thus, Q is globally stable

by Theorem 3.2.
If φ has a well-behaved density component, then global stability can be

established via irreducibility. However, our techniques do not rely on such an
additional requirement. Indeed, Theorem 3.2 applies even when Z is entirely
discrete, as long as it contains at least two elements. If Z is unbounded, it is
even easier to establish global stability since it is trivial to verify condition (b)
or (c) of Theorem 3.2.19

It should be easy to see that the above analysis can be extended to multi-
dimensional state spaces in a straightforward way. It can also be extended to
nonlinear processes of the form (3.1) under appropriate assumptions. For ex-
ample, the drift condition (3.4) can be verified as above if there exist constants
ρ ∈ (0, 1) and θ ≥ 0 such that |F(x, z)| ≤ ρ|x|+ θ|z|.

4.4 Order Mixing

Kamihigashi and Stachurski (2009) consider a “order mixing” condition and its
implications for stability. Specifically, a stochastic kernel Q on X is called order

19Of course the AR(1) process is so simple that only elementary methods are needed to check
its stability. We make these points to illustrate the nature and scope of our results.
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mixing if, given any independent Markov-(Q, x) and Markov-(Q, x′) processes
{Xt}∞

t=0 and {X′t}∞
t=0 with arbitrary initial conditions x, x′ ∈ X , we have

P∪∞
t=0 {Xt ≤ X′t} = P∪∞

t=0 {Xt ≥ X′t} = 1. (4.4)

Evidently this condition is far stronger than order reversal, and is rather dif-
ficult to verify directly. However, the condition can be a useful intermediate
step toward stability. Indeed, it is shown in Kamihigashi and Stachurski (2009,
Theorem 5.1, Corollary 5.1) that, in the setting of of Section 3.1, Q is globally
stable if it is increasing, has a stationary distribution, and is order mixing.20

Although the constructive proof of this result in Kamihigashi and Stachurski
(2009) does not apply to our general setting, a generalized version of the result
is proved in Kamihigashi and Stachurski (2010, Proposition 4.1) and used in
the proof of Theorem 3.1 in Appendix A.

5 Economic Applications

Let us now consider some economic applications, beginning with the bench-
mark stochastic growth model of Brock and Mirman (1972).

5.1 The Brock-Mirman Model

Consider the following maximization problem:

max
{ct, kt+1}∞

t=0

E

∞

∑
t=0

δtu(ct) (5.1)

subject to ct + kt+1 = Zt f (kt) and ct, kt+1 ≥ 0 with k0 > 0 given, where {Zt}∞
t=0

is IID with finite mean and distribution φ supported on Z ⊂ R+. We as-
sume that u is C1 on R++, bounded, strictly increasing, strictly concave, and
limc→0 u′(c) = ∞, while f is C1 on R++, continuous, concave, and increasing,
with f (0) = 0 and limk→∞ f ′(k) = 0. In addition, we require that δ, f , and φ

jointly satisfy

δ lim
k→0

f ′(k) >
∫ 1

z
φ(dz). (5.2)

20Stachurski (2009, Theorem 11.3.14) discusses a special case of this result along with an
informal proof based on Kamihigashi and Stachurski (2009).
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All of these conditions are relatively standard, apart from (5.2), which is weaker
than the usual assumption f ′(0) = ∞. Our assumptions are chosen to simplify
the exposition, and can be weakened significantly by employing instead As-
sumptions 2.1–2.5 and 3.1–3.5 in Kamihigashi (2007).

Let yt := Zt f (kt) be the state variable, and let c(·) and k(·) be the optimal
policies for consumption and investment, both of which are continuous and
strictly increasing (c.f., e.g., Kamihigashi, 2007, Theorem 2.1). For any y > 0,
these functions satisfy the Euler equation

u′(c(y)) = δ
∫

u′(c(z f (k(y))))z f ′(k(y))φ(dz). (5.3)

Define F(y, z) := z f (k(y)), and the corresponding stochastic kernel Q by (3.2).
Brock and Mirman (1972) and Hopenhayn and Prescott (1992) study stabil-

ity of Q when
0 < infZ < supZ < ∞, (5.4)

and (infZ) f (k(y)) > y for y > 0 sufficiently small.21 In this case, the state
space X can be chosen as a compact interval in R++, and global stability can
be established using various techniques.

On the other hand, Theorem 3.2 can be used without such additional as-
sumptions. To be precise, let X := R++. Using the Euler equation, Kami-
higashi (2007, pp. 495–496) shows that V(y) := u′(c(y))1/2 + y has compact
sublevel sets and satisfies the drift condition (3.4). Since compact sets are or-
der bounded, Theorem 3.2 implies global stability if one of conditions (a), (b),
or (c) is satisfied.

Under (5.4), condition (a) in Theorem 3.2 easily follows from the arguments
of Brock and Mirman (1972, Figure 5) or Hopenhayn and Prescott (1992, p.
1402). Global stability can be established even more easily if infZ = 0 or
supZ = ∞.22 Suppose, for example, that infZ = 0. Then, for any y, r ∈ X ,

21See Olson and Roy (2006) and Mitra and Roy (2010) for discussions on the last property.
Brock and Mirman (1972) derive this property by assuming that P{Zt = infZ} > 0. See
Chatterjee and Shukayev (2008) for an extension of Hopenhayn and Prescott’s (1992) analysis.

22Such cases have been treated under conditions guaranteeing irreducibility by Stachurski
(2002) and Kamihigashi (2007). In addition, Zhang (2007) studies a Brock-Mirman model with
unbounded shocks, and provides a direct proof of global stability. His results can be estab-
lished via Theorem 3.2.
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there exists a z ∈ Z such that z f (k(y)) < r. This verifies condition (b) in
Theorem 3.2, and Q is globally stable.

5.2 Irreversible Investment

The analysis of the previous section can be extended to a model with irre-
versible investment. Specifically, consider the problem of maximizing (5.1)
subject to

ct + kt+1 = Zt f (kt) + ρkt, (5.5)

kt+1 ≥ ρkt, (5.6)

and ct, kt+1 ≥ 0, where ρ ∈ [0, 1) is one minus the depreciation rate. We
maintain all the other assumptions, including the conditions on u, f , and φ.

If we take xt := kt and zt as states, the Bellman equation is given by

v(x, z) = max
x′∈Γ(x,z)

{
u(z f (x) + ρx− x′) + δ

∫
v(x′, z′)φ(dz′)

}
, (5.7)

where v is the value function and Γ(x, z) = [ρx, z f (x) + ρx]. Let c(x, z) and
k(x, z) be the optimal policies for ct and kt+1. It is easy to verify that v(x, z),
c(x, z), and k(x, z) are all increasing in x and continuous.23

Define F(x, z) := k(x, z), and the corresponding stochastic kernel Q by
(3.2). Due to the irreversibility constraint (5.6), the Euler equation correspond-
ing to (5.3) is not guaranteed here. Instead, we obtain the following inequality
whenever x, z > 0 with z ∈ Z , as verified in Appendix B:

u′(c(x, z)) ≥ δ
∫

u′(c(k(x, z), z′))z′ f ′(k(x, z))φ(dz′). (5.8)

23Under additional assumptions, Olson (1989) establishes these properties. They can be
shown more generally as follows. Continuity of v as well as concavity of v(x, z) in x follows
from a standard argument. That v(x, z) is increasing in x follows from the fact that, given
any k0, k′0 > 0 with k0 < k′0 and optimal path {kt} from k0, the path {k′t} defined by k′t+1 =

kt+1 + ρ(k′t − kt) is feasible from k′0 and offers strictly greater consumption in each period.
Continuity of c and k follows from strict concavity of the maximand in (5.7) in x′. Since the
maximand has increasing differences in (x, x′), k(x, z) is increasing in x (see Topkis, 1998,
p. 76). That c(x, z) is increasing in x holds since the right-hand side of (5.7) can be written
as max0≤c≤ f (x,z){u(c) + δ

∫
v(z f (x) + ρx − c, z′)φ(dz′)}, and this maximand has increasing

differences in (x, c) by concavity of v(x, z) in x.
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This inequality suffices for our purpose since it implies that

V(x) :=
[∫

u′(c(x, z))1/2φ(dz)
]1/2

+ x (5.9)

satisfies the drift condition (3.4) and has order bounded sublevel sets; see Ap-
pendix B for details.

To establish global stability, Olson (1989, A.13) assumes, in addition to (5.4),
that k(x, z) ≥ x for all z ∈ Z if x is sufficiently small. The last assumption is
particularly difficult to verify under standard conditions, but it is unnecessary
in our approach. To illustrate this point, let us focus on a case in which the
assumption is obviously violated: 0 ∈ Z ,24 which implies that k(x, 0) = ρx <

x. In this case, for any x, r > 0, Fn(x, {zt}n
t=1) = ρnx < r for large enough

n ∈ N if zt = 0 for all t = 1, . . . , n. This verifies condition (b) of Theorem 3.2,
and Q is globally stable.

5.3 An Open Economy with Borrowing Constraints

Finally, we illustrate an application of Theorem 3.1 (rather than Theorem 3.2)
in an example in which the state space is not open and is two-dimensional.
Specifically, consider a stochastic version of the small open economy of Mat-
suyama (2004) with correlated productivity shocks.25 In this economy, agents
live for two periods, with a unit mass of young born at the start of each pe-
riod. At time t, the old own capital stock kt. Combined with the labor of the
young, this produces f (kt)ξt units of the consumption good. Here {ξt}∞

t=0 is a
sequence of correlated productivity shocks satisfying

ξt+1 = ρξt + Zt+1, (5.10)

where 0 < ρ < 1 and {Zt}∞
t=1

IID∼ φ with support Z ⊂ R+. We assume that Z
is unbounded, and that µ := EZt =

∫
zφ(dz) ∈ (0, ∞).

24However, from (5.2) we have P{Zt = 0} = 0. For our purpose, it actually suffices to
assume that infZ = 0.

25The case of IID productivity shocks can be treated using existing techniques; see Stachurski
(2009). Here we focus on the case in which the shocks are correlated and the Markov process
induced by the model is two-dimensional.
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The production function f is as in Section 5.1 except for (5.2). We assume
further that f is strictly concave with limk→0 f ′(k) = ∞. Factor markets are
competitive, with return on capital given by f ′(kt)ξt and wages by

wt = w(kt, ξt) := [ f (kt)− kt f ′(kt)]ξt.

Here we define w(0, ξ) = 0 for any ξ ∈ R+. Note that w(·, ·) is increasing and
continuous on R+×R+.

The young invest their wages, either in international credit markets at the
risk free world interest rate R, or in a domestic project which converts one unit
of the consumption good into one unit of the capital good next period. Agents
can start at most one such project, so 0 ≤ kt+1 ≤ 1. Provided that kt+1 > 0,
risk neutral profit maximization requires

R ≤ f ′(kt+1)E [ξt+1|ξt] = f ′(kt+1)(ρξt + µ). (5.11)

The excess cost of the project above wages (i.e., 1 − wt) is financed by
borrowing abroad (which is possible even when kt = 0). Due to imperfect
credit markets, the liabilities R(1− wt) of those agents borrowing abroad to
finance the project cannot exceed a fraction λ ∈ (0, 1) of expected net worth
at t + 1, which is f ′(kt+1)E [ξt+1|ξt]. Thus we have the additional restriction
R(1 − wt) ≤ λ f ′(kt+1)E [ξt+1|ξt]. This inequality and (5.11) are simultane-
ously satisfied if and only if

R ≤ Θ(wt) f ′(kt+1)(ρξt + µ), (5.12)

where Θ(w) := min{λ/(1− w), 1}.
Since f ′(0) = ∞ and µ > 0, the right-hand side of (5.12) exceeds the left-

hand side whenever kt+1 is sufficiently small. This guarantees that kt+1 > 0
given any kt ∈ [0, 1]. Furthermore, if kt+1 ∈ (0, 1), agents must be indifferent
as to whether to invest internationally or domestically. Therefore, kt+1 satisfies
(5.12) with equality if kt+1 < 1. In other words, letting g be the inverse of f ′,
we have

kt+1 = h(kt, ξt) := min
{

g
[

R
Θ(w(kt, ξt))(ρξt + µ)

]
, 1
}

. (5.13)
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Equations (5.10) and (5.13) together with initial conditions k0 and ξ0 define
a Markov process {(kt, ξt)}∞

t=0 on X := [0, 1]×R+. Define

F((k, ξ), z) := (h(k, ξ), ρξ + z),

and define the corresponding stochastic kernel Q by (3.2).
We prove global stability of Q using Theorem 3.1. First observe that for

V : X → R+ defined by V(k, ξ) := ξ we have

(QV)(k, ξ) = E [V(k1, ξ1) | (k0, ξ0) = (k, ξ)]

= E [ ξ1 | (k0, ξ0) = (k, ξ)]

= ρξ + µ = ρV(k, ξ) + µ.

Since ρ ∈ (0, 1) and µ > 0, we have verified the drift condition (2.4). Moreover,
V has order bounded sublevel sets because, for any r > 0, the sublevel set

{(k, ξ) ∈ X : V(k, ξ) ≤ r} = {(k, ξ) ∈ X : ξ ≤ r} = [0, 1]×[0, r]

is order bounded. Therefore, Q is order constricting.
Since F((k, ξ), z) is continuous in (k, ξ, z), and increasing in (k, ξ) when z

is held fixed, Q is both Feller and increasing. Hence it remains to prove one
of conditions (a), (b) or (c) in Theorem 3.1. We will prove (c), which requires
that Q is upward reaching. For this purpose, we need to show that, given any
x, c ∈ X , there exists an n ∈ N such that Qn(x, [c, ∞)) > 0.

To see this, fix x = (k0, ξ0) ∈ X and c = (k, ξ) ∈ X . Let {(kt, ξt)}∞
t=0 be the

process generated by (5.10) and (5.13) with initial condition (k0, ξ0). It suffices
to show that (Q2(x, [c, ∞)) =) P{(k2, ξ2) ≥ (k, ξ)} > 0. To this end, note that
ξ2 = ρ2ξ0 + ρZ1 + Z2 ≥ ρZ1, and hence ξ2 ≥ ξ whenever Z1 ≥ ξ/ρ. Regarding
k2, note that g is decreasing, that Θ(w) ≥ λ for all w ≥ 0, and that ξ1 ≥ Z1.
Thus

k2 = h(k1, ξ1) ≥ min
{

g
(

R
λ(ρξ1 + µ)

)
, 1
}

≥ min
{

g
(

R
λρZ1

)
, 1
}

.
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In particular, k2 = 1 ≥ k whenever g (R/(λρZ1)) ≥ 1 or, equivalently, Z1 ≥
R/(λρ f ′(1)). In summary,

(k2, ξ2) ≥ (k, ξ) whenever Z1 ≥ max

{
ξ

ρ
,

R
λρ f ′(1)

}
.

Since Z is unbounded, the event on the right-hand side has positive proba-
bility, and Q2(x, [c, ∞)) > 0. We have shown that Q is upward reaching, and
hence globally stable.

5.4 Concluding Comments

This paper has shown that a Markov process {Xt} onRn (or, indeed, on a pre-
ordered metric space) is globally stable if it has a continuous and increasing
stochastic kernel, is order constricting (i.e., admits a Lyapunov-like function),
and satisfies one of the following three conditions: (a) given any Markov pro-
cess {Yt} independent of {Xt} but having the same stochastic kernel Q, and
given any initial conditions X0 and Y0 with X0 ≥ Y0, there exists a t ∈ N such
that Xt ≤ Yt with positive probability (Q is order reversing); (b) given any el-
ement c of the state space, there exists a t ∈ N such that Xt ≤ c with positive
probability (Q is downward reaching); and (c) given any element c of the state
space, there exists a t ∈ N such that Xt ≥ c with positive probability (Q is
upward reaching). We have also provided a version of this result that applies
directly to stochastic difference equations. We have illustrated the usefulness
of these results by applying them to a range of stochastic economic models.

Although many of the applications discussed here are one-dimensional, it
is easy to see that our results readily apply to multidimensional models as
well, as we noted in Section 4.3. We further illustrated this point by analyzing
a two-dimensional economic model in Section 5.3. There are many other cases
in which a multidimensional Markov process characterizing the dynamics of
an economic model is increasing, continuous, and order constricting. The last
property often follows from economic forces that make it undesirable or infea-
sible to exhaust or accumulate resources excessively fast.

The Markov process in question can also be downward or upward reaching
for economic reasons. This is true, for example, if the economy under study
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converges to extinction when it keeps receiving bad shocks, or grows with-
out bound when it keeps receiving good shocks. These economic mechanisms
make for instability by themselves and, naturally, have often been avoided in
the economic literature. However, when combined with the counterbalancing
economic forces discussed above, these mechanisms make the process “well
mixed” (or order reversing) and result in stochastic stability, as our results
demonstrate. We believe that our results widen the range of Markov processes
that economists can comfortably utilize in conducting stability analysis.

A Proofs of Theorems 3.1 and 3.2

This appendix proves Theorems 3.1 and 3.2. Before proving these results, we
provide some preliminary results on existence of a stationary distribution, and
introduce two binary relations based on stochastic kernels. In this appendix,
we take (X , X ) to be an arbitrary measurable space, and clarify the exact as-
sumptions needed for our results.

A.1 Preliminaries

A.1.1 Existence of a Stationary Distribution

The purpose of this section is to clarify the topological assumptions on (X , X )

that we use to ensure existence of a stationary distribution. The following is
our basic topological requirement.

Assumption A.1. The state space X is a metrizable topological space, and the
σ-algebra X is the Borel sets.

We say that a function V : X → R+ has precompact sublevels sets if the sub-
level set {x ∈ X : V(x) ≤ r} is precompact for each r > 0.26 The following
result gives a sufficient set of conditions for existence of a stationary distribu-
tion.27

26A set is called precompact if its closure is compact. Functions having precompact sublevel
sets are often called coercive in the literature on Markov processes (Meyn and Tweedie, 2009).

27Lemma A.1 is equivalent to Meyn and Tweedie (2009, Proposition 12.1.3) except for the
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Lemma A.1. Let (X , X ) be a measurable space satisfying Assumption A.1. Let Q
be a Feller stochastic kernel on X . Suppose that there exists a measurable function
V : X → R+ having precompact sublevel sets and satisfying

∃x ∈ X , lim sup
t→∞

(QtV)(x) < ∞. (A.1)

Then Q has a stationary distribution.

Proof. Define µ0 := δx, and µt := µ0Qt = Qt(x, ·) for t ∈ N. Let

s > lim sup
t→∞

∫
V(y)µt(dy) = lim sup

t→∞
(QtV)(x). (A.2)

Discarding a finite number of elements if necessary, we assume that∫
V(y)µt(dy) ≤ s ∀t ≥ 0.

Since V has precompact sublevel sets, this implies that {µt} is tight in the
sense that, given any ε > 0, there exists a compact subset K of X such that
µt(K) ≥ 1− ε.28 For n ∈ N, define νn := 1

n ∑n−1
t=0 µt. Since {µt} is tight, {νn} is

also tight. By Pollard (2002, p. 185),29 {νn} has a subsequence that weakly con-
verges to a distribution in PX . This distribution is stationary by Bhattacharya
and Majumdar (2007, Theorem 11.1, p. 192).

As is well-known, a simple sufficient condition for (A.1) is the drift condi-
tion (2.4). We state this observation here for later reference.30

Lemma A.2. Let (X , X ) be an arbitrary measurable space, and let Q be a stochastic
kernel on X . If there exists a measurable function V : X → R+ satisfying the drift
condition (2.4), then

∀x ∈ X , sup
t≥0

(QtV)(x) < ∞. (A.3)

assumptions on (X , X ). Since they assume that X is a locally compact, complete, separable,
metrizable topological space (and this set of properties is quite common in the literature), we
give an alternative proof that requires only Assumption A.1.

28To see this, let ε > 0, and let r > 0 be such that s/r ≤ ε. Let K be the closure of the sublevel
set {x ∈ X : V(x) ≤ r}. Since V has precompact sublevel sets, K is compact. For any t ≥ 0,
we have s ≥

∫
V(y)µt(dy) ≥

∫
V(y)1X\K(y)µt(dy) ≥ rµt(X \ K). Thus µt(X \ K) ≤ s/r ≤ ε,

i.e., µt(K) ≥ 1− ε.
29His definition of uniform tightness is weaker than the definition of tightness here, so that

his result applies.
30In particular, Lemma A.2 plays an important role in the proof of Lemma A.6.
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Proof. Let x ∈ X . Iterating on the drift condition (2.4) gives the bound

∀t ≥ 0, (QtV)(x) ≤ αtV(x) +
β

1− α
≤ V(x) +

β

1− α
. (A.4)

Since V(x) is finite, we obtain (A.3).

The following result is immediate from the preceding two lemmas.

Corollary A.1. Let (X , X ) be a measurable space satisfying Assumption A.1. Let
Q be a Feller stochastic kernel on X . Suppose that there exists a measurable function
V : X → R+ satisfying the drift condition (2.4) and having precompact sublevel sets.
Then Q has a stationary distribution.

A.1.2 Anticipation

Let (X , X ) be an arbitrary measurable space, and let Q be a stochastic kernel
on X . We introduce two binary relations based on Q: Given any B, C ∈ X , we
say that

• B simultaneously anticipates C with respect to Q (written B s.a.−→
Q

C) if there

exists an n ≥ 0 and an ε > 0 such that Qn(x, C) ≥ ε for all x ∈ B.31

• B totally anticipates C with respect to Q (written B t.a.−→
Q

C) if, for any x ∈ B

and Markov-(Q, x) process {Xt}∞
t=0, we have P∪t≥0 {Xt ∈ C} = 1.

It is shown in Kamihigashi and Stachurski (2010, Section 3) that the binary
relations s.a.−→

Q
and t.a.−→

Q
are preorders;32 furthermore, for any C, G ∈ X , we

have
X t.a.−→

Q
C s.a.−→

Q
G =⇒ X t.a.−→

Q
G. (A.5)

Both binary relations are defined for an arbitrary stochastic kernel Q, which
may itself be a product kernel on a product space. In what follows, we use
these binary relations for a product space.

31For n = 0, we define Qn(x, C) := 1C(x).
32A reflexive and transitive binary relation is called a preorder.
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A.2 Proof of Theorem 3.1

Let us now prove Theorem 3.1. To clarify the exact assumptions needed for
the result, we start with an arbitrary measurable space (X , X ). Throughout
the proof, we assume the following.

Assumption A.2. The state space X is endowed with a preorder ≤, the σ-
algebra X is generated by {(−∞, b] : b ∈ X} ∪ {[a, ∞) : a ∈ X},33 and the
graphG of ≤ is measurable in the product space X×X (i.e.,G ∈ X ⊗X ).

Let Q be a stochastic kernel on X . Under Assumption A.2, it is shown in
Kamihigashi and Stachurski (2010, Proposition 4.1) that if (i) Q is increasing,
(ii) Q has a stationary distribution, and (iii) Q satisfies

X×X t.a.−→
Q×Q

G, (A.6)

then Q is globally stable.34

Since the statement of Theorem 3.1 already assumes that Q is increasing, we
need not consider condition (i). Regarding condition (ii), let Assumptions A.1
and 3.1 hold. Suppose that Q is Feller and order constricting. Then there exists
a measurable function V : X → R+ satisfying the drift condition (2.4) and
having order bounded sublevel sets. Since order bounded sets are compact by
Assumption 3.1, it follows that V has precompact sublevel sets. Thus Q has a
stationary distribution by Corollary A.1.

To establish global stability, it remains to verify condition (iii), or (A.6). In
particular, to prove part (a) of Theorem 3.1, it suffices to show the following.

Lemma A.3. If Q is increasing, order constricting, and order reversing, then (A.6)
holds.35

33If X ⊂ Rn, this generates the Borel subsets of X in the usual topology of Rn; see Folland
(1999, p. 22, 23) and Aliprantis and Border (1999, p. 135, 146).

34This result generalizes Kamihigashi and Stachurski (2009, Theorem 5.1) (where Q is given
by (3.1) and (3.2)) and Stachurski (2009, Theorem 11.3.14) (where X ⊂ Rn in addition).

35A variant of this result based on a different “order constricting” property is shown in
Kamihigashi and Stachurski (2009, Theorem 4.2) using a considerably more complicated ar-
gument. A special case of this variant is stated without proof in Stachurski (2009, Theo-
rem 11.3.19). The latter result is not applicable here even in the setting of (3.1), because the
definition of “order inducing sets” (Stachurski, 2009, Definition 11.3.16) is too restrictive for
our purposes.
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For the rest of this section (including the above lemma), we assume only
Assumption A.2 unless otherwise indicated (i.e., we do not assume Assump-
tions A.1 and 3.1).

Using (A.5) we prove Lemma A.3 in two steps. More specifically, we first
show that there exists an order bounded set C ∈ X such that X×X t.a.−→

Q×Q
C×C,

and then show that any order bounded set C ∈ X satisfies C×C s.a.−→
Q×Q

G. This

together with (A.5) establishes (A.6).

Lemma A.4. If Q is order constricting, then there exists an order bounded set C ∈ X

such that
X×X t.a.−→

Q×Q
C×C. (A.7)

Proof. It follows from Kamihigashi and Stachurski (2010, Lemma 2.2) that,
given any C ∈ X , if there exists a measurable function w : X ×X → [1, ∞)

and a constant λ ∈ [0, 1) such that

((Q×Q)w)(x, x′) ≤ λw(x, x′) ∀(x, x′) 6∈ C×C, (A.8)

then (A.7) holds. Thus it suffices to construct an order bounded set C ∈ X , a
measurable function w, and a constant λ ∈ [0, 1) jointly satisfying (A.8).

Since Q is order constricting, there exists a measurable function V : X →
R+ having order bounded sublevel sets and satisfying the drift condition (2.4).
Without loss of generality, we may assume that V ≥ 1.36 Let α and β be as in
(2.4). Choose any r > 0 such that λ := α + β/r < 1. Let C := {x ∈ X : V(x) ≤
2r}, which is order bounded since V has order bounded sublevel sets. Define
w : X×X → [1, ∞) by

w(x, x′) :=
V(x) + V(x′)

2
.

By the drift condition (2.4), we have

((Q×Q)w)(x, x′) ≤ αw(x, x′) + β ∀(x, x′) ∈ X×X . (A.9)

36Some algebra shows that if V satisfies the drift condition (2.4), then V′ := V + 1 also
satisfies the condition.
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Now pick any (x, x′) /∈ C×C. Then V(x) +V(x′) > 2r, and hence w(x, x′) > r.
In view of (A.9), we have

((Q×Q)w)(x, x′)
w(x, x′)

≤ α +
β

w(x, x′)
< α +

β

r
= λ.

This proves (A.8), and hence the lemma.

Lemma A.5. If Q is increasing and order reversing, then for any order bounded set
C ∈ X , we have

C×C s.a.−→
Q×Q

G. (A.10)

Proof. Let C ∈ X be order bounded. Then there exists a pair a, b ∈ X such
that C ⊂ [a, b]. Since Q is order reversing, there exists an n ∈ N such that
ε := (Q×Q)n((b, a),G) > 0. For (x, x′) ∈ X , define

ψ(x, x′) := (Q×Q)n((x, x′),G).

We claim that ψ(x, x′) is decreasing in x and increasing in x′. To see this,
note from (2.5) that

ψ(x, x′) =
∫ ∫

1G(y, y′)Qn(x, dy)Qn(x′, dy′). (A.11)

Calculating the inner integral, we have

ψ(x, x′) =
∫

Qn(x, (−∞, y′])Qn(x′, dy′).

Since Qn is increasing, Qn(x, (−∞, y]) is decreasing in x by Remark 2.1, so that
ψ(x, x′) is decreasing in x. Interchanging the order of integration in (A.11) and
calculating the inner integral, we have

ψ(x, x′) =
∫

Qn(x′, [y, ∞))Qn(x, dy).

Since Qn(x′, [y, ∞)) is increasing in x′ by Remark 2.1, it follows that ψ(x, x′) is
increasing in x′.

Now, for any (x, x′) ∈ C×C ⊂ [a, b]×[a, b], we have ψ(x, x′) ≥ ψ(b, a) = ε,
which implies (A.10).
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From (A.5) and Lemmas A.4 and A.5, we obtain Lemma A.3, and hence
part (a) of Theorem 3.1. Parts (b) and (c) of the theorem follow from part (a)
and the following.

Lemma A.6. Suppose that Q is order constricting. If Q is either downward reaching
or upward reaching, then Q is order reversing.

Proof. Suppose that Q is order constricting. Fix x, x′ ∈ X with x ≥ x′, and
let {Xt}∞

t=0 and {X′t}∞
t=0 be independent Markov-(Q, x) and Markov-(Q, x′)

processes, respectively. Define

s := sup
t≥0

EV(X′t) = sup
t≥0

(QtV)(x′) < ∞,

where the inequality holds by Lemma A.2. Let C := {y ∈ X : V(y) ≤ s}.
By definition of s, we have P{V(X′t) ≤ s} = P{X′t ∈ C} > 0 for all t ≥ 0.
Since V has order bounded sublevel sets, there exists a pair a, b ∈ X such that
C ⊂ [a, b]. Hence

P{X′t ∈ [a, b]} ≥ P{X′t ∈ C} > 0 ∀ t ≥ 0. (A.12)

Now, suppose that Q is downward reaching. Then there exists an n ∈ N
such that Qn(x, (−∞, a]) > 0. From (A.12) we have Qn(x′, [a, ∞)) > 0. Thus
Remark 3.1 with c = a implies that Q is order reversing. The case in which Q
is downward reaching is similar.

A.3 Proof of Theorem 3.2

Let Assumptions A.1, A.2, 3.1, and 3.2 hold. Then Q is Feller and increasing.
By hypothesis, Q is order constricting. In view of Theorem 3.1, therefore, it
suffices to prove that conditions (a), (b), and (c) imply that Q is order reversing,
downward reaching, and upward reaching, respectively.

Assume condition (a). Fix x, x′ ∈ X with x ≥ x′. Then there exist finite
Z-valued sequences {zt}n

t=1 and {z′t}n
t=1 such that

Fn(x, {zt}n
t=1)� Fn(x′, {z′t}n

t=1). (A.13)
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Let {Zt}∞
t=1 and {Z′t}∞

t=1 be independent, IID shock processes with common
distribution φ. Define

γ := P{Fn(x, {Zt}n
t=1)� Fn(x′, {Z′t}n

t=1)}. (A.14)

Evidently (Q×Q)n((x, x′),G) ≥ γ, and hence we need only show that γ > 0.
By (A.13) and continuity of F, there exist finite sequences {Nt}n

t=1 and
{N′t}n

t=1 of open neighborhoods of zt and z′t, respectively, such that

∀t ∈ {1, . . . , n}, z̃t ∈ Nt, z̃′t ∈ N′t =⇒ Fn(x, {z̃t}n
t=1)� Fn(x′, {z̃′t}t=1).

This leads to the estimate

γ ≥ P∩n
t=1 {Zt ∈ Nt, Z′t ∈ N′t} =

n

∏
t=1

φ(Nt)φ(N′t),

where the equality holds by independence. Since Z is the support of φ, the
rightmost side is strictly positive, and γ > 0. The proofs for conditions (b) and
(c) are similar.37

B Proofs of Section 5.2 Claims

This appendix proves inequality (5.8) and its implication that the stochastic
kernel Q induced by the model in Section 5.2 is order constricting. To simplify
notation, given any bounded or nonnegative measurable function h : Z → R,
we define

Ezh(z) :=
∫

h(z)φ(dz).

B.1 Proof of (5.8)

Let x, z, s > 0 with z ∈ Z . Note that k(x, z) + ρs ∈ Γ(x + s, z), i.e., it is fea-
sible to choose kt+1 = k(x, z) + ρs when kt = x + s.38 Let a(x, z, s) be the

37For example, regarding condition (b), replace the right-hand sides of (A.13) and (A.14)
with c, and consider only {zt}, {Zt}, and {Nt}.

38This particular way of perturbing k(x, z) and the inequality in (B.6) are the key steps in
this proof.
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corresponding level of consumption:

a(x, z, s) := z f (x + s) + ρ(x + s)− [k(x, z) + ρs] (B.1)

= z f (x + s) + ρx− [z f (x) + ρx− c(x, z)] (B.2)

= z f (x + s)− z f (x) + c(x, z). (B.3)

For simplicity, let x′ := k(x, z). By the Bellman equation (5.7),

v(x + s, z) ≥ u(a(x, z, s)) + δEz′v(x′ + ρs, z′).

Subtracting v(x, z) = u(c(x, z)) + δEz′v(x′, z′), we have

v(x + s, z)− v(x, z) (B.4)

≥ u(a(x, z, s))− u(c(x, z)) + δEz′ [v(x′ + ρs, z′)− v(x′, z′)] (B.5)

≥ u(a(x, z, s))− u(c(x, z)), (B.6)

where the second inequality holds since v(·, z′) is increasing.
Since u′(0) = ∞, we have c(x, z) > 0, so that x′ + s ∈ Γ(x, z) if s is suffi-

ciently small. For such an s > 0, by the Bellman equation (5.7),

u(c(x, z)− s) + δEz′v(x′ + s, z′) ≤ u(c(x, z)) + δEz′v(x′, z′).

Rearranging, we have

u(c(x, z))− u(c(x, z)− s) ≥ δEz′ [v(x′ + s, z′)− v(x′, z′)]

≥ δEz′ [u(a(x′, z′, s))− u(c(x′, z′))],

where the second inequality uses (B.4)–(B.6) (which hold for any x, z, s > 0
with z ∈ Z). Dividing through by s, recalling (B.1)–(B.3), and letting s ↓ 0
yields (5.8).

B.2 Proof that Q is Order Constricting

We verify our claim that the function V : R++ → R+ given by (5.9) satisfies
the drift condition (3.4) and has order bounded sublevel sets. To this end, let
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x, z > 0 with z ∈ Z .39 To simplify notation, let c := c(x, z), x′ := k(x, z), and
c′ := c(x′, z′). By (5.2), (5.8), and the Cauchy-Schwarz inequality,40 we have

∞ > u′(c)1/2[Ez′{δz′ f ′(x′)}−1]1/2 (B.7)

≥ [δEz′u′(c′)z′ f ′(x′)]1/2[Ez′{δz′ f ′(x′)}−1]1/2 (B.8)

≥ Ez′ [δu′(c′)z′ f ′(x′){δz′ f ′(x′)}−1]1/2 (B.9)

= Ez′u′(c′)1/2. (B.10)

Raising to the power of 1/2 and integrating over z with respect to φ, we obtain

Ez{Ez′u′(c′)1/2}1/2 ≤ Ez{u′(c)1/2[Ez′{δz′ f ′(x′)}−1]1/2}1/2.

Applying again the Cauchy-Schwarz inequality to the right-hand side, and
then using Jensen’s inequality, we have

Ez{Ez′u′(c′)1/2}1/2 (B.11)

≤ {Ezu′(c)1/2}1/2{Ez[Ez′{δz′ f ′(x′)}−1]1/2}1/2 (B.12)

≤ {Ezu′(c)1/2}1/2{[EzEz′{δz′ f ′(x′)}−1]1/2}1/2. (B.13)

For x > 0, define

w1(x) := {Ezu′(c(x, z))1/2}1/2,

which is finite for any x > 0 by (B.7)–(B.10).41 Fix x > 0 for the moment. Since

w1(k(x, z)) = {Ez′u′(c(k(x, z), z′))1/2}1/2 = {Ez′u′(c′)1/2}1/2

for any z > 0 with z ∈ Z , it follows from (B.11)–(B.13) that

Ezw1(k(x, z)) ≤ w1(x)[EzEz′{δz′ f ′(k(x, z))}−1]1/4. (B.14)

39The following argument is similar to the proof of Kamihigashi (2007, Theorem 3.1), but is
more involved in that there are two state variables in the Bellman equation (5.7) while there is
only one in the setting of Section 5.1.

40A version of the inequality that we use here is the following: for any nonnegative random
variables X and Y, we have E{XY}1/2 ≤ {EX}1/2{EY}1/2 (see Folland, 1999, p. 182).

41To see this, note that, for any x, z > 0 with z ∈ Z , we have Ez′u′(c(k(x, z), z′))1/2 < ∞
by (B.7)–(B.10). Let x̃ > 0. Since k(x, z) → 0 as x → 0, we have k(x, z) < x̃ if x is sufficiently
small. For such an x > 0, we haveEz′u′(c(x̃, z′))1/2 ≤ Ez′u′(c(k(x, z), z′))1/2 < ∞ since c(·, z′)
is increasing. Because x̃ was arbitrary, it follows that w1(x̃) < ∞ for any x̃ > 0.
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To estimate the right-hand side, note that

EzEz′{δz′ f ′(k(x, z))}−1 = Ez′
1
z′
Ez

1
δ f ′(k(x, z))

. (B.15)

Since k(x, z) is increasing in x, the right-hand side of (B.15) is increasing
in x, and strictly less than one for x > 0 sufficiently small by (5.2) and the
monotone convergence theorem. Thus there exists an x > 0 such that

α1 := [EzEz′{δz′ f ′(k(x, z))}−1]1/4 < 1.

Since f ′(k(x, z)) is decreasing in x, this together with (B.14) implies that

Ezw1(k(x, z)) ≤ α1w1(x) ∀x ∈ (0, x]. (B.16)

Since c(x, z) is increasing in x, w1(·) is decreasing. Hence w1(x) ≤ β1 := w1(x)
for all x ≥ x. Combining this inequality with (B.16), we obtain

Ezw1(k(x, z)) ≤ α1w1(x) + β1 ∀x > 0.

Define w2(x) := x for x > 0. By concavity of f and the assumption that
f ′(∞) = 0, there exists an α2 ∈ (0, 1) and a β2 > 0 such that Ezz f (x) + ρx ≤
α2x + β2 for all x > 0. Thus, for any x > 0,

Ezw2(k(x, z)) = Ezk(x, z) ≤ Ezz f (x) + ρx

≤ α2x + β2 = α2w2(x) + β2.

Now define V(x) := w1(x) + w2(x) for x > 0. This is the function given by
(5.9). The function V satisfies the drift condition (3.4) with α := max{α1, α2}
and β := β1 + β2, and has order bounded sublevel sets because V(x) → ∞ as
x ↓ 0 or x ↑ ∞. This completes the proof.
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